SECTION 101
GENERAL

101.1 Title. Chapters 4101:3-1 to 4101:3-13 of the Administrative Code shall be designated as the “Ohio Plumbing Code” for which the designation “OPC” may be substituted. The “International Plumbing Code 2009, first printing, Chapters 2 to 13,” as published by the “International Code Council, Inc.” is used as the basis of this document and is incorporated fully except as modified in italic herein. References in these chapters to “this code” or to the “plumbing code” in other sections of the Administrative Code shall mean the “Ohio Plumbing Code”.

101.2 Scope. The provisions of this code shall apply to the design, installation, maintenance, alteration, repair, relocation, replacement, addition to, use and inspection of plumbing systems within buildings. This code shall also apply to those other systems, system components, equipment and appliances specifically addressed herein.

101.3 Administrative and enforcement. For administrative and enforcement provisions of this code, refer to sections 101.2 to 115.13 of the building code.

101.4 Referenced standards. When a reference is made within the plumbing code to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in Chapter 13 of this code. The application of the referenced standards shall be limited and as prescribed in Section 102.5 of the building code.
4101:3-2-01 Definitions.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 201
GENERAL

201.1 Scope. Unless otherwise expressly stated, the following words and terms shall, for the purposes of this code, have the meanings shown in this chapter.

201.2 Interchangeability. Words stated in the present tense include the future; words stated in the masculine gender include the feminine and neuter; the singular number includes the plural and the plural the singular.

201.3 Terms defined in other codes. Where terms are not defined in this code and are defined in the building code, fire code, “International Fuel Gas Code” or the mechanical code, such terms shall have the meanings ascribed to them as in those codes.

201.4 Terms not defined. Where terms are not defined through the methods authorized by this section, such terms shall have ordinarily accepted meanings such as the context implies.

SECTION 202
GENERAL DEFINITIONS

ACCEPTED ENGINEERING PRACTICE. That which conforms to accepted principles, tests or standards of nationally recognized technical or scientific authorities. Where a standard is referred to in Chapter 4101:3-13 of the Administrative Code relative to “accepted engineering practice,” conformity to the applicable technical provisions, requirements, recommendations, and determinations in the standard or other publications is prima-facce evidence of conformity with accepted engineering practice.

ACCESS (TO). That which enables a fixture, appliance or equipment to be reached by ready access or by a means that first requires the removal or movement of a panel, door or similar obstruction (see “Ready access”).

ACCESS COVER. A removable plate, usually secured by bolts or screws, to permit access to a pipe or pipe fitting for the purposes of inspection, repair or cleaning.

ADAPTER FITTING. An approved connecting device that suitably and properly joins or adjusts pipes and fittings which do not otherwise fit together.

AIR ADMITTANCE VALVE. One-way valve designed to allow air to enter the plumbing drainage system when negative pressures develop in the piping system. The device shall close by
gravity and seal the vent terminal at zero differential pressure (no flow conditions) and under positive internal pressures. The purpose of an air admittance valve is to provide a method of allowing air to enter the plumbing drainage system without the use of a vent extended to open air and to prevent sewer gases from escaping into a building.

AIR BREAK (Drainage System). A piping arrangement in which a drain from a fixture, appliance or device discharges indirectly into another fixture, receptacle or interceptor at a point below the flood level rim and above the trap seal.

AIR GAP (Drainage System). The unobstructed vertical distance through the free atmosphere between the outlet of the waste pipe and the flood level rim of the receptacle into which the waste pipe is discharging.

AIR GAP (Water Distribution System). The unobstructed vertical distance through the free atmosphere between the lowest opening from any pipe or faucet supplying water to a tank, plumbing fixture or other device and the flood level rim of the receptacle.

ALTERNATIVE ENGINEERED DESIGN. A plumbing system that performs in accordance with the intent of Chapters 3 through 12 and provides an equivalent level of performance for the protection of public health, safety and welfare. The system design is not specifically regulated by Chapters 3 through 12 in accordance with the requirements of section 106 of the building code.

ANCHORS. See “Supports.”

ANTISIPHON. A term applied to valves or mechanical devices that eliminate siphonage.

APPROVED. Determined to be in compliance by the authority having jurisdiction in accordance with the rules of the board.

APPROVED AGENCY. An established and recognized agency that is regularly engaged in conducting tests and/or inspection services, when such agency has been approved in accordance with the rules of the board and published in Appendix O.

AREA DRAIN. A receptacle designed to collect surface or storm water from an open area.

ASPIRATOR. A fitting or device supplied with water or other fluid under positive pressure that passes through an integral orifice or constriction, causing a vacuum. Aspirators are also referred to as suction apparatus, and are similar in operation to an ejector.

BACKFLOW. Pressure created by any means in the water distribution system, which by being in excess of the pressure in the water supply mains causes a potential backflow condition.

 - **Backpressure, low head.** A pressure less than or equal to 4.33 psi (29.88 kPa) or the pressure exerted by a 10-foot (3048 mm) column of water.
 - **Backsiphonage.** The backflow of potentially contaminated water into the potable water system as a result of the pressure in the potable water system falling below atmospheric pressure of the plumbing fixtures, pools, tanks or vats connected to the potable water distribution piping.

Drainage. A reversal of flow in the drainage system.

Water supply system. The flow of water or other liquids, mixtures or substances into the distribution pipes of a potable water supply from any source except the intended source.

BACKFLOW CONNECTION. Any arrangement whereby backflow is possible.
BACKFLOW PREVENTER. A device or means to prevent backflow.

BACKWATER VALVE. A device or valve installed in the building drain or sewer pipe where a sewer is subject to backflow, and which prevents drainage or waste from backing up into a lower level or fixtures and causing a flooding condition.

BASE FLOOD ELEVATION. A reference point, determined in accordance with the building code, based on the depth or peak elevation of flooding, including wave height, which has a 1 percent (100-year flood) or greater chance of occurring in any given year.

BATHROOM GROUP. A group of fixtures consisting of a water closet, lavatory, bathtub or shower, including or excluding a bidet, an emergency floor drain or both. Such fixtures are located together on the same floor level.

BEDPAN STEAMER OR BOILER. A fixture utilized for scalding bedpans or urinals by direct application of steam or boiling water.

BEDPAN WASHER AND STERILIZER. A fixture designed to wash bedpans and to flush the contents into the sanitary drainage system. Included are fixtures of this type that provide for disinfecting utensils by scalding with steam or hot water.

BEDPAN WASHER HOSE. A device supplied with hot and cold water and located adjacent to a water closet or clinical sink to be utilized for cleansing bedpans.

BRANCH. Any part of the piping system except a riser, main or stack.

BRANCH INTERVAL. A vertical measurement of distance, 8 feet (2438 mm) or more in developed length, between the connections of horizontal branches to a drainage stack. Measurements are taken down the stack from the highest horizontal branch connection.

BRANCH VENT. A vent connecting one or more individual vents with a vent stack or stack vent.

BUILDING. Any structure consisting of foundations, walls, columns, girders, beams, floors, and roof, or a combination of any number of these parts, with or without other parts or appurtenances. See division (C)(2) of section 3781.06 of the Revised Code.

BUILDING CODE. The “Ohio Building Code”.

BUILDING DRAIN. That part of the lowest piping of a drainage system that receives the discharge from soil, waste and other drainage pipes inside and that extends 30 inches (762 mm) in developed length of pipe beyond the exterior walls of the building and conveys the drainage to the building sewer.

Combined. A building drain that conveys both sewage and storm water or other drainage.

Sanitary. A building drain that conveys sewage only.

Storm. A building drain that conveys storm water or other drainage, but not sewage.

BUILDING SERVICES PIPING. All piping systems and their component parts that are part of a building system and that promote the safe, sanitary, and energy efficient occupancy of a building. Building services piping includes, but is not limited to, cold and hot potable water
distribution for plumbing fixtures; sanitary lines from plumbing fixtures; nonflammable medical gas systems; medical oxygen systems; medical vacuum systems; fire protection piping systems and compressed air in dry systems; refrigeration, chilled water, condenser and cooling tower water, brine, and water/antifreeze systems; steam, steam condensate, and hot water piping systems; and fuel oil piping and fuel gas piping for heating, cooling, and cooking applications. See division (A) of section 4104.41 of the Revised Code.

BUILDING SEWER. That part of the drainage system that extends from the end of the building drain and conveys the discharge to a public sewer, private sewer, individual sewage disposal system or other point of disposal.

- **Combined.** A building sewer that conveys both sewage and storm water or other drainage.
- **Sanitary.** A building sewer that conveys sewage only.
- **Storm.** A building sewer that conveys storm water or other drainage, but not sewage.

BUILDING SUBDRAIN. That portion of a drainage system that does not drain by gravity into the building sewer.

BUILDING TRAP. A device, fitting or assembly of fittings installed in the building drain to prevent circulation of air between the drainage system of the building and the building sewer.

CIRCUIT VENT. A vent that connects to a horizontal drainage branch and vents two traps to a maximum of eight traps or trapped fixtures connected into a battery.

CISTERN. A small covered tank for storing water for a home or farm. Generally, this tank stores rainwater to be utilized for purposes other than in the potable water supply, and such tank is placed underground in most cases.

CLEANOUT. An access opening in the drainage system utilized for the removal of obstructions. Types of cleanouts include a removable plug or cap, and a removable fixture or fixture trap.

CODE. Those rules contained in division number 4101:3 of the Administrative Code.

COMBINATION FIXTURE. A fixture combining one sink and laundry tray or a two- or three-compartment sink or laundry tray in one unit.

COMBINATION WASTE AND VENT SYSTEM. A specially designed system of waste piping embodying the horizontal wet venting of one or more sinks or floor drains by means of a common waste and vent pipe adequately sized to provide free movement of air above the flow line of the drain.

COMBINED BUILDING DRAIN. See “Building drain, combined.”

COMBINED BUILDING SEWER. See “Building sewer, combined.”

COMMON VENT. A vent connecting at the junction of two fixture drains or to a fixture branch and serving as a vent for both fixtures.

CONCEALED FOULING SURFACE. Any surface of a plumbing fixture which is not readily
visible and is not scoured or cleansed with each fixture operation.

CONDUCTOR. A pipe inside the building that conveys storm water from the roof to a storm or combined building drain.

CONSTRUCTION DOCUMENTS. All of the written, graphic and pictorial documents prepared or assembled for describing the design, location and physical characteristics of the elements of the project necessary for obtaining plan approval in accordance with section 106 of rule 4101:1-1-01 of the Administrative code.

CONTAMINATION. An impairment of the quality of the potable water that creates an actual hazard to the public health through poisoning or through the spread of disease by sewage, industrial fluids or waste.

CRITICAL LEVEL (C-L). An elevation (height) reference point that determines the minimum height at which a backflow preventer or vacuum breaker is installed above the flood level rim of the fixture or receptor served by the device. The critical level is the elevation level below which there is a potential for backflow to occur. If the critical level marking is not indicated on the device, the bottom of the device shall constitute the critical level.

CROSS CONNECTION. Any physical connection or arrangement between two otherwise separate piping systems, one of which contains potable water and the other either water of unknown or questionable safety or steam, gas or chemical, whereby there exists the possibility for flow from one system to the other, with the direction of flow depending on the pressure differential between the two systems (see “Backflow”).

DEAD END. A branch leading from a soil, waste or vent pipe; a building drain; or a building sewer, and terminating at a developed length of 2 feet (610 mm) or more by means of a plug, cap or other closed fitting.

DEPTH OF TRAP SEAL. The depth of liquid that would have to be removed from a full trap before air could pass through the trap.

DESIGN FLOOD ELEVATION. The elevation of the “design flood,” including wave height, relative to the datum specified on the legally designated flood hazard map.

DEVELOPED LENGTH. The length of a pipeline measured along the centerline of the pipe and fittings.

DISCHARGE PIPE. A pipe that conveys the discharges from plumbing fixtures or appliances.

DRAIN. Any pipe that carries wastewater or water-borne wastes in a building drainage system.

DRAINAGE FITTINGS. Type of fitting or fittings utilized in the drainage system. Drainage fittings are similar to cast-iron fittings, except that instead of having a bell and spigot, drainage fittings are recessed and tapped to eliminate ridges on the inside of the installed pipe.

DRAINAGE FIXTURE UNIT (dfu). A measure of the probable discharge into the drainage system by various types of plumbing fixtures. The drainage fixture-unit value for a particular fixture depends on its volume rate of drainage discharge, on the time duration of a single drainage operation and on the average time between successive operations.

DRAINAGE SYSTEM. Piping within a public or private premise that conveys sewage,
rainwater or other liquid wastes to a point of disposal. A drainage system does not include the mains of a public sewer system or a private or public sewage treatment or disposal plant.

Building gravity. A drainage system that drains by gravity into the building sewer.

Sanitary. A drainage system that carries sewage and excludes storm, surface and ground water.

Storm. A drainage system that carries rainwater, surface water, subsurface water and similar liquid wastes.

EFFECTIVE OPENING. The minimum cross-sectional area at the point of water supply discharge, measured or expressed in terms of the diameter of a circle or, if the opening is not circular, the diameter of a circle of equivalent cross-sectional area. For faucets and similar fittings, the effective opening shall be measured at the smallest orifice in the fitting body or in the supply piping to the fitting.

EMERGENCY FLOOR DRAIN. A floor drain that does not receive the discharge of any drain or indirect waste pipe, and that protects against damage from accidental spills, fixture overflows and leakage.

ESSENTIALLY NONTOXIC TRANSFER FLUIDS. Fluids having a Gosselin rating of 1, including propylene glycol; mineral oil; polydimethylsiloxane; hydrochlorofluorocarbon, chlorofluorocarbon and carbon refrigerants; and FDA-approved boiler water additives for steam boilers.

ESSENTIALLY TOXIC TRANSFER FLUIDS. Soil, waste or gray water and fluids having a Gosselin rating of 2 or more including ethylene glycol, hydrocarbon oils, ammonia refrigerants and hydrazine.

EXISTING INSTALLATIONS. Any plumbing system regulated by this code that was installed, or for which an approval has been issued.

FAUCET. A valve end of a water pipe through which water is drawn from or held within the pipe.

FILL VALVE. A water supply valve, opened or closed by means of a float or similar device, utilized to supply water to a tank. An antisiphon fill valve contains an antisiphon device in the form of an approved air gap or vacuum breaker that is an integral part of the fill valve unit and that is positioned on the discharge side of the water supply control valve.

FIRE CODE. The “Ohio Fire Code”.

FIXTURE. See “Plumbing fixture.”

FIXTURE BRANCH. A drain serving two or more fixtures that discharges to another drain or to a stack.

FIXTURE DRAIN. The drain from the trap of a fixture to a junction with any other drain pipe.

FIXTURE FITTING

Supply fitting. A fitting that controls the volume and/or directional flow of water and is either attached to or accessible from a fixture, or is used with an open or atmospheric discharge.

Waste fitting. A combination of components that conveys the sanitary waste from the outlet of a fixture to the connection to the sanitary drainage system.

FIXTURE SUPPLY. The water supply pipe connecting a fixture to a branch water supply pipe
or directly to a main water supply pipe.

FLOOD HAZARD AREA. The greater of the following two areas:

1. The area within a flood plain subject to a 1-percent or greater chance of flooding in any given year.
2. The area designated as a flood hazard area on a *legally designated* flood hazard map.

FLOOD LEVEL RIM. The edge of the receptacle from which water overflows.

FLOW CONTROL (Vented). A device installed upstream from the interceptor having an orifice that controls the rate of flow through the interceptor and an air intake (vent) downstream from the orifice that allows air to be drawn into the flow stream.

FLOW PRESSURE. The pressure in the water supply pipe near the faucet or water outlet while the faucet or water outlet is wide open and flowing.

FLUSH TANK. A tank designed with a fill valve and flush valve to flush the contents of the bowl or usable portion of the fixture.

FLUSHOMETER TANK. A device integrated within an air accumulator vessel that is designed to discharge a predetermined quantity of water to fixtures for flushing purposes.

FLUSHOMETER VALVE. A valve attached to a pressurized water supply pipe and so designed that when activated it opens the line for direct flow into the fixture at a rate and quantity to operate the fixture properly, and then gradually closes to reseal fixture traps and avoid water hammer.

GRAY WATER. *Waste discharged from lavatories, bathtubs, showers, clothes washers and laundry trays.*

GREASE INTERCEPTOR. A plumbing appurtenance that is installed in a sanitary drainage system to intercept oily and greasy wastes from a wastewater discharge. Such device has the ability to intercept free-floating fats and oils.

GREASE-LADEN WASTE. Effluent discharge that is produced from food processing, food preparation or other sources where grease, fats and oils enter automatic dishwater prerinse stations, sinks or other appurtenances.

GREASE REMOVAL DEVICE, AUTOMATIC (GRD). A plumbing appurtenance that is installed in the sanitary drainage system to intercept free-floating fats, oils and grease from wastewater discharge. Such a device operates on a time-or event-controlled basis and has the ability to remove free-floating fats, oils and grease automatically without intervention from the user except for maintenance.

GRIDDED WATER DISTRIBUTION SYSTEM. A water distribution system where every water distribution pipe is interconnected so as to provide two or more paths to each fixture supply pipe.

HANGERS. See “Supports.”

HORIZONTAL BRANCH DRAIN. A drainage branch pipe extending laterally from a soil or waste stack or building drain, with or without vertical sections or branches, that receives the discharge from two or more fixture drains or branches and conducts the discharge to the soil or waste stack or to the building drain.
HORIZONTAL PIPE. Any pipe or fitting that makes an angle of less than 45 degrees (0.79 rad) with the horizontal.

HOT WATER. Water at a temperature greater than or equal to 110°F (43°C).

HOUSE TRAP. See “Building trap.”

HUB DRAIN. A drain whose inlet terminates not less than one inch (25.4mm) above the finished floor.

INDIRECT WASTE PIPE. A waste pipe that does not connect directly with the drainage system, but that discharges into the drainage system through an air break or air gap into a trap, fixture, receptor or interceptor.

INDIVIDUAL SEWAGE DISPOSAL SYSTEM. A system for disposal of domestic sewage by means of a septic tank, cesspool or mechanical treatment, designed for utilization apart from a public sewer to serve a single establishment or building.

INDIVIDUAL VENT. A pipe installed to vent a fixture trap and that connects with the vent system above the fixture served or terminates in the open air.

INDIVIDUAL WATER SUPPLY. A water supply that serves one or more families, and that is not an approved public water supply.

INTERCEPTOR. A device designed and installed to separate and retain for removal, by automatic or manual means, deleterious, hazardous or undesirable matter from normal wastes, while permitting normal sewage or wastes to discharge into the drainage system by gravity.

JOINT

Expansion. A loop, return bend or return offset that provides for the expansion and contraction in a piping system and is utilized in tall buildings or where there is a rapid change of temperature, as in power plants, steam rooms and similar occupancies.

Flexible. Any joint between two pipes that permits one pipe to be deflected or moved without movement or deflection of the other pipe.

Mechanical. See “Mechanical joint.”

Slip. A type of joint made by means of a washer or a special type of packing compound in which one pipe is slipped into the end of an adjacent pipe.

JURISDICTION. The authority to enforce this code by municipal corporations, townships or counties certified by the board in accordance with section 3781.10 of the Revised Code, or by general health districts, or by the division of industrial compliance in the department of commerce.

LABEL. An identification applied on a product by the manufacturer that contains the name of the manufacturer, the function and performance characteristics of the product or material, and the name and identification of an approved agency and that indicates that the representative sample of the product or material has been tested and evaluated by an approved agency (see building code section 1703.5 and building code definitions “Inspection Certificate,” “Manufacturer’s Designation,” and “Mark”).
LEAD-FREE PIPE AND FITTINGS. Containing not more than 8.0-percent lead.

LEAD-FREE SOLDER AND FLUX. Containing not more than 0.2-percent lead.

LEADER. An exterior drainage pipe for conveying storm water from roof or gutter drains to an approved means of disposal.

LISTED. Equipment, appliances or materials included in a directory published by an approved agency whose listing states either that equipment, appliances or materials meet standards listed in this code or have been tested and found suitable for use in a specified manner.

LOCAL VENT STACK. A vertical pipe to which connections are made from the fixture side of traps and through which vapor or foul air is removed from the fixture or device utilized on bed-pan washers.

MACERATING TOILET SYSTEMS. An assembly consisting of a water closet and sump with a macerating pump that is designed to collect, grind and pump wastes from the water closet and up to two other fixtures connected to the sump.

MAIN. The principal pipe artery to which branches are connected.

MANIFOLD. See “Plumbing appurtenance.”

MECHANICAL CODE. The “Ohio Mechanical Code.”

MECHANICAL JOINT. A connection between pipes, fittings, or pipes and fittings that is not screwed, caulked, threaded, soldered, solvent cemented, brazed or welded. A joint in which compression is applied along the centerline of the pieces being joined. In some applications, the joint is part of a coupling, fitting or adapter.

MEDICAL GAS SYSTEM. The complete system to convey medical gases for direct patient application from central supply systems (bulk tanks, manifolds and medical air compressors), with pressure and operating controls, alarm warning systems, related components and piping networks extending to station outlet valves at patient use points.

MEDICAL VACUUM SYSTEMS. A system consisting of central-vacuum-producing equipment with pressure and operating controls, shutoff valves, alarm-warning systems, gauges and a network of piping extending to and terminating with suitable station inlets at locations where patient suction may be required.

NONPOTABLE WATER. Water not safe for drinking, personal or culinary utilization.

NUISANCE. See “Public Nuisance.”

OCCUPANCY. The purpose for which a building or portion thereof is utilized or occupied.

OFFSET. A combination of approved bends that makes two changes in direction bringing one section of the pipe out of line but into a line parallel with the other section.

OPEN AIR. Outside the structure.

PLUMBING. The practice, materials and fixtures utilized in the installation, maintenance, extension and alteration of all piping, fixtures, plumbing appliances and plumbing appurtenances, within or adjacent to any structure, in connection with sanitary drainage or storm drainage facilities; venting systems; and public or private water supply systems.
PLUMBING APPLIANCE. Any one of a special class of plumbing fixtures intended to perform a special function. Included are fixtures having the operation or control dependent on one or more energized components, such as motors, controls, heating elements, or pressure-or temperature-sensing elements.

Such fixtures are manually adjusted or controlled by the owner or operator, or are operated automatically through one or more of the following actions: a time cycle, a temperature range, a pressure range, a measured volume or weight.

PLUMBING APPURTENANCE. A manufactured device, prefabricated assembly or an on-the-job assembly of component parts that is an adjunct to the basic piping system and plumbing fixtures. An appurtenance demands no additional water supply and does not add any discharge load to a fixture or to the drainage system.

PLUMBING FIXTURE. A receptacle or device that is either permanently or temporarily connected to the water distribution system of the premises and demands a supply of water therefrom; discharges wastewater, liquid-borne waste materials or sewage either directly or indirectly to the drainage system of the premises; or requires both a water supply connection and a discharge to the drainage system of the premises.

PLUMBING SYSTEM. Includes the water supply and distribution pipes; plumbing fixtures and traps; water-treating or water-using equipment; soil, waste and vent pipes; and sanitary and storm sewers and building drains; in addition to their respective connections, devices and appurtenances within a structure or premises.

POLLUTION. An impairment of the quality of the potable water to a degree that does not create a hazard to the public health but that does adversely and unreasonably affect the aesthetic qualities of such potable water for domestic use.

POTABLE WATER. Water free from impurities present in amounts sufficient to cause disease or harmful physiological effects and conforming to the bacteriological and chemical quality requirements of the Public Health Service Drinking Water Standards or the regulations of the public health authority having jurisdiction.

POWER PIPING. Piping systems and their component parts that are not building services piping systems, and that may be installed within electric power generating stations, industrial and institutional plants, utility geothermal heating systems, and central and district heating and cooling systems. Power piping includes, but is not limited to, piping used in the distribution of plant and process steam at boiler pressures greater than fifteen pounds per square inch gauge, high temperature water piping from high pressure and high temperature boilers, power boiler steam condensate piping, high pressure and high temperature water condensate piping, and compressed air and hydraulic piping upstream of the first stop valve off a system distribution header. See division (B) of section 4104.41 of the Revised Code.

PRIVATE. In the classification of plumbing fixtures, “private” applies to fixtures in residences and apartments, and to fixtures in nonpublic toilet rooms of hotels and motels and similar installations in buildings where the plumbing fixtures are intended for utilization by a family or an individual.

PROCESS PIPING. Piping systems and their component parts that are not building services or power piping systems and that may be installed in petroleum refineries; chemical.
pharmaceutical, textile, paper, semiconductor, and cryogenic plants; and related processing plants and terminals. See division (C) of section 4104.41 of the Revised Code.

PUBLIC NUISANCE. Any building, structure, or part thereof, constructed, erected, altered, manufactured, or repaired not in accordance with the Ohio Revised Code or the rules of the board, and any building, structure, or part thereof in which there is installed, altered, or repaired any fixture, device, and material, or plumbing, heating, or ventilating system, or electric wiring not in accordance with the Ohio Revised Code or the rules of the board. See division (C) of section 3781.11 of the Revised Code.

PUBLIC OR PUBLIC UTILIZATION. In the classification of plumbing fixtures, “public” applies to fixtures in general toilet rooms of schools, gymnasiums, hotels, airports, bus and railroad stations, public buildings, bars, public comfort stations, office buildings, stadiums, stores, restaurants and other installations where toilet fixtures are intended for public use.

PUBLIC WATER MAIN. A water supply pipe for public utilization controlled by public authority.

QUICK-CLOSING VALVE. A valve or faucet that closes automatically when released manually or that is controlled by a mechanical means for fast-action closing.

READY ACCESS. That which enables a fixture, appliance or equipment to be directly reached without requiring the removal or movement of any panel, door or similar obstruction and without the use of a portable ladder, step stool or similar device. (See "Access (to)")

REDUCED PRESSURE PRINCIPLE BACKFLOW PREVENTER. A backflow prevention device consisting of two independently acting check valves, internally force-loaded to a normally closed position and separated by an intermediate chamber (or zone) in which there is an automatic relief means of venting to the atmosphere, internally loaded to a normally open position between two tightly closing shutoff valves and with a means for testing for tightness of the checks and opening of the relief means.

REGISTERED DESIGN PROFESSIONAL. Any person holding a certificate issued under sections 4703.10, 4703.36 or 4733.14 of the Revised Code.

RELIEF VALVE

Pressure relief valve. A pressure-actuated valve held closed by a spring or other means and designed to relieve pressure automatically at the pressure at which such valve is set.

Temperature and pressure relief (T&P) valve. A combination relief valve designed to function as both a temperature relief and a pressure relief valve.

Temperature relief valve. A temperature-actuated valve designed to discharge automatically at the temperature at which such valve is set.

RELIEF VENT. A vent whose primary function is to provide circulation of air between drainage and vent systems.

RIM. An unobstructed open edge of a fixture.
RISER. See “Water pipe, riser.”

RODENT PROOFING. The installation of plumbing systems in a manner which will prevent the entry of rodents into a structure through openings created when any part of a plumbing system penetrates an exterior wall or floor assembly located near or on grade.

ROOF DRAIN. A drain installed to receive water collecting on the surface of a roof and to discharge such water into a leader or a conductor.

ROUGH-IN. Parts of the plumbing system that are installed prior to the installation of fixtures. This includes drainage, water supply, vent piping and the necessary fixture supports and any fixtures that are built into the structure.

SELF-CLOSING FAUCET. A faucet containing a valve that automatically closes upon deactivation of the opening means.

SEPARATOR. See “Interceptor.”

SEWAGE. Any liquid waste containing animal or vegetable matter in suspension or solution, including liquids containing chemicals in solution.

SEWAGE EJECTORS. A device for lifting sewage by entraining the sewage in a high-velocity jet of steam, air or water.

SEWER

 Building sewer. See “Building sewer.”

 Public sewer. A common sewer directly controlled by public authority.

 Sanitary sewer. A sewer that carries sewage and excludes storm, surface and ground water.

 Storm sewer. A sewer that conveys rainwater, surface water, subsurface water and similar liquid wastes.

SINK, SERVICE. Any designated sink so approved for liquid discharge, liquid filling, cleaning, and washing in a facility, and installed in a dedicated area or space.

SLOPE. The fall (pitch) of a line of pipe in reference to a horizontal plane. In drainage, the slope is expressed as the fall in units vertical per units horizontal (percent) for a length of pipe.

SOIL PIPE. A pipe that conveys sewage containing fecal matter to the building drain or building sewer.

SPILLPROOF VACUUM BREAKER. An assembly consisting of one check valve force-loaded closed and an air-inlet vent valve force-loaded open to atmosphere, positioned downstream of the check valve, and located between and including two tightly closing shutoff valves and a test cock.

STACK. A general term for any vertical line of soil, waste, vent or inside conductor piping that extends through at least one story with or without offsets.

STACK VENT. The extension of a soil or waste stack above the highest horizontal drain connected to the stack.

STACK VENTING. A method of venting a fixture or fixtures through the soil or waste stack.

STERILIZER
Boiling type. A boiling-type sterilizer is a fixture of a nonpressure type utilized for boiling instruments, utensils or other equipment for disinfection. These devices are portable or are connected to the plumbing system.

Instrument. A device for the sterilization of various instruments.

Pressure (autoclave). A pressure vessel fixture designed to utilize steam under pressure for sterilizing.

Pressure instrument washer sterilizer. A pressure instrument washer sterilizer is a pressure vessel fixture designed to both wash and sterilize instruments during the operating cycle of the fixture.

Utensil. A device for the sterilization of utensils as utilized in health care services.

Water. A water sterilizer is a device for sterilizing water and storing sterile water.

STERILIZER VENT. A separate pipe or stack, indirectly connected to the building drainage system at the lower terminal, that receives the vapors from non-pressure sterilizers, or the exhaust vapors from pressure sterilizers, and conducts the vapors directly to the open air. Also called vapor, steam, atmospheric or exhaust vent.

STORM DRAIN. See “Drainage system, storm.”

STRUCTURE. That which is built or constructed or a portion thereof.

SUBSOIL DRAIN. A drain that collects subsurface water or seepage water and conveys such water to a place of disposal.

SUMP. A tank or pit that receives sewage or liquid waste, located below the normal grade of the gravity system and that must be emptied by mechanical means.

SUMP PUMP. An automatic water pump powered by an electric motor for the removal of drainage, except raw sewage, from a sump, pit or low point.

SUMP VENT. A vent from pneumatic sewage ejectors, or similar equipment, that terminates separately to the open air.

SUPPORTS. Devices for supporting and securing pipe, fixtures and equipment.

SWIMMING POOL. See section 3109.2 of the building code for classifications of swimming pool.

TEMPERED WATER. Water having a temperature range between 85°F (29°C) and 110°F (43°C).

THIRD-PARTY CERTIFICATION AGENCY. See “APPROVED AGENCY”.

THIRD-PARTY CERTIFIED. See “LISTED”.

THIRD-PARTY TESTED. Procedure by which an approved agency provides documentation that a product, material or system conforms to specified requirements.

TRAP. A fitting or device that provides a liquid seal to prevent the emission of sewer gases without materially affecting the flow of sewage or wastewater through the trap.

TRAP SEAL. The vertical distance between the weir and the top of the dip of the trap.

UNSTABLE GROUND. Earth that does not provide a uniform bearing for the barrel of the sewer pipe between the joints at the bottom of the pipe trench.
VACUUM. Any pressure less than that exerted by the atmosphere.

VACUUM BREAKER. A type of backflow preventer installed on openings subject to normal atmospheric pressure that prevents backflow by admitting atmospheric pressure through ports to the discharge side of the device.

VENT PIPE. See “Vent system.”

VENT STACK. A vertical vent pipe installed primarily for the purpose of providing circulation of air to and from any part of the drainage system.

VENT SYSTEM. A pipe or pipes installed to provide a flow of air to or from a drainage system, or to provide a circulation of air within such system to protect trap seals from siphonage and backpressure.

VERTICAL PIPE. Any pipe or fitting that makes an angle of 45 degrees (0.79 rad) or more with the horizontal.

WALL-HUNG WATER CLOSET. A wall-mounted water closet installed in such a way that the fixture does not touch the floor.

WASTE. The discharge from any fixture, appliance, area or appurtenance that does not contain fecal matter.

WASTE PIPE. A pipe that conveys only waste.

WASTE RECEPTOR. A device for receiving the discharge of a waste pipe or pipes and discharges them by gravity into the sanitary drainage system. Waste receptors include, but are not limited to, floor drains, floor sinks, trench drains, hub drains, standpipes, mop basins, service sinks, and laundry trays.

WATER-HAMMER ARRESTOR. A device utilized to absorb the pressure surge (water hammer) that occurs when water flow is suddenly stopped in a water supply system.

WATER HEATER. Any heating appliance or equipment that heats potable water and supplies such water to the potable hot water distribution system.

WATER MAIN. A water supply pipe or system of pipes, installed and maintained by a city, township, county, public utility company or other public entity, on public property, in the street or in an approved dedicated easement of public or community use.

WATER OUTLET. A discharge opening through which water is supplied to a fixture, into the atmosphere (except into an open tank that is part of the water supply system), to a boiler or heating system, or to any devices or equipment requiring water to operate but which are not part of the plumbing system.

WATER PIPE

Riser. A water supply pipe that extends one full story or more to convey water to branches or to a group of fixtures.

Water distribution pipe. A pipe within the structure or on the premises that conveys water from the water service pipe, or from the meter when the meter is at the structure, to the points of utilization.

Water service pipe. The pipe from the water main or other source of potable water supply, or from the meter when the meter is at the public right of way, to the water distribution system of the building served.
WATER SUPPLY SYSTEM. The water service pipe, water distribution pipes, and the necessary connecting pipes, fittings, control valves and all appurtenances in or adjacent to the structure or premises.

WELL

- **Bored.** A well constructed by boring a hole in the ground with an auger and installing a casing.
- **Drilled.** A well constructed by making a hole in the ground with a drilling machine of any type and installing casing and screen.
- **Driven.** A well constructed by driving a pipe in the ground. The drive pipe is usually fitted with a well point and screen.
- **Dug.** A well constructed by excavating a large-diameter shaft and installing a casing.

WHIRLPOOL BATHTUB. A plumbing appliance consisting of a bathtub fixture that is equipped and fitted with a circulating piping system designed to accept, circulate and discharge bathtub water upon each use.

YOKE VENT. A pipe connecting upward from a soil or waste stack to a vent stack for the purpose of preventing pressure changes in the stacks.
4101:3-3-01 General regulations.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 301
GENERAL

301.1 Scope. The provisions of this chapter shall govern the general regulations regarding the design and installation of plumbing not specific to other chapters.

301.2 System installation. Plumbing shall be installed with due regard to preservation of the strength of structural members and prevention of damage to walls and other surfaces through fixture usage.

301.3 Connections to the sanitary drainage system. All plumbing fixtures, drains, appurtenances and appliances used to receive or discharge liquid wastes or sewage shall be directly connected to the sanitary drainage system of the building or premises, in accordance with the requirements of this code and the requirements of the department of the city engineer, in cities having such departments, the boards of health of health districts, or the sewer purveyor, as appropriate (see division (D) of section 3781.03 of the Revised Code). This section shall not be construed to prevent the indirect waste systems required by Chapter 8.

Exceptions:

1. Bathtubs, showers, lavatories, clothes washers and laundry sinks shall not be required to discharge to the sanitary drainage system where such fixtures discharge to a gray water recycling system approved by the “Ohio Environmental Protection Agency” in accordance with Chapter 3745-42 of the Administrative Code.

2. Wastes from dental or cuspidor fountains, drinking fountains, bar sinks, soda fountains, floor drains or shower drains may be indirectly connected by means of an air break to the sanitary drainage system. Each indirectly connected item listed above shall individually discharge to a directly connected floor drain, waste receptor or standpipe.
301.4 **Connections to water supply.** Every plumbing fixture, device or appliance requiring or using water for its proper operation shall be directly or indirectly connected to the water supply system in accordance with the provisions of this code.

301.5 **Pipe, tube and fitting sizes.** Unless otherwise specified, the pipe, tube and fitting sizes specified in this code are expressed in nominal or standard sizes as designated in the referenced material standards.

301.6 **Prohibited locations.** Plumbing systems shall not be located in an elevator shaft or in an elevator equipment room.

 Exception: Floor drains, sumps and sump pumps shall be permitted at the base of the shaft, provided that they are indirectly connected to the plumbing system.

301.7 **Conflicts.** In instances where conflicts occur between this code and the manufacturer’s installation instructions, the more restrictive provisions shall apply.

SECTION 302

EXCLUSION OF MATERIALS DETRIMENTAL TO THE SEWER SYSTEM

302.1 **Detrimental or dangerous materials.** Ashes, cinders or rags; flammable, poisonous or explosive liquids or gases; oil, grease or any other insoluble material capable of obstructing, damaging or overloading the building drainage or sewer system, or capable of interfering with the normal operation of the sewage treatment processes, shall not be deposited, by any means, into such systems.

302.2 **Industrial wastes.** Waste products from manufacturing or industrial operations shall not be introduced into the public sewer until it has been determined by the building official or other authority having jurisdiction that the introduction thereof will not damage the public sewer system or interfere with the functioning of the sewage treatment plant.

SECTION 303

MATERIALS

303.1 **Identification.** Each length of pipe and each pipe fitting, trap, fixture, material and device utilized in a plumbing system shall bear the identification of the manufacturer.

303.2 **Installation of materials.** All materials used shall be installed in strict
accordance with the standards under which the materials are accepted and approved. In the absence of such installation procedures, the manufacturer’s installation instructions shall be followed. Where the requirements of referenced standards or manufacturer’s installation instructions do not conform to minimum provisions of this code, the provisions of this code shall apply.

303.3 Plastic pipe, fittings and components. All plastic pipe, fittings and components shall be third-party certified as conforming to NSF 14.

303.4 Third-party testing and certification. All plumbing products and materials shall comply with the referenced standards, specifications and performance criteria of this code and shall be identified in accordance with Section 303.1. When required by Table 303.4, plumbing products and materials shall either be tested by an approved third-party testing agency or certified by an approved third-party certification agency.

<table>
<thead>
<tr>
<th>TABLE 303.4</th>
<th>PRODUCTS AND MATERIALS REQUIRING THIRD-PARTY TESTING AND THIRD-PARTY CERTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCT OR MATERIAL</td>
<td>THIRD-PARTY CERTIFIED</td>
</tr>
<tr>
<td>Potable water supply system components and potable water fixture fittings</td>
<td>Required</td>
</tr>
<tr>
<td>Sanitary drainage and vent system components</td>
<td>Plastic pipe, fittings and pipe-related components</td>
</tr>
<tr>
<td>Waste fixture fittings</td>
<td>Plastic pipe, fittings and pipe-related components</td>
</tr>
<tr>
<td>Storm drainage system components</td>
<td>Plastic pipe, fittings and pipe-related components</td>
</tr>
<tr>
<td>Plumbing fixtures</td>
<td>—</td>
</tr>
<tr>
<td>Plumbing appliances</td>
<td>Required</td>
</tr>
<tr>
<td>Backflow prevention devices</td>
<td>Required</td>
</tr>
<tr>
<td>Water distribution system safety devices</td>
<td>Required</td>
</tr>
<tr>
<td>Special waste system components</td>
<td>—</td>
</tr>
<tr>
<td>Subsoil drainage system components</td>
<td>—</td>
</tr>
</tbody>
</table>

SECTION 304
RODENTPROOFING

304.1 General. Plumbing systems shall be designed and installed in accordance with Sections 304.2 through 304.4 to prevent rodents from entering structures.
304.2 **Strainer plates.** All strainer plates on drain inlets shall be designed and installed so that all openings are not greater than 1/2 inch (12.7 mm) in least dimension.

304.3 **Meter boxes.** Meter boxes shall be constructed in such a manner that rodents are prevented from entering a structure by way of the water service pipes connecting the meter box and the structure.

304.4 **Openings for pipes.** In or on structures where openings have been made in walls, floors or ceilings for the passage of pipes, such openings shall be closed and protected by the installation of approved metal collars that are securely fastened to the adjoining structure.

SECTION 305

PROTECTION OF PIPES AND PLUMBING SYSTEM COMPONENTS

305.1 **Corrosion.** Pipes passing through concrete or cinder walls and floors or other corrosive material shall be protected against external corrosion by a protective sheathing or wrapping or other means that will withstand any reaction from the lime and acid of concrete, cinder or other corrosive material. Sheathing or wrapping shall allow for movement including expansion and contraction of piping. Minimum wall thickness of material shall be 0.025 inch (0.64 mm).

305.2 **Breakage.** Pipes passing through or under walls shall be protected from breakage.

305.3 **Stress and strain.** Piping in a plumbing system shall be installed so as to prevent strains and stresses that exceed the structural strength of the pipe. Where necessary, provisions shall be made to protect piping from damage resulting from expansion, contraction and structural settlement.

305.4 **Sleeves.** Annular spaces between sleeves and pipes shall be filled or tightly caulked in an approved manner. Annular spaces between sleeves and pipes in fire-resistance-rated assemblies shall be filled or tightly caulked in accordance with the building code.

305.5 **Pipes through or under footings or foundation walls.** Any pipe that passes under a footing or through a foundation wall shall be provided with a relieving arch, or a pipe sleeve pipe shall be built into the foundation wall. The sleeve shall be two pipe sizes greater than the pipe passing through the wall.

305.6 **Freezing.** Water, soil and waste pipes shall not be installed outside of a building, in attics or crawl spaces, concealed in outside walls, or in any other place subjected to freezing temperatures unless adequate provision is made to
protect such pipes from freezing by insulation or heat or both. Exterior water supply system piping shall be installed not less than 6 inches (152 mm) below the frost line and not less than 12 inches (305 mm) below grade.

305.6.1 Sewer depth. Deleted.

305.7 Waterproofing of openings. Joints at the roof and around vent pipes, shall be made water-tight by the use of lead, copper, galvanized steel, aluminum, plastic or other approved flashings or flashing material. Exterior wall openings shall be made water-tight.

305.8 Protection against physical damage. In concealed locations where piping, other than cast-iron or galvanized steel, is installed through holes or notches in studs, joists, rafters or similar members less than 1 ½ inches (38 mm) from the nearest edge of the member, the pipe shall be protected by steel shield plates. Such shield plates shall have a thickness of not less than 0.0575 inch (1.463 mm) (No. 16 gage). Such plates shall cover the area of the pipe where the member is notched or bored, and shall extend a minimum of 2 inches (51 mm) above sole plates and below top plates.

305.9 Protection of components of plumbing system. Components of a plumbing system installed along alleyways, driveways, parking garages or other locations exposed to damage shall be recessed into the wall or otherwise protected in an approved manner.

SECTION 306
TRENCHING, EXCAVATION AND BACKFILL

306.1 Support of piping. Buried piping shall be supported throughout its entire length.

306.2 Trenching and bedding. Where trenches are excavated such that the bottom of the trench forms the bed for the pipe, solid and continuous load-bearing support shall be provided between joints. Bell holes, hub holes and coupling holes shall be provided at points where the pipe is joined. Such pipe shall not be supported on blocks to grade. In instances where the materials manufacturer’s installation instructions are more restrictive than those prescribed by the code, the material shall be installed in accordance with the more restrictive requirement.

306.2.1 Overexcavation. Where trenches are excavated below the installation level of the pipe such that the bottom of the trench does not form the bed for the pipe, the trench shall be backfilled to the installation level of the bottom of the pipe with sand or fine gravel placed in layers of 6 inches (152 mm)
maximum depth and such backfill shall be compacted after each placement.

306.2.2 Rock removal. Where rock is encountered in trenching, the rock shall be removed to a minimum of 3 inches (76 mm) below the installation level of the bottom of the pipe, and the trench shall be backfilled to the installation level of the bottom of the pipe with sand tamped in place so as to provide uniform load-bearing support for the pipe between joints. The pipe, including the joints, shall not rest on rock at any point.

306.2.3 Soft load-bearing materials. If soft materials of poor load-bearing quality are found at the bottom of the trench, stabilization shall be achieved by overexcavating a minimum of two pipe diameters and backfilling to the installation level of the bottom of the pipe with fine gravel, crushed stone or a concrete foundation. The concrete foundation shall be bedded with sand tamped into place so as to provide uniform load-bearing support for the pipe between joints.

306.3 Backfilling. Backfill shall be free from discarded construction material and debris. Loose earth free from rocks, broken concrete and frozen chunks shall be placed in the trench in 6-inch (152 mm) layers and tamped in place until the crown of the pipe is covered by 12 inches (305 mm) of tamped earth. The backfill under and beside the pipe shall be compacted for pipe support. Backfill shall be brought up evenly on both sides of the pipe so that the pipe remains aligned. In instances where the manufacturer’s installation instructions for materials are more restrictive than those prescribed by the code, the material shall be installed in accordance with the more restrictive requirement.

306.4 Tunneling. Where pipe is to be installed by tunneling, jacking or a combination of both, the pipe shall be protected from damage during installation and from subsequent uneven loading. Where earth tunnels are used, adequate supporting structures shall be provided to prevent future settling or caving.

SECTION 307
STRUCTURAL SAFETY

307.1 General. In the process of installing or repairing any part of a plumbing and drainage installation, the finished floors, walls, ceilings, tile work or any other part of the building or premises that must be changed or replaced shall be left in a safe structural condition in accordance with the requirements of the building code.

307.2 Cutting, notching or bored holes. A framing member shall not be cut, notched or bored in excess of limitations specified in the building code.

307.3 Penetrations of floor/ceiling assemblies and fire-resistance-rated
assemblies. Penetrations of floor/ceiling assemblies and assemblies required to have a fire-resistance rating shall be protected in accordance with the building code.

307.4 Alterations to trusses. Truss members and components shall not be cut, drilled, notched, spliced or otherwise altered in any way without written concurrence and approval of a registered design professional. Alterations resulting in the addition of loads to any member (e.g., HVAC equipment, water heater) shall not be permitted without verification that the truss is capable of supporting such additional loading.

307.5 Trench location. Trenches installed parallel to footings shall not extend below the 45-degree (0.79 rad) bearing plane of the footing or wall.

307.6 Piping materials exposed within plenums. All piping materials exposed within plenums shall comply with the provisions of the mechanical code.

307.7 Enforcement. Enforcement of the provisions of this section is the responsibility of the certified building official of the certified municipal, county, or township building department having jurisdiction or the superintendent of the division of industrial compliance.

SECTION 308
PIPING SUPPORT

308.1 General. All plumbing piping shall be supported in accordance with this section.

308.2 Piping seismic supports. Where earthquake loads are applicable in accordance with the building code, plumbing piping supports shall be designed and installed for the seismic forces in accordance with the building code.

308.3 Materials. Hangers, anchors and supports shall support the piping and the contents of the piping. Hangers and strapping material shall be of approved material that will not promote galvanic action.

308.4 Structural attachment. Hangers and anchors shall be attached to the building construction in an approved manner.

308.5 Interval of support. Pipe shall be supported in accordance with Table 308.5.

Exception: The interval of support for piping systems designed to provide for expansion/contraction shall conform to the engineered design in accordance with Section.
106.5 of the building code.

308.6 Sway bracing
Rigid support sway bracing shall be provided at changes in direction greater than 45 degrees (0.79 rad) for pipe sizes 4 inches (102 mm) and larger.

308.7 Anchorage
Anchorage shall be provided to restrain drainage piping from axial movement.

308.7.1 Location
For pipe sizes greater than 4 inches (102 mm), restraints shall be provided for drain pipes at all changes in direction and at all changes in diameter greater than two pipe sizes. Braces, blocks, rodding and other suitable methods as specified by the coupling manufacturer shall be utilized.

308.8 Expansion joint fittings
Expansion joint fittings shall be used only where necessary to provide for expansion and contraction of the pipes. Expansion joint fittings shall be of the typical material suitable for use with the type of piping in which such fittings are installed.

308.9 Parallel water distribution systems
Piping bundles for manifold systems shall be supported in accordance with Table 308.5. Support at changes in direction shall be in accordance with the manufacturer’s installation instructions. Hot and cold water piping shall not be grouped in the same bundle.

TABLE 308.5
HANGER SPACING

<table>
<thead>
<tr>
<th>PIPING MATERIAL</th>
<th>MAXIMUM HORIZONTAL SPACING (feet)</th>
<th>MAXIMUM VERTICAL SPACING (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS pipe</td>
<td>4</td>
<td>10b</td>
</tr>
<tr>
<td>Aluminum tubing</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Brass pipe</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Cast-iron pipe</td>
<td>5a</td>
<td>15</td>
</tr>
<tr>
<td>Copper or copper-alloy pipe</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Copper or copper-alloy tubing, 1 ½-inch diameter and smaller</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Copper or copper-alloy tubing, 1 ¼-inch diameter and larger</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Cross-linked polyethylene (PEX) pipe</td>
<td>2.67 (32 inches)</td>
<td>10b</td>
</tr>
<tr>
<td>Cross-linked polyethylene/ aluminum/cross-linked polyethylene (PEX-AL-PEX) pipe</td>
<td>2.67 (32 inches)</td>
<td>4</td>
</tr>
</tbody>
</table>
SECTION 309

FLOOD HAZARD RESISTANCE

309.1 General. *All buildings and structures which have been determined to require flood resistant construction by the local flood plain administrator, as a participant in the "National Flood Insurance Program", shall be constructed as required by the provisions of this section for approval under the "Regulations for Floodplain Management and Flood Hazard Identification" of the "National Flood Insurance Program" pursuant to 44 "CFR parts 59-77" and the authority's "Flood Damage Prevention Ordinance."*

309.2 Flood hazard. *Deleted.*

309.3 Flood hazard areas subject to high-velocity wave action. *Deleted.*

SECTION 310

WASHROOM AND TOILET ROOM REQUIREMENTS

310.1 Light and ventilation. Washrooms and toilet rooms shall be illuminated and ventilated in accordance with the *building code* and *mechanical code.*
310.2 Location of fixtures and piping. Piping, fixtures or equipment shall not be located in such a manner as to interfere with the normal operation of windows, doors or other means of egress openings.

310.3 Interior finish. Interior finish surfaces of toilet rooms shall comply with the building code.

310.4 Water closet compartment. Each water closet utilized by the public or employees shall occupy a separate compartment with walls or partitions and a door enclosing the fixtures to ensure privacy.

Exceptions:
1. Water closet compartments shall not be required in a single-occupant toilet room with a lockable door.
2. Toilet rooms located in day care and child-care facilities and containing two or more water closets shall be permitted to have one water closet without an enclosing compartment.
3. This provision is not applicable to toilet areas located within Group I-3 housing areas.

310.5 Urinal partitions. Deleted.

310.6 Enforcement. Enforcement of the provisions of this section is the responsibility of the certified building official of the certified municipal, county, or township building department having jurisdiction or the superintendent of the division of industrial compliance.

SECTION 311
TOILET FACILITIES FOR WORKERS

311.1 General. Deleted.

SECTION 312
TESTS AND INSPECTIONS

312.1 Required tests. The owner or owner’s representative shall cause the applicable tests prescribed in Sections 312.2 through 312.11 to be made to determine compliance with the provisions of this code. Reasonable advance notice shall be given to the building official when the plumbing work is ready for tests. The owner or owner’s representative shall keep records of the tests and shall submit such records to the building official upon request.
312.1.1 Test gauges. Gauges used for testing shall be as follows:

1. Tests requiring a pressure of 10 pounds per square inch (psi) (69 kPa) or less shall utilize a testing gauge having increments of 0.10 psi (0.69 kPa) or less.
2. Tests requiring a pressure of greater than 10 psi (69 kPa) but less than or equal to 100 psi (689 kPa) shall utilize a testing gauge having increments of 1 psi (6.9 kPa) or less.
3. Tests requiring a pressure of greater than 100 psi (689 kPa) shall utilize a testing gauge having increments of 2 psi (14 kPa) or less.

312.2 Drainage and vent water test. A water test shall be applied to the drainage system either in its entirety or in sections. If applied to the entire system, all openings in the piping shall be tightly closed, except the highest opening, and the system shall be filled with water to the point of overflow. If the system is tested in sections, each opening shall be tightly plugged except the highest openings of the section under test, and each section shall be filled with water, but no section shall be tested with less than a 10-foot (3048 mm) head of water. In testing successive sections, at least the upper 10 feet (3048 mm) of the next preceding section shall be tested so that no joint or pipe in the building, except the uppermost 10 feet (3048 mm) of the system, shall have been submitted to a test of less than a 10-foot (3048 mm) head of water. This pressure shall be held for at least 15 minutes. The system shall then be tight at all points.

312.3 Drainage and vent air test. An air test shall be made by forcing air into the system until there is a uniform gauge pressure of 5 psi (34.5 kPa) or sufficient to balance a 10-inch (254 mm) column of mercury. This pressure shall be held for a test period of at least 15 minutes. Any adjustments to the test pressure required because of changes in ambient temperature or the seating of gaskets shall be made prior to the beginning of the test period.

312.4 Drainage and vent final test. The final test of the completed drainage and vent systems shall be made by air test after the fixtures are connected, with or without smoke or peppermint as follows:

1. Close all stack openings;
2. Apply air pressure to the entire drainage and vent system or to sections thereof equivalent to at least 1 in. water column (248.8 Pa);
3. Maintain this pressure starting fifteen (15) minutes before beginning inspection;
4. Indicate the system to be air-tight at all points.

312.5 Water supply system test. Upon completion of a section of or the entire water supply system, the system, or portion completed, shall be tested and proved
tight under a water pressure not less than 10 percent in excess of the working pressure under which the system is to be used; or, for piping systems other than plastic, by an air test of not less than 50 psi (344 kPa). This pressure shall be held for at least 15 minutes. The water utilized for tests shall be obtained from a potable source of supply. The required tests shall be performed in accordance with this section and Section 108.8 of the building code.

312.6 Gravity sewer test. Deleted.

312.7 Forced sewer test. Deleted.

312.8 Storm drainage system test. Storm drain systems within a building shall be tested by water or air in accordance with Section 312.2 or 312.3.

312.9 Shower liner test. Where shower floors and receptors are made water-tight by the application of materials required by Section 417.5.2, the completed liner installation shall be tested. The pipe from the shower drain shall be plugged water tight for the test. The floor and receptor area shall be filled with potable water to a depth of not less than 2 inches (51 mm) measured at the threshold. Where a threshold of at least 2 inches (51 mm) high does not exist, a temporary threshold shall be constructed to retain the test water in the lined floor or receptor area to a level not less than 2 inches (51 mm) deep measured at the threshold. The water shall be retained for a test period of not less than 15 minutes, and there shall not be evidence of leakage.

312.10 Inspection and testing of backflow prevention assemblies. Inspection and testing shall comply with Sections 312.10.1 and 312.10.2.

312.10.1 Inspections. Annual inspections shall be made of all backflow prevention assemblies and air gaps to determine whether they are operable.

312.10.2 Testing. Reduced pressure principle backflow preventer assemblies, double check-valve assemblies, pressure vacuum breaker assemblies, reduced pressure detector fire protection backflow prevention assemblies, double check detector fire protection backflow prevention assemblies, hose connection backflow preventers, and spillproof vacuum breakers shall be tested at the time of installation, immediately after repairs or relocation and at least annually. The testing procedure shall be performed in accordance with one of the following standards:

ASSE 5013, ASSE 5015, ASSE 5020, ASSE 5047, ASSE 5048, ASSE 5052, ASSE 5056, CSA B64.10 or CSA B64.10.1.
312.11 Inspections. No part of any plumbing or drainage system shall be covered until it has been inspected, tested, and approved, except as provided in this section.

Failure of the inspector to inspect the work within four days, exclusive of Saturdays, Sundays, and legal holidays, after the work is ready for inspection, allows the work to proceed.

SECTION 313
EQUIPMENT EFFICIENCIES

313.1 General. Equipment efficiencies shall be in accordance with the applicable standard referenced in Chapter 13 of the building code or Chapter 11 of the “Residential Code of Ohio”.

SECTION 314
CONDENSATE DISPOSAL

314.1 Fuel-burning appliances. Liquid combustion by-products of condensing appliances shall be collected and discharged to an approved plumbing fixture or disposal area in accordance with the manufacturer’s installation instructions. Condensate piping shall be of approved corrosion-resistant material and shall not be smaller than the drain connection on the appliance. Such piping shall maintain a minimum horizontal slope in the direction of discharge of not less than one-eighth unit vertical in 12 units horizontal (1-percent slope).

314.2 Evaporators and cooling coils. Condensate drain systems shall be provided for equipment and appliances containing evaporators or cooling coils. Condensate drain systems shall be designed, constructed and installed in accordance with Sections 314.2.1 through 314.2.4.

314.2.1 Condensate disposal. Condensate from all cooling coils and evaporators shall be conveyed from the drain pan outlet to an approved place of disposal. Such piping shall maintain a minimum horizontal slope in the direction of discharge of not less than one-eighth unit vertical in 12 units horizontal (1-percent slope). Condensate shall not discharge into a street, alley or other areas so as to cause a nuisance.

314.2.2 Drain pipe materials and sizes. Components of the condensate disposal system shall be cast iron, galvanized steel, copper, cross-linked polyethylene, polybutylene, polyethylene, ABS, CPVC or PVC pipe or tubing. All components shall be selected for the pressure and temperature rating of the installation. Joints and connections shall be made in
accordance with the applicable provisions of Chapter 7 relative to the material type. Condensate waste and drain line size shall be not less than \(\frac{3}{4}\)-inch (19 mm) internal diameter and shall not decrease in size from the drain pan connection to the place of condensate disposal. Where the drain pipes from more than one unit are manifolded together for condensate drainage, the pipe or tubing shall be sized in accordance with Table 314.2.2.

314.2.3 Auxiliary and secondary drain systems. In addition to the requirements of Section 314.2.1, where damage to any building components could occur as a result of overflow from the equipment primary condensate removal system, one of the following auxiliary protection methods shall be provided for each cooling coil or fuel-fired appliance that produces condensate:

1. An auxiliary drain pan with a separate drain shall be provided under the coils on which condensation will occur. The auxiliary pan drain shall discharge to a conspicuous point of disposal to alert occupants in the event of a stoppage of the primary drain. The pan shall have a minimum depth of 1 ½ inches (38 mm), shall not be less than 3 inches (76 mm) larger than the unit or the coil dimensions in width and length and shall be constructed of corrosion-resistant material. Galvanized sheet metal pans shall have a minimum thickness of not less than 0.0236-inch (0.6010 mm) (No. 24 gage) galvanized sheet metal. Nonmetallic pans shall have a minimum thickness of not less than 0.0625 inch (1.6 mm).

2. A separate overflow drain line shall be connected to the drain pan provided with the equipment. Such overflow drain shall discharge to a conspicuous point of disposal to alert occupants in the event of a stoppage of the primary drain. The overflow drain line shall connect to the drain pan at a higher level than the primary drain connection.

3. An auxiliary drain pan without a separate drain line shall be provided under the coils on which condensate will occur. Such pan shall be equipped with a water-level detection device conforming to UL 508 that will shut off the equipment served prior to overflow of the pan. The auxiliary drain pan shall be constructed in accordance with Item 1 of this section.

4. A water-level detection device conforming to UL 508 shall be provided that will shut off the equipment served in the event that the primary drain is blocked. The device shall be installed in the primary drain line, the overflow drain line, or in the equipment-supplied drain pan, located at a point higher than the primary drain line connection and below the overflow rim of such pan.

Exception: Fuel-fired appliances that automatically shut down operation in the event of a stoppage in the condensate drainage system.
TABLE 314.2.2
CONDENSATE DRAIN SIZING

<table>
<thead>
<tr>
<th>EQUIPMENT CAPACITY</th>
<th>MINIMUM CONDENSATE PIPE DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 20 tons of refrigeration</td>
<td>3/4 inch</td>
</tr>
<tr>
<td>Over 20 tons to 40 tons of refrigeration</td>
<td>1 inch</td>
</tr>
<tr>
<td>Over 40 tons to 90 tons of refrigeration</td>
<td>1 1/4 inch</td>
</tr>
<tr>
<td>Over 90 tons to 125 tons of refrigeration</td>
<td>1 1/2 inch</td>
</tr>
<tr>
<td>Over 125 tons to 250 tons of refrigeration</td>
<td>2 inch</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 ton of capacity = 3.517 kW.

314.2.3.1 Water-level monitoring devices. On down-flow units and all other coils that do not have a secondary drain or provisions to install a secondary or auxiliary drain pan, a water-level monitoring device shall be installed inside the primary drain pan. This device shall shut off the equipment served in the event that the primary drain becomes restricted. Devices installed in the drain line shall not be permitted.

314.2.3.2 Appliance, equipment and insulation in pans. Where appliances, equipment or insulation are subject to water damage when auxiliary drain pans fill such portions of the appliances, equipment and insulation shall be installed above the flood level rim of the pan. Supports located inside of the pan to support the appliance or equipment shall be water resistant and approved.

314.2.4 Traps. Condensate drains shall be trapped as required by the equipment or appliance manufacturer.

314.3 Enforcement. Enforcement of the provisions of this section is the responsibility of the certified building official of the certified municipal, county, or township building department having jurisdiction or the superintendent of the division of industrial compliance.

SECTION 315
WELDING AND BRAZING

315.1 Scope. This section, consistent with section 4104.44 of the Revised Code, governs the requirements for welding and brazing of metallic building services (including medical gas) piping systems referenced by this code.
315.2 Procedure specification. Each manufacturer or contractor of metallic building services piping systems is responsible for the welding and brazing done by his company or organization and shall specify and certify, in writing, a welding or brazing procedure that provides specific direction to the welder or brazer and complies with section IX of the ASME Boiler and Pressure Vessel Code.

315.3 Procedure qualification records. Each manufacturer or contractor is responsible for getting each procedure described in section 315.2 qualified by an independent testing laboratory that has, on staff, a welding inspector certified by the “American Welding Society (AWS).” Qualification testing determines that the specified joint construction is capable of providing the required properties for its intended application. The procedure qualification record (PQR) documents what occurred during the welding or brazing of the test coupon, identifies all essential variables, and documents the test results. The manufacturer or contractor shall certify on the record that the tests were conducted in accordance with section IX of the ASME Boiler and Pressure Vessel Code.

315.4 Performance qualification testing. Each welder and brazer that performs a welding or brazing procedure as described in section 315.2 shall be tested and qualified on that procedure as required in section IX of the ASME Boiler and Pressure Vessel Code. The manufacturer or contractor, shall certify on the performance qualification record that the welder or brazer prepared and welded or brazed the test coupons in accordance with section IX and that the test coupons were tested by an independent testing laboratory that has, on staff, a welding inspector certified by the “American Welding Society (AWS).”

315.5 Submission of welding and brazing forms to the division of industrial compliance (DIC). Each manufacturer or contractor of metallic building services piping systems referenced by this code who causes welding or brazing to be performed shall file with the superintendent of the division of industrial compliance in the department of commerce, or the superintendent’s designee, certified copies of the welding and brazing procedure specifications, the procedure qualification records, and the welder and brazer performance qualifications of the welders and brazers used in the proposed construction of a new or altered piping system. The required documentation shall be submitted in accordance with rules adopted by the superintendent.
4101:3-4-01 Fixtures, faucets and fixture fittings.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 401
GENERAL

401.1 Scope. This chapter shall govern the materials, design and installation of plumbing fixtures, faucets and fixture fittings in accordance with the type of occupancy, and shall provide for the minimum number of fixtures for various types of occupancies.

401.2 Prohibited fixtures and connections. Water closets having a concealed trap seal or an unventilated space or having walls that are not thoroughly washed at each discharge in accordance with ASME A112.19.2M shall be prohibited. Any water closet that permits siphonage of the contents of the bowl back into the tank shall be prohibited. Trough urinals shall be prohibited.

401.3 Water conservation. The maximum water flow rates and flush volume for plumbing fixtures and fixture fittings shall comply with Section 604.4.

SECTION 402
FIXTURE MATERIALS

402.1 Quality of fixtures. Plumbing fixtures shall be constructed of approved materials, with smooth, impervious surfaces, free from defects and concealed fouling surfaces, and shall conform to standards cited in this code. All porcelain enameled surfaces on plumbing fixtures shall be acid resistant.

402.2 Materials for specialty fixtures. Materials for specialty fixtures not otherwise covered in this code shall be of stainless steel, soapstone, chemical stoneware or plastic, or shall be lined with lead, copper-base alloy, nickel-copper alloy, corrosion-resistant steel or other material especially suited to the application for which the fixture is intended.

402.3 Sheet copper. Sheet copper for general applications shall conform to ASTM B 152 and shall not weigh less than 12 ounces per square foot (3.7 kg/m2).

402.4 Sheet lead. Sheet lead for pans shall not weigh less than 4 pounds per square foot (19.5 kg/m2) coated with an asphalt paint or other approved coating.
SECTION 403
MINIMUM PLUMBING FACILITIES

403.1 Minimum number of fixtures. Plumbing fixtures shall be provided for the type of occupancy and in the minimum number shown in Table 403.1. Types of occupancies not shown in Table 403.1 shall be considered individually by the building official. The number of occupants shall be determined by the building code. Occupancy classification shall be determined in accordance with the building code. When the actual occupant load will be significantly different than that determined by section 1004 of the building code, the building official may establish an alternate basis for determining the occupant load. This alternate basis shall be included in the special stipulations and conditions section of the certificate of occupancy issued for that structure pursuant to section 110 of the building code. For accessibility requirements, see “Chapter 11, Accessibility” of the building code.

Exception: Facilities are not required in buildings less than 100 square feet in area if fixtures are available within 500 feet of the building.

TABLE 403.1
MINIMUM NUMBER OF REQUIRED PLUMBING FIXTURES
(See Sections 403.2 and 403.3)

<table>
<thead>
<tr>
<th>NO.</th>
<th>CLASSIFICATION</th>
<th>OCCUPANCY</th>
<th>DESCRIPTION</th>
<th>WATER CLOSETS (URINALS SEE footnote h)</th>
<th>LAVATORIES</th>
<th>BATHTUBS/ SHOWERS</th>
<th>DRINKING FOUNTAINe, f</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MALE</td>
<td>FEMALE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Assembly</td>
<td>A-1d</td>
<td>Theaters and other buildings for the performing arts and motion pictures</td>
<td>1 per 125</td>
<td>1 per 65</td>
<td>1 per 200</td>
<td>1 per 500</td>
<td>1 service sink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-2d</td>
<td>Nightclubs, bars, taverns, dance halls and buildings for similar purposes</td>
<td>1 per 40</td>
<td>1 per 40</td>
<td>1 per 75</td>
<td>1 per 500</td>
<td>1 service sink</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restaurants, banquet halls and food courts</td>
<td>1 per 75</td>
<td>1 per 75</td>
<td>1 per 200</td>
<td>1 per 500</td>
<td>1 service sink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auditoriums without permanent seating, art galleries, exhibition halls, museums, lecture halls, libraries, arcades and gymnasiums</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A-3^d</td>
<td>1 per 125</td>
<td>1 per 65</td>
<td>1 per 200</td>
<td>1 per 500</td>
<td>1 service sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Passenger terminals and transportation facilities</td>
<td>1 per 500</td>
<td>1 per 500</td>
<td>1 per 750</td>
<td>1 per 1,000</td>
<td>1 service sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Places of worship and other religious services</td>
<td>1 per 150</td>
<td>1 per 75</td>
<td>1 per 200</td>
<td>1 per 1,000</td>
<td>1 service sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coliseums, arenas, skating rinks, pools and tennis courts for indoor sporting events and activities</td>
<td>1 per 75 for the first 1,500 and 1 per 120 for the remainder exceeding 1,500</td>
<td>1 per 40 for the first 1,520 and 1 per 60 for the remainder exceeding 1,520</td>
<td>1 per 200</td>
<td>1 per 150</td>
<td>1 per 1,000</td>
<td>1 service sink</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stadiums, amusement parks, bleachers and grandstands for outdoor sporting events and activities</td>
<td>1 per 75 for the first 1,500 and 1 per 120 for the remainder exceeding 1,500</td>
<td>1 per 40 for the first 1,520 and 1 per 60 for the remainder exceeding 1,520</td>
<td>1 per 200</td>
<td>1 per 150</td>
<td>1 per 1,000</td>
<td>1 service sink</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buildings for the transaction of business, professional services, other services involving merchandise, office buildings, banks, light industrial and similar uses</td>
<td>1 per 50</td>
<td>1 per 80</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Educational facilities</td>
<td>1 per 50</td>
<td>1 per 50</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Factory and industrial</td>
<td>F-1 and F-2</td>
<td>Structures in which occupants are engaged in work fabricating, assembly or processing of products or materials</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>(see Section 411)</td>
<td>1 per 400</td>
<td>1 service sink</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>-------------</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>------------------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>I-1</td>
<td>Residential care</td>
<td></td>
<td>1 per 10</td>
<td>1 per 10</td>
<td>1 per 8</td>
<td>1 per 100</td>
<td>1 service sink</td>
</tr>
<tr>
<td></td>
<td>I-2</td>
<td>Hospitals,</td>
<td>1 per room(^{c})</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 service sink per floor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ambulatory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>nursing home</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>patients(^{b})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Employees,</td>
<td>1 per 25</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>other than</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>residential care(^{b})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visitors,</td>
<td>1 per 75</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>other than</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>residential care</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-3</td>
<td>Prisons(^{b})</td>
<td>1 per cell</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reformitories,</td>
<td>1 per 15</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>detention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>centers, and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>correctional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>centers(^{b})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Employees(^{b})</td>
<td>1 per 25</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and child care</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I-4</td>
<td>Adult day care</td>
<td>1 per 15</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and child care</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Mercantile(^{g})</td>
<td>M</td>
<td>Retail stores, service stations, shops, salesrooms, markets and shopping centers</td>
<td>1 per 500</td>
<td>1 per 750</td>
<td>1 per 1,000</td>
<td>1 per 1,000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Residential</td>
<td>R-1</td>
<td>Hotels, motels, boarding houses (transient)</td>
<td>1 per sleeping unit</td>
<td>1 per sleeping unit</td>
<td>1 per sleeping unit</td>
<td>1 service sink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dormitories,</td>
<td>R-2</td>
<td>1 per 10</td>
<td>1 per 10</td>
<td>1 per 8</td>
<td>1 per 100</td>
<td>1 service sink</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fraternities,</td>
<td></td>
<td>1 per dwelling unit</td>
<td>1 per dwelling unit</td>
<td>1 per dwelling unit</td>
<td>1 kitchen sink per dwelling unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>sororities and</td>
<td></td>
<td>1 per dwelling unit</td>
<td>1 per dwelling unit</td>
<td>1 per dwelling unit</td>
<td>1 kitchen sink per dwelling unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>boarding houses</td>
<td></td>
<td>1 per dwelling unit</td>
<td>1 per dwelling unit</td>
<td>1 per dwelling unit</td>
<td>1 kitchen sink per dwelling unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(not transient)</td>
<td></td>
<td>1 per dwelling unit</td>
<td>1 per dwelling unit</td>
<td>1 per dwelling unit</td>
<td>1 kitchen sink per dwelling unit</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Storage</td>
<td>S-1</td>
<td>S-2</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td>See Section 411</td>
<td>1 per 1,000</td>
<td>1 service sink</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td>R-3</td>
<td>Congregate living facilities with 16 or fewer persons and other R-3 occupancies</td>
<td>1 per 10</td>
<td>1 per 10</td>
<td>1 per 8</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-4</td>
<td>Residential care/assisted living facilities</td>
<td>1 per 10</td>
<td>1 per 10</td>
<td>1 per 8</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The fixtures shown are based on one fixture being the minimum required for the number of persons indicated or any fraction of the number of persons indicated. The number of occupants shall be determined by the building code.

b. Toilet facilities for employees shall be separate from facilities for inmates or patients.

c. A single-occupant toilet room with one water closet and one lavatory serving not more than two adjacent patient sleeping units shall be permitted where such room is provided with direct access from each patient sleeping unit and with provisions for privacy.

d. The occupant load for seasonal outdoor seating and entertainment areas shall be included when determining the minimum number of facilities required.

e. The minimum number of required drinking fountains shall comply with Table 403.1 and Chapter 11 of the building code.

f. Drinking fountains are not required for an occupant load of 15 or fewer.

g. Mercantile occupancies are not required to provide customer facilities when the occupant load is 50 or less.

h. In each bathroom or toilet room, urinals shall not be substituted for more than 67 percent of the required water closets in assembly and educational occupancies. Urinals shall not be substituted for more than 50 percent of the required water closets in all other occupancies.

403.1.1 Fixture calculations

To determine the occupant load of each sex, the total occupant load shall be divided in half. To determine the required number of fixtures, the fixture ratio or ratios for each fixture type shall be applied to the occupant load of each sex in accordance with Table 403.1. Fractional numbers resulting from applying the fixture ratios of Table 403.1 shall be rounded up to the next whole number. For calculations involving multiple occupancies, such fractional numbers for each occupancy shall first be summed and then rounded up to the next whole number.
Exception: The total occupant load shall not be required to be divided in half where approved statistical data indicates a distribution of the sexes of other than 50 percent of each sex.

403.1.2 Family or assisted-use toilet and bath fixtures

Fixtures located within family or assisted-use toilet and bathing rooms required by Section 1109.2.1 of the building code are permitted to be included in the number of required fixtures for either the male or female occupants in assembly and mercantile occupancies.

403.2 Separate facilities

Where plumbing fixtures are required, separate facilities shall be provided for each sex.

Exceptions:

1. Separate facilities shall not be required for dwelling units and sleeping units.
2. Separate facilities shall not be required in structures or tenant spaces with a total occupant load, including both employees and customers, of 15 or less.
3. Separate facilities shall not be required in mercantile occupancies in which the maximum occupant load is 50 or less.

403.3 Required public toilet facilities

Customers, patrons and visitors shall be provided with public toilet facilities in structures and tenant spaces intended for public utilization. The number of plumbing fixtures located within the required toilet facilities shall be provided in accordance with Section 403 for all users. Employees shall be provided with toilet facilities in all occupancies. Employee toilet facilities shall be either separate or combined employee and public toilet facilities.

403.3.1 Access

The route to the public toilet facilities required by Section 403.3 shall not pass through kitchens, storage rooms, closets, or similar spaces not available to the public. Access to the required facilities shall be from within the building or from the exterior of the building. All routes shall comply with the accessibility requirements of the building code. The public shall have access to the required toilet facilities at all times that the building is occupied. The building owner is permitted to control access to the toilet facilities. Where such access is controlled, a sign shall be posted indicating how access is to be obtained.

403.3.2 Location of toilet facilities in occupancies other than covered malls

In occupancies other than covered mall buildings, the required public and employee toilet facilities shall be located not more than one story above or below the space required to be provided with toilet facilities, and the path of travel to such facilities shall not exceed a distance of 500 feet (152 m).

Exception: The location and maximum travel distances to required employee facilities in factory and industrial occupancies are permitted to exceed that required by this section, provided that the location and maximum travel distance are approved.
403.3.3 Location of toilet facilities in covered malls. In covered mall buildings, the required public and employee toilet facilities shall be located not more than one story above or below the space required to be provided with toilet facilities, and the path of travel to such facilities shall not exceed a distance of 300 feet (91 440 mm). In covered mall buildings, the required facilities shall be based on total square footage, and facilities shall be installed in each individual store or in a central toilet area located in accordance with this section. The maximum travel distance to central toilet facilities in covered mall buildings shall be measured from the main entrance of any store or tenant space. In covered mall buildings, where employees’ toilet facilities are not provided in the individual store, the maximum travel distance shall be measured from the employees’ work area of the store or tenant space.

403.3.4 Pay facilities. Where pay facilities are installed, such facilities shall be in excess of the required minimum facilities. Required facilities shall be free of charge.

403.4 Signage. Required public facilities shall be designated by a legible sign for each sex. Signs shall be readily visible and located near the entrance to each toilet facility.

403.4.1 Directional signage. Directional signage indicating the route to the public facilities shall be posted in accordance with Section 3107 of the building code. Such signage shall be located in a corridor or aisle, at the entrance to the facilities for customers and visitors.

403.5 Enforcement. This section is identical to section 2902 of the building code. It is provided in this code for reference only. Enforcement of the provisions of section 2902 of the building code and this section is the responsibility of the certified building official of the certified municipal, county, or township building department having jurisdiction or the superintendent of the division of industrial compliance.

SECTION 404
ACCESSIBLE PLUMBING FACILITIES

404.1 Where required. Accessible plumbing facilities and fixtures shall be provided in accordance with the building code. The provisions of “Chapter 11, Accessibility” of the building code shall control the design and construction of facilities for accessibility to physically disabled persons.

404.2 Enforcement. Enforcement of the provisions of this section is the responsibility of the certified building official of the certified municipal, county, or township building department having jurisdiction or the superintendent of the division of industrial compliance.
SECTION 405
INSTALLATION OF FIXTURES

405.1 Water supply protection. The supply lines and fittings for every plumbing fixture shall be installed so as to prevent backflow.

405.2 Access for cleaning. Plumbing fixtures shall be installed so as to afford easy access for cleaning both the fixture and the area around the fixture.

405.3 Setting. Fixtures shall be set level and in proper alignment with reference to adjacent walls.

405.3.1 Water closets, urinals, lavatories and bidets. A water closet, urinal, lavatory or bidet shall not be set closer than 15 inches (381 mm) from its center to any side wall, partition, vanity or other obstruction, or closer than 30 inches (762 mm) center-to-center between adjacent fixtures. There shall be at least a 21-inch (533 mm) clearance in front of the water closet, urinal, lavatory or bidet to any wall, fixture or door. Water closet compartments shall not be less than 30 inches (762 mm) wide and 60 inches (1524 mm) deep (see Figure 405.3.1). See Chapter 11 of the building code for the minimum required dimensions for accessible fixtures.

For SI: 1 inch = 25.4 mm.

FIGURE 405.3.1
FIXTURE CLEARANCE

405.3.2 Public lavatories. In employee and public toilet rooms, the required lavatory shall be located in the same room as the required water closet.
405.4 **Floor and wall drainage connections.** Connections between the drain and floor outlet plumbing fixtures shall be made with a floor flange. The flange shall be attached to the drain and anchored to the structure. Connections between the drain and wall-hung water closets shall be made with an approved extension nipple or horn adaptor. The water closet shall be bolted to the hanger with corrosion-resistant bolts or screws. Joints shall be sealed with an approved elastomeric gasket, flange-to-fixture connection complying with ASME A112.4.3 or an approved setting compound.

405.4.1 **Floor flanges.** Floor flanges for water closets or similar fixtures shall not be less than 0.125 inch (3.2 mm) thick for brass, 0.25 inch (6.4 mm) thick for plastic, and 0.25 inch (6.4 mm) thick and not less than a 2-inch (51 mm) caulking depth for cast-iron or galvanized malleable iron.

Floor flanges of hard lead shall weigh not less than 1 pound, 9 ounces (0.7 kg) and shall be composed of lead alloy with not less than 7.75-percent antimony by weight. Closet screws and bolts shall be of brass. Flanges shall be secured to the building structure with corrosion-resistant screws or bolts.

405.4.2 **Securing floor outlet fixtures.** Floor outlet fixtures shall be secured to the floor or floor flanges by screws or bolts of corrosion-resistant material.

405.4.3 **Securing wall-hung water closet bowls.**

Wall-hung water closet bowls shall be supported by a concealed metal carrier that is attached to the building structural members so that strain is not transmitted to the closet connector or any other part of the plumbing system. The carrier shall conform to ASME A112.6.1M or ASME A112.6.2.

405.5 **Water-tight joints.** Joints formed where fixtures come in contact with walls or floors shall be sealed.

405.6 **Plumbing in mental health centers.** Deleted.

405.7 **Design of overflows.** Where any fixture is provided with an overflow, the waste shall be designed and installed so that standing water in the fixture will not rise in the overflow when the stopper is closed, and no water will remain in the overflow when the fixture is empty.

405.7.1 **Connection of overflows.** The overflow from any fixture shall discharge into the drainage system on the inlet or fixture side of the trap.

Exception: The overflow from a flush tank serving a water closet or urinal shall discharge into the fixture served.

405.8 **Slip joint connections.** Slip joints shall be made with an approved elastomeric gasket and shall only be installed on the trap outlet, trap inlet and within the trap seal. Fixtures with concealed slip-joint connections shall be provided with an access panel or utility space at least 12 inches (305 mm) in its smallest dimension or other approved arrangement so as to provide access to the slip joint connections for inspection and repair.
405.9 Design and installation of plumbing fixtures. Integral fixture fitting mounting surfaces on manufactured plumbing fixtures or plumbing fixtures constructed on site, shall meet the design requirements of ASME A112.19.2M or ASME A112.19.3M.

SECTION 406
AUTOMATIC CLOTHES WASHERS

406.1 Approval. Domestic automatic clothes washers shall conform to ASSE 1007.

406.2 Water connection. The water supply to an automatic clothes washer shall be protected against backflow by an air gap installed integrally within the machine conforming to ASSE 1007 or with the installation of a backflow preventer in accordance with Section 608.

406.3 Waste connection. The waste from an automatic clothes washer shall discharge through an air break into a standpipe in accordance with Section 802.4 or into a laundry sink. The trap and fixture drain for an automatic clothes washer standpipe shall be a minimum of 2 inches (51 mm) in diameter. The automatic clothes washer fixture drain shall connect to a branch drain or drainage stack a minimum of 3 inches (76 mm) in diameter. Automatic clothes washers that discharge by gravity shall be permitted to drain to a waste receptor or an approved trench drain.

SECTION 407
BATHTUBS

407.1 Approval. Bathtubs shall conform to ANSI Z124.1, ASME A112.19.1M, ASME A112.19.4M, ASME A112.19.9M, CSA B45.2, CSA B45.3 or CSA B45.5.

407.2 Bathtub waste outlets. Bathtubs shall have waste outlets a minimum of 1 1/2 inches (38 mm) in diameter. The waste outlet shall be equipped with an approved stopper.

407.3 Glazing. Windows and doors within a bathtub enclosure shall conform to the safety glazing requirements of the building code.

407.4 Bathtub enclosure. Doors within a bathtub enclosure shall conform to ASME A112.19.15.

SECTION 408
BIDETS
408.1 Approval. Bidets shall conform to ASME A112.19.2M, ASME A112.19.9M or CSA B45.1.

408.2 Water connection. The water supply to a bidet shall be protected against backflow by an air gap or backflow preventer in accordance with Section 608.13.1, 608.13.2, 608.13.3, 608.13.5, 608.13.6 or 608.13.8.

408.3 Bidet water temperature. The discharge water temperature from a bidet fitting shall be limited to a maximum temperature of 110°F (43°C) by a water temperature limiting device conforming to ASSE 1070.

SECTION 409

DISHWASHING MACHINES

409.1 Approval. Domestic dishwashing machines shall conform to ASSE 1006. Commercial dishwashing machines shall conform to ASSE 1004 and NSF 3.

409.2 Water connection. The water supply to a dishwashing machine shall be protected against backflow by an air gap or backflow preventer in accordance with Section 608.

409.3 Waste connection. The waste connection of a dishwashing machine shall comply with Section 802.1.6 or 802.1.7, as applicable.

SECTION 410

DRINKING FOUNTAINS

410.1 Approval. Drinking fountains shall conform to ASME A112.19.1M, ASME A112.19.2M or ASME A112.19.9M and water coolers shall conform to ARI 1010. Drinking fountains and water coolers shall conform to NSF 61, Section 9. Where water is served in restaurants, or where bottled water coolers are provided in other occupancies, drinking fountains shall not be required.

410.2 Prohibited location. Drinking fountains, water coolers and bottled water dispensers shall not be installed in public restrooms.

SECTION 411

EMERGENCY SHOWERS AND EYEWASH STATIONS

411.1 Approval. Emergency showers and eyewash stations shall conform to ISEA Z358.1.

411.2 Waste connection. Waste connections shall not be required for emergency showers and eyewash stations.
SECTION 412
FLOOR AND TRENCH DRAINS

412.1 Approval. Floor drains shall conform to ASME A112.3.1, ASME A112.6.3 or CSA B79. Trench drains shall comply with ASME A112.6.3.

412.2 Floor drains. Floor drains shall have removable strainers. The floor drain shall be constructed so that the drain is capable of being cleaned. Access shall be provided to the drain inlet. Ready access shall be provided to floor drains. Exception: Floor drains serving refrigerated display cases shall be provided with access.

412.3 Size of floor drains. Floor drains shall have a minimum 2-inch-diameter (51 mm) drain outlet.

412.4 Public laundries and central washing facilities. In public coin-operated laundries and in the central washing facilities of multiple-family dwellings, the rooms containing automatic clothes washers shall be provided with floor drains located to readily drain the entire floor area. Such drains shall have a minimum outlet of not less than 3 inches (76 mm) in diameter.

SECTION 413
FOOD WASTE GRINDER UNITS

413.1 Approval. Domestic food waste grinders shall conform to ASSE 1008. Commercial food waste grinders shall conform to ASSE 1009. Food waste grinders shall not increase the drainage fixture unit load on the sanitary drainage system.

413.2 Domestic food waste grinder waste outlets. Domestic food waste grinders shall be connected to a drain of not less than 1 ½ inches (38 mm) in diameter.

413.3 Commercial food waste grinder waste outlets. Commercial food waste grinders shall be connected to a drain not less than 1 ½ inches (38 mm) in diameter. Commercial food waste grinders shall be connected and trapped separately from any other fixtures or sink compartments.

413.4 Water supply required. All food waste grinders shall be provided with a supply of cold water. The water supply shall be protected against backflow by an air gap or backflow preventer in accordance with Section 608.

SECTION 414
GARBAGE CAN WASHERS

414.1 Water connection. The water supply to a garbage can washer shall be protected against backflow by an air gap or a backflow preventer in accordance with Section 608.13.1, 608.13.2, 608.13.3, 608.13.5, 608.13.6 or 608.13.8.
414.2 Waste connection. Garbage can washers shall be trapped separately. The receptacle receiving the waste from the washer shall have a removable basket or strainer to prevent the discharge of large particles into the drainage system.

SECTION 415
LAUNDRY TRAYS

415.1 Approval. Laundry trays shall conform to ANSI Z124.6, ASME A112.19.1M, ASME A112.19.3M, ASME A112.19.9M, CSA B45.2 or CSA B45.4.

415.2 Waste outlet. Each compartment of a laundry tray shall be provided with a waste outlet a minimum of 1 ½ inches (38 mm) in diameter and a strainer or crossbar to restrict the clear opening of the waste outlet.

SECTION 416
LAVATORIES

416.1 Approval. Lavatories shall conform to ANSI Z124.3, ASME A112.19.1M, ASME A112.19.2M, ASME A112.19.3M, ASME A112.19.4M, ASME A112.19.9M, CSA B45.1, CSA B45.2, CSA B45.3 or CSA B45.4. Group wash-up equipment shall conform to the requirements of Section 402. Every 20 inches (508 mm) of rim space shall be considered as one lavatory.

416.2 Cultured marble lavatories. Cultured marble vanity tops with an integral lavatory shall conform to ANSI Z124.3 or CSA B45.5.

416.3 Lavatory waste outlets. Lavatories shall have waste outlets not less than 1 ¼ inches (32 mm) in diameter. A strainer, pop-up stopper, crossbar or other device shall be provided to restrict the clear opening of the waste outlet.

416.4 Movable lavatory systems. Movable lavatory systems shall comply with ASME A112.19.12.

416.5 Tempered water for public hand-washing facilities. Tempered water shall be delivered from public hand-washing facilities. Tempered water shall be delivered through an approved water-temperature limiting device that conforms to ASSE 1070 or CSA B125.3.

SECTION 417
SHOWERS
417.1 Approval. Prefabricated showers and shower compartments shall conform to ANSI Z124.1.2, ASME A112.19.9M or CSA B45.5. Shower valves for individual showers shall conform to the requirements of Section 424.3.

417.2 Water supply riser. Water supply risers from the shower valve to the shower head outlet, whether exposed or concealed, shall be attached to the structure. The attachment to the structure shall be made by the use of support devices designed for use with the specific piping material or by fittings anchored with screws.

417.3 Shower waste outlet. Waste outlets serving showers shall be at least 1 ½ inches (38 mm) in diameter and, for other than waste outlets in bathtubs, shall have removable strainers not less than 3 inches (76 mm) in diameter with strainer openings not less than ¼ inch (6.4 mm) in minimum dimension. Where each shower space is not provided with an individual waste outlet, the waste outlet shall be located and the floor pitched so that waste from one shower does not flow over the floor area serving another shower. Waste outlets shall be fastened to the waste pipe in an approved manner.

417.4 Shower compartments. All shower compartments shall have a minimum of 900 square inches (0.58 m²) of interior cross-sectional area. Shower compartments shall not be less than 30 inches (762 mm) in minimum dimension measured from the finished interior dimension of the compartment, exclusive of fixture valves, showerheads, soap dishes, and safety grab bars or rails. Except as required in Section 404, the minimum required area and dimension shall be measured from the finished interior dimension at a height equal to the top of the threshold and at a point tangent to its centerline and shall be continued to a height not less than 70 inches (1778 mm) above the shower drain outlet.

Exception: Shower compartments having not less than 25 inches (635 mm) in minimum dimension measured from the finished interior dimension of the compartment, provided that the shower compartment has a minimum of 1,300 square inches (.838 m²) of cross-sectional area.

417.4.1 Wall area. The wall area above built-in tubs with installed shower heads and in shower compartments shall be constructed of smooth, noncorrosive and nonabsorbent waterproof materials to a height not less than 6 feet (1829 mm) above the room floor level, and not less than 70 inches (1778 mm) where measured from the compartment floor at the drain. Such walls shall form a water-tight joint with each other and with either the tub, receptor or shower floor.

417.4.2 Access. The shower compartment access and egress opening shall have a minimum clear and unobstructed finished width of 22 inches (559
Shower compartments required to be designed in conformance to accessibility provisions shall comply with Section 404.1.

417.5 Shower floors or receptors. Floor surfaces shall be constructed of impervious, noncorrosive, nonabsorbent and waterproof materials.

417.5.1 Support. Floors or receptors under shower compartments shall be laid on, and supported by, a smooth and structurally sound base.

417.5.2 Shower lining. Floors under shower compartments, except where prefabricated receptors have been provided, shall be lined and made watertight utilizing material complying with Sections 417.5.2.1 through 417.5.2.5. Such liners shall turn up on all sides at least 2 inches (51 mm) above the finished threshold level. Liners shall be recessed and fastened to an approved backing so as not to occupy the space required for wall covering, and shall not be nailed or perforated at any point less than 1 inch (25 mm) above the finished threshold. Liners shall be pitched one-fourth unit vertical in 12 units horizontal (2-percent slope) and shall be sloped toward the fixture drains and be securely fastened to the waste outlet at the seepage entrance, making a water-tight joint between the liner and the outlet. The completed liner shall be tested in accordance with Section 312.9.

Exceptions:
1. Floor surfaces under shower heads provided for rinsing laid directly on the ground are not required to comply with this section.
2. Where a sheet-applied, load-bearing, bonded, waterproof membrane is installed as the shower lining, the membrane shall not be required to be recessed.

417.5.2.1 PVC sheets. Plasticized polyvinyl chloride (PVC) sheets shall be a minimum of 0.040 inch (1.02 mm) thick, and shall meet the requirements of ASTM D 4551. Sheets shall be joined by solvent welding in accordance with the manufacturer’s installation instructions.

417.5.2.2 Chlorinated polyethylene (CPE) sheets. Nonplasticized chlorinated polyethylene sheet shall be a minimum 0.040 inch (1.02 mm) thick, and shall meet the requirements of ASTM D 4068. The liner shall be joined in accordance with the manufacturer’s installation instructions.

417.5.2.3 Sheet lead. Sheet lead shall not weigh less than 4 pounds per square foot (19.5 kg/m²) coated with an asphalt paint or other approved coating. The lead sheet shall be insulated from conducting substances other than the connecting drain by 15-pound (6.80 kg) asphalt felt or its equivalent. Sheet lead shall be joined by burning.

417.5.2.4 Sheet copper. Sheet copper shall conform to ASTM B 152 and shall not weigh less than 12 ounces per square foot (3.7 kg/m²). The copper sheet shall be insulated from conducting substances other than the connecting
drain by 15-pound (6.80 kg) asphalt felt or its equivalent. Sheet copper shall be joined by brazing or soldering.

417.5.2.5 Sheet-applied, load-bearing, bonded, waterproof membranes. Sheet-applied, load-bearing, bonded, waterproof membranes shall meet requirements of ANSI A118.10 and shall be applied in accordance with the manufacturer’s installation instructions.

417.6 Glazing. Windows and doors within a shower enclosure shall conform to the safety glazing requirements of the building code.

SECTION 418
SINKS

418.1 Approval. Sinks shall conform to ANSI Z124.6, ASME A112.19.1M, ASME A112.19.2M, ASME A112.19.3M, ASME A112.19.4M, ASME A112.19.9M, CSA B45.1, CSA B45.2, CSA B45.3 or CSA B45.4.

418.2 Sink waste outlets. Sinks shall be provided with waste outlets a minimum of 1 1/2 inches (38 mm) in diameter. A strainer or crossbar shall be provided to restrict the clear opening of the waste outlet.

418.3 Movable sink systems. Movable sink systems shall comply with ASME A112.19.12.

SECTION 419
URINALS

419.1 Approval. Urinals shall conform to ANSI Z124.9, ASME A112.19.2M, ASME A112.19.19, CSA B45.1 or CSA B45.5. Urinals shall conform to the water consumption requirements of Section 604.4. Water-supplied urinals shall conform to the hydraulic performance requirements of ASME A112.19.6, CSA B45.1 or CSA B45.5.

419.2 Substitution for water closets. Deleted.

419.3 Surrounding material. Wall and floor space to a point 2 feet (610 mm) in front of a urinal lip and 4 feet (1219 mm) above the floor and at least 2 feet (610 mm) to each side of the urinal shall be waterproofed with a smooth, readily cleanable, nonabsorbent material.
SECTION 420
WATER CLOSETS

420.1 Approval. Water closets shall conform to the water consumption requirements of Section 604.4 and shall conform to ANSI Z124.4, ASME A112.19.2M, CSA B45.1, CSA B45.4 or CSA B45.5. Water closets shall conform to the hydraulic performance requirements of ASME A112.19.6. Water closet tanks shall conform to ANSI Z124.4, ASME A112.19.2, ASME A112.19.9M, CSA B45.1, CSA B45.4 or CSA B45.5. Electro-hydraulic water closets shall comply with ASME A112.19.13.

420.2 Water closets for public or employee toilet facilities. Water closet bowls for public or employee toilet facilities shall be of the elongated type.

420.3 Water closet seats. Water closets shall be equipped with seats of smooth, nonabsorbent material. All seats of water closets provided for public or employee toilet facilities shall be of the hinged open-front type. Integral water closet seats shall be of the same material as the fixture. Water closet seats shall be sized for the water closet bowl type.

420.4 Water closet connections. A 4-inch by 3-inch (102 mm by 76 mm) closet bend shall be acceptable. Where a 3-inch (76 mm) bend is utilized on water closets, a 4-inch by 3-inch (102 mm by 76 mm) flange shall be installed to receive the fixture horn.

SECTION 421
WHIRLPOOL BATHTUBS

421.1 Approval. Whirlpool bathtubs shall comply with ASME A112.19.7M or with CSA B45.5 and CSA B45 (Supplement 1).

421.2 Installation. Whirlpool bathtubs shall be installed and tested in accordance with the manufacturer’s installation instructions. The pump shall be located above the weir of the fixture trap.

421.3 Drain. The pump drain and circulation piping shall be sloped to drain the water in the volute and the circulation piping when the whirlpool bathtub is empty.

421.4 Suction fittings. Suction fittings for whirlpool bathtubs shall comply with ASME A112.19.8M.

421.5 Access to pump. Access shall be provided to circulation pumps in accordance with the fixture or pump manufacturer’s installation instructions. Where the manufacturer’s instructions do not specify the location and minimum size of field-fabricated access openings, a 12-inch by 12-inch (305 mm by 305
mm) minimum sized opening shall be installed to provide access to the circulation pump. Where pumps are located more than 2 feet (609 mm) from the access opening, an 18-inch by 18-inch (457 mm by 457 mm) minimum sized opening shall be installed. A door or panel shall be permitted to close the opening. In all cases, the access opening shall be unobstructed and of the size necessary to permit the removal and replacement of the circulation pump.

421.6 Whirlpool enclosure. Doors within a whirlpool enclosure shall conform to ASME A112.19.15.

SECTION 422
HEALTH CARE FIXTURES AND EQUIPMENT

422.1 Scope. This section shall govern those aspects of health care plumbing systems that differ from plumbing systems in other structures. Health care plumbing systems shall conform to the requirements of this section in addition to the other requirements of this code. The provisions of this section shall apply to the special devices and equipment installed and maintained in the following occupancies: nursing homes, homes for the aged, orphanages, infirmaries, first aid stations, psychiatric facilities, clinics, professional offices of dentists and doctors, mortuaries, educational facilities, surgery, dentistry, research and testing laboratories, establishments manufacturing pharmaceutical drugs and medicines, and other structures with similar apparatus and equipment classified as plumbing.

422.2 Approval. All special plumbing fixtures, equipment, devices and apparatus shall be of an approved type.

422.3 Protection. All devices, appurtenances, appliances and apparatus intended to serve some special function, such as sterilization, distillation, processing, cooling, or storage of ice or foods, and that connect to either the water supply or drainage system, shall be provided with protection against backflow, flooding, fouling, contamination of the water supply system and stoppage of the drain.

422.4 Materials. Fixtures designed for therapy, special cleansing or disposal of waste materials, combinations of such purposes, or any other special purpose, shall be of smooth, impervious, corrosion-resistant materials and, where subjected to temperatures in excess of 180°F (82°C), shall be capable of withstanding, without damage, higher temperatures.

422.5 Access. Access shall be provided to concealed piping in connection with special fixtures where such piping contains steam traps, valves, relief valves, check valves, vacuum breakers or other similar items that require periodic inspection, servicing, maintenance or repair. Access shall be provided to concealed piping that requires periodic inspection, maintenance or repair.

422.6 Clinical sink. A clinical sink shall have an integral trap in which the upper portion of a visible trap seal provides a water surface. The fixture shall be
designed so as to permit complete removal of the contents by siphonic or blowout action and to reseal the trap. A flushing rim shall provide water to cleanse the interior surface. The fixture shall have the flushing and cleansing characteristics of a water closet.

422.7 Prohibited usage of clinical sinks and service sinks. A clinical sink serving a soiled utility room shall not be considered as a substitute for, or be utilized as, a service sink. A service sink shall not be utilized for the disposal of urine, fecal matter or other human waste.

422.8 Ice prohibited in soiled utility room. Machines for manufacturing ice, or any device for the handling or storage of ice, shall not be located in a soiled utility room.

422.9 Sterilizer equipment requirements. The approval and installation of all sterilizers shall conform to the requirements of the mechanical code.

422.9.1 Sterilizer piping. Access for the purposes of inspection and maintenance shall be provided to all sterilizer piping and devices necessary for the operation of sterilizers.

422.9.2 Steam supply. Steam supplies to sterilizers, including those connected by pipes from overhead mains or branches, shall be drained to prevent any moisture from reaching the sterilizer. The condensate drainage from the steam supply shall be discharged by gravity.

422.9.3 Steam condensate return. Steam condensate returns from sterilizers shall be a gravity return system.

422.9.4 Condensers. Pressure sterilizers shall be equipped with a means of condensing and cooling the exhaust steam vapors. Nonpressure sterilizers shall be equipped with a device that will automatically control the vapor, confining the vapors within the vessel.

422.10 Special elevations. Control valves, vacuum outlets and devices protruding from a wall of an operating, emergency, recovery, examining or delivery room, or in a corridor or other location where patients are transported on a wheeled stretcher, shall be located at an elevation that prevents bumping the patient or stretcher against the device.

SECTION 423
SPECIALTY PLUMBING FIXTURES

423.1 Water connections. Baptisteries, ornamental and lily pools, aquariums, ornamental fountain basins, swimming pools, and similar constructions, where provided with water supplies, shall be protected against backflow in accordance with Section 608.

423.2 Approval. Specialties requiring water and waste connections shall be submitted for approval.
SECTION 424
FAUCETS AND OTHER FIXTURE FITTINGS

424.1 Approval. Faucets and fixture fittings shall conform to ASME A112.18.1/CSA B125.1. Faucets and fixture fittings that supply drinking water for human ingestion shall conform to the requirements of NSF 61, Section 9. Flexible water connectors exposed to continuous pressure shall conform to the requirements of Section 605.6.

424.1.1 Faucets and supply fittings. Faucets and supply fittings shall conform to the water consumption requirements of Section 604.4.

424.1.2 Waste fittings. Waste fittings shall conform to ASME A112.18.2/CSA B125.2, ASTM F 409 or to one of the standards listed in Tables 702.1 and 702.4 for above-ground drainage and vent pipe and fittings.

424.2 Hand showers. Hand-held showers shall conform to ASME A112.18.1 or CSA B125.1. Hand-held showers shall provide backflow protection in accordance with ASME A112.18.1 or CSA B125.1 or shall be protected against backflow by a device complying with ASME A112.18.3.

424.3 Individual shower valves. Individual shower and tub-shower combination valves shall be balanced-pressure, thermostatic or combination balanced-pressure/thermostatic valves that conform to the requirements of ASSE 1016 or ASME A112.18.1/CSA B125.1 and shall be installed at the point of use. Shower and tub-shower combination valves required by this section shall be equipped with a means to limit the maximum setting of the valve to 120°F (49°C), which shall be field adjusted in accordance with the manufacturer’s instructions. In-line thermostatic valves shall not be utilized for compliance with this section.

424.4 Multiple (gang) showers. Multiple (gang) showers supplied with a single-tempered water supply pipe shall have the water supply for such showers controlled by an approved automatic temperature control mixing valve that conforms to ASSE 1069 or CSA B125, or each shower head shall be individually controlled by a balanced-pressure, thermostatic or combination balanced-pressure/thermostatic valve that conforms to ASSE 1016 or CSA B125 and is installed at the point of use. Such valves shall be equipped with a means to limit the maximum setting of the valve to 120°F (49°C), which shall be field adjusted in accordance with the manufacturer’s instructions.

424.5 Bathtub and whirlpool bathtub valves. The hot water supplied to bathtubs and whirlpool bathtubs shall be limited to a maximum temperature of 120°F (49°C) by a water-temperature limiting device that conforms to ASSE 1070 or CSA B125.3, except where such protection is otherwise provided by a combination tub/shower valve in accordance with Section 424.3.
424.6 **Hose-connected outlets.** Faucets and fixture fittings with hose-connected outlets shall conform to ASME A112.18.3M or CSA B125.

424.7 **Temperature-actuated, flow reduction valves for individual fixture fittings.** Temperature-actuated, flow reduction devices, where installed for individual fixture fittings, shall conform to ASSE 1062. Such valves shall not be used alone as a substitute for the balanced pressure, thermostatic or combination shower valves required in Section 424.3.

424.8 **Transfer valves.** Deck-mounted bath/shower transfer valves containing an integral atmospheric vacuum breaker shall conform to the requirements of ASME A112.18.7.

SECTION 425

FLUSHING DEVICES FOR WATER CLOSETS AND URINALS

425.1 **Flushing devices required.** Each water closet, urinal, clinical sink and any plumbing fixture that depends on trap siphonage to discharge the fixture contents to the drainage system shall be provided with a flushometer valve, flushometer tank or a flush tank designed and installed to supply water in quantity and rate of flow to flush the contents of the fixture, cleanse the fixture and refill the fixture trap.

425.1.1 **Separate for each fixture.** A flushing device shall not serve more than one fixture.

425.2 **Flushometer valves and tanks.** Flushometer valves and tanks shall comply with ASSE 1037. Vacuum breakers on flushometer valves shall conform to the performance requirements of ASSE 1001 or CAN/CSA B64.1.1. Access shall be provided to vacuum breakers. Flushometer valves shall be of the water-conservation type and shall not be utilized where the water pressure is lower than the minimum required for normal operation. When operated, the valve shall automatically complete the cycle of operation, opening fully and closing positively under the water supply pressure. Each flushometer valve shall be provided with a means for regulating the flow through the valve. The trap seal to the fixture shall be automatically refilled after each valve flushing cycle.

425.3 **Flush tanks.** Flush tanks equipped for manual flushing shall be controlled by a device designed to refill the tank after each discharge and to shut off completely the water flow to the tank when the tank is filled to operational capacity. The trap seal to the fixture shall be automatically refilled after each flushing. The water supply to flush tanks equipped for automatic flushing shall be controlled with a timing device or sensor control devices.

425.3.1 **Fill valves.** All flush tanks shall be equipped with an antisiphon fill valve conforming to ASSE 1002 or CSA B125.3. The fill valve backflow
preventer shall be located at least 1 inch (25 mm) above the full opening of the overflow pipe.

425.3.2 Overflows in flush tanks. Flush tanks shall be provided with overflows discharging to the water closet or urinal connected thereto and shall be sized to prevent flooding the tank at the maximum rate at which the tanks are supplied with water according to the manufacturer’s design conditions. The opening of the overflow pipe shall be located above the flood level rim of the water closet or urinal or above a secondary overflow in the flush tank.

425.3.3 Sheet copper. Sheet copper utilized for flush tank linings shall conform to ASTM B152 and shall not weigh less than 10 ounces per square foot (0.03 kg/m²).

425.3.4 Access required. All parts in a flush tank shall be accessible for repair and replacement.

425.4 Flush pipes and fittings. Flush pipes and fittings shall be of nonferrous material and shall conform to ASME A112.19.5 or CSA B125.

SECTION 426
MANUAL FOOD AND BEVERAGE DISPENSING EQUIPMENT

426.1 Approval. Manual food and beverage dispensing equipment shall conform to the requirements of NSF 18.

SECTION 427
FLOOR SINKS

427.1 Approval. Sanitary floor sinks shall conform to the requirements of ASME A112.6.7.
4101:3-5-01 Water heaters.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 501
GENERAL

501.1 Scope. The provisions of this chapter shall govern the materials, design and installation of water heaters and the related safety devices and appurtenances.

Exception: Water heaters shall comply with the “Ohio Boiler and Pressure Vessels rules,” Chapters 4101:4-1 to 4101:4-10 of the Administrative Code, when any of the following limitations are exceeded:

1. Heat input of two hundred thousand BTU per hour;
2. Water temperature of two hundred ten degrees Fahrenheit;
3. Nominal water containing capacity of one hundred twenty gallons.

501.2 Water heater as space heater. Where a combination potable water heating and space heating system requires water for space heating at temperatures higher than 140°F (60°C), a master thermostatic mixing valve complying with ASSE 1017 shall be provided to limit the water supplied to the potable hot water distribution system to a temperature of 140°F (60°C) or less. The potability of the water shall be maintained throughout the system.

501.3 Drain valves. Drain valves for emptying shall be installed at the bottom of each tank-type water heater and hot water storage tank. Drain valves shall conform to ASSE 1005.

501.4 Location. Water heaters and storage tanks shall be located and connected so as to provide access for observation, maintenance, servicing and replacement.

501.5 Water heater labeling. All water heaters shall be third-party certified.

501.6 Water temperature control in piping from tankless heaters. The temperature of water from tankless water heaters shall be a maximum of 140°F (60°C) when intended for domestic uses. This provision shall not supersede the requirement for protective shower valves in accordance with Section 424.3.

501.7 Pressure marking of storage tanks. Storage tanks and water heaters installed for domestic hot water shall have the maximum allowable working pressure clearly and indelibly stamped in the metal or marked on a plate welded thereto or otherwise permanently attached. Such markings shall be in an accessible position outside of the tank so as to make inspection or reinspection readily possible.

501.8 Temperature controls. All hot water supply systems shall be equipped with automatic temperature controls capable of adjustments from the lowest to the highest acceptable temperature settings for the intended temperature operating range.
SECTION 502
INSTALLATION

502.1 General. Water heaters shall be installed in accordance with the manufacturer’s installation instructions. Oil-fired water heaters shall conform to the requirements of this code and the mechanical code. Electric water heaters shall conform to the requirements of this code and provisions of NFPA 70. Gas-fired water heaters shall conform to the requirements of the “International Fuel Gas Code”.

502.1.1 Elevation and protection. Elevation of water heater ignition sources and mechanical damage protection requirements for water heaters shall be in accordance with the mechanical code and the “International Fuel Gas Code”.

Exception: Elevation of the ignition source is not required for appliances that are listed as flammable vapor ignition resistant.

502.2 Rooms used as a plenum. Water heaters using solid, liquid or gas fuel shall not be installed in a room containing air-handling machinery when such room is used as a plenum.

502.3 Water heaters installed in attics. Attics containing a water heater shall be provided with an opening and unobstructed passageway large enough to allow removal of the water heater. The passageway shall not be less than 30 inches (762 mm) high and 22 inches (559 mm) wide and not more than 20 feet (6096 mm) in length when measured along the center-line of the passageway from the opening to the water heater. The passageway shall have continuous solid flooring not less than 24 inches (610 mm) wide. A level service space at least 30 inches (762 mm) deep and 30 inches (762 mm) wide shall be present at the front or service side of the water heater. The clear access opening dimensions shall be a minimum of 20 inches by 30 inches (508 mm by 762 mm) where such dimensions are large enough to allow removal of the water heater.

502.4 Seismic supports. Where earthquake loads are applicable in accordance with the building code, water heater supports shall be designed and installed for the seismic forces in accordance with the building code.

502.5 Clearances for maintenance and replacement. Appliances shall be provided with access for inspection, service, repair and replacement without disabling the function of a fire-resistance-rated assembly or removing permanent construction, other appliances or any other piping or ducts not connected to the appliance being inspected, serviced, repaired or replaced. A level working space at least 30 inches deep and 30 inches wide (762 mm by 762 mm) shall be provided in front of the control side to service an appliance.

SECTION 503
CONNECTIONS

503.1 Cold water line valve. The cold water branch line from the main water supply line to each hot water storage tank or water heater shall be provided with a valve, located near the equipment and serving only the hot water storage tank or water heater. The valve shall not interfere or cause a disruption of the cold water supply to the remainder of the cold water system. The valve shall be provided with access on the same floor level as the water heater served.

503.2 Water circulation. The method of connecting a circulating water heater to the tank shall provide proper circulation of water through the water heater. The pipe or tubes required for the
installation of appliances that will draw from the water heater or storage tank shall comply with the provisions of this code for material and installation.

SECTION 504
SAFETY DEVICES

504.1 Antisiphon devices. An approved means, such as a cold water “dip” tube with a hole at the top or a vacuum relief valve installed in the cold water supply line above the top of the heater or tank, shall be provided to prevent siphoning of any storage water heater or tank.

504.2 Vacuum relief valve. Bottom fed water heaters and bottom fed tanks connected to water heaters shall have a vacuum relief valve installed. The vacuum relief valve shall comply with ANSI Z21.22.

504.3 Shutdown. A means for disconnecting an electric hot water supply system from its energy supply shall be provided in accordance with NFPA 70. A separate valve shall be provided to shut off the energy fuel supply to all other types of hot water supply systems.

504.4 Relief valve. All storage water heaters operating above atmospheric pressure shall be provided with an approved, self-closing (levered) pressure relief valve and temperature relief valve or combination thereof. The relief valve shall conform to ANSI Z21.22. The relief valve shall not be used as a means of controlling thermal expansion.

504.4.1 Installation. Such valves shall be installed in the shell of the water heater tank. Temperature relief valves shall be so located in the tank as to be actuated by the water in the top 6 inches (152 mm) of the tank served. For installations with separate storage tanks, the valves shall be installed on the tank and there shall not be any type of valve installed between the water heater and the storage tank. There shall not be a check valve or shutoff valve between a relief valve and the heater or tank served.

504.5 Relief valve approval. Temperature and pressure relief valves, or combinations thereof, and energy cutoff devices shall bear the label of an approved agency and shall have a temperature setting of not more than 210°F (99°C) and a pressure setting not exceeding the tank or water heater manufacturer’s rated working pressure or 150 psi (1035 kPa), whichever is less. The relieving capacity of each pressure relief valve and each temperature relief valve shall equal or exceed the heat input to the water heater or storage tank.

504.6 Requirements for discharge piping. The discharge piping serving a pressure relief valve, temperature relief valve or combination thereof shall:

1. Not be directly connected to the drainage system.
2. Discharge through an air gap located in the same room as the water heater.
3. Not be smaller than the diameter of the outlet of the valve served and shall discharge full size to the air gap.
4. Serve a single relief device and shall not connect to piping serving any other relief device or equipment.
5. Discharge to the floor, to the pan serving the water heater or storage tank, to a waste receptor or to the outdoors.
6. Discharge in a manner that does not cause personal injury or structural damage.
7. Discharge to a termination point that is readily observable by the building occupants.
8. Not be trapped.
9. Be installed so as to flow by gravity.
10. Not terminate more than 6 inches (152 mm) above the floor or waste receptor.
11. Not have a threaded connection at the end of such piping.
12. Not have valves or tee fittings.
13. Be constructed of those materials listed in Section 605.4 or materials tested, rated and approved for such use in accordance with ASME A112.4.1.

504.7 Required pan. Where water heaters or hot water storage tanks are installed in locations where leakage of the tanks or connections will cause damage, the tank or water heater shall be installed in a galvanized steel pan having a material thickness of not less than 0.0236 inch (0.6010 mm) (No. 24 gage), or other pans approved for such use.

504.7.1 Pan size and drain. The pan shall be not less than 1 ½ inches (38 mm) deep and shall be of sufficient size and shape to receive all dripping or condensate from the tank or water heater. The pan shall be drained by an indirect waste pipe having a minimum diameter of ¾ inch (19 mm). Piping for safety pan drains shall be of those materials listed in Table 605.4.

504.7.2 Pan drain termination. The pan drain shall extend full-size and terminate over a suitably located indirect waste receptor or floor drain or extend to the exterior of the building and terminate not less than 6 inches (152 mm) and not more than 24 inches (610 mm) above the adjacent ground surface.

SECTION 505
INSULATION

505.1 Unfired vessel insulation. Unfired hot water storage tanks shall be insulated to “R-12.5” (h · ft² · °F)/Btu (R-2.2 m² · K/W).
4101:3-6-01 Water supply and distribution.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 601
GENERAL

601.1 Scope. This chapter shall govern the materials, design and installation of water supply systems within a building, both hot and cold, for utilization in connection with human occupancy and habitation.

Exceptions:
1. This chapter shall not apply to private water systems as defined in section 3701.344 of the Revised Code and as defined in paragraph (ZZ) of rule 3701-28-01 of the Administrative Code and within the scope of the rules of the “Ohio Department of Health”.
2. This chapter shall not apply to public water systems as defined in division (A) of section 6109.01 of the Revised Code and as defined in rule 3745-81-01 of the Administrative Code and within the scope of the rules of the “Ohio Environmental Protection Agency”.

601.2 Solar energy utilization. Solar energy systems used for heating potable water or using an independent medium for heating potable water shall comply with the applicable requirements of this code. The use of solar energy shall not compromise the requirements for cross connection or protection of the potable water supply system required by this code.

601.3 Existing piping used for grounding. Existing metallic water service piping used for electrical grounding shall not be replaced with nonmetallic pipe or tubing until other approved means of grounding is provided.

601.4 Tests. The potable water distribution system shall be tested in accordance with Section 312.5.

SECTION 602
WATER REQUIRED
602.1 General. Every structure equipped with plumbing fixtures and utilized for human occupancy or habitation shall be provided with a potable supply of water in the amounts and at the pressures specified in this chapter.

602.2 Potable water required. Only potable water shall be supplied to plumbing fixtures that provide water for drinking, bathing or culinary purposes, or for the processing of food, medical or pharmaceutical products. Unless otherwise provided in this code, potable water shall be supplied to all plumbing fixtures.

602.3 Individual water supply. Deleted.

603.1 Size of water service pipe. The water service pipe shall be sized to supply water to the structure in the quantities and at the pressures required in this code. The minimum diameter of water service pipe shall be ¾ inch (19.1 mm).

603.2 Separation of water service and building sewer. Water service pipe and the building sewer shall be separated by 10 feet (1524 mm) of undisturbed or compacted earth.

Exceptions:
1. The required separation distance shall not apply where the bottom of the water service pipe within 10 feet (1524 mm) of the sewer is a minimum of 12 inches (305 mm) above the top of the highest point of the sewer and the pipe materials conform to Table 702.3.
2. Water service pipe is permitted to be located in the same trench with a building sewer, provided such sewer is constructed of materials listed in Table 702.2.

The required separation distance shall not apply where a water service pipe crosses a sewer pipe, provided the water service pipe is sleeved to at least 5 feet (1524 mm) horizontally from the sewer pipe center-line on both sides of such crossing with pipe materials listed in Table 605.3, 702.2 or 702.3.

603.2.1 Water service near sources of pollution. Potable water service pipes shall not be located in, under or above cesspools, septic tanks, septic tank drainage fields or seepage pits (see Section 605.1 for soil and groundwater conditions).
603.3 Enforcement. Enforcement of the provisions of this section is the responsibility of the certified building official of the certified municipal, county, or township building department having jurisdiction or the superintendent of the division of industrial compliance.

SECTION 604
DESIGN OF BUILDING WATER DISTRIBUTION SYSTEM

604.1 General. The design of the water distribution system shall conform to accepted engineering practice. Methods utilized to determine pipe sizes shall be approved.

604.2 System interconnection. At the points of interconnection between the hot and cold water supply piping systems and the individual fixtures, appliances or devices, provisions shall be made to prevent flow between such piping systems.

604.3 Water distribution system design criteria. The water distribution system shall be designed, and pipe sizes shall be selected such that under conditions of peak demand, the capacities at the fixture supply pipe outlets shall not be less than shown in Table 604.3. The minimum flow rate and flow pressure provided to fixtures and appliances not listed in Table 604.3 shall be in accordance with the manufacturer’s installation instructions.

TABLE 604.3
WATER DISTRIBUTION SYSTEM DESIGN CRITERIA REQUIRED
CAPACITY AT FIXTURE SUPPLY PIPE OUTLETS

<table>
<thead>
<tr>
<th>Fixture Supply Outlet Serving</th>
<th>Flow Rate (gpm)</th>
<th>Flow Pressure (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathtub, balanced-pressure, thermostatic or combination balanced-pressure/thermostatic mixing valve</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Bidet, thermostatic mixing valve</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Combination fixture</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Dishwasher, residential</td>
<td>2.75</td>
<td>8</td>
</tr>
<tr>
<td>Drinking fountain</td>
<td>0.75</td>
<td>8</td>
</tr>
<tr>
<td>Laundry tray</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Lavatory</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Shower</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Shower, balanced-pressure, thermostatic or combination balanced-pressure/thermostatic mixing valve</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Sillcock, hose bibb</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
604.4 Maximum flow and water consumption. The maximum water consumption flow rates and quantities for all plumbing fixtures and fixture fittings shall be in accordance with Table 604.4.

Exceptions:
1. Blowout design water closets having a maximum water consumption of 3½ gallons (13 L) per flushing cycle.
2. Vegetable sprays.
3. Clinical sinks having a maximum water consumption of 4½ gallons (17 L) per flushing cycle.
4. Service sinks.
5. Emergency showers.

TABLE 604.4
MAXIMUM FLOW RATES AND CONSUMPTION FOR PLUMBING FIXTURES AND FIXTURE FITTINGS

<table>
<thead>
<tr>
<th>PLUMBING FIXTURE OR FIXTURE FITTING</th>
<th>MAXIMUM FLOW RATE OR QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavatory, private</td>
<td>2.2 gpm at 60 psi</td>
</tr>
<tr>
<td>Lavatory, public (metering)</td>
<td>0.25 gallon per metering cycle</td>
</tr>
<tr>
<td>Lavatory, public (other than metering)</td>
<td>0.5 gpm at 60 psi</td>
</tr>
<tr>
<td>Shower head*</td>
<td>2.5 gpm at 80 psi</td>
</tr>
<tr>
<td>Sink faucet</td>
<td>2.2 gpm at 60 psi</td>
</tr>
<tr>
<td>Urinal</td>
<td>1.0 gallon per flushing cycle</td>
</tr>
<tr>
<td>Water closet</td>
<td>1.6 gallons per flushing cycle</td>
</tr>
</tbody>
</table>
For SI: 1 gallon = 3.785 L
1 gallon per minute = 3.785 L/m
1 pound per square inch = 6.895 kPa.
a. A hand-held shower spray is a shower head.
b. Consumption tolerances shall be determined from referenced standards.

604.5 Size of fixture supply. The minimum size of a fixture supply pipe shall be as shown in Table 604.5. The fixture supply pipe shall not terminate more than 30 inches (762 mm) from the point of connection to the fixture. A reduced-size flexible water connector installed between the supply pipe and the fixture shall be of an approved type. The supply pipe shall extend to the floor or wall adjacent to the fixture. The minimum size of individual distribution lines utilized in gridded or parallel water distribution systems shall be as shown in Table 604.5.

604.6 Variable street pressures. Where street water main pressures fluctuate, the building water distribution system shall be designed for the minimum pressure available.

604.7 Inadequate water pressure. Wherever water pressure from the street main or other source of supply is insufficient to provide flow pressures at fixture outlets as required under Table 604.3, a water pressure booster system conforming to Section 606.5 shall be installed on the building water supply system.

TABLE 604.5

MINIMUM SIZES OF FIXTURE WATER SUPPLY PIPES

<table>
<thead>
<tr>
<th>FIXTURE</th>
<th>MINIMUM PIPE SIZE (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathtubsa (60” x 32” and smaller)</td>
<td>1/2</td>
</tr>
<tr>
<td>Bathtubsa (larger than 60” x 32”)</td>
<td>1/2</td>
</tr>
<tr>
<td>Bidet</td>
<td>3/8</td>
</tr>
<tr>
<td>Combination sink and tray</td>
<td>1/2</td>
</tr>
<tr>
<td>Dishwasher, domestica</td>
<td>1/2</td>
</tr>
<tr>
<td>Drinking fountain</td>
<td>3/8</td>
</tr>
<tr>
<td>Hose bibbs</td>
<td>1/2</td>
</tr>
<tr>
<td>Kitchen sinka</td>
<td>1/2</td>
</tr>
<tr>
<td>Laundry, 1, 2 or 3 compartmentsa</td>
<td>1/2</td>
</tr>
<tr>
<td>Lavatory</td>
<td>3/8</td>
</tr>
<tr>
<td>Shower, single heada</td>
<td>1/2</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Fixture</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinks, flushing rim</td>
<td>3/4</td>
</tr>
<tr>
<td>Sinks, service</td>
<td>1/2</td>
</tr>
<tr>
<td>Urinal, flush tank</td>
<td>1/2</td>
</tr>
<tr>
<td>Urinal, flush valve</td>
<td>3/4</td>
</tr>
<tr>
<td>Wall hydrant</td>
<td>1/2</td>
</tr>
<tr>
<td>Water closet, flush tank</td>
<td>3/8</td>
</tr>
<tr>
<td>Water closet, flush valve</td>
<td>1</td>
</tr>
<tr>
<td>Water closet, flushometer tank</td>
<td>3/8</td>
</tr>
<tr>
<td>Water closet, one piece</td>
<td>1/2</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm
1 foot = 304.8 mm
1 pound per square inch = 6.895 kPa.

a. Where the developed length of the distribution line is 60 feet or less, and the available pressure at the meter is a minimum of 35 psi, the minimum size of an individual distribution line supplied from a manifold and installed as part of a parallel water distribution system shall be one nominal tube size smaller than the sizes indicated.

604.8 Water-pressure reducing valve or regulator

Where water pressure within a building exceeds 80 psi (552 kPa) static, an approved water-pressure reducing valve conforming to ASSE 1003 with strainer shall be installed to reduce the pressure in the building water distribution piping to 80 psi (552 kPa) static or less.

Exception: Service lines to sill cocks and outside hydrants, and main supply risers where pressure from the mains is reduced to 80 psi (552 kPa) or less at individual fixtures.

604.8.1 Valve design

The pressure-reducing valve shall be designed to remain open to permit uninterrupted water flow in case of valve failure.

604.8.2 Repair and removal

All water-pressure reducing valves, regulators and strainers shall be so constructed and installed as to permit repair or removal of parts without breaking a pipeline or removing the valve and strainer from the pipeline.

604.9 Water hammer

The flow velocity of the water distribution system shall be controlled to reduce the possibility of water hammer. A water-hammer arrestor shall be installed where quick-closing valves are utilized. Water-hammer arrestors shall be installed in accordance with the manufacturer’s specifications. Water-hammer arrestors shall conform to ASSE 1010.
604.10 Gridded and parallel water distribution system manifolds. Hot water and cold water manifolds installed with gridded or parallel connected individual distribution lines to each fixture or fixture fitting shall be designed in accordance with Sections 604.10.1 through 604.10.3.

604.10.1 Manifold sizing. Hot water and cold water manifolds shall be sized in accordance with Table 604.10.1. The total gallons per minute is the demand of all outlets supplied.

TABLE 604.10.1
MANIFOLD SIZING

<table>
<thead>
<tr>
<th>NOMINAL SIZE INTERNAL DIAMETER (inches)</th>
<th>MAXIMUM DEMAND (gpm)</th>
<th>Velocity at 4 feet per second</th>
<th>Velocity at 8 feet per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>½</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>¾</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1 ¼</td>
<td>15</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>1 ½</td>
<td>22</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm
1 gallon per minute = 3.785 L/m
1 foot per second = 0.305 m/s.

604.10.2 Valves. Individual fixture shutoff valves installed at the manifold shall be identified as to the fixture being supplied.

604.10.3 Access. Access shall be provided to manifolds with integral factory- or field-installed valves.

604.11 Individual pressure balancing in-line valves for individual fixture fittings. Where individual pressure balancing in-line valves for individual fixture fittings are installed, such valves shall comply with ASSE 1066. Such valves shall be installed in an accessible location and shall not be utilized alone as a substitute for the balanced pressure, thermostatic or combination shower valves required in Section 424.3.

SECTION 605
MATERIALS, JOINTS AND CONNECTIONS

605.1 Soil and ground water. The installation of a water service or water distribution pipe shall be prohibited in soil and ground water contaminated with
solvents, fuels, organic compounds or other detrimental materials causing permeation, corrosion, degradation or structural failure of the piping material. Where detrimental conditions are suspected, a chemical analysis of the soil and ground water conditions shall be required to ascertain the acceptability of the water service or water distribution piping material for the specific installation. Where detrimental conditions exist, approved alternative materials or routing shall be required.

605.2 Lead content of water supply pipe and fittings. Pipe and pipe fittings, including valves and faucets, utilized in the water supply system shall have a maximum of 8-percent lead content.

605.3 Water service pipe. Water service pipe shall conform to NSF 61 and shall conform to one of the standards listed in Table 605.3. All water service pipe or tubing, installed underground and outside of the structure, shall have a minimum working pressure rating of 160 psi (1100 kPa) at 73.4°F (23°C). Where the water pressure exceeds 160 psi (1100 kPa), piping material shall have a minimum rated working pressure equal to the highest available pressure. Water service piping materials not third-party certified for water distribution shall terminate at or before the full open valve located at the entrance to the structure. All ductile iron water service piping shall be cement mortar lined in accordance with AWWA C104.

605.3.1 Dual check-valve-type backflow preventer. Where a dual check-valve backflow preventer is installed on the water supply system, it shall comply with ASSE 1024 or CSA B64.6.

605.4 Water distribution pipe. Water distribution pipe shall conform to NSF 61 and shall conform to one of the standards listed in Table 605.4. All hot water distribution pipe and tubing shall have a minimum pressure rating of 100 psi (690 kPa) at 180°F (82°C).

605.5 Fittings. Pipe fittings shall be approved for installation with the piping material installed and shall comply with the applicable standards listed in Table 605.5. All pipe fittings utilized in water supply systems shall also comply with NSF 61. Ductile and gray iron pipe fittings shall be cement mortar lined in accordance with AWWA C104.

605.5.1 Mechanically formed tee fittings. Mechanically extracted outlets shall have a height not less than three times the thickness of the branch tube wall.

605.5.1.1 Full flow assurance. Branch tubes shall not restrict the flow in the run tube. A dimple/depth stop shall be formed in the branch tube to ensure that penetration into the collar is of the correct depth. For inspection purposes, a second dimple shall be placed 1/4 inch (6.4 mm) above the first dimple. Dimples shall be aligned with the tube run.

605.5.1.2 Brazed joints. Mechanically formed tee fittings shall be brazed in accordance with Section 605.14.1.
605.6 Flexible water connectors. Flexible water connectors exposed to continuous pressure shall conform to ASME A112.18.6. Access shall be provided to all flexible water connectors.

605.7 Valves. All valves shall be of an approved type and compatible with the type of piping material installed in the system. Ball valves, gate valves, globe valves and plug valves intended to supply drinking water shall meet the requirements of NSF 61.

TABLE 605.3
WATER SERVICE PIPE

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylonitrile butadiene styrene (ABS) plastic pipe</td>
<td>ASTM D 1527; ASTM D 2282</td>
</tr>
<tr>
<td>Asbestos-cement pipe</td>
<td>ASTM C 296</td>
</tr>
<tr>
<td>Brass pipe</td>
<td>ASTM B 43</td>
</tr>
<tr>
<td>Chlorinated polyvinyl chloride (CPVC) plastic pipe</td>
<td>ASTM D 2846; ASTM F 441; ASTM F 442; CSA B137.6</td>
</tr>
<tr>
<td>Copper or copper-alloy pipe</td>
<td>ASTM B 42; ASTM B 302</td>
</tr>
<tr>
<td>Copper or copper-alloy tubing (Type K, WK, L, WL, M or WM)</td>
<td>ASTM B 75; ASTM B 88; ASTM B 251; ASTM B 447</td>
</tr>
<tr>
<td>Cross-linked polyethylene (PEX) plastic tubing</td>
<td>ASTM F 876; ASTM F 877; CSA B137.5</td>
</tr>
<tr>
<td>Cross-linked polyethylene/aluminum/cross-linked polyethylene (PEX-AL-PE) pipe</td>
<td>ASTM F 1281; ASTM F 2262; CAN/CSA B137.10M</td>
</tr>
<tr>
<td>Cross-linked polyethylene/aluminum/high-density polyethylene (PEX-AL-HDPE) pipe</td>
<td>ASTM F 1986</td>
</tr>
<tr>
<td>Ductile iron water pipe</td>
<td>AWWA C151; AWWA C115</td>
</tr>
<tr>
<td>Galvanized steel pipe</td>
<td>ASTM A 53</td>
</tr>
<tr>
<td>Polyethylene (PE) plastic pipe</td>
<td>ASTM D 2239; ASTM D 3035; CSA B137.1</td>
</tr>
<tr>
<td>Polyethylene (PE) plastic tubing</td>
<td>ASTM D 2737; CSA B137.1</td>
</tr>
<tr>
<td>Polyethylene/aluminum/polyethylene (PE-AL-PE) pipe</td>
<td>ASTM F 1282; CAN/CSA B137.9</td>
</tr>
<tr>
<td>Polypropylene (PP) plastic pipe or tubing</td>
<td>ASTM F 2389; CSA B137.11</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC) plastic pipe</td>
<td>ASTM D 1785; ASTM D 2241; ASTM D 2672; CSA B137.3</td>
</tr>
<tr>
<td>Stainless steel pipe (Type 304/304L)</td>
<td>ASTM A 312; ASTM A 778</td>
</tr>
<tr>
<td>Stainless steel pipe (Type 316/316L)</td>
<td>ASTM A 312; ASTM A 778</td>
</tr>
</tbody>
</table>

TABLE 605.4
WATER DISTRIBUTION PIPE

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brass pipe</td>
<td>ASTM B 43</td>
</tr>
<tr>
<td>Chlorinated polyvinyl chloride (CPVC) plastic pipe and tubing</td>
<td>ASTM D 2846; ASTM F 441; ASTM F 442; CSA B137.6</td>
</tr>
<tr>
<td>Copper or copper-alloy pipe</td>
<td>ASTM B 42; ASTM B 302</td>
</tr>
<tr>
<td>Copper or copper-alloy tubing (Type K, WK, L, WL, M or WM)</td>
<td>ASTM B 75; ASTM B 88; ASTM B 251; ASTM B 447.</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>STANDARD</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Acrylonitrile butadiene styrene (ABS) plastic</td>
<td>ASTM D 2468</td>
</tr>
<tr>
<td>Cast-iron</td>
<td>ASME B16.4; ASME B16.12</td>
</tr>
<tr>
<td>Chlorinated polyvinyl chloride (CPVC) plastic</td>
<td>ASSE 1061; ASTM D 2846; ASTM F 437; ASTM F 438; ASTM F 439; CSA B137.6</td>
</tr>
<tr>
<td>Copper or copper alloy</td>
<td>ASSE 1061; ASME B16.15; ASME B16.18; ASME B16.22; ASME B16.23; ASME B16.26; ASME B16.29</td>
</tr>
<tr>
<td>Cross-linked polyethylene/aluminum/high-density polyethylene (PEX-AL-HDPE)</td>
<td>ASTM F 1986</td>
</tr>
<tr>
<td>Fittings for cross-linked polyethylene (PEX) plastic tubing</td>
<td>ASSE 1061; ASTM F 877; ASTM F 1807; ASTM F 1960; ASTM F 2080; ASTM F 2098; ASTM F 2159; ASTM F 2434; CSA B137.5</td>
</tr>
<tr>
<td>Gray iron and ductile iron</td>
<td>AWWA C110; AWWA C153.</td>
</tr>
<tr>
<td>Insert fittings for polyethylene/aluminum/polyethylene (PE-AL-PE) and cross-linked polyethylene (PEX-AL-PE)</td>
<td>ASTM F 1974; ASTM F1281; ASTM F1282; CAN/CSA B137.9; CAN/CSA B137.10</td>
</tr>
<tr>
<td>Malleable iron</td>
<td>ASME B16.3</td>
</tr>
<tr>
<td>Metal (brass) insert fittings for polyethylene/aluminum/polyethylene (PE-AL-PE) and cross-linked polyethylene (PEX-AL-PE)</td>
<td>ASTM F 1974</td>
</tr>
<tr>
<td>Polyethylene (PE) plastic pipe</td>
<td>ASTM D 2609; ASTM D 2683; ASTM D 3261; ASTM F 1055; CSA B137.1</td>
</tr>
<tr>
<td>Polypropylene (PP) plastic pipe or tubing</td>
<td>ASTM F 2389; CSA B137.11</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC) plastic</td>
<td>ASTM D 2464; ASTM D 2466; ASTM D 2467; CSA B137.2; CSA B137.3</td>
</tr>
<tr>
<td>Stainless steel (Type 304/304L)</td>
<td>ASTM A 312; ASTM A 778</td>
</tr>
<tr>
<td>Stainless steel (Type 316/316L)</td>
<td>ASTM A 312; ASTM A 778</td>
</tr>
</tbody>
</table>
605.8 Manufactured pipe nipples. Manufactured pipe nipples shall conform to one of the standards listed in Table 605.8.

TABLE 605.8
MANUFACTURED PIPE NIPPLES

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brass-, copper-, chromium-plated</td>
<td>ASTM B 687</td>
</tr>
<tr>
<td>Steel</td>
<td>ASTM A 733</td>
</tr>
</tbody>
</table>

605.9 Prohibited joints and connections. The following types of joints and connections shall be prohibited:
1. Cement or concrete joints.
2. Joints made with fittings not approved for the specific installation.
3. Solvent-cement joints between different types of plastic pipe.
4. Saddle-type fittings.

605.10 ABS plastic. Joints between ABS plastic pipe or fittings shall comply with Sections 605.10.1 through 605.10.3.

605.10.1 Mechanical joints. Mechanical joints on water pipes shall be made with an elastomeric seal conforming to ASTM D 3139. Mechanical joints shall only be installed in underground systems, unless otherwise approved. Joints shall be installed only in accordance with the manufacturer’s instructions.

605.10.2 Solvent cementing. Joint surfaces shall be clean and free from moisture. Solvent cement that conforms to ASTM D 2235 shall be applied to all joint surfaces. The joint shall be made while the cement is wet. Joints shall be made in accordance with ASTM D 2235. Solvent-cement joints shall be permitted above or below ground.

605.10.3 Threaded joints. Threads shall conform to ASME B1.20.1. Schedule 80 or heavier pipe shall be permitted to be threaded with dies specifically designed for plastic pipe. Approved thread lubricant or tape shall be applied on the male threads only.

605.11 Asbestos-cement. Joints between asbestos-cement pipe or fittings shall be made with a sleeve coupling of the same composition as the pipe, sealed with an elastomeric ring conforming to ASTM D 1869.

605.12 Brass. Joints between brass pipe or fittings shall comply with Sections 605.12.1 through 605.12.4.
605.12.1 Braided joints. All joint surfaces shall be cleaned. An approved flux shall be applied where required. The joint shall be brazed with a filler metal conforming to AWS A5.8.

605.12.2 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

605.12.3 Threaded joints. Threads shall conform to ASME B1.20.1. Pipe-joint compound or tape shall be applied on the male threads only.

605.12.4 Welded joints. All joint surfaces shall be cleaned. The joint shall be welded with an approved filler metal.

605.13 Gray iron and ductile iron joints. Joints for gray and ductile iron pipe and fittings shall comply with AWWA C111 and shall be installed in accordance with the manufacturer’s installation instructions.

605.14 Copper pipe. Joints between copper or copper-alloy pipe or fittings shall comply with Sections 605.14.1 through 605.14.5.

605.14.1 Braided joints. All joint surfaces shall be cleaned. An approved flux shall be applied where required. The joint shall be brazed with a filler metal conforming to AWS A5.8.

605.14.2 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

605.14.3 Soldered joints. Solder joints shall be made in accordance with the methods of ASTM B 828. All cut tube ends shall be reamed to the full inside diameter of the tube end. All joint surfaces shall be cleaned. A flux conforming to ASTM B 813 shall be applied. The joint shall be soldered with a solder conforming to ASTM B 32. The joining of water supply piping shall be made with lead-free solder and fluxes. “Lead free” shall mean a chemical composition equal to or less than 0.2-percent lead.

605.14.4 Threaded joints. Threads shall conform to ASME B1.20.1. Pipe-joint compound or tape shall be applied on the male threads only.

605.14.5 Welded joints. All joint surfaces shall be cleaned. The joint shall be welded with an approved filler metal.

605.15 Copper tubing. Joints between copper or copper-alloy tubing or fittings shall comply with Sections 605.15.1 through 605.15.4.

605.15.1 Braided joints. All joint surfaces shall be cleaned. An approved flux shall be applied where required. The joint shall be brazed with a filler metal conforming to AWS A5.8.

605.15.2 Flared joints. Flared joints for water pipe shall be made by a tool designed for that operation.

605.15.3 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

605.15.4 Soldered joints. Solder joints shall be made in accordance with the methods of ASTM B 828. All cut tube ends shall be reamed to the full inside
diameter of the tube end. All joint surfaces shall be cleaned. A flux conforming to ASTM B 813 shall be applied. The joint shall be soldered with a solder conforming to ASTM B 32. The joining of water supply piping shall be made with lead-free solders and fluxes. “Lead free” shall mean a chemical composition equal to or less than 0.2-percent lead.

605.16 CPVC plastic. Joints between CPVC plastic pipe or fittings shall comply with Sections 605.16.1 through 605.16.3.

605.16.1 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

605.16.2 Solvent cementing. Joint surfaces shall be clean and free from moisture, and an approved primer shall be applied. Solvent cement, orange in color and conforming to ASTM F 493, shall be applied to all joint surfaces. The joint shall be made while the cement is wet, and in accordance with ASTM D 2846 or ASTM F 493. Solvent-cement joints shall be permitted above or below ground.

Exception: A primer is not required where all of the following conditions apply:

1. The solvent cement used is third-party certified as conforming to ASTM F 493.
2. The solvent cement used is yellow in color.
3. The solvent cement is used only for joining 1/2 inch (12.7 mm) through 2 inch (51 mm) diameter CPVC pipe and fittings.
4. The CPVC pipe and fittings are manufactured in accordance with ASTM D 2846.

605.16.3 Threaded joints. Threads shall conform to ASME B1.20.1. Schedule 80 or heavier pipe shall be permitted to be threaded with dies specifically designed for plastic pipe, but the pressure rating of the pipe shall be reduced by 50 percent. Thread by socket molded fittings shall be permitted. Approved thread lubricant or tape shall be applied on the male threads only.

605.17 Cross-linked polyethylene plastic. Joints between cross-linked polyethylene plastic tubing or fittings shall comply with Sections 605.17.1 and 605.17.2.

605.17.1 Flared joints. Flared pipe ends shall be made by a tool designed for that operation.

605.17.2 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions. Fittings for cross-linked polyethylene (PEX) plastic tubing shall comply with the applicable standards listed in Table 605.5 and shall be installed in accordance with the manufacturer’s instructions. PEX tubing shall be factory marked with the appropriate standards for the fittings that the PEX manufacturer specifies for use with the tubing.
605.18 Steel. Joints between galvanized steel pipe or fittings shall comply with Sections 605.18.1 and 605.18.2.

605.18.1 Threaded joints. Threads shall conform to ASME B1.20.1. Pipe-joint compound or tape shall be applied on the male threads only.

605.18.2 Mechanical joints. Joints shall be made with an approved elastomeric seal. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

605.19 Polyethylene plastic. Joints between polyethylene plastic pipe and tubing or fittings shall comply with Sections 605.19.1 through 605.19.4.

605.19.1 Flared joints. Flared joints shall be permitted where so indicated by the pipe manufacturer. Flared joints shall be made by a tool designed for that operation.

605.19.2 Heat-fusion joints. Joint surfaces shall be clean and free from moisture. All joint surfaces shall be heated to melt temperature and joined. The joint shall be undisturbed until cool. Joints shall be made in accordance with ASTM D 2657.

605.19.3 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

605.19.4 Installation. Polyethylene pipe shall be cut square, with a cutter designed for plastic pipe. Except where joined by heat fusion, pipe ends shall be chamfered to remove sharp edges. Kinked pipe shall not be installed. The minimum pipe bending radius shall not be less than 30 pipe diameters, or the minimum coil radius, whichever is greater. Piping shall not be bent beyond straightening of the curvature of the coil. Bends shall not be permitted within 10 pipe diameters of any fitting or valve. Stiffener inserts installed with compression-type couplings and fittings shall not extend beyond the clamp or nut of the coupling or fitting.

605.20 Polypropylene (PP) plastic. Joints between PP plastic pipe and fittings shall comply with Section 605.20.1 or 605.20.2.

605.20.1 Heat-fusion joints. Heat-fusion joints for polypropylene pipe and tubing joints shall be installed with socket-type heat-fused polypropylene fittings, butt-fusion polypropylene fittings or electrofusion polypropylene fittings. Joint surfaces shall be clean and free from moisture. The joint shall be undisturbed until cool. Joints shall be made in accordance with ASTM F 2389.

605.20.2 Mechanical and compression sleeve joints. Mechanical and compression sleeve joints shall be installed in accordance with the manufacturer’s instructions.

605.21 Polyethylene/aluminum/polyethylene (PE-AL-PE) and cross-linked polyethylene/aluminum/cross-linked polyethylene (PEX-AL-PE). Joints
between PE-AL-PE and PEX-AL-PEX pipe and fittings shall comply with Section 605.21.1.

605.21.1 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions. Fittings for PE-AL-PE and PEX-AL-PEX as described in ASTM F 1974, ASTM F 1281, ASTM F 1282, CAN/CSA B137.9 and CAN/CSA B137.10 shall be installed in accordance with the manufacturer’s instructions.

605.22 PVC plastic. Joints between PVC plastic pipe or fittings shall comply with Sections 605.22.1 through 605.22.3.

- **605.22.1 Mechanical joints.** Mechanical joints on water pipe shall be made with an elastomeric seal conforming to ASTM D 3139. Mechanical joints shall not be installed in above-ground systems unless otherwise approved. Joints shall be installed in accordance with the manufacturer’s instructions.

- **605.22.2 Solvent cementing.** Joint surfaces shall be clean and free from moisture. A primer that conforms to ASTM F 656 shall be applied. Solvent cement conforming to ASTM D 2564 or CSA-B137.3 shall be applied to all joint surfaces. The joint shall be made while the cement is wet and shall be in accordance with ASTM D 2855. Solvent-cement joints shall be permitted above or below ground.

- **605.22.3 Threaded joints.** Threads shall conform to ASME B1.20.1. Schedule 80 or heavier pipe shall be permitted to be threaded with dies specifically designed for plastic pipe, but the pressure rating of the pipe shall be reduced by 50 percent. Thread by socket molded fittings shall be permitted. Approved thread lubricant or tape shall be applied on the male threads only.

605.23 Stainless steel. Joints between stainless steel pipe and fittings shall comply with Sections 605.23.1 and 605.23.2.

- **605.23.1 Mechanical joints.** Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

- **605.23.2 Welded joints.** All joint surfaces shall be cleaned. The joint shall be welded autogenously or with an approved filler metal as referenced in ASTM A 312.

605.24 Joints between different materials. Joints between different piping materials shall be made with a mechanical joint of the compression or mechanical-sealing type, or as permitted in Sections 605.24.1, 605.24.2 and 605.24.3. Connectors or adapters shall have an elastomeric seal conforming to ASTM D 1869 or ASTM F 477. Joints shall be installed in accordance with the manufacturer’s instructions.

- **605.24.1 Copper or copper-alloy tubing to galvanized steel pipe.** Joints between copper or copper-alloy tubing and galvanized steel pipe shall be made with a brass fitting or dielectric fitting or a dielectric union conforming to ASSE...
1079. The copper tubing shall be soldered to the fitting in an approved manner, and the fitting shall be screwed to the threaded pipe.

605.24.2 Plastic pipe or tubing to other piping material.
Joints between different grades of plastic pipe or between plastic pipe and other piping material shall be made with an approved adapter fitting.

605.24.3 Stainless steel. Joints between stainless steel and different piping materials shall be made with a mechanical joint of the compression or mechanical sealing type or a dielectric fitting or a dielectric union conforming to ASSE 1079.

SECTION 606
INSTALLATION OF THE BUILDING WATER DISTRIBUTION SYSTEM

606.1 Location of full-open valves. Full-open valves shall be installed in the following locations:
1. On the building water service pipe from the public water supply near the curb.
2. On the water distribution supply pipe at the entrance into the structure.
3. On the discharge side of every water meter.
4. On the base of every water riser pipe.
5. On the top of every water down-feed pipe in occupancies other than one-, two-, and three-family residential occupancies.
6. On the entrance to every water supply pipe to a dwelling unit, except where supplying a single fixture equipped with individual stops.
7. On the water supply pipe to a gravity or pressurized water tank.
8. On the water supply pipe to every water heater.

606.2 Location of shutoff valves. Shutoff valves shall be installed in the following locations:
1. On the fixture supply to each plumbing fixture other than in individual sleeping units that are provided with unit shutoff valves in hotels, motels, boarding houses and similar occupancies.
2. On the water supply pipe to each sillcock.
3. On the water supply pipe to each appliance or mechanical equipment.

606.3 Access to valves. Access shall be provided to all full-open valves and shutoff valves.

606.4 Valve identification. Service and hose bibb valves shall be identified. All other valves installed in locations that are not adjacent to the fixture or appliance shall be identified, indicating the fixture or appliance served.
606.5 Water pressure booster systems. Water pressure booster systems shall be provided as required by Sections 606.5.1 through 606.5.10.

606.5.1 Water pressure booster systems required. Where the water pressure in the public water main or individual water supply system is insufficient to supply the minimum pressures and quantities specified in this code, the supply shall be supplemented by an elevated water tank, a hydropneumatic pressure booster system or a water pressure booster pump installed in accordance with Section 606.5.5.

606.5.2 Support. All water supply tanks shall be supported in accordance with the building code.

606.5.3 Covers. All water supply tanks shall be covered to keep out unauthorized persons, dirt and vermin. The covers of gravity tanks shall be vented with a return bend vent pipe with an area not less than the area of the down-feed riser pipe, and the vent shall be screened with a corrosion-resistant screen of not less than 16 by 20 mesh per inch (630 by 787 mesh per m).

606.5.4 Overflows for water supply tanks. Each gravity or suction water supply tank shall be provided with an overflow with a diameter not less than that shown in Table 606.5.4. The overflow outlet shall discharge at a point not less than 6 inches (152 mm) above the roof or roof drain; floor or floor drain; or over an open water-supplied fixture. The overflow outlet shall be covered with a corrosion-resistant screen of not less than 16 by 20 mesh per inch (630 by 787 mesh per m) and by 1/4-inch (6.4 mm) hardware cloth or shall terminate in a horizontal angle seat check valve. Drainage from overflow pipes shall be directed so as not to freeze on roof walks.

TABLE 606.5.4

SIZES FOR OVERFLOW PIPES FOR WATER SUPPLY TANKS

<table>
<thead>
<tr>
<th>MAXIMUM CAPACITY OF WATER SUPPLY LINE TO TANK (gpm)</th>
<th>DIAMETER OF OVERFLOW PIPE (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 50</td>
<td>2</td>
</tr>
<tr>
<td>51 - 150</td>
<td>2 1/2</td>
</tr>
<tr>
<td>151 - 200</td>
<td>3</td>
</tr>
<tr>
<td>201 - 400</td>
<td>4</td>
</tr>
<tr>
<td>401 - 700</td>
<td>5</td>
</tr>
<tr>
<td>701 - 1,000</td>
<td>6</td>
</tr>
<tr>
<td>Over 1,000</td>
<td>8</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 gallon per minute = 3.785 L/m.
606.5.5 Low-pressure cutoff required on booster pumps. In accordance with rule 3745-95-07 of the Administrative Code, a low-pressure cutoff or a low suction throttling valve shall be installed on all booster pumps in a water pressure booster system to prevent creation of a vacuum or negative pressure on the suction side of the pump when a positive pressure of 10 psi (68.94 kPa) or less occurs on the suction side of the pump while the pump is operating. Enforcement of the referenced rule is the responsibility of the “Ohio Environmental Protection Agency” or the local water purveyor.

606.5.6 Potable water inlet control and location. Potable water inlets to gravity tanks shall be controlled by a fill valve or other automatic supply valve installed so as to prevent the tank from overflowing. The inlet shall be terminated so as to provide an air gap not less than 4 inches (102 mm) above the overflow.

606.5.7 Tank drain pipes. A valved pipe shall be provided at the lowest point of each tank to permit emptying of the tank. The tank drain pipe shall discharge as required for overflow pipes and shall not be smaller in size than specified in Table 606.5.7.

<table>
<thead>
<tr>
<th>TANK CAPACITY (gallons)</th>
<th>DRAIN PIPE (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 750</td>
<td>1</td>
</tr>
<tr>
<td>751 to 1,500</td>
<td>1 ½</td>
</tr>
<tr>
<td>1,501 to 3,000</td>
<td>2</td>
</tr>
<tr>
<td>3,001 to 5,000</td>
<td>2 ½</td>
</tr>
<tr>
<td>5,000 to 7,500</td>
<td>3</td>
</tr>
<tr>
<td>Over 7,500</td>
<td>4</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 gallon = 3.785 L.

606.5.8 Prohibited location of potable supply tanks. Potable water gravity tanks or manholes of potable water pressure tanks shall not be located directly under any soil or waste piping or any source of contamination.

606.5.9 Pressure tanks, vacuum relief. All water pressure tanks shall be provided with a vacuum relief valve at the top of the tank that will operate up to a maximum water pressure of 200 psi (1380 kPa) and up to a maximum temperature of 200°F (93°C). The minimum size of such vacuum relief valve shall be ½ inch (12.7 mm).
Exception: This section shall not apply to pressurized captive air diaphragm/bladder tanks.

606.5.10 Pressure relief for tanks. Every pressure tank in a hydropneumatic pressure booster system shall be protected with a pressure relief valve. The pressure relief valve shall be set at a maximum pressure equal to the rating of the tank. The relief valve shall be installed on the supply pipe to the tank or on the tank. The relief valve shall discharge by gravity to a safe place of disposal.

606.6 Water supply system test. Upon completion of a section of or the entire water supply system, the system, or portion completed, shall be tested in accordance with Section 312.

SECTION 607
HOT WATER SUPPLY SYSTEM

607.1 Where required. In residential occupancies, hot water shall be supplied to all plumbing fixtures and equipment utilized for bathing, washing, culinary purposes, cleansing, laundry or building maintenance. In nonresidential occupancies, hot water shall be supplied for culinary purposes, cleansing, laundry or building maintenance purposes. In nonresidential occupancies, hot water or tempered water shall be supplied for bathing and washing purposes. Tempered water shall be delivered from public hand-washing facilities. Tempered water shall be supplied through a water temperature limiting device that conforms to ASSE 1070 and shall limit the tempered water to a maximum of 110°F (43°C). This provision shall not supersede the requirement for protective shower valves in accordance with Section 424.3.

607.2 Hot water supply temperature maintenance. Where the developed length of hot water piping from the source of hot water supply to the farthest fixture exceeds 100 feet (30 480 mm), the hot water supply system shall be provided with a method of maintaining the temperature in accordance with the applicable standard referenced in Chapter 13 of the building code or Chapter 11 of the “Residential Code of Ohio”.

607.2.1 Piping insulation. Circulating hot water system piping shall be insulated in accordance with the applicable standard referenced in Chapter 13 of the building code or Chapter 11 of the “Residential Code of Ohio”.

607.2.2 Hot water system controls. Automatic circulating hot water system pumps or heat trace shall be arranged to be conveniently turned off, automatically or manually, when the hot water system is not in operation.

607.2.3 Recirculating pump. Where a thermostatic mixing valve is used in a system with a hot water recirculating pump, the hot water or tempered water return line shall be routed to the cold water inlet pipe of the water heater and
the cold water inlet pipe or the hot water return connection of the thermostatic mixing valve.

607.3 **Thermal expansion control.** A means of controlling increased pressure caused by thermal expansion shall be provided where required in accordance with Sections 607.3.1 and 607.3.2.

607.3.1 **Pressure-reducing valve.** For water service system sizes up to and including 2 inches (51 mm), a device for controlling pressure shall be installed where, because of thermal expansion, the pressure on the downstream side of a pressure-reducing valve exceeds the pressure-reducing valve setting.

607.3.2 **Backflow prevention device or check valve.** Where a backflow prevention device, check valve or other device is installed on a water supply system utilizing storage water heating equipment such that thermal expansion causes an increase in pressure, a device for controlling pressure shall be installed.

607.4 **Flow of hot water to fixtures.** Fixture fittings, faucets and diverters shall be installed and adjusted so that the flow of hot water from the fittings corresponds to the left-hand side of the fixture fitting.

Exception: Shower and tub/shower mixing valves conforming to ASSE 1016 or ASME A112.18.1/CSA B125.1, where the flow of hot water corresponds to the markings on the device.

SECTION 608

PROTECTION OF POTABLE WATER SUPPLY

608.1 **General.** A potable water supply system shall be designed, installed and maintained in such a manner so as to prevent contamination from nonpotable liquids, solids or gases being introduced into the potable water supply through cross-connections or any other piping connections to the system. Backflow preventer applications shall conform to Table 608.1, except as specifically stated in Sections 608.2 through 608.16.10.

608.2 **Plumbing fixtures.** The supply lines and fittings for every plumbing fixture shall be installed so as to prevent backflow. Plumbing fixture fittings shall provide backflow protection in accordance with ASME A112.18.1.

608.3 **Devices, appurtenances, appliances and apparatus.** All devices, appurtenances, appliances and apparatus intended to serve some special function, such as sterilization, distillation, processing, cooling, or storage of ice or foods, and that connect to the water supply system, shall be provided with protection against backflow and contamination of the water supply system. Water pumps, water-powered sump pumps, filters, softeners, tanks and all other appliances and devices that handle or treat potable water shall be protected against contamination.
608.3.1 Special equipment, water supply protection. The water supply for hospital fixtures shall be protected against backflow with a reduced pressure principle backflow preventer, an atmospheric or spill-proof vacuum breaker, or an air gap. Vacuum breakers for bedpan washer hoses shall not be located less than 5 feet (1524 mm) above the floor. Vacuum breakers for hose connections in health care or laboratory areas shall not be less than 6 feet (1829 mm) above the floor.

608.4 Water service piping. Water service piping shall be protected in accordance with Sections 603.2 and 603.2.1.

608.5 Chemicals and other substances. Chemicals and other substances that produce either toxic conditions, taste, odor or discoloration in a potable water system shall not be introduced into, or utilized in, such systems.

608.6 Cross-connection control. Cross connections shall be prohibited, except where approved protective devices are installed.

608.6.1 Private water supplies. Cross connections between a private water supply and a potable public supply shall be prohibited.

608.7 Valves and outlets prohibited below grade. Potable water outlets and combination stop-and-waste valves shall not be installed underground or below grade. Freeze proof yard hydrants that drain the riser into the ground are considered to be stop-and-waste valves.

Exception: Freeze proof yard hydrants that drain the riser into the ground shall be permitted to be installed, provided that the potable water supply to such hydrants is protected upstream of the hydrants in accordance with Section 608 and the hydrants are permanently identified as nonpotable outlets by approved signage that reads as follows: “Nonpotable-not safe for drinking.”

608.8 Identification of nonpotable water. In buildings where nonpotable water systems are installed, the piping conveying the nonpotable water shall be identified either by color marking or metal tags in accordance with Sections 608.8.1 through 608.8.3. All nonpotable water outlets such as hose connections, open ended pipes, and faucets shall be identified at the point of use for each outlet with the words, “Nonpotable-not safe for drinking.” The words shall be indelibly printed on a tag or sign constructed of corrosion-resistant waterproof material or shall be indelibly printed on the fixture. The letters of the words shall be not less than 0.5 inches in height and color in contrast to the background on which they are applied.

608.8.1 Information. Pipe identification shall include the contents of the piping system and an arrow indicating the direction of flow. Hazardous piping systems shall also contain information addressing the nature of the hazard. Pipe identification shall be repeated at maximum intervals of 25 feet (7620 mm) and at each point where the piping passes through a wall, floor or roof.
Lettering shall be readily observable within the room or space where the piping is located.

608.8.2 Color. The color of the pipe identification shall be discernable and consistent throughout the building. The color purple shall be used to identify reclaimed, rain and gray water distribution systems.

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>DEGREE OF HAZARD</th>
<th>APPLICATION</th>
<th>APPLICABLE STANDARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air gap</td>
<td>High or low hazard</td>
<td>Backsiphonage or backpressure</td>
<td>ASME A112.1.2</td>
</tr>
<tr>
<td>Air gap fittings for use with plumbing fixtures, appliances and appurtenances</td>
<td>High or low hazard</td>
<td>Backsiphonage or backpressure</td>
<td>ASME A112.1.3</td>
</tr>
<tr>
<td>Antisiphon-type fill valves for gravity water closet flush tanks</td>
<td>High hazard</td>
<td>Backsiphonage only</td>
<td>ASSE 1002, CSA B125.3</td>
</tr>
<tr>
<td>Backflow preventer for carbonated beverage machines</td>
<td>Low hazard</td>
<td>Backpressure or backsiphonage Sizes ¼" - 3/8"</td>
<td>ASSE 1022</td>
</tr>
<tr>
<td>Backflow preventer with intermediate atmospheric vents</td>
<td>Low hazard</td>
<td>Backpressure or backsiphonage Sizes ¼" - 3/4"</td>
<td>ASSE 1012, CAN/CSA B64.3</td>
</tr>
<tr>
<td>Barometric loop</td>
<td>High or low hazard</td>
<td>Backsiphonage only</td>
<td>(See Section 608.13.4)</td>
</tr>
<tr>
<td>Double check backflow prevention assembly and double check fire protection backflow prevention assembly</td>
<td>Low hazard</td>
<td>Backpressure or backsiphonage Sizes 3/8" – 16"</td>
<td>ASSE 1015, AWWA C510, CSA B64.5, CSA B64.5.1</td>
</tr>
<tr>
<td>Double check detector fire protection backflow prevention assemblies</td>
<td>Low hazard</td>
<td>Backpressure or backsiphonage (Fire sprinkler systems) Sizes 2" – 16"</td>
<td>ASSE 1048</td>
</tr>
<tr>
<td>Dual-check-valve-type backflow preventer</td>
<td>Low hazard</td>
<td>Backpressure or backsiphonage Sizes ¼" – 1"</td>
<td>ASSE 1024, CSA B64.6</td>
</tr>
<tr>
<td>Hose connection backflow preventer</td>
<td>High or low hazard</td>
<td>Low head backpressure, rated working pressure, backpressure or backsiphonage Sizes ½" – 1"</td>
<td>ASSE 1052, CSA B64.2.1.1</td>
</tr>
<tr>
<td>Hose connection vacuum breaker</td>
<td>High or low hazard</td>
<td>Low head backpressure or backsiphonage Sizes ½" , ¾" , 1"</td>
<td>ASSE 1011, CAN/CSA B64.2, CSA B64.2.1</td>
</tr>
<tr>
<td>Laboratory faucet backflow preventer</td>
<td>High or low hazard</td>
<td>Low head backpressure and backsiphonage</td>
<td>ASSE 1035, CSA B64.7</td>
</tr>
<tr>
<td>Pipe-applied atmospheric-type vacuum breaker</td>
<td>High or low hazard</td>
<td>Backsiphonage only Sizes ¼" – 4"</td>
<td>ASSE 1001, CAN/CSA B64.1.1</td>
</tr>
</tbody>
</table>
Pressure vacuum breaker assembly | High or low hazard | Backsiphonage only Sizes \(\frac{1}{2}'' - 2'' \) | ASSE 1020, CSA B64.1.2
---|---|---|---
Reduced pressure principle backflow preventer and reduced pressure principle fire protection backflow preventer | High or low hazard | Backpressure or backsiphonage Sizes 3/8" - 16" | ASSE 1013, AWWA C511, CAN/CSA B64.4, CSA B64.4.1
Reduced pressure detector fire protection backflow prevention assemblies | High or low hazard | Backsiphonage or backpressure (Fire sprinkler systems) | ASSE 1047
Spillproof vacuum breaker | High or low hazard | Backsiphonage only Sizes \(\frac{1}{4}'' - 2'' \) | ASSE 1056
Vacuum breaker wall hydrants, frost-resistant, automatic draining type | High or low hazard | Low head backpressure or backsiphonage Sizes \(\frac{3}{4}'' - 1'' \) | ASSE 1019, CAN/CSA B64.2.2

For SI: 1 inch = 25.4 mm.
a. Low hazard–See Pollution (Section 202).
 High hazard–See Contamination (Section 202).
b. See Backpressure (Section 202).
 See Backsiphonage (Section 202).

608.8.3 Size. The size of the background color field and lettering shall comply with Table 608.8.3.

<table>
<thead>
<tr>
<th>PIPE DIAMETER (inches)</th>
<th>LENGTH BACKGROUND COLOR FIELD (inches)</th>
<th>SIZE OF LETTERS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾ to 1 ¼</td>
<td>8</td>
<td>0.5</td>
</tr>
<tr>
<td>1 ½ to 2</td>
<td>8</td>
<td>0.75</td>
</tr>
<tr>
<td>2 ½ to 6</td>
<td>12</td>
<td>1.25</td>
</tr>
<tr>
<td>8 to 10</td>
<td>24</td>
<td>2.5</td>
</tr>
<tr>
<td>over 10</td>
<td>32</td>
<td>3.5</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

608.9 Reutilization prohibited. Water utilized for the cooling of equipment or other processes shall not be returned to the potable water system. Such water shall be discharged into a drainage system through an air gap or shall be utilized for non-potable purposes.
608.10 Reuse of piping. Piping that has been utilized for any purpose other than conveying potable water shall not be utilized for conveying potable water.

608.11 Painting of water tanks. The interior surface of a potable water tank shall not be lined, painted or repaired with any material that changes the taste, odor, color or potability of the water supply when the tank is placed in, or returned to, service.

608.12 Pumps and other appliances. Water pumps, water-powered sump pumps, filters, softeners, tanks and all other devices that handle or treat potable water shall be protected against contamination.

608.13 Backflow protection. Means of protection against backflow shall be provided in accordance with Sections 608.13.1 through 608.13.9.

608.13.1 Air gap. The minimum required air gap shall be measured vertically from the lowest end of a potable water outlet to the flood level rim of the fixture or receptacle into which such potable water outlet discharges. Air gaps shall comply with ASME A112.1.2 and air gap fittings shall comply with ASME A112.1.3.

608.13.2 Reduced pressure principle backflow preventers. Reduced pressure principle backflow preventers shall conform to ASSE 1013, AWWA C511, CAN/CSA B64.4 or CSA B64.4.1. Reduced pressure detector assembly backflow preventers shall conform to ASSE 1047. These devices shall be permitted to be installed where subject to continuous pressure conditions. The relief opening shall discharge by air gap and shall be prevented from being submerged.

608.13.3 Backflow preventer with intermediate atmospheric vent. Backflow preventers with intermediate atmospheric vents shall conform to ASSE 1012 or CAN/CSA B64.3. These devices shall be permitted to be installed where subject to continuous pressure conditions. The relief opening shall discharge by air gap and shall be prevented from being submerged.

608.13.4 Barometric loop. Barometric loops shall precede the point of connection and shall extend vertically to a height of 35 feet (10 668 mm). A barometric loop shall only be utilized as an atmospheric-type or pressure-type vacuum breaker.

608.13.5 Pressure-type vacuum breakers. Pressure-type vacuum breakers shall conform to ASSE 1020 or CSA B64.1.2 and spillproof vacuum breakers shall comply with ASSE 1056. These devices are designed for installation under continuous pressure conditions when the critical level is installed at the required height. Pressure-type vacuum breakers shall not be installed in locations where spillage could cause damage to the structure.

608.13.6 Atmospheric-type vacuum breakers. Pipe-applied atmospheric-type vacuum breakers shall conform to ASSE 1001 or CAN/CSA B64.1.1. Hose-connection vacuum breakers shall conform to ASSE 1011, ASSE 1019,
ASSE 1035, ASSE 1052, CAN/CSA B64.2, CSA B64.2.1, CSA B64.2.1.1, CAN/CSA B64.2.2 or CSA B64.7. These devices shall operate under normal atmospheric pressure when the critical level is installed at the required height.

608.13.7 Double check-valve assemblies. Double check-valve assemblies shall conform to ASSE 1015, CSA B64.5, CSA B64.5.1 or AWWA C510. Double-detector check-valve assemblies shall conform to ASSE 1048. These devices shall be capable of operating under continuous pressure conditions.

608.13.8 Spillproof vacuum breakers. Spillproof vacuum breakers (S VB) shall conform to ASSE 1056. These devices are designed for installation under continuous-pressure conditions when the critical level is installed at the required height.

608.13.9 Chemical dispenser backflow devices. Back-flow devices for chemical dispensers shall comply with ASSE 1055 or shall be equipped with an air gap fitting.

608.14 Location of backflow preventers. Access shall be provided to backflow preventers as specified by the installation instructions of the approved manufacturer.

608.14.2 Protection of backflow preventers. Backflow preventers shall not be located in areas subject to freezing except where they can be removed by means of unions or are protected from freezing by heat, insulation or both.

608.14.2.1 Relief port piping. The termination of the piping from the relief port or air gap fitting of a backflow preventer shall discharge to an approved indirect waste receptor or to the outdoors where it will not cause damage or create a nuisance.

608.15 Protection of potable water outlets. All potable water openings and outlets shall be protected against backflow in accordance with Section 608.15.1, 608.15.2, 608.15.3, 608.15.4, 608.15.4.1 or 608.15.4.2.

608.15.1 Protection by air gap. Openings and outlets shall be protected by an air gap between the opening and the fixture flood level rim as specified in Table 608.15.1. Openings and outlets equipped for hose connection shall be protected by means other than an air gap.

608.15.2 Protection by a reduced pressure principle backflow preventer. Openings and outlets shall be protected by a reduced pressure principle backflow preventer.

608.15.3 Protection by a backflow preventer with intermediate atmospheric vent. Openings and outlets shall be protected by a backflow preventer with an intermediate atmospheric vent.
608.15.4 Protection by a vacuum breaker. Openings and outlets shall be protected by atmospheric-type or pressure-type vacuum breakers. The critical level of the vacuum breaker shall be set a minimum of 6 inches (152 mm) above the flood level rim of the fixture or device. Fill valves shall be set in accordance with Section 425.3.1. Vacuum breakers shall not be installed under exhaust hoods or similar locations that will contain toxic fumes or vapors. Pipe-applied vacuum breakers shall be installed not less than 6 inches (152 mm) above the flood level rim of the fixture, receptor or device served.

608.15.4.1 Deck-mounted and integral vacuum breakers. Approved deck-mounted or equipment-mounted vacuum breakers and faucets with integral atmospheric or spillproof vacuum breakers shall be installed in accordance with the manufacturer’s instructions and the requirements for labeling with the critical level not less than 1 inch (25 mm) above the flood level rim.

608.15.4.2 Hose connections. Sillcocks, hose bibs, wall hydrants and other openings with a hose connection shall be protected by an atmospheric-type or pressure-type vacuum breaker or a permanently attached hose connection vacuum breaker.

Exceptions:

1. This section shall not apply to water heater and boiler drain valves that are provided with hose connection threads and that are intended only for tank or vessel draining.
2. This section shall not apply to water supply valves intended for connection of clothes washing machines where backflow prevention is otherwise provided or is integral with the machine.

608.16 Connections to the potable water system. Connections to the potable water system shall conform to Sections 608.16.1 through 608.16.10.

608.16.1 Beverage dispensers. The water supply connection to beverage dispensers shall be protected against backflow by a backflow preventer conforming to ASSE 1022 or by an air gap. The portion of the backflow preventer device downstream from the second check valve and the piping downstream thereof shall not be affected by carbon dioxide gas.

608.16.2 Connections to boilers. The potable supply to the boiler shall be equipped with a backflow preventer with an intermediate atmospheric vent complying with ASSE 1012 or CAN/CSA B64.3. Where conditioning chemicals are introduced into the system, the potable water connection shall be protected by an air gap or a reduced pressure principle backflow preventer, complying with ASSE 1013, CAN/CSA B64.4 or AWWA C511.

608.16.3 Heat exchangers. Heat exchangers utilizing an essentially toxic transfer fluid shall be separated from the potable water by double-wall...
construction. An air gap open to the atmosphere shall be provided between the two walls. Heat exchangers utilizing an essentially nontoxic transfer fluid shall be permitted to be of single-wall construction.

TABLE 608.15.1
MINIMUM REQUIRED AIR GAPS

<table>
<thead>
<tr>
<th>FIXTURE</th>
<th>MINIMUM AIR GAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Away from a wall</td>
</tr>
<tr>
<td></td>
<td>(inches)</td>
</tr>
<tr>
<td>Lavatories and other fixtures with effective opening not greater than 1/2 inch in diameter</td>
<td>1</td>
</tr>
<tr>
<td>Sink, laundry trays, gooseneck back faucets and other fixtures with effective openings not greater than 3/4 inch in diameter</td>
<td>1 ½</td>
</tr>
<tr>
<td>Over-rim bath fillers and other fixtures with effective openings not greater than 1 inch in diameter</td>
<td>2</td>
</tr>
<tr>
<td>Drinking water fountains, single orifice not greater than 7/16 inch in diameter or multiple orifices with a total area of 0.150 square inch (area of circle 7/16 inch in diameter)</td>
<td>1</td>
</tr>
<tr>
<td>Effective openings greater than 1 inch</td>
<td>Two times the diameter of the effective opening</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
A. Applicable where walls or obstructions are spaced from the nearest inside-edge of the spout opening a distance greater than three times the diameter of the effective opening for a single wall, or a distance greater than four times the diameter of the effective opening for two intersecting walls.

608.16.4 Connections to automatic fire sprinkler systems and standpipe systems. The potable water supply to automatic fire sprinkler and standpipe systems shall be protected against backflow by a double check-valve assembly or a reduced pressure principle backflow preventer.

Exceptions:
1. Where systems are installed as a portion of the water distribution system in accordance with the requirements of this code and are not provided with a fire department connection, isolation of the water supply system shall not be required.
2. Isolation of the water distribution system is not required for deluge, preaction or dry pipe systems.

608.16.4.1 Additives or nonpotable source. Where systems under continuous pressure contain chemical additives or antifreeze, or where systems are connected to a nonpotable secondary water supply, the potable water supply shall be protected against backflow by a reduced pressure principle backflow preventer. Where chemical additives or antifreeze are
added to only a portion of an automatic fire sprinkler or standpipe system, the reduced pressure principle backflow preventer shall be permitted to be located so as to isolate that portion of the system. Where systems are not under continuous pressure, the potable water supply shall be protected against backflow by an air gap or a pipe applied atmospheric vacuum breaker conforming to ASSE 1001 or CAN/CSA B64.1.1.

608.16.5 Connections to lawn irrigation systems. The potable water supply to lawn irrigation systems shall be protected against backflow by an atmospheric-type vacuum breaker, a pressure-type vacuum breaker or a reduced pressure principle backflow preventer. A valve shall not be installed downstream from an atmospheric vacuum breaker. Where chemicals are introduced into the system, the potable water supply shall be protected against backflow by a reduced pressure principle backflow preventer.

608.16.6 Connections subject to backpressure. Where a potable water connection is made to a nonpotable line, fixture, tank, vat, pump or other equipment subject to backpressure, the potable water connection shall be protected by a reduced pressure principle backflow preventer.

608.16.7 Chemical dispensers. Where chemical dispensers connect to the potable water distribution system, the water supply system shall be protected against backflow in accordance with Section 608.13.1, 608.13.2, 608.13.5, 608.13.6, 608.13.8 or 608.13.9.

608.16.8 Portable cleaning equipment. Where the portable cleaning equipment connects to the water distribution system, the water supply system shall be protected against backflow in accordance with Section 608.13.1, 608.13.2, 608.13.3, 608.13.7 or 608.13.8.

608.16.9 Dental pump equipment. Where dental pumping equipment connects to the water distribution system, the water supply system shall be protected against backflow in accordance with Section 608.13.1, 608.13.2, 608.13.5, 608.13.6 or 608.13.8.

608.16.10 Coffee machines and noncarbonated beverage dispensers. The water supply connection to coffee machines and noncarbonated beverage dispensers shall be protected against backflow by a backflow preventer conforming to ASSE 1022 or by an air gap.

608.17 Protection of individual water supplies. An individual water supply, otherwise known as a private water system, shall be located and constructed so as to be safeguarded against contamination in accordance with the rules of the “Ohio Department of Health” contained within Chapter 3701-28 of the Administrative Code, “Private Water Systems.”.

608.17.1 Well locations. Deleted.
Table 608.17. Deleted.

608.17.2 Elevation. Deleted.

608.17.3 Depth. Deleted.

608.17.4 Water-tight casings. Deleted.

608.17.5 Drilled or driven well casings. Deleted.

608.17.6 Dug or bored well casings. Deleted.

608.17.7 Cover. Deleted.

608.17.8 Drainage. Deleted.

SECTION 609
HEALTH CARE PLUMBING

609.1 Scope. This section shall govern those aspects of health care plumbing systems that differ from plumbing systems in other structures. Health care plumbing systems shall conform to the requirements of this section in addition to the other requirements of this code. The provisions of this section shall apply to the special devices and equipment installed and maintained in the following occupancies: nursing homes, homes for the aged, orphanages, infirmaries, first aid stations, psychiatric facilities, clinics, professional offices of dentists and doctors, mortuaries, educational facilities, surgery, dentistry, research and testing laboratories, establishments manufacturing pharmaceutical drugs and medicines, and other structures with similar apparatus and equipment classified as plumbing.

609.2 Water service. All hospitals shall have two water service pipes installed in such a manner so as to minimize the potential for an interruption of the supply of water in the event of a water main or water service pipe failure.

609.3 Hot water. Hot water shall be provided to supply all of the hospital fixture, kitchen and laundry requirements. Special fixtures and equipment shall have hot water supplied at a temperature specified by the manufacturer. The hot water system shall be installed in accordance with Section 607.

609.4 Vacuum breaker installation. Vacuum breakers shall be installed a minimum of 6 inches (152 mm) above the flood level rim of the fixture or device in accordance with Section 607.

609.5 Prohibited water closet and clinical sink supply. Jet-or water-supplied orifices, except those supplied by the flush connections, shall not be located in or connected with a water closet bowl or clinical sink. This section shall not prohibit an approved bidet installation.

609.6 Clinical, hydrotherapeutic and radiological equipment. All clinical, hydrotherapeutic, radiological or any equipment that is supplied with water or that
discharges to the waste system shall conform to the requirements of this section and Section 608.

609.7 Condensate drain trap seal. A water supply shall be provided for cleaning, flushing and rescaling the condensate trap, and the trap shall discharge through an air gap in accordance with Section 608.

609.8 Valve leakage diverter. Each water sterilizer filled with water through directly connected piping shall be equipped with an approved leakage diverter or bleed line on the water supply control valve to indicate and conduct any leakage of unsterile water away from the sterile zone.

SECTION 610
DISINFECTION OF POTABLE WATER SYSTEM

610.1 General. New or repaired potable water systems shall be purged of deleterious matter and disinfected prior to utilization. The method to be followed shall be that prescribed by the health authority or water purveyor having jurisdiction or, in the absence of a prescribed method, the procedure described in either AWWA C651 or AWWA C652, or as described in this section. This requirement shall apply to “on-site” or “in-plant” fabrication of a system or to a modular portion of a system.

1. The pipe system shall be flushed with clean, potable water until dirty water does not appear at the points of outlet.
2. The system or part thereof shall be filled with a water/chlorine solution containing at least 50 parts per million (50 mg/L) of chlorine, and the system or part thereof shall be valved off and allowed to stand for 24 hours; or the system or part thereof shall be filled with a water/chlorine solution containing at least 200 parts per million (200 mg/L) of chlorine and allowed to stand for 3 hours.
3. Following the required standing time, the system shall be flushed with clean potable water until the chlorine is purged from the system.
4. The procedure shall be repeated where shown by a bacteriological examination that contamination remains present in the system.

SECTION 611
DRINKING WATER TREATMENT UNITS

611.1 Design. Drinking water treatment units shall meet the requirements of NSF 42, NSF 44, NSF 53 or NSF 62.

611.2 Reverse osmosis systems. The discharge from a reverse osmosis drinking water treatment unit shall enter the drainage system through an air gap or an air gap device that meets the requirements of NSF 58.
611.3 **Connection tubing.** The tubing to and from drinking water treatment units shall be of a size and material as recommended by the manufacturer. The tubing shall comply with NSF 14, NSF 42, NSF 44, NSF 53, NSF 58 or NSF 61.

SECTION 612
SOLAR SYSTEMS

612.1 **Solar systems.** The construction, installation, alterations and repair of systems, equipment and appliances intended to utilize solar energy for space heating or cooling, domestic hot water heating, swimming pool heating or process heating shall be in accordance with the *mechanical code*.

SECTION 613
TEMPERATURE CONTROL DEVICES AND VALVES

613.1 **Temperature-actuated mixing valves.** Temperature-actuated mixing valves, which are installed to reduce water temperatures to defined limits, shall comply with ASSE 1017.
4101:3-7-01 Sanitary drainage.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 701
GENERAL

701.1 Scope. The provisions of this chapter shall govern the materials, design, construction and installation of sanitary drainage systems. In accordance with section 3781.03 of the Revised Code, the department of the city engineer, in cities having such departments, the boards of health districts, or the sewer purveyor, as appropriate, shall have complete supervision and regulation of the entire sewerage and drainage system of the jurisdiction, including the building sewer and all laterals draining into the street sewers.

Exception: Private sewage disposal systems within the scope of the “Ohio Department of Health” rules contained within Chapter 3701-29 of the Administrative Code, “Household Sewage Disposal Systems”.

701.2 Sewer required. Except where permitted by the “Ohio Environmental Protection Agency”, every building in which plumbing fixtures are installed and all premises having drainage piping shall be connected to a public sewer, where available, or an approved private sewage disposal system.

701.3 Separate sewer connection. Except where permitted by the “Ohio Environmental Protection Agency”, every building having plumbing fixtures installed and intended for human habitation, occupancy or use on premises abutting on a street, alley or easement in which there is a public sewer shall have a separate connection with the sewer. Where located on the same lot, multiple buildings shall not be prohibited from connecting to a common building sewer that connects to the public sewer.

701.4 Sewage treatment. Sewage or other waste from a plumbing system that is deleterious to surface or subsurface waters shall not be discharged into the ground or into any waterway without prior approval from the “Ohio Environmental Protection Agency” for the form of treatment and for the location of discharge.

701.5 Damage to drainage system or public sewer. Wastes Except where permitted by the “Ohio Environmental Protection Agency”, wastes detrimental to the public sewer system or to the functioning of the sewage-treatment plant shall be treated and disposed of in accordance with requirements of the local sewer purveyor.
701.6 Tests. The sanitary drainage system shall be tested in accordance with Section 312.

701.7 Connections. Direct connection of a steam exhaust, blowoff or drip pipe shall not be made with the building drainage system. Wastewater when discharged into the building drainage system shall be at a temperature not higher than 140°F (60°C). When higher temperatures exist, approved cooling methods shall be provided.

701.8 Engineered systems. Engineered sanitary drainage systems shall conform to the provisions of Sections 106.5 of the building code and 714.

701.9 Drainage piping in food service areas. Exposed soil or waste piping shall not be installed above any areas used for food preparation or storage, or above storage or eating surfaces in food service establishments.

SECTION 702
MATERIALS

702.1 Above-ground sanitary drainage and vent pipe. Above-ground soil, waste and vent pipe shall conform to one of the standards listed in Table 702.1.

702.2 Underground building sanitary drainage and vent pipe. Underground building sanitary drainage and vent pipe shall conform to one of the standards listed in Table 702.2.

TABLE 702.1
ABOVE-GROUND DRAINAGE AND VENT PIPE

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylonitrile butadiene styrene (ABS) plastic pipe in IPS diameters, including Schedule 40, DR 22 (PS 200) and DR 24 (PS 140); with a solid, cellular core or composite wall</td>
<td>ASTM D 2661; ASTM F 628; ASTM F 1488; CSA B181.1</td>
</tr>
<tr>
<td>Brass pipe</td>
<td>ASTM B 43</td>
</tr>
<tr>
<td>Cast-iron pipe</td>
<td>ASTM A 74; ASTM A 888; CISPI 301</td>
</tr>
<tr>
<td>Copper or copper-alloy pipe</td>
<td>ASTM B 42; ASTM B 302</td>
</tr>
<tr>
<td>Copper or copper-alloy tubing, (Type K, L, M or DWV)</td>
<td>ASTM B 75; ASTM B 88; ASTM B 251; ASTM B 306</td>
</tr>
<tr>
<td>Galvanized steel pipe</td>
<td>ASTM A 53</td>
</tr>
<tr>
<td>Glass pipe</td>
<td>ASTM C 1053</td>
</tr>
<tr>
<td>Polyolefin pipe</td>
<td>ASTM F 1412; CAN/CSA B181.3</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC) plastic pipe in IPS diameters, including schedule 40, DR 22 (PS 200), and DR 24 (PS</td>
<td>ASTM D 2665; ASTM F 891; ASTM F 1488; CSA B181.2</td>
</tr>
</tbody>
</table>
140); with a solid, cellular core or composite wall

<table>
<thead>
<tr>
<th>Material</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyvinyl chloride (PVC) plastic pipe with a 3.25-inch O.D. and a solid, cellular core or composite wall</td>
<td>ASTM D 2949; ASTM F 1488</td>
</tr>
<tr>
<td>Polyvinylidene fluoride (PVDF) plastic pipe</td>
<td>ASTM F 1673; CAN/CSA B181.3</td>
</tr>
<tr>
<td>Stainless steel drainage systems, Types 304 and 316L</td>
<td>ASME A112.3.1</td>
</tr>
</tbody>
</table>

702.3 Building sewer pipe. *Deleted.*

702.4 Fittings. Pipe fittings shall be approved for installation with the piping material installed and shall comply with the applicable standards listed in Table 702.4.

702.5 Chemical waste system. A chemical waste system shall be completely separated from the sanitary drainage system. The chemical waste shall be treated in accordance with Section 803.2 before discharging to the sanitary drainage system. Separate drainage systems for chemical wastes and vent pipes shall be of an approved material that is resistant to corrosion and degradation for the concentrations of chemicals involved.

702.6 Lead bends and traps. Lead bends and traps shall not be less than 1/8 inch (3.2 mm) wall thickness.

TABLE 702.2

<table>
<thead>
<tr>
<th>UNDERGROUND BUILDING DRAINAGE AND VENT PIPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIAL</td>
</tr>
<tr>
<td>Acrylonitrile butadiene styrene (ABS) plastic pipe</td>
</tr>
<tr>
<td>Asbestos-cement pipe</td>
</tr>
<tr>
<td>Cast-iron pipe</td>
</tr>
<tr>
<td>Copper or copper-alloy tubing (Type K, L, M or DWV)</td>
</tr>
<tr>
<td>Polyolefin pipe</td>
</tr>
</tbody>
</table>
Polyvinyl chloride (PVC) plastic pipe in IPS diameters, including schedule 40, DR 22 (PS 200) and DR 24 (PS 140); with a solid, cellular core, or composite wall = ASTM D 2665; ASTM F 891; ASTM F 1488; CSA B181.2

Polyvinyl chloride (PVC) plastic pipe with a 3.25-inch O.D. and a solid, cellular core, or composite wall = ASTM F 1488

Polyvinylidene fluoride (PVDF) plastic pipe = ASTM F 1673; CAN/CSA B181.3

Stainless steel drainage systems, Type 316L = ASME A 112.3.1

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylonitrile butadiene styrene (ABS) plastic pipe in IPS diameters</td>
<td>ASTM D 2661; ASTM F 628; CSA B181.1</td>
</tr>
<tr>
<td>Acrylonitrile butadiene styrene (ABS) plastic pipe in sewer and drain diameters</td>
<td>ASTM D 2751</td>
</tr>
<tr>
<td>Asbestos cement</td>
<td>ASTM C 428</td>
</tr>
<tr>
<td>Cast iron</td>
<td>ASME B 16.4; ASME B 16.12; ASTM A 74; ASTM A 888; CISPI 301</td>
</tr>
<tr>
<td>Copper or copper alloy</td>
<td>ASME B 16.15; ASME B 16.18; ASME B 16.22; ASME B 16.23; ASME B 16.26; ASME B 16.29</td>
</tr>
<tr>
<td>Glass</td>
<td>ASTM C 1053</td>
</tr>
<tr>
<td>Gray iron and ductile iron</td>
<td>AWWA C 110</td>
</tr>
<tr>
<td>Malleable iron</td>
<td>ASME B 16.3</td>
</tr>
</tbody>
</table>

TABLE 702.3 BUILDING SEWER PIPE Deleted.
<table>
<thead>
<tr>
<th>Material</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyolefin</td>
<td>ASTM F 1412; CAN/CSA B181.3</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC) plastic in IPS diameters</td>
<td>ASTM D 2665; ASTM F 1866</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC) plastic pipe in sewer and drain diameters</td>
<td>ASTM D 3034</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC) plastic pipe with a 3.25 inch O.D.</td>
<td>ASTM D 2949</td>
</tr>
<tr>
<td>Polyvinylidene fluoride (PVDF) plastic pipe</td>
<td>ASTM F 1673; CAN/CSA B181.3</td>
</tr>
<tr>
<td>Stainless steel drainage systems, Types 304 and 316L</td>
<td>ASME A 112.3.1</td>
</tr>
<tr>
<td>Steel</td>
<td>ASME B 16.9; ASME B 16.11; ASME B 16.28</td>
</tr>
<tr>
<td>Vitrified clay</td>
<td>ASTM C 700</td>
</tr>
</tbody>
</table>

SECTION 703
BUILDING SEWER

703.1 Building sewer pipe near the water service. Where the building sewer is installed within 10 feet (3048 mm) of the water service, the installation shall comply with the provisions of Section 603.2.

703.2 Drainage pipe in filled ground. Where a building sewer of building drain is installed on filled or unstable ground, the drainage pipe shall conform to one of the standards for ABS plastic pipe, cast-iron pipe, copper or copper-alloy tubing, or PVC plastic pipe listed in Table 702.3.

703.3 Sanitary and storm sewers. Where separate systems of sanitary drainage and storm drainage are installed in the same property, the sanitary and storm building sewers or drains shall be permitted to be laid side by side in one trench.

703.4 Existing building sewers and drains. Existing building sewers and drains shall connect with new building sewer and drainage systems only where found by examination and test to conform to the new system in quality of material. The code official shall notify the owner to make the changes necessary to conform to this code.

703.5 Cleanouts on building sewers. Cleanouts on building sewers shall be located as set forth in Section 708.

SECTION 704
DRAINAGE PIPING INSTALLATION

704.1 Slope of horizontal drainage piping. Horizontal drainage piping shall be installed in uniform alignment at uniform slopes. The minimum slope of a horizontal drainage pipe shall be in accordance with Table 704.1.
TABLE 704.1
SLOPE OF HORIZONTAL DRAINAGE PIPE

<table>
<thead>
<tr>
<th>SIZE (inches)</th>
<th>MINIMUM SLOPE (inch per foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ½ or less</td>
<td>1/4</td>
</tr>
<tr>
<td>3 to 6</td>
<td>1/8</td>
</tr>
<tr>
<td>8 or larger</td>
<td>1/16</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 inch per foot = 83.3 mm/m.

704.2 Change in size. The size of the drainage piping shall not be reduced in size in the direction of the flow. A 4-inch by 3-inch (102 mm by 76 mm) water closet connection shall not be considered as a reduction in size.

704.3 Connections to offsets and bases of stacks. Horizontal branches shall connect to the bases of stacks at a point located not less than 10 times the diameter of the drainage stack downstream from the stack. Except as prohibited by Section 711.2, horizontal branches shall connect to horizontal stack offsets at a point located not less than 10 times the diameter of the drainage stack downstream from the upper stack.

704.4 Future fixtures. Drainage piping for future fixtures shall terminate with an approved cap or plug.

SECTION 705
JOINTS

705.1 General. This section contains provisions applicable to joints specific to sanitary drainage piping.

705.2 ABS plastic. Joints between ABS plastic pipe or fittings shall comply with Sections 705.2.1 through 705.2.3.

705.2.1 Mechanical joints. Mechanical joints on drainage pipes shall be made with an elastomeric seal conforming to ASTM C 1173, ASTM D 3212 or CSA B602. Mechanical joints shall be installed only in underground systems unless otherwise approved. Joints shall be installed in accordance with the manufacturer’s instructions.

705.2.2 Solvent cementing. Joint surfaces shall be clean and free from moisture. Solvent cement that conforms to ASTM D 2235 or CSA B 181.1 shall be applied to all joint surfaces. The joint shall be made while the cement is wet. Joints shall be made in accordance with ASTM D 2235, ASTM D 2661, ASTM F 628 or CSA B 181.1. Solvent-cement joints shall be permitted above or below ground.

705.2.3 Threaded joints. Threads shall conform to ASME B1.20.1. Schedule 80 or heavier pipe shall be permitted to be threaded with dies specifically designed for plastic pipe. Approved thread lubricant or tape shall be applied on the male threads only.

705.3 Asbestos cement. Joints between asbestos-cement pipe or fittings shall be made with a sleeve coupling of the same composition as the pipe, sealed with an elastomeric ring conforming to ASTM D 1869.

705.4 Brass. Joints between brass pipe or fittings shall comply with Sections 705.4.1 through 705.4.4.

705.4.1 Brazed joints. All joint surfaces shall be cleaned. An approved flux shall be applied where required. The joint shall be brazed with a filler metal conforming to AWS A5.8.
705.4.2 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

705.4.3 Threaded joints. Threads shall conform to ASME B1.20.1. Pipe-joint compound or tape shall be applied on the male threads only.

705.4.4 Welded joints. All joint surfaces shall be cleaned. The joint shall be welded with an approved filler metal.

705.5 Cast iron. Joints between cast-iron pipe or fittings shall comply with Sections 705.5.1 through 705.5.3.

705.5.1 Caulked joints. Joints for hub and spigot pipe shall be firmly packed with oakum or hemp. Molten lead shall be poured in one operation to a depth of not less than 1 inch (25 mm). The lead shall not recede more than \(\frac{1}{8} \) inch (3.2 mm) below the rim of the hub and shall be caulked tight. Paint, varnish or other coatings shall not be permitted on the jointing material until after the joint has been tested and approved. Lead shall be run in one pouring and shall be caulked tight. Acid-resistant rope and acidproof cement shall be permitted.

705.5.2 Compression gasket joints. Compression gaskets for hub and spigot pipe and fittings shall conform to ASTM C 564 and shall be tested to ASTM C 1563. Gaskets shall be compressed when the pipe is fully inserted.

705.5.3 Mechanical joint coupling. Mechanical joint couplings for hubless pipe and fittings shall comply with CISPI 310, ASTM C 1277 or ASTM C 1540. The elastomeric sealing sleeve shall conform to ASTM C 564 or CAN/CSA B602 and shall be provided with a center stop. Mechanical joint couplings shall be installed in accordance with the manufacturer’s installation instructions.

705.6 Concrete joints. Joints between concrete pipe and fittings shall be made with an elastomeric seal conforming to ASTM C 443, ASTM C 1173, CAN/CSA A257.3M or CAN/CSA B602.

705.7 Coextruded composite ABS pipe, joints. Joints between coextruded composite pipe with an ABS outer layer or ABS fittings shall comply with Sections 705.7.1 and 705.7.2.

705.7.1 Mechanical joints. Mechanical joints on drainage pipe shall be made with an elastomeric seal conforming to ASTM C1173, ASTM D 3212 or CSA B602. Mechanical joints shall not be installed in above-ground systems, unless otherwise approved. Joints shall be installed in accordance with the manufacturer’s instructions.

705.7.2 Solvent cementing. Joint surfaces shall be clean and free from moisture. Solvent cement that conforms to ASTM D 2235 or CSA B181.1 shall be applied to all joint surfaces. The joint shall be made while the cement is wet. Joints shall be made in accordance with ASTM D 2235, ASTM D 2661, ASTM F 628 or CSA B181.1. Solvent-cement joints shall be permitted above or below ground.

705.8 Coextruded composite PVC pipe. Joints between coextruded composite pipe with a PVC outer layer or PVC fittings shall comply with Sections 705.8.1 and 705.8.2.

705.8.1 Mechanical joints. Mechanical joints on drainage pipe shall be made with an elastomeric seal conforming to ASTM D 3212. Mechanical joints shall not be installed in above-ground systems, unless otherwise approved. Joints shall be installed in accordance with the manufacturer’s instructions.

705.8.2 Solvent cementing. Joint surfaces shall be clean and free from moisture. A primer that conforms to ASTM F 656 shall be applied. Solvent cement conforming to ASTM D 2564, CSA B137.3, CSA B181.2 or CSA B182.1 shall be applied to all joint surfaces. The joint shall be
made while the cement is wet and shall be in accordance with ASTM D 2855. Solvent-cement joints shall be permitted above or below ground.

705.9 Copper pipe. Joints between copper or copper-alloy pipe or fittings shall comply with Sections 705.9.1 through 705.9.5.

- **705.9.1 Brazed joints.** All joint surfaces shall be cleaned. An approved flux shall be applied where required. The joint shall be brazed with a filler metal conforming to AWS A5.8.
- **705.9.2 Mechanical joints.** Mechanical joints shall be installed in accordance with the manufacturer’s instructions.
- **705.9.3 Soldered joints.** Solder joints shall be made in accordance with the methods of ASTM B 828. All cut tube ends shall be reamed to the full inside diameter of the tube end. All joint surfaces shall be cleaned. A flux conforming to ASTM B 813 shall be applied. The joint shall be soldered with a solder conforming to ASTM B 32.
- **705.9.4 Threaded joints.** Threads shall conform to ASME B1.20.1. Pipe-joint compound or tape shall be applied on the male threads only.
- **705.9.5 Welded joints.** All joint surfaces shall be cleaned. The joint shall be welded with an approved filler metal.

705.10 Copper tubing. Joints between copper or copper-alloy tubing or fittings shall comply with Sections 705.10.1 through 705.10.3.

- **705.10.1 Brazed joints.** All joint surfaces shall be cleaned. An approved flux shall be applied where required. The joint shall be brazed with a filler metal conforming to AWS A5.8.
- **705.10.2 Mechanical joints.** Mechanical joints shall be installed in accordance with the manufacturer’s instructions.
- **705.10.3 Soldered joints.** Solder joints shall be made in accordance with the methods of ASTM B 828. All cut tube ends shall be reamed to the full inside diameter of the tube end. All joint surfaces shall be cleaned. A flux conforming to ASTM B 813 shall be applied. The joint shall be soldered with a solder conforming to ASTM B 32.

705.11 Borosilicate glass joints. Glass-to-glass connections shall be made with a bolted compression-type stainless steel (300 series) coupling with contoured acid-resistant elastomeric compression ring and a fluorocarbon polymer inner seal ring; or with caulked joints in accordance with Section 705.11.1.

- **705.11.1 Caulked joints.** Every lead-caulked joint for hub and spigot soil pipe shall be firmly packed with oakum or hemp and filled with molten lead not less than 1 inch (25 mm) deep and not to extend more than 1/8 inch (3.2 mm) below the rim of the hub. Paint, varnish or other coatings shall not be permitted on the jointing material until after the joint has been tested and approved. Lead shall be run in one pouring and shall be caulked tight. Acid-resistant rope and acidproof cement shall be permitted.

705.12 Steel. Joints between galvanized steel pipe or fittings shall comply with Sections 705.12.1 and 705.12.2.

- **705.12.1 Threaded joints.** Threads shall conform to ASME B1.20.1. Pipe-joint compound or tape shall be applied on the male threads only.
- **705.12.2 Mechanical joints.** Joints shall be made with an approved elastomeric seal. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.
705.13 Lead. Joints between lead pipe or fittings shall comply with Sections 705.13.1 and 705.13.2.

705.13.1 Burned. Burned joints shall be uniformly fused together into one continuous piece. The thickness of the joint shall be at least as thick as the lead being joined. The filler metal shall be of the same material as the pipe.

705.13.2 Wiped. Joints shall be fully wiped, with an exposed surface on each side of the joint not less than 3/4 inch (19.1 mm). The joint shall be at least 0.325 inch (9.5 mm) thick at the thickest point.

705.14 PVC plastic. Joints between PVC plastic pipe or fittings shall comply with Sections 705.14.1 through 705.14.3.

705.14.1 Mechanical joints. Mechanical joints on drainage pipe shall be made with an elastomeric seal conforming to ASTM C 1173, ASTM D 3212 or CAN/CSA B602. Mechanical joints shall not be installed in above-ground systems, unless otherwise approved. Joints shall be installed in accordance with the manufacturer’s instructions.

705.14.2 Solvent cementing. Joint surfaces shall be clean and free from moisture. A primer that conforms to ASTM F 656 shall be applied. Solvent cement conforming to ASTM D 2564, CSA B137.3, CSA B181.2 or CSA B182.1 shall be applied to all joint surfaces. The joint shall be made while the cement is wet and shall be in accordance with ASTM D 2855. Solvent-cement joints shall be permitted above or below ground.

705.14.3 Threaded joints. Threads shall conform to ASME B1.20.1. Schedule 80 or heavier pipe shall be permitted to be threaded with dies specifically designed for plastic pipe. Approved thread lubricant or tape shall be applied on the male threads only.

705.15 Vitrified clay. Joints between vitrified clay pipe or fittings shall be made with an elastomeric seal conforming to ASTM C 425, ASTM C 1173 or CAN/CSA B602.

705.16 Polyethylene plastic pipe. Joints between polyethylene plastic pipe and fittings shall be underground and shall comply with Section 705.16.1 or 705.16.2.

705.16.1 Heat-fusion joints. Joint surfaces shall be clean and free from moisture. All joint surfaces shall be cut, heated to melting temperature and joined using tools specifically designed for the operation. Joints shall be undisturbed until cool. Joints shall be made in accordance with ASTM D 2657 and the manufacturer’s instructions.

705.16.2 Mechanical joints. Mechanical joints in drainage piping shall be made with an elastomeric seal conforming to ASTM C 1173, ASTM D 3212 or CAN/CSA B602. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

705.17 Polyolefin plastic. Joints between polyolefin plastic pipe and fittings shall comply with Sections 705.17.1 and 705.17.2.

705.17.1 Heat-fusion joints. Heat-fusion joints for polyolefin pipe and tubing joints shall be installed with socket-type heat-fused polyolefin fittings or electrofusion polyolefin fittings. Joint surfaces shall be clean and free from moisture. The joint shall be undisturbed until cool. Joints shall be made in accordance with ASTM F 1412 or CAN/CSA B181.3.

705.17.2 Mechanical and compression sleeve joints. Mechanical and compression sleeve joints shall be installed in accordance with the manufacturer’s instructions.

705.18 Polyvinylidene fluoride plastic. Joints between polyvinylidene fluoride pipe and fittings shall comply with Sections 705.18.1 and 705.18.2.

705.18.1 Heat-fusion joints. Heat-fusion joints for polyvinylidene fluoride pipe and tubing joints shall be installed with socket-type heat-fused polyvinylidene fluoride fittings or
electrofusion polyvinylidene fittings and couplings. Joint surfaces shall be clean and free from moisture. The joint shall be undisturbed until cool. Joints shall be made in accordance with ASTM F 1673.

705.18.2 Mechanical and compression sleeve joints. Mechanical and compression sleeve joints shall be installed in accordance with the manufacturer’s instructions.

705.19 Joints between different materials. Joints between different piping materials shall be made with a mechanical joint of the compression or mechanical-sealing type conforming to ASTM C 1173, ASTM C 1460 or ASTM C 1461. Connectors and adapters shall be approved for the application and such joints shall have an elastomeric seal conforming to ASTM C 425, ASTM C 443, ASTM C 564, ASTM C 1440, ASTM D 1869, ASTM F 477, CAN/CSA A257.3M or CAN/CSA B602, or as required in Sections 705.19.1 through 705.19.7. Joints between glass pipe and other types of materials shall be made with adapters having a TFE seal. Joints shall be installed in accordance with the manufacturer’s instructions.

705.19.1 Copper or copper-alloy tubing to cast-iron hub pipe. Joints between copper or copper-alloy tubing and cast-iron hub pipe shall be made with a brass ferrule or compression joint. The copper or copper-alloy tubing shall be soldered to the ferrule in an approved manner, and the ferrule shall be joined to the cast-iron hub by a caulked joint or a mechanical compression joint.

705.19.2 Copper or copper-alloy tubing to galvanized steel pipe. Joints between copper or copper-alloy tubing and galvanized steel pipe shall be made with a brass converter fitting or dielectric fitting. The copper tubing shall be soldered to the fitting in an approved manner, and the fitting shall be screwed to the threaded pipe.

705.19.3 Cast-iron pipe to galvanized steel or brass pipe. Joints between cast-iron and galvanized steel or brass pipe shall be made by either caulked or threaded joints or with an approved adapter fitting.

705.19.4 Plastic pipe or tubing to other piping material. Joints between different types of plastic pipe or between plastic pipe and other piping material shall be made with an approved adapter fitting. Joints between plastic pipe and cast-iron hub pipe shall be made by a caulked joint or a mechanical compression joint.

705.19.5 Lead pipe to other piping material. Joints between lead pipe and other piping material shall be made by a wiped joint to a caulking ferrule, soldering nipple, or bushing or shall be made with an approved adapter fitting.

705.19.6 Borosilicate glass to other materials. Joints between glass pipe and other types of materials shall be made with adapters having a TFE seal and shall be installed in accordance with the manufacturer’s instructions.

705.19.7 Stainless steel drainage systems to other materials. Joints between stainless steel drainage systems and other piping materials shall be made with approved mechanical couplings.

705.20 Drainage slip joints. Slip joints shall comply with Section 405.8.

705.21 Caulking ferrules. Ferrules shall be of red brass and shall be in accordance with Table 705.21.

<table>
<thead>
<tr>
<th>PIPE SIZES</th>
<th>INSIDE DIAMETER</th>
<th>LENGTH (INCHES)</th>
<th>MINIMUM WEIGHT</th>
</tr>
</thead>
</table>

TABLE 705.21
CAULKING FERRULE SPECIFICATIONS
<table>
<thead>
<tr>
<th>PIPE SIZES</th>
<th>MINIMUM WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(inches)</td>
<td>EACH</td>
</tr>
<tr>
<td>1 ¼</td>
<td>6 ounces</td>
</tr>
<tr>
<td>1 ½</td>
<td>8 ounces</td>
</tr>
<tr>
<td>2</td>
<td>14 ounces</td>
</tr>
<tr>
<td>2 ¼</td>
<td>1 pound 6 ounces</td>
</tr>
<tr>
<td>3</td>
<td>2 pounds</td>
</tr>
<tr>
<td>4</td>
<td>3 pounds 8 ounces</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 ounce = 28.35 g, 1 pound = 0.454 kg.

705.22 **Soldering bushings.** Soldering bushings shall be of red brass and shall be in accordance with Table 705.22.

TABLE 705.22
SOLDERING BUSHING SPECIFICATIONS

<table>
<thead>
<tr>
<th>PIPE SIZES</th>
<th>MINIMUM WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(inches)</td>
<td>EACH</td>
</tr>
<tr>
<td>2</td>
<td>1 pound</td>
</tr>
<tr>
<td>3</td>
<td>1 pound 12 ounces</td>
</tr>
<tr>
<td>4</td>
<td>2 pounds 8 ounces</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 ounce = 28.35 g, 1 pound = 0.454 kg.

705.23 **Stainless steel drainage systems.** O-ring joints for stainless steel drainage systems shall be made with an approved elastomeric seal.

SECTION 706
CONNECTIONS BETWEEN DRAINAGE PIPING AND FITTINGS

706.1 **Connections and changes in direction.** All connections and changes in direction of the sanitary drainage system shall be made with approved drainage fittings. Connections between drainage piping and fixtures shall conform to Section 405.

706.2 **Obstructions.** The fittings shall not have ledges, shoulders or reductions capable of retarding or obstructing flow in the piping. Threaded drainage pipe fittings shall be of the recessed drainage type.

706.3 **Installation of fittings.** Fittings shall be installed to guide sewage and waste in the direction of flow. Change in direction shall be made by fittings installed in accordance with Table 706.3. Change in direction by combination fittings, side inlets or increasers shall be installed in accordance with Table 706.3 based on the pattern of flow created by the fitting. Double sanitary tee patterns shall not receive the discharge of back-to-back water closets.
Exception: Back-to-back water closet connections to double sanitary tees shall be permitted where the horizontal developed length between the outlet of the water closet and the connection to the double sanitary tee pattern is 18 inches (457 mm) or greater.

TABLE 706.3
FITTINGS FOR CHANGE IN DIRECTION

<table>
<thead>
<tr>
<th>TYPE OF FITTING PATTERN</th>
<th>CHANGE IN DIRECTION</th>
<th>Horizontal to vertical</th>
<th>Vertical to horizontal</th>
<th>Horizontal to horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sixteenth bend</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Eighth bend</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sixth bend</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Quarter bend</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Short sweep</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Long sweep</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sanitary tee</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Wye</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Combination wye and eighth bend</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. The fittings shall only be permitted for a 2-inch or smaller fixture drain.
b. Three inches or larger.
c. For a limitation on double sanitary tees, see Section 706.3.

706.4 Heel-or side-inlet quarter bends.** Heel-inlet quarter bends shall be an acceptable means of connection, except where the quarter bend serves a water closet. A low-heel inlet shall not be used as a wet-vented connection. Side-inlet quarter bends shall be an acceptable means of connection for drainage, wet venting and stack venting arrangements.

SECTION 707
PROHIBITED JOINTS AND CONNECTIONS

707.1 Prohibited joints.** The following types of joints and connections shall be prohibited:
1. Cement or concrete joints.
2. Mastic or hot-pour bituminous joints.
3. Joints made with fittings not approved for the specific installation.
4. Joints between different diameter pipes made with elastomeric rolling O-rings.
5. Solvent-cement joints between different types of plastic pipe.

SECTION 708
CLEANOUTS

708.1 Scope.** This section shall govern the size, location, installation and maintenance of drainage pipe cleanouts.
708.2 Cleanout plugs. Cleanout plugs shall be brass or plastic, or other approved materials. Brass cleanout plugs shall be utilized with metallic drain, waste and vent piping only, and shall conform to ASTM A 74, ASME A112.3.1 or ASME A112.36.2M. Cleanouts with plate-style access covers shall be fitted with corrosion-resisting fasteners. Plastic cleanout plugs shall conform to the requirements of Section 702.4. Plugs shall have raised square or countersunk square heads. Countersunk heads shall be installed where raised heads are a trip hazard. Cleanout plugs with borosilicate glass systems shall be of borosilicate glass.

708.3 Where required. Cleanouts shall be located in accordance with Sections 708.3.1 through 708.3.6.

708.3.1 Horizontal drains within buildings. All horizontal drains shall be provided with cleanouts located not more than 100 feet (30 480 mm) apart.

708.3.2 Building sewers. Deleted.

708.3.3 Changes of direction. Cleanouts shall be installed at each change of direction greater than 45 degrees (0.79 rad) in the building sewer, building drain and horizontal waste or soil lines. Where more than one change of direction occurs in a run of piping, only one cleanout shall be required for each 40 feet (12 192 mm) of developed length of the drainage piping.

708.3.4 Base of stack. A cleanout shall be provided at the base of each waste or soil stack.

708.3.5 Building drain and building sewer junction. There shall be a cleanout near the junction of the building drain and the building sewer. The cleanout shall be either inside or outside the building wall and shall be brought up to the finished ground level or to the basement floor level. An approved two-way cleanout is allowed to be used at this location to serve as a required cleanout for both the building drain and building sewer. The cleanout at the junction of the building drain and building sewer shall not be required if the cleanout on a 3-inch (76 mm) or larger diameter soil stack is located within a developed length of 10 feet (3048 mm) of the building drain and building sewer connection. The minimum size of the cleanout at the junction of the building drain and building sewer shall comply with Section 708.7.

708.3.6 Manholes. Manholes serving a building drain shall have secured gas-tight covers and shall be located in accordance with Section 708.3.

708.4 Concealed piping. Cleanouts on concealed piping or piping under a floor slab or in a crawl space of less than 24 inches (610 mm) in height or a plenum shall be extended through and terminate flush with the finished wall, floor or ground surface or shall be extended to the outside of the building. Cleanout plugs shall not be covered with cement, plaster or any other permanent finish material. Where it is necessary to conceal a cleanout or to terminate a cleanout in an area subject to vehicular traffic, the covering plate, access door or cleanout shall be of an approved type designed and installed for this purpose.

708.5 Opening direction. Every cleanout shall be installed to open to allow cleaning in the direction of the flow of the drainage pipe or at right angles thereto.

708.6 Prohibited installation. Cleanout openings shall not be utilized for the installation of new fixtures, except where approved and where another cleanout of equal access and capacity is provided.

708.7 Minimum size. Cleanouts shall be the same nominal size as the pipe they serve up to 4 inches (102 mm). For pipes larger than 4 inches (102 mm) nominal size, the minimum size of the cleanout shall be 4 inches (102 mm).

Exceptions:
1. “P” trap connections with slip joints or ground joint connections, or stack cleanouts that are not more than one pipe diameter smaller than the drain served, shall be permitted.

2. Cast-iron cleanout sizing shall be in accordance with referenced standards in Table 702.4, ASTM A 74 for hub and spigot fittings or ASTM A 888 or CISPI 301 for hubless fittings.

708.8 Clearances. Cleanouts on 6-inch (153 mm) and smaller pipes shall be provided with a clearance of not less than 18 inches (457 mm) for rodding. Cleanouts on 8-inch (203 mm) and larger pipes shall be provided with a clearance of not less than 36 inches (914 mm) for rodding.

708.9 Access. Access shall be provided to all cleanouts.

SECTION 709
FIXTURE UNITS

709.1 Values for fixtures. Drainage fixture unit values as given in Table 709.1 designate the relative load weight of different kinds of fixtures that shall be employed in estimating the total load carried by a soil or waste pipe, and shall be used in connection with Tables 710.1(1) and 710.1(2) of sizes for soil, waste and vent pipes for which the permissible load is given in terms of fixture units.

709.2 Fixtures not listed in Table 709.1. Fixtures not listed in Table 709.1 shall have a drainage fixture unit load based on the outlet size of the fixture in accordance with Table 709.2. The minimum trap size for unlisted fixtures shall be the size of the drainage outlet but not less than 1 ¼ inches (32 mm).

TABLE 709.2
DRAINAGE FIXTURE UNITS FOR FIXTURE DRAINS OR TRAPS

<table>
<thead>
<tr>
<th>FIXTURE DRAIN OR TRAP SIZE (inches)</th>
<th>DRAINAGE FIXTURE UNIT VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ¼</td>
<td>1</td>
</tr>
<tr>
<td>1 ½</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2 ½</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

709.3 Values for continuous and semicontinuous flow. Drainage fixture unit values for continuous and semicontinuous flow into a drainage system shall be computed on the basis that 1 gpm (0.06 L/s) of flow is equivalent to two fixture units.

709.4 Values for indirect waste receptor. The drainage fixture unit load of an indirect waste receptor receiving the discharge of indirectly connected fixtures shall be the sum of the drainage fixture unit values of the fixtures that discharge to the receptor, but not less than the drainage fixture unit value given for the indirect waste receptor in Table 709.1 or 709.2.

709.4.1 Clear-water waste receptors. Where waste receptors such as floor drains, floor sinks and hub drains receive only clear-water waste from display cases, refrigerated display cases, ice bins, coolers and freezers, such receptors shall have a drainage fixture unit value of one-half (DFU value = 0.5).
SECTION 710
DRAINAGE SYSTEM SIZING

710.1 Maximum fixture unit load. The maximum number of drainage fixture units connected to a given size of building sewer, building drain or horizontal branch of the building drain shall be determined using Table 710.1(1). The maximum number of drainage fixture units connected to a given size of horizontal branch or vertical soil or waste stack shall be determined using Table 710.1(2).

710.1.1 Horizontal stack offsets. Horizontal stack offsets shall be sized as required for building drains in accordance with Table 710.1(1), except as required by Section 711.4.

710.1.2 Vertical stack offsets. Vertical stack offsets shall be sized as required for straight stacks in accordance with Table 710.1(2), except where required to be sized as a building drain in accordance with Section 711.1.1.

710.2 Future fixtures. Where provision is made for the future installation of fixtures, those provided for shall be considered in determining the required sizes of drain pipes.

SECTION 711
OFFSETS IN DRAINAGE PIPING IN BUILDINGS OF FIVE STORIES OR MORE

711.1 Horizontal branch connections above or below vertical stack offsets. If a horizontal branch connects to the stack within 2 feet (610 mm) above or below a vertical stack offset, and the offset is located more than four branch intervals below the top of the stack, the offset shall be vented in accordance with Section 916.

711.1.1 Omission of vents for vertical stack offsets. Vents for vertical offsets required by Section 711.1 shall not be required where the stack and its offset are sized as a building drain [see Table 710.1(1)].

711.2 Horizontal branch connections to horizontal stack offsets. Where a horizontal stack offset is located more than four branch intervals below the top of the stack, a horizontal branch shall not connect within the horizontal stack offset or within 2 feet (610 mm) above or below such offset.

TABLE 709.1
DRAINAGE FIXTURE UNITS FOR FIXTURES AND GROUPS

<table>
<thead>
<tr>
<th>FIXTURE TYPE</th>
<th>DRAINAGE FIXTURE UNIT VALUE AS LOAD FACTORS</th>
<th>MINIMUM SIZE OF TRAP (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic clothes washers, commercial¹,²</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Automatic clothes washers, residential¹,²</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Bathroom group as defined in Section 202 (1.6 gpf water closet)¹</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>Bathroom group as defined in Section 202 (water closet flushing greater than 1.6 gpf)¹</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>Bathtub (with or without overhead shower or whirlpool attachments)</td>
<td>2</td>
<td>1 ½</td>
</tr>
</tbody>
</table>
TABLE 710.1(1)

<table>
<thead>
<tr>
<th>DIAMETER OF PIPE (inches)</th>
<th>MAXIMUM NUMBER OF DRAINAGE FIXTURE UNITS CONNECTED TO ANY PORTION OF THE BUILDING DRAIN OR THE BUILDING SEWER, INCLUDING BRANCHES OF THE BUILDING DRAIN*</th>
</tr>
</thead>
</table>

- **Bidet** | 1 1/2 |
- **Combination sink and tray** | 2 1 1/2 |
- **Dental lavatory** | 1 1/4 |
- **Dental unit or cuspidor** | 1 1/4 |
- **Dishwashing machine,\(^d\) domestic** | 2 1 1/2 |
- **Drinking fountain** | 1/2 1 1/2 |
- **Emergency floor drain** | 0 2 |
- **Floor drains\(^b\)** | 2\(h\) 2 |
- **Floor sinks** | Note h 2 |
- **Kitchen sink, domestic** | 2 1 1/2 |
- **Kitchen sink, domestic with food waste grinder and/or dishwasher** | 2 1 1/2 |
- **Laundry tray (1 or 2 compartments)** | 2 1 1/2 |
- **Lavatory** | 1 1/4 |
- **Shower (based on the total flow rate through showerheads and body sprays)** | |
 - **Flow rate:** | |
 - Greater than 5.7 gpm but not more than 12.3 gpm | 2 1 1/2 |
 - Greater than 12.3 gpm but not more than 25.8 gpm | 3 2 |
 - Greater than 25.8 gpm but not more than 55.6 gpm | 5 3 |
- **Service sink** | 2 1 1/2 |
- **Sink** | 2 1 1/2 |
- **Urinal** | 4 Note d |
- **Urinal, 1 gallon per flush or less** | 2\(e\) Note d |
- **Urinal, nonwater supplied** | 1/2 Note d |
- **Wash sink (circular or multiple) each set of faucets** | 2 1 1/2 |
- **Water closet, flushometer tank, public or private** | 4\(e\) Note d |
- **Water closet, private (1.6 gpf)** | 3\(e\) Note d |
- **Water closet, private (flushing greater than 1.6 gpf)** | 4\(e\) Note d |
- **Water closet, public (1.6 gpf)** | 4\(e\) Note d |
- **Water closet, public (flushing greater than 1.6 gpf)** | 6\(e\) Note d |

For SI: 1 inch = 25.4 mm, 1 gallon = 3.785 L, gpf = gallon per flushing cycle, gpm = gallon per minute.

a. For traps larger than 3 inches, use Table 709.2.

b. A showerhead over a bathtub or whirlpool bathtub attachment does not increase the drainage fixture unit value.

c. See Sections 709.2 through 709.4.1 for methods of computing unit value of fixtures not listed in this table or for rating of devices with intermittent flows.

d. Trap size shall be consistent with the fixture outlet size.

e. For the purpose of computing loads on building drains and sewers, water closets and urinals shall not be rated at a lower drainage fixture unit unless the lower values are confirmed by testing.

f. For fixtures added to a dwelling unit bathroom group, add the dfu value of those additional fixtures to the bathroom group fixture count.

g. See Section 406.3 for sizing requirements for fixture drain, branch drain, and drainage stack for an automatic clothes washer standpipe.

h. See Sections 709.4 and 709.4.1.
<table>
<thead>
<tr>
<th>DIAMETER OF PIPE (inches)</th>
<th>TOTAL FOR HORIZONTAL BRANCH</th>
<th>TOTAL DISCHARGE INTO ONE BRANCH INTERVAL</th>
<th>TOTAL FOR STACK OF THREE BRANCH INTERVALS OR LESS</th>
<th>TOTAL FOR STACK GREATER THAN THREE BRANCH INTERVALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ¼</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>2 ¼</td>
<td>12</td>
<td>9</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>20</td>
<td>48</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
<td>90</td>
<td>240</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>360</td>
<td>200</td>
<td>540</td>
<td>1,100</td>
</tr>
<tr>
<td>6</td>
<td>620</td>
<td>350</td>
<td>960</td>
<td>1,900</td>
</tr>
<tr>
<td>8</td>
<td>1,400</td>
<td>600</td>
<td>2,200</td>
<td>3,600</td>
</tr>
<tr>
<td>10</td>
<td>2,500</td>
<td>1,000</td>
<td>3,800</td>
<td>5,600</td>
</tr>
<tr>
<td>12</td>
<td>3,900</td>
<td>1,500</td>
<td>6,000</td>
<td>8,400</td>
</tr>
<tr>
<td>15</td>
<td>7,000</td>
<td>Note c</td>
<td>Note c</td>
<td>Note c</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Does not include branches of the building drain. Refer to Table 710.1(1).

b. Stacks shall be sized based on the total accumulated connected load at each story or branch interval. As the total accumulated connected load decreases, stacks are permitted to be reduced in size. Stack diameters shall not be reduced to less than one-half of the diameter of the largest stack size required.

c. Sizing load based on design criteria.
711.3 Horizontal stack offsets. A stack with a horizontal offset located more than four branch intervals below the top of the stack shall be vented in accordance with Section 915 and sized as follows:
1. The portion of the stack above the offset shall be sized as for a vertical stack based on the total number of drainage fixture units above the offset.
2. The offset shall be sized in accordance with Section 710.1.1.
3. The portion of the stack below the offset shall be sized as for the offset or based on the total number of drainage fixture units on the entire stack, whichever is larger [see Table 710.1(2), Column 5].

711.3.1 Omission of vents for horizontal stack offsets. Vents for horizontal stack offsets required by Section 711.3 shall not be required where the stack and its offset are one pipe size larger than required for a building drain [see Table 710.1(1)] and the entire stack and offset are not less in cross-sectional area than that required for a straight stack plus the area of an offset vent as provided for in Section 915. Omission of offset vents in accordance with this section shall not constitute approval of horizontal branch connections within the offset or within 2 feet (610 mm) above or below the offset.

711.4 Offsets below lowest branch. Where a vertical offset occurs in a soil or waste stack below the lowest horizontal branch, a change in diameter of the stack because of the offset shall not be required. If a horizontal offset occurs in a soil or waste stack below the lowest horizontal branch, the required diameter of the offset and the stack below it shall be determined as for a building drain in accordance with Table 710.1(1).

SECTION 712
SUMPS AND EJECTORS

712.1 Building subdrains. Building subdrains that cannot be discharged to the sewer by gravity flow shall be discharged into a tightly covered and vented sump from which the liquid shall be lifted and discharged into the building gravity drainage system by automatic pumping equipment or other approved method. In other than existing structures, the sump shall not receive drainage from any piping within the building capable of being discharged by gravity to the building sewer.

712.2 Valves required. A check valve and a full open valve located on the discharge side of the check valve shall be installed in the pump or ejector discharge piping between the pump or ejector and the gravity drainage system. Access shall be provided to such valves. Such valves shall be located above the sump cover required by Section 712.1 or, where the discharge pipe from the ejector is below grade, the valves shall be accessibly located outside the sump below grade in an access pit with a removable access cover.

Exception: In buildings where the "Residential Code of Ohio" applies, only a check valve shall be required, located on the discharge piping from the sewage pump or ejector.

712.3 Sump design. The sump pump, pit and discharge piping shall conform to the requirements of Sections 712.3.1 through 712.3.5.

712.3.1 Sump pump. The sump pump capacity and head shall be appropriate to anticipated use requirements.

712.3.2 Sump pit. The sump pit shall be not less than 18 inches (457 mm) in diameter and 24 inches (610 mm) deep, unless otherwise approved. The pit shall be accessible and located such that all drainage flows into the pit by gravity. The sump pit shall be constructed of tile.
concrete, steel, plastic or other approved materials. The pit bottom shall be solid and provide permanent support for the pump. The sump pit shall be fitted with a gas-tight removable cover adequate to support anticipated loads in the area of use. The sump pit shall be vented in accordance with Chapter 9.

712.3.3 Discharge piping. Discharge piping and fittings shall be constructed of approved materials.

712.3.4 Maximum effluent level. The effluent level control shall be adjusted and maintained to at all times prevent the effluent in the sump from rising to within 2 inches (51 mm) of the invert of the gravity drain inlet into the sump.

712.3.5 Ejector connection to the drainage system. Pumps connected to the drainage system shall connect to the building sewer or shall connect to a wye fitting in the building drain a minimum of 10 feet (3048 mm) from the base of any soil stack, waste stack or fixture drain. Where the discharge line connects into horizontal drainage piping, the connector shall be made through a wye fitting into the top of the drainage piping.

712.4 Sewage pumps and sewage ejectors. A sewage pump or sewage ejector shall automatically discharge the contents of the sump to the building drainage system.

712.4.1 Macerating toilet systems. Macerating toilet systems shall comply with CSA B45.9 or ASME A112.3.4 and shall be installed in accordance with the manufacturer’s installation instructions.

712.4.2 Capacity. A sewage pump or sewage ejector shall have the capacity and head for the application requirements. Pumps or ejectors that receive the discharge of water closets shall be capable of handling spherical solids with a diameter of up to and including 2 inches (51 mm). Other pumps or ejectors shall be capable of handling spherical solids with a diameter of up to and including 1 inch (25.4 mm). The minimum capacity of a pump or ejector based on the diameter of the discharge pipe shall be in accordance with Table 712.4.2.

Exceptions:
1. Grinder pumps or grinder ejectors that receive the discharge of water closets shall have a minimum discharge opening of 1\(\frac{1}{4}\) inches (32 mm).
2. Macerating toilet assemblies that serve single water closets shall have a minimum discharge opening of 3\(\frac{3}{4}\) inch (19 mm).

<table>
<thead>
<tr>
<th>DIAMETER OF THE DISCHARGE PIPE (inches)</th>
<th>CAPACITY OF PUMP OR EJECTOR (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>2(\frac{1}{2})</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>46</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 gallon per minute = 3.785 L/m.

SECTION 713
HEALTH CARE PLUMBING

713.1 Scope. This section shall govern those aspects of health care plumbing systems that differ from plumbing systems in other structures. Health care plumbing systems shall conform to this
section in addition to the other requirements of this code. The provisions of this section shall
apply to the special devices and equipment installed and maintained in the following occu-
pancies: nursing homes; homes for the aged; orphanages; infirmaries; first aid stations;
psychiatric facilities; clinics; professional offices of dentists and doctors; mortuaries; educational
facilities; surgery, dentistry, research and testing laboratories; establishments manufacturing
pharmaceutical drugs and medicines; and other structures with similar apparatus and equipment
classified as plumbing.

713.2 Bedpan washers and clinical sinks. Bedpan washers and clinical sinks shall connect to
the drainage and vent system in accordance with the requirements for a water closet. Bedpan
washers shall also connect to a local vent.

713.3 Indirect waste. All sterilizers, steamers and condensers shall discharge to the drainage
through an indirect waste pipe by means of an air gap. Where a battery of not more than three
steralizers discharges to an individual receptor, the distance between the receptor and a sterilizer
shall not exceed 8 feet (2438 mm). The indirect waste pipe on a bedpan steamer shall be trapped.

713.4 Vacuum system station. Ready access shall be provided to vacuum system station
receptacles. Such receptacles shall be built into cabinets or recesses and shall be visible.

713.5 Bottle system. Vacuum (fluid suction) systems intended for collecting, removing and
disposing of blood, pus or other fluids by the bottle system shall be provided with receptacles
equipped with an overflow prevention device at each vacuum outlet station.

713.6 Central disposal system equipment. All central vacuum (fluid suction) systems shall
provide continuous service. Systems equipped with collecting or control tanks shall provide for
draining and cleaning of the tanks while the system is in operation. In hospitals, the system shall
be connected to the emergency power system. The exhausts from a vacuum pump serving a
vacuum (fluid suction) system shall discharge separately to open air above the roof.

713.7 Central vacuum or disposal systems. Where the waste from a central vacuum (fluid
suction) system of the barometric-lag, collection-tank or bottle-disposal type is connected to the
drainage system, the waste shall be directly connected to the sanitary drainage system through a
trapped waste.

713.7.1 Piping. The piping of a central vacuum (fluid suction) system shall be of corrosion-
resistant material with a smooth interior surface. A branch shall not be less than 1/2 inch
(12.7 mm) nominal pipe size for one outlet and shall be sized in accordance with the number
of vacuum outlets. A main shall not be less than 1-inch (25 mm) nominal pipe size. The pipe
sizing shall be increased in accordance with the manufacturer’s instructions as stations are
increased.

713.7.2 Velocity. The velocity of airflow in a central vacuum (fluid suction) system shall be
less than 5,000 feet per minute (25 m/s).

713.8 Vent connections prohibited. Connections between local vents serving bedpan washers
or sterilizer vents serving sterilizing apparatus and normal sanitary plumbing systems are
prohibited. Only one type of apparatus shall be served by a local vent.

713.9 Local vents and stacks for bedpan washers. Bedpan washers shall be vented to open air
above the roof by means of one or more local vents. The local vent for a bedpan washer shall not
be less than a 2-inch-diameter (51 mm) pipe. A local vent serving a single bedpan washer is
permitted to drain to the fixture served.

713.9.1 Multiple installations. Where bedpan washers are located above each other on more
than one floor, a local vent stack is permitted to be installed to receive the local vent on the
various floors. Not more than three bedpan washers shall be connected to a 2-inch (51 mm)
local vent stack, not more than six to a 3-inch (76 mm) local vent stack and not more than 12 to a 4-inch (102 mm) local vent stack. In multiple installations, the connections between a bedpan washer local vent and a local vent stack shall be made with tee or tee-wye sanitary pattern drainage fittings installed in an upright position.

713.9.2 Trap required. The bottom of the local vent stack, except where serving only one bedpan washer, shall be drained by means of a trapped and vented waste connection to the sanitary drainage system. The trap and waste shall be the same size as the local vent stack.

713.9.3 Trap seal maintenance. A water supply pipe not less than \(\frac{1}{4} \) inch (6.4 mm) in diameter shall be taken from the flush supply of each bedpan washer on the discharge or fixture side of the vacuum breaker, shall be trapped to form not less than a 3-inch (76 mm) water seal, and shall be connected to the local vent stack on each floor. The water supply shall be installed so as to provide a supply of water to the local vent stack for cleansing and drain trap seal maintenance each time a bedpan washer is flushed.

713.10 Sterilizer vents and stacks. Multiple installations of pressure and nonpressure sterilizers shall have the vent connections to the sterilizer vent stack made by means of inverted wye fittings. Access shall be provided to vent connections for the purpose of inspection and maintenance.

713.10.1 Drainage. The connection between sterilizer vent or exhaust openings and the sterilizer vent stack shall be designed and installed to drain to the funnel or basket-type waste fitting. In multiple installations, the sterilizer vent stack shall be drained separately to the lowest sterilizer funnel or basket-type waste fitting or receptor.

713.11 Sterilizer vent stack sizes. Sterilizer vent stack sizes shall comply with Sections 713.11.1 through 713.11.4.

713.11.1 Bedpan steamers. The minimum size of a sterilizer vent serving a bedpan steamer shall be 1 1/2 inches (38 mm) in diameter. Multiple installations shall be sized in accordance with Table 713.11.1.

TABLE 713.11.1

<table>
<thead>
<tr>
<th>STACK SIZE (inches)</th>
<th>CONNECTION SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2 (^a)</td>
<td>1 or 0</td>
</tr>
<tr>
<td>2 (^a)</td>
<td>2 or 1</td>
</tr>
<tr>
<td>2 (^b)</td>
<td>1 and 1</td>
</tr>
<tr>
<td>3 (^a)</td>
<td>4 or 2</td>
</tr>
<tr>
<td>3 (^b)</td>
<td>2 and 2</td>
</tr>
<tr>
<td>4 (^a)</td>
<td>8 or 4</td>
</tr>
<tr>
<td>4 (^b)</td>
<td>4 and 4</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

\(^a \) Total of each size.

\(^b \) Combination of sizes.
713.11.2 **Boiling-type sterilizers.** The minimum size of a sterilizer vent stack shall be 2 inches (51 mm) in diameter where serving a utensil sterilizer and $1\frac{1}{2}$ inches (38 mm) in diameter where serving an instrument sterilizer. Combinations of boiling-type sterilizer vent connections shall be sized in accordance with Table 713.11.1.

713.11.3 **Pressure sterilizers.** Pressure sterilizer vent stacks shall be $2\frac{1}{2}$ inches (64 mm) minimum. Those serving combinations of pressure sterilizer exhaust connections shall be sized in accordance with Table 713.11.3.

TABLE 713.11.3

STACK SIZES FOR PRESSURE STERILIZERS

(Number of Connections of Various Sizes Permitted To Various-sized Vent Stacks)

<table>
<thead>
<tr>
<th>STACK SIZE (inches)</th>
<th>CONNECTION SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{3}{4}''$</td>
</tr>
<tr>
<td>1$\frac{1}{2}$ a</td>
<td>3 or</td>
</tr>
<tr>
<td>1$\frac{1}{2}$ b</td>
<td>2 and</td>
</tr>
<tr>
<td>2 a</td>
<td>6 or</td>
</tr>
<tr>
<td>2 b</td>
<td>3 and</td>
</tr>
<tr>
<td>2 b</td>
<td>2 and</td>
</tr>
<tr>
<td>2 b</td>
<td>1 and</td>
</tr>
<tr>
<td>3 a</td>
<td>15 or</td>
</tr>
<tr>
<td>3 b</td>
<td>1 and</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Total of each size.
b. Combination of sizes.

713.11.4 **Pressure instrument washer sterilizer sizes.** The minimum diameter of a sterilizer vent stack serving an instrument washer sterilizer shall be 2 inches (51 mm). Not more than two sterilizers shall be installed on a 2-inch (51 mm) stack, and not more than four sterilizers shall be installed on a 3-inch (76 mm) stack.

SECTION 714

COMPUTERIZED DRAINAGE DESIGN

714.1 **Design of drainage system.** The sizing, design and layout of the drainage system shall be permitted to be designed by approved computer design methods.

714.2 **Load on drainage system.** The load shall be computed from the simultaneous or sequential discharge conditions from fixtures, appurtenances and appliances or the peak usage design condition.

714.2.1 **Fixture discharge profiles.** The discharge profiles for flow rates versus time from fixtures and appliances shall be in accordance with the manufacturer’s specifications.

714.3 **Selections of drainage pipe sizes.** Pipe shall be sized to prevent full-bore flow.
714.3.1 Selecting pipe wall roughness. Pipe size calculations shall be conducted with the pipe wall roughness factor (ks), in accordance with the manufacturer’s specifications and as modified for aging roughness factors with deposits and corrosion.

714.3.2 Slope of horizontal drainage piping. Horizontal drainage piping shall be designed and installed at slopes in accordance with Table 704.1.

SECTION 715
BACKWATER VALVES

715.1 Sewage backflow. If required by the “Ohio Environmental Protection Agency” or local sewer purveyor, a backwater valve shall be installed only for plumbing fixtures where the flood level rims of the lowest plumbing fixtures are below the elevation of the manhole cover of the next upstream manhole in the public sewer. Such fixtures shall be protected by a backwater valve installed in the building drain, branch of the building drain or horizontal branch serving such fixtures. Plumbing fixtures having flood level rims above the elevation of the manhole cover of the next upstream manhole in the public sewer shall not discharge through a backwater valve.

715.2 Material. All bearing parts of backwater valves shall be of corrosion-resistant material. Backwater valves shall comply with ASME A112.14.1, CSA B181.1 or CSA B181.2.

715.3 Seal. Backwater valves shall be so constructed as to provide a mechanical seal against backflow.

715.4 Diameter. Backwater valves, when fully opened, shall have a capacity not less than that of the pipes in which they are installed.

715.5 Location. Backwater valves shall be installed so that access is provided to the working parts for service and repair.
4101:3-8-01 Indirect/special waste.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 801
GENERAL

801.1 Scope. This chapter shall govern matters concerning indirect waste piping and special wastes. This chapter shall further control matters concerning food-handling establishments, sterilizers, clear-water wastes, swimming pools, methods of providing air breaks or air gaps, and neutralizing devices for corrosive wastes.

801.2 Protection. All devices, appurtenances, appliances and apparatus intended to serve some special function, such as sterilization, distillation, processing, cooling, or storage of ice or foods, and that discharge to the drainage system, shall be provided with protection against backflow, flooding, fouling, contamination and stoppage of the drain.

SECTION 802
INDIRECT WASTES

802.1 Where required. Food-handling equipment and clear-water waste shall discharge through an indirect waste pipe as specified in Sections 802.1.1 through 802.1.8. All health-care related fixtures, devices and equipment shall discharge to the drainage system through an indirect waste pipe by means of an air gap in accordance with this chapter and Section 713.3. Fixtures not required by this section to be indirectly connected shall be directly connected to the plumbing system in accordance with Chapter 7.

Exception: Approved health care related fixtures, devices, and equipment may be directly connected to the drainage system if required to be directly connected in accordance with the manufacturer’s installation instructions.

802.1.1 Food handling. Equipment and fixtures utilized for the storage, preparation and handling of food shall discharge through an indirect waste pipe by means of an air gap.

802.1.2 Floor drains in food storage areas. Floor drains located within walk-in refrigerators or freezers in food service and food establishments shall be indirectly connected to the sanitary drainage system by means of an air gap. Where a floor drain is located within an area subject to freezing, the waste line serving the floor drain shall not be trapped and shall indirectly discharge into a waste receptor located outside of the area subject to freezing.

Exception: Where protected against backflow by a backwater valve, such floor drains shall be indirectly connected to the sanitary drainage system by means of an air break or an air gap.
802.1.3 Potable clear-water waste. Where devices and equipment, such as sterilizers and relief valves, discharge potable water to the building drainage system, the discharge shall be through an indirect waste pipe by means of an air gap.

802.1.4 Swimming pools. Where wastewater from swimming pools, backwash from filters and water from pool deck drains discharge to the building drainage system, the discharge shall be through an indirect waste pipe by means of an air gap.

802.1.5 Nonpotable clear-water waste. Where devices and equipment such as process tanks, filters, drips and boilers discharge nonpotable water to the building drainage system, the discharge shall be through an indirect waste pipe by means of an air break or an air gap.

802.1.6 Domestic dishwashing machines. Domestic dishwashing machines shall discharge indirectly through an air gap or air break into a standpipe or waste receptor in accordance with Section 802.2, or discharge into a wye-branch fitting on the tailpiece of the kitchen sink or the dishwasher connection of a food waste grinder. The waste line of a domestic dishwashing machine discharging into a kitchen sink tailpiece or food waste grinder shall connect to a deck-mounted air gap or the waste line shall rise and be securely fastened to the underside of the sink rim or counter.

802.1.7 Commercial dishwashing machines. The discharge from a commercial dishwashing machine shall be through an air gap or air break into a standpipe or waste receptor in accordance with Section 802.2.

802.1.8 Food utensils, dishes, pots and pans sinks. Sinks used for the washing, rinsing or sanitizing of utensils, dishes, pots, pans or serveware used in the preparation, serving or eating of food shall discharge indirectly through an air gap or an air break or directly connect to the drainage system.

802.2 Installation. All indirect waste piping shall discharge through an air gap or air break into a waste receptor or standpipe. Waste receptors and standpipes shall be trapped and vented and shall connect to the building drainage system. All indirect waste piping that exceeds 2 feet (610 mm) in developed length measured horizontally, or 4 feet (1219 mm) in total developed length, shall be trapped.

802.2.1 Air gap. The air gap between the indirect waste pipe and the flood level rim of the waste receptor shall be a minimum of twice the effective opening of the indirect waste pipe.

802.2.2 Air break. An air break shall be provided between the indirect waste pipe and the trap seal of the waste receptor or standpipe.

802.3 Waste receptors. Every waste receptor shall be of an approved type. A removable strainer or basket shall cover the waste outlet of waste receptors. Waste receptors shall be installed in ventilated spaces. Waste receptors shall not be installed in bathrooms or toilet rooms or in any inaccessible or unventilated space such as a closet or storeroom. Ready access shall be provided to waste receptors.

802.3.1 Size of receptors. A waste receptor shall be sized for the maximum discharge of all indirect waste pipes served by the receptor. Receptors shall be installed to prevent splashing or flooding.

802.3.2 Open hub waste receptors. Waste receptors shall be permitted in the form of a hub or pipe extending not less than 1 inch (25.4 mm) above a water-impervious floor and are not required to have a strainer.

802.4 Standpipes. Standpipes shall be individually trapped. Standpipes shall extend a minimum of 18 inches (457 mm) and a maximum of 42 inches (1066 mm) above the trap weir. Access shall be provided to all standpipes and drains for rodding.
SECTION 803
SPECIAL WASTES

803.1 Wastewater temperature. Steam pipes shall not connect to any part of a drainage or plumbing system and water above 140°F (60°C) shall not be discharged into any part of a drainage system. Such pipes shall discharge into an indirect waste receptor connected to the drainage system.

803.2 Neutralizing device required for corrosive wastes. Corrosive liquids, spent acids or other harmful chemicals that destroy or injure a drain, sewer, soil or waste pipe, or create noxious or toxic fumes or interfere with sewage treatment processes shall not be discharged into the plumbing system without being thoroughly diluted, neutralized or treated by passing through an approved dilution or neutralizing device. Such devices shall be automatically provided with a sufficient supply of diluting water or neutralizing medium so as to make the contents noninjurious before discharge into the drainage system. The nature of the corrosive or harmful waste and the method of its treatment or dilution shall be approved prior to installation.

803.3 System design. A chemical drainage and vent system shall be designed and installed in accordance with this code. Chemical drainage and vent systems shall be completely separated from the sanitary systems. Chemical waste shall not discharge to a sanitary drainage system until such waste has been treated in accordance with Section 803.2.

SECTION 804
MATERIALS, JOINTS AND CONNECTIONS

804.1 General. The materials and methods utilized for the construction and installation of indirect waste pipes and systems shall comply with the applicable provisions of Chapter 7.
4101:3-9-01 Vents.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 901
GENERAL

901.1 Scope. The provisions of this chapter shall govern the materials, design, construction and installation of vent systems.

901.2 Trap seal protection. The plumbing system shall be provided with a system of vent piping that will permit the admission or emission of air so that the seal of any fixture trap shall not be subjected to a pneumatic pressure differential of more than 1 inch of water column (249 Pa).

901.2.1 Venting required. Every trap and trapped fixture shall be vented in accordance with one of the venting methods specified in this chapter.

901.3 Chemical waste vent system. The vent system for a chemical waste system shall be independent of the sanitary vent system and shall terminate separately through the roof to the open air.

901.4 Use limitations. The plumbing vent system shall not be utilized for purposes other than the venting of the plumbing system.

901.5 Tests. The vent system shall be tested in accordance with Section 312.

901.6 Engineered systems. Engineered venting systems shall conform to the provisions of Section 918.

SECTION 902
MATERIALS

902.1 Vents. The materials and methods utilized for the construction and installation of venting systems shall comply with the applicable provisions of Section 702.

902.2 Sheet copper. Sheet copper for vent pipe flashings shall conform to ASTM B 152 and shall weigh not less than 8 ounces per square foot (2.5 kg/m²).

902.3 Sheet lead. Sheet lead for vent pipe flashings shall weigh not less than 3 pounds per square foot (15 kg/m²) for field-constructed flashings and not less than 2 1/2 pounds per square foot (12 kg/m²) for prefabricated flashings.

SECTION 903
OUTDOOR VENT EXTENSION

903.1 Required vent extension. The vent system serving each building drain shall have at least one vent pipe that extends to the outdoors through and above the roof.
903.1.1 Installation. The required vent shall be a dry vent that connects to the building drain or an extension of a drain that connects to the building drain. Such vent shall not be an island fixture vent as allowed by Section 913.

903.1.2 Size. The required vent shall be sized in accordance with Section 916.2 based on the required size of the building drain.

903.2 Vent stack required. A vent stack shall be required for every drainage stack that has five branch intervals or more.

Exception: Drainage stacks installed in accordance with Section 910.

903.3 Vent termination. Vent stacks or stack vents shall terminate outdoors to the open air or to a stack-type air admittance valve in accordance with Section 917.

903.4 Vent connection at base. Every vent stack shall connect to the base of the drainage stack. The vent stack shall connect at or below the lowest horizontal branch. Where the vent stack connects to the building drain, the connection shall be located downstream of the drainage stack and within a distance of 10 times the diameter of the drainage stack.

903.5 Vent headers. Stack vents and vent stacks connected into a common vent header at the top of the stacks and extending to the open air at one point shall be sized in accordance with the requirements of Section 916.1. The number of fixture units shall be the sum of all fixture units on all stacks connected thereto, and the developed length shall be the longest vent length from the intersection at the base of the most distant stack to the vent terminal in the open air, as a direct extension of one stack.

SECTION 904
VENT TERMINALS

904.1 Roof extension. All open vent pipes that extend through a roof shall be terminated at least 12 inches (304.8 mm) above the roof, except that where a roof is to be used for any purpose other than weather protection, the vent extensions shall be run at least 7 feet (2134 mm) above the roof.

904.2 Frost closure. Every vent extension through a roof or wall shall be a minimum of 3 inches (76 mm) in diameter. Any increase in the size of the vent shall be made inside the structure a minimum of 1 foot (305 mm) below the roof or inside the wall.

904.3 Flashings. The juncture of each vent pipe with the roof line shall be made water-tight by an approved flashing.

904.4 Prohibited use. Vent terminals shall not be used as a flag pole or to support flag poles, television aerials or similar items, except when the piping has been anchored in an approved manner.

904.5 Location of vent terminal. An open vent terminal from a drainage system shall not be located directly beneath any door, openable window, or other air intake opening of the building or of an adjacent building, and any such vent terminal shall not be within 10 feet (3048 mm) horizontally of such an opening unless it is at least 2 feet (610 mm) above the top of such opening.

904.6 Extension through the wall. Vent terminals extending through the wall shall terminate a minimum of 10 feet (3048 mm) from the lot line and 10 feet (3048 mm) above average ground level. Vent terminals shall not terminate under the overhang of a structure with soffit vents. Side wall vent terminals shall be protected to prevent birds or rodents from entering or blocking the vent opening.
904.7 **Extension outside a structure.** In climates where the 97.5-percent value for outside design temperature is less than 0°F (-18°C), vent pipes installed on the exterior of the structure shall be protected against freezing by insulation, heat or both.

SECTION 905
VENT CONNECTIONS AND GRADES

905.1 **Connection.** All individual, branch and circuit vents shall:
1. Connect to a vent stack, or
2. Connect to a stack vent, or
3. Extend to the open air, or
4. Connect to an air admittance valve in accordance with Section 917.

905.2 **Grade.** All vent and branch vent pipes shall be so graded and connected as to drain back to the drainage pipe by gravity.

905.3 **Vent connection to drainage system.** Every dry vent connecting to a horizontal drain shall connect above the center-line of the horizontal drain pipe.

905.4 **Vertical rise of vent.** Every dry vent shall rise vertically to a minimum of 6 inches (152 mm) above the flood level rim of the highest trap or trapped fixture being vented.

Exception: Vents for interceptors located outdoors.

905.5 **Height above fixtures.** A connection between a vent pipe and a vent stack or stack vent shall be made at least 6 inches (152 mm) above the flood level rim of the highest fixture served by the vent. Horizontal vent pipes forming branch vents, relief vents or loop vents shall be at least 6 inches (152 mm) above the flood level rim of the highest fixture served.

905.6 **Vent for future fixtures.** Where the drainage piping has been roughed-in for future fixtures, a rough-in connection for a vent shall be installed. The vent size shall be not less than one-half the diameter of the rough-in drain to be served. The vent rough-in shall connect to the vent system, or shall be vented by other means as provided for in this chapter. The connection shall be identified to indicate that it is a vent.

SECTION 906
FIXTURE VENTS

906.1 **Distance of trap from vent.** Each fixture trap shall have a protecting vent located so that the slope and the developed length in the fixture drain from the trap weir to the vent fitting are within the requirements set forth in Table 906.1.

Exception: The developed length of the fixture drain from the trap weir to the vent fitting for self-siphoning fixtures, such as water closets, shall not be limited in individual vent, common vent, and wet vent systems.

906.2 **Venting of fixture drains.** The total fall in a fixture drain due to pipe slope shall not exceed the diameter of the fixture drain, nor shall the vent connection to a fixture drain, except for water closets, be below the weir of the trap.

906.3 **Crown vent.** A vent shall not be installed within two pipe diameters of the trap weir.

TABLE 906.1
MAXIMUM DISTANCE OF FIXTURE TRAP FROM VENT
<table>
<thead>
<tr>
<th>SIZE OF TRAP (inches)</th>
<th>SLOPE (inch per foot)</th>
<th>DISTANCE FROM TRAP (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ¼</td>
<td>¼</td>
<td>5</td>
</tr>
<tr>
<td>1 ½</td>
<td>¼</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>¼</td>
<td>8</td>
</tr>
<tr>
<td>3/8</td>
<td>1/8</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>1/8</td>
<td>16</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 inch per foot = 83.3 mm/m.

SECTION 907
INDIVIDUAL VENT

907.1 Individual vent permitted. Each trap and trapped fixture is permitted to be provided with an individual vent. The individual vent shall connect to the fixture drain of the trap or trapped fixture being vented.

SECTION 908
COMMON VENT

908.1 Individual vent as common vent. An individual vent is permitted to vent two traps or trapped fixtures as a common vent. The traps or trapped fixtures being common vented shall be located on the same floor level.

908.2 Connection at the same level. Where the fixture drains being common vented connect at the same level, the vent connection shall be at the interconnection of the fixture drains or downstream of the interconnection. Common vent on the horizontal shall be a double pattern fitting.

908.3 Connection at different levels. Where the fixture drains connect at different levels, the vent shall connect as a vertical extension of the vertical drain. The vertical drain pipe connecting the two fixture drains shall be considered the vent for the lower fixture drain, and shall be sized in accordance with Table 908.3. The upper fixture shall not be a water closet.

TABLE 908.3
COMMON VENT SIZES

<table>
<thead>
<tr>
<th>PIPE SIZE (inches)</th>
<th>MAXIMUM DISCHARGE FROM UPPER FIXTURE DRAIN (dfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2 1/2 to 3</td>
<td>6</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
SECTION 909
WET VENTING

909.1 Horizontal wet vent permitted. Any combination of fixtures within two bathroom groups located on the same floor level is permitted to be vented by a horizontal wet vent. The wet vent shall be considered the vent for the fixtures and shall extend from the connection of the dry vent along the direction of the flow in the drain pipe to the most downstream fixture drain connection to the horizontal branch drain. Each wet-vented fixture drain shall connect independently to the horizontal wet vent. Only the fixtures within the bathroom groups shall connect to the wet-vented horizontal branch drain. Any additional fixtures shall discharge downstream of the horizontal wet vent.

909.1.1 Vertical wet vent permitted. Any combination of fixtures within two bathroom groups located on the same floor level is permitted to be vented by a vertical wet vent. The vertical wet vent shall be considered the vent for the fixtures and shall extend from the connection of the dry vent down to the lowest fixture drain connection. Each wet-vented fixture shall connect independently to the vertical wet vent. Water closet drains shall connect at the same elevation. Other fixture drains shall connect above or at the same elevation as the water closet fixture drains. The dry-vent connection to the vertical wet vent shall be an individual or common vent serving one or two fixtures.

909.2 Dry vent connection. The required dry-vent connection for wet-vented systems shall comply with Sections 909.2.1 and 909.2.2.

909.2.1 Horizontal wet vent. The dry-vent connection for a horizontal wet-vent system shall be an individual vent or a common vent for any bathroom group fixture, except an emergency floor drain. Where the dry-vent connects to a water closet fixture drain, the drain shall connect horizontally to the horizontal wet-vent system. Not more than one wet-vented fixture drain shall discharge upstream of the dry-vented fixture drain connection.

909.2.2 Vertical wet vent. The dry-vent connection for a vertical wet-vent system shall be an individual vent or common vent for the most upstream fixture drain.

909.3 Size. The dry vent serving the wet vent shall be sized based on the largest required diameter of pipe within the wet-vent system served by the dry vent. The wet vent shall be of a minimum size as specified in Table 909.3, based on the fixture unit discharge to the wet vent.

<table>
<thead>
<tr>
<th>TABLE 909.3</th>
<th>WET VENT SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WET VENT PIPE SIZE</td>
<td>DRAINAGE FIXTURE UNIT LOAD</td>
</tr>
<tr>
<td>inches</td>
<td>(dfu)</td>
</tr>
<tr>
<td>1 ½</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2 ½</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
SECTION 910
WASTE STACK VENT

910.1 Waste stack vent permitted. A waste stack shall be considered a vent for all of the fixtures discharging to the stack where installed in accordance with the requirements of this section.

910.2 Stack installation. The waste stack shall be vertical, and both horizontal and vertical offsets shall be prohibited between the lowest fixture drain connection and the highest fixture drain connection. Every fixture drain shall connect separately to the waste stack. The stack shall not receive the discharge of water closets or urinals.

910.3 Stack vent. A stack vent shall be provided for the waste stack. The size of the stack vent shall be not less than the size of the waste stack. Offsets shall be permitted in the stack vent, shall be located at least 6 inches (152 mm) above the flood level of the highest fixture and shall be in accordance with Section 905.2. The stack vent shall be permitted to connect with other stack vents and vent stacks in accordance with Section 903.5.

910.4 Waste stack size. The waste stack shall be sized based on the total discharge to the stack and the discharge within a branch interval in accordance with Table 910.4. The waste stack shall be the same size throughout its length.

<table>
<thead>
<tr>
<th>STACK SIZE (inches)</th>
<th>MAXIMUM NUMBER OF DRAINAGE FIXTURE UNITS (dfu)</th>
<th>Total discharge into one branch interval</th>
<th>Total discharge for stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ½</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2 ½</td>
<td>No limit</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>No limit</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>No limit</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>No limit</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>No limit</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

SECTION 911
CIRCUIT VENTING

911.1 Circuit vent permitted. A maximum of eight fixtures connected to a horizontal branch drain shall be permitted to be circuit vented. Each fixture drain shall connect horizontally to the horizontal branch being circuit vented. The horizontal branch drain shall be classified as a vent from the most downstream fixture drain connection to the most upstream fixture drain connection to the horizontal branch.

911.1.1 Multiple circuit-vented branches. Circuit-vented horizontal branch drains are permitted to be connected together. Each group of a maximum of eight fixtures shall be considered a separate circuit vent and shall conform to the requirements of this section.
911.2 **Vent connection.** The circuit vent connection shall be located between the two most upstream fixture drains. The vent shall connect to the horizontal branch and shall be installed in accordance with Section 905. The circuit vent pipe shall not receive the discharge of any soil or waste.

911.3 **Slope and size of horizontal branch.** The maximum slope of the vent section of the horizontal branch drain shall be one unit vertical in 12 units horizontal (8-percent slope). The entire length of the vent section of the horizontal branch drain shall be sized for the total drainage discharge to the branch.

911.3.1 **Size of multiple circuit vent.** Each separate circuit-vented horizontal branch that is interconnected shall be sized independently in accordance with Section 911.3. The downstream circuit-vented horizontal branch shall be sized for the total discharge into the branch, including the upstream branches and the fixtures within the branch.

911.4 **Relief vent.** A relief vent shall be provided for circuit-vented horizontal branches receiving the discharge of four or more water closets and connecting to a drainage stack that receives the discharge of soil or waste from upper horizontal branches.

911.4.1 **Connection and installation.** The relief vent shall connect to the horizontal branch drain between the stack and the most downstream fixture drain of the circuit vent. The relief vent shall be installed in accordance with Section 905.

911.4.2 **Fixture drain or branch.** The relief vent is permitted to be a fixture drain or fixture branch for fixtures located within the same branch interval as the circuit-vented horizontal branch. The maximum discharge to a relief vent shall be four fixture units.

911.5 **Additional fixtures.** Fixtures, other than the circuit-vented fixtures, are permitted to discharge to the horizontal branch drain. Such fixtures shall be located on the same floor as the circuit-vented fixtures and shall be either individually or common vented.

SECTION 912

COMBINATION DRAIN AND VENT SYSTEM

912.1 **Type of fixtures.** A combination drain and vent system shall not serve fixtures other than floor drains, sinks, lavatories and drinking fountains. Combination drain and vent systems shall not receive the discharge from a food waste grinder or clinical sink.

912.2 **Installation.** The only vertical pipe of a combination drain and vent system shall be the connection between the fixture drain of a sink, lavatory or drinking fountain, and the horizontal combination drain and vent pipe. The maximum vertical distance shall be 8 feet (2438 mm).

912.2.1 **Slope.** The horizontal combination drain and vent pipe shall have a maximum slope of one-half unit vertical in 12 units horizontal (4-percent slope). The minimum slope shall be in accordance with Table 704.1.

912.2.2 **Connection.** The combination drain and vent system shall be provided with a dry vent connected at any point within the system or the system shall connect to a horizontal drain that is vented in accordance with one of the venting methods specified in this chapter. Combination drain and vent systems connecting to building drains receiving only the discharge from a stack or stacks shall be provided with a dry vent. The vent connection to the combination drain and vent pipe shall extend vertically a minimum of 6 inches (152 mm) above the flood level rim of the highest fixture being vented before offsetting horizontally.
912.2.3 Vent size. The vent shall be sized for the total drainage fixture unit load in accordance with Section 916.2.

912.2.4 Fixture branch or drain. The fixture branch or fixture drain shall connect to the combination drain and vent within a distance specified in Table 906.1. The combination drain and vent pipe shall be considered the vent for the fixture.

912.3 Size. The minimum size of a combination drain and vent pipe shall be in accordance with Table 912.3.

TABLE 912.3
SIZE OF COMBINATION DRAIN AND VENT PIPE

<table>
<thead>
<tr>
<th>DIAMETER PIPE (inches)</th>
<th>MAXIMUM NUMBER OF DRAINAGE FIXTURE UNITS (dfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Connecting to a horizontal branch or stack</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2 ½</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>160</td>
</tr>
<tr>
<td>6</td>
<td>360</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

SECTION 913
ISLAND FIXTURE VENTING

913.1 Limitation. Island fixture venting shall not be permitted for fixtures other than sinks and lavatories. Residential kitchen sinks with a dishwasher waste connection, a food waste grinder, or both, in combination with the kitchen sink waste, shall be permitted to be vented in accordance with this section.

913.2 Vent connection. The island fixture vent shall connect to the fixture drain as required for an individual or common vent. The vent shall rise vertically to above the drainage outlet of the fixture being vented before offsetting horizontally or vertically downward. The vent or branch vent for multiple island fixture vents shall extend to a minimum of 6 inches (152 mm) above the highest island fixture being vented before connecting to the outside vent terminal.

913.3 Vent installation below the fixture flood level rim. The vent located below the flood level rim of the fixture being vented shall be installed as required for drainage piping in accordance with Chapter 7, except for sizing. The vent shall be sized in accordance with Section 916.2. The lowest point of the island fixture vent shall connect full size to the drainage system. The connection shall be to a vertical drain pipe or to the top half of a horizontal drain pipe. Cleanouts shall be provided in the island fixture vent to permit rodding of all vent piping located below the flood level rim of the fixtures. Rodding in both directions shall be permitted through a cleanout.
SECTION 914
RELIEF VENTS—STACKS OF MORE THAN 10 BRANCH INTERVALS

914.1 Where required. Soil and waste stacks in buildings having more than 10 branch intervals shall be provided with a relief vent at each tenth interval installed, beginning with the top floor.

914.2 Size and connection. The size of the relief vent shall be equal to the size of the vent stack to which it connects. The lower end of each relief vent shall connect to the soil or waste stack through a wye below the horizontal branch serving the floor, and the upper end shall connect to the vent stack through a wye not less than 3 feet (914 mm) above the floor.

SECTION 915
VENTS FOR STACK OFFSETS

915.1 Vent for horizontal offset of drainage stack. Horizontal offsets of drainage stacks shall be vented where five or more branch intervals are located above the offset. The offset shall be vented by venting the upper section of the drainage stack and the lower section of the drainage stack.

915.2 Upper section. The upper section of the drainage stack shall be vented as a separate stack with a vent stack connection installed in accordance with Section 903.4. The offset shall be considered the base of the stack.

915.3 Lower section. The lower section of the drainage stack shall be vented by a yoke vent connecting between the offset and the next lower horizontal branch. The yoke vent connection shall be permitted to be a vertical extension of the drainage stack. The size of the yoke vent and connection shall be a minimum of the size required for the vent stack of the drainage stack.

SECTION 916
VENT PIPE SIZING

916.1 Size of stack vents and vent stacks. The minimum required diameter of stack vents and vent stacks shall be determined from the developed length and the total of drainage fixture units connected thereto in accordance with Table 916.1, but in no case shall the diameter be less than one-half the diameter of the drain served or less than 1 1/4 inches (32 mm).

TABLE 916.1
SIZE AND DEVELOPED LENGTH OF STACK VENTS AND VENT STACKS

<table>
<thead>
<tr>
<th>DIAMETER OF SOIL OR WASTE STACK (inches)</th>
<th>TOTAL FIXTURE UNITS BEING VENTED (dfu)</th>
<th>MAXIMUM DEVELOPED LENGTH OF VENT (feet)¹</th>
<th>DIAMETER OF VENT (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 ¼</td>
<td>1 ½</td>
</tr>
<tr>
<td>1 ½</td>
<td>2</td>
<td>30</td>
<td>;</td>
</tr>
<tr>
<td>1 ½</td>
<td>8</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>1 ½</td>
<td>10</td>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>1 ½</td>
<td>12</td>
<td>30</td>
<td>75</td>
</tr>
<tr>
<td>1 ½</td>
<td>20</td>
<td>26</td>
<td>50</td>
</tr>
<tr>
<td>1 ½</td>
<td>42</td>
<td>;</td>
<td>100</td>
</tr>
<tr>
<td>1 ½</td>
<td>10</td>
<td>;</td>
<td>150</td>
</tr>
<tr>
<td>1 ½</td>
<td>42</td>
<td>;</td>
<td>300</td>
</tr>
<tr>
<td>1 ½</td>
<td>10</td>
<td>;</td>
<td>420</td>
</tr>
<tr>
<td>1 ½</td>
<td>42</td>
<td>;</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>;</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>;</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>;</td>
<td>420</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>;</td>
<td>150</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>;</td>
<td>360</td>
</tr>
<tr>
<td>2 1/2</td>
<td>2</td>
<td>;</td>
<td>100</td>
</tr>
<tr>
<td>2 1/2</td>
<td>8</td>
<td>;</td>
<td>300</td>
</tr>
<tr>
<td>2 1/2</td>
<td>10</td>
<td>;</td>
<td>420</td>
</tr>
<tr>
<td>2 1/2</td>
<td>42</td>
<td>;</td>
<td>150</td>
</tr>
<tr>
<td>2 1/2</td>
<td>10</td>
<td>;</td>
<td>360</td>
</tr>
<tr>
<td>2 1/2</td>
<td>42</td>
<td>;</td>
<td>150</td>
</tr>
<tr>
<td>2 1/2</td>
<td>10</td>
<td>;</td>
<td>360</td>
</tr>
<tr>
<td>2 1/2</td>
<td>42</td>
<td>;</td>
<td>150</td>
</tr>
<tr>
<td>2 1/2</td>
<td>10</td>
<td>;</td>
<td>360</td>
</tr>
</tbody>
</table>
916.2 Vents other than stack vents or vent stacks. The diameter of individual vents, branch vents, circuit vents and relief vents shall be at least one-half the required diameter of the drain served. The required size of the drain shall be determined in accordance with Table 710.1(2). Vent pipes shall not be less than 1 ¼ inches (32 mm) in diameter. Vents exceeding 40 feet (12 192 mm) in developed length shall be increased by one nominal pipe size for the entire developed length of the vent pipe. Relief vents for soil and waste stacks in buildings having more than 10 branch intervals shall be sized in accordance with Section 914.2.

916.3 Developed length. The developed length of individual, branch, circuit and relief vents shall be measured from the farthest point of vent connection to the drainage system to the point of connection to the vent stack, stack vent or termination outside of the building.

916.4 Multiple branch vents. Where multiple branch vents are connected to a common branch vent, the common branch vent shall be sized in accordance with this section based on the size of the common horizontal drainage branch that is or would be required to serve the total drainage fixture unit (dfu) load being vented.

916.4.1 Branch vents exceeding 40 feet in developed length. Branch vents exceeding 40 feet (12 192 mm) in developed length shall be increased by one nominal size for the entire developed length of the vent pipe.
916.5 Sump vents. Sump vent sizes shall be determined in accordance with Sections 916.5.1 and 917.6.2.

916.5.1 Sewage pumps and sewage ejectors other than pneumatic. Drainage piping below sewer level shall be vented in a similar manner to that of a gravity system. Building sump vent sizes for sumps with sewage pumps or sewage ejectors, other than pneumatic, shall be determined in accordance with Table 916.5.1.

916.5.2 Pneumatic sewage ejectors. The air pressure relief pipe from a pneumatic sewage ejector shall be connected to an independent vent stack terminating as required for vent extensions through the roof. The relief pipe shall be sized to relieve air pressure inside the ejector to atmospheric pressure, but shall not be less than 1\(\frac{1}{4}\) inches (32 mm) in size.

SECTION 917
AIR ADMITTANCE VALVES

917.1 General. Vent systems utilizing air admittance valves shall comply with this section and Section 903.1. Stack-type air admittance valves shall conform to ASSE 1050. Individual and branch-type air admittance valves shall conform to ASSE 1051.

917.2 Installation. The valves shall be installed in accordance with the requirements of this section and the manufacturer’s installation instructions. Air admittance valves shall be installed after the DWV testing required by Section 312.2 or 312.3 has been performed.

TABLE 916.5.1
SIZE AND LENGTH OF SUMP VENTS

<table>
<thead>
<tr>
<th>DISCHARGE CAPACITY OF PUMP (gpm)</th>
<th>1(\frac{1}{4})</th>
<th>1(\frac{1}{2})</th>
<th>2</th>
<th>2(\frac{1}{2})</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>No limitb</td>
<td>No limit</td>
<td>No limit</td>
<td>No limit</td>
<td>No limit</td>
<td>No limit</td>
</tr>
<tr>
<td>20</td>
<td>270</td>
<td>No limit</td>
<td>No limit</td>
<td>No limit</td>
<td>No limit</td>
<td>No limit</td>
</tr>
<tr>
<td>40</td>
<td>72</td>
<td>160</td>
<td>No limit</td>
<td>No limit</td>
<td>No limit</td>
<td>No limit</td>
</tr>
<tr>
<td>60</td>
<td>31</td>
<td>75</td>
<td>270</td>
<td>No limit</td>
<td>No limit</td>
<td>No limit</td>
</tr>
<tr>
<td>80</td>
<td>16</td>
<td>41</td>
<td>150</td>
<td>380</td>
<td>No limit</td>
<td>No limit</td>
</tr>
<tr>
<td>100</td>
<td>10(\frac{1}{2})</td>
<td>25</td>
<td>97</td>
<td>250</td>
<td>No limit</td>
<td>No limit</td>
</tr>
<tr>
<td>150</td>
<td>Not permitted</td>
<td>10(\frac{1}{2})</td>
<td>44</td>
<td>110</td>
<td>370</td>
<td>No limit</td>
</tr>
<tr>
<td>200</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>20</td>
<td>60</td>
<td>210</td>
<td>No limit</td>
</tr>
<tr>
<td>250</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>10</td>
<td>36</td>
<td>132</td>
<td>No limit</td>
</tr>
<tr>
<td>300</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>10(\frac{1}{2})</td>
<td>22</td>
<td>88</td>
<td>380</td>
</tr>
<tr>
<td>400</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>10(\frac{1}{2})</td>
<td>44</td>
<td>210</td>
</tr>
<tr>
<td>500</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>24</td>
<td>130</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 gallon per minute = 3.785 L/min.
a. Developed length plus an appropriate allowance for entrance losses and friction due to fittings, changes in direction and diameter. Suggested allowances shall be obtained from NSB Monograph 31 or other approved sources. An allowance of 50 percent of the developed length shall be assumed if a more precise value is not available.

b. Actual values greater than 500 feet.

c. Less than 10 feet.

917.3 Where permitted. Individual, branch and circuit vents shall be permitted to terminate with a connection to an individual or branch-type air admittance valve. Stack vents and vent stacks shall be permitted to terminate to stack-type air admittance valves. Individual and branch-type air admittance valves shall vent only fixtures that are on the same floor level and connect to a horizontal branch drain. The horizontal branch drain having individual and branch-type air admittance valves shall conform to Section 917.3.1 or 917.3.2. Stack-type air admittance valves shall conform to Section 917.3.3.

917.3.1 Location of branch. The horizontal branch drain shall connect to the drainage stack or building drain a maximum of four branch intervals from the top of the stack.

917.3.2 Relief vent. Where the horizontal branch is located more than four branch intervals from the top of the stack, the horizontal branch shall be provided with a relief vent that shall connect to a vent stack or stack vent, or extend outdoors to the open air. The relief vent shall connect to the horizontal branch drain between the stack and the most downstream fixture drain connected to the horizontal branch drain. The relief vent shall be sized in accordance with Section 916.2 and installed in accordance with Section 905. The relief vent shall be permitted to serve as the vent for other fixtures.

917.3.3 Stack. Stack-type air admittance valves shall not serve as the vent terminal for vent stacks or stack vents that serve drainage stacks having more than six branch intervals.

917.4 Location. Individual and branch-type air admittance valves shall be located a minimum of 4 inches (102 mm) above the horizontal branch drain or fixture drain being vented. Stack-type air admittance valves shall be located not less than 6 inches (152 mm) above the flood level rim of the highest fixture being vented. The air admittance valve shall be located within the maximum developed length permitted for the vent. The air admittance valve shall be installed a minimum of 6 inches (152 mm) above insulation materials.

917.5 Access and ventilation. Access shall be provided to all air admittance valves. The valve shall be located within a ventilated space that allows air to enter the valve.

917.6 Size. The air admittance valve shall be rated in accordance with the standard for the size of the vent to which the valve is connected.

917.7 Vent required. Within each plumbing system, a minimum of one stack vent or vent stack shall extend outdoors to the open air.

917.8 Prohibited installations. Air admittance valves shall not be installed in nonneutralized special waste systems as described in Chapter 8. Air admittance valves shall not be located in spaces utilized as supply or return air plenums or where limited by the manufacturer’s installation instructions. Air admittance valves without an engineered design shall not be utilized to vent sumps or tanks of any type.
SECTION 918
ENGINEERED VENT SYSTEMS

918.1 General. Engineered vent systems shall comply with this section and the design, submittal, approval, inspection and testing requirements of Section 106.7 of the building code.

918.2 Individual branch fixture and individual fixture header vents. The maximum developed length of individual fixture vents to vent branches and vent headers shall be determined in accordance with Table 918.2 for the minimum pipe diameters at the indicated vent airflow rates.

The individual vent airflow rate shall be determined in accordance with the following:

\[Q_{h,b} = N_{n,b} Q_v \] \hspace{1cm} (Equation 9-1)

For SI: \(Q_{h,b} = N_{n,b} Q_v (0.4719 \text{ L/s}) \)

where:

- \(N_{n,b} \) = Number of fixtures per header (or vent branch) ÷ total number of fixtures connected to vent stack.
- \(Q_{h,b} \) = Vent branch or vent header airflow rate (cfm).
- \(Q_v \) = Total vent stack airflow rate (cfm).

\[Q_v (\text{gpm}) = 27.8 r_s^{2/3} \left(1 - r_s\right) D^{8/3} \]
\[Q_v (\text{cfm}) = 0.134 Q_v (\text{gpm}) \]

where:

- \(D \) = Drainage stack diameter (inches).
- \(Q_w \) = Design discharge load (gpm).
- \(r_s \) = Waste water flow area to total area.
 \[r_s = Q_w / 27.8 D^{8/3} \]

Individual vent airflow rates are obtained by equally distributing \(Q_{h,b} \) into one-half the total number of fixtures on the branch or header for more than two fixtures; for an odd number of total fixtures, decrease by one; for one fixture, apply the full value of \(Q_{h,b} \).

Individual vent developed length shall be increased by 20 percent of the distance from the vent stack to the fixture vent connection on the vent branch or header.

SECTION 919
COMPUTERIZED VENT DESIGN

919.1 Design of vent system. The sizing, design and layout of the vent system shall be permitted to be determined by approved computer program design methods.

919.2 System capacity. The vent system shall be based on the air capacity requirements of the drainage system under a peak load condition.
TABLE 918.2
MINIMUM DIAMETER AND MAXIMUM LENGTH OF INDIVIDUAL BRANCH FIXTURE VENTS AND INDIVIDUAL FIXTURE HEADER VENTS FOR SMOOTH PIPES

<table>
<thead>
<tr>
<th>DIAMETER OF VENT (INCHES)</th>
<th>INDIVIDUAL VENT AIRFLOW RATE (CUBIC FEET PER MINUTE)</th>
<th>Maximum developed length of vent (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1/4</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>3/4</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1/4</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1/2</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>2/3</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 cubic foot per minute = 0.4719 L/s, 1 foot = 304.8 mm.
4101:3-10-01 Traps, interceptors and separators.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 1001
GENERAL

1001.1 Scope. This chapter shall govern the material and installation of traps, interceptors and separators when installed inside a building and not on the building sewer. The rules of the “Ohio Environmental Protection Agency” may also govern the design and installation of pretreatment devices such as traps, interceptors, and separators.

SECTION 1002
TRAP REQUIREMENTS

1002.1 Fixture traps. Each plumbing fixture shall be separately trapped by a liquid-seal trap, except as otherwise permitted by this code. The vertical distance from the fixture outlet to the trap weir shall not exceed 24 inches (610 mm), and the horizontal distance shall not exceed 30 inches (610 mm) measured from the centerline of the fixture outlet to the centerline of the inlet of the trap. The height of a clothes washer standpipe above a trap shall conform to Section 802.4. A fixture shall not be double trapped.

Exceptions:
1. This section shall not apply to fixtures with integral traps.
2. A combination plumbing fixture is permitted to be installed on one trap, provided that one compartment is not more than 6 inches (152 mm) deeper than the other compartment and the waste outlets are not more than 30 inches (762 mm) apart.
3. A grease interceptor intended to serve as a fixture trap in accordance with the manufacturer’s installation instructions shall be permitted to serve as the trap for a single fixture or a combination sink of not more than three compartments where the vertical distance from the fixture outlet to the inlet of the interceptor does not exceed 30 inches (762 mm) and the developed length of the waste pipe from the most upstream fixture outlet to the inlet of the interceptor does not exceed 60 inches (1524 mm).

1002.2 Design of traps. Fixture traps shall be self-scouring. Fixture traps shall not have interior partitions, except where such traps are integral with the fixture or where such traps are constructed of an approved material that is resistant to corrosion and degradation. Slip joints shall be made with an approved elastomeric gasket and shall be installed only on the trap inlet, trap outlet and within the trap seal.

1002.3 Prohibited traps. The following types of traps are prohibited:
1. Traps that depend on moving parts to maintain the seal.
2. Bell traps.
4. Traps not integral with a fixture and that depend on interior partitions for the seal, except those traps constructed of an approved material that is resistant to corrosion and degradation.
5. “S” traps.
6. Drum traps.
 Exception: Drum traps used as solids interceptors and drum traps serving chemical waste systems shall not be prohibited.

1002.4 Trap seals. Each fixture trap shall have a liquid seal of not less than 2 inches (51 mm) and not more than 4 inches (102 mm), or deeper for special designs relating to accessible fixtures. Where a trap seal is subject to loss by evaporation, a trap seal primer valve shall be installed. Trap seal primer valves shall connect to the trap at a point above the level of the trap seal. A trap seal primer valve shall conform to ASSE 1018 or ASSE 1044.
 Exception: Where a fixture trap is supplied with water on a regular basis, a trap seal primer valve shall not be required.

1002.5 Size of fixture traps. Fixture trap size shall be sufficient to drain the fixture rapidly and not less than the size indicated in Table 709.1. A trap shall not be larger than the drainage pipe into which the trap discharges.

1002.6 Building traps. Building (house) traps shall be prohibited, except where local conditions necessitate such traps. Building traps shall be provided with a cleanout and a relief vent or fresh air intake on the inlet side of the trap. The size of the relief vent or fresh air intake shall not be less than one-half the diameter of the drain to which the relief vent or air intake connects. Such relief vent or fresh air intake shall be carried above grade and shall be terminated in a screened outlet located outside the building.

1002.7 Trap setting and protection. Traps shall be set level with respect to the trap seal and, where necessary, shall be protected from freezing.

1002.8 Recess for trap connection. A recess provided for connection of the underground trap, such as one serving a bathtub in slab-type construction, shall have sides and a bottom of corrosion-resistant, insect- and verminproof construction.

1002.9 Acid-resisting traps. Where a vitrified clay or other brittleware, acid-resisting trap is installed underground, such trap shall be embedded in concrete extending 6 inches (152 mm) beyond the bottom and sides of the trap.

1002.10 Plumbing in mental health centers. In mental health centers, pipes and traps shall not be exposed.

SECTION 1003

INTERCEPTORS AND SEPARATORS

1003.1 Where required. Where required by the local sewer purveyor or as otherwise required in this section, interceptors and separators shall be provided to prevent the discharge of oil, grease, sand and other substances harmful or hazardous to the building drainage system, the public sewer, the private sewage disposal system or the sewage treatment plant or processes.

1003.1.1 Industrial processes, meat packing and food processing facilities. Wastes from industrial processes, meat packing and food processing facilities and similar processing plants shall be drained in accordance with the rules of the “Ohio Environmental Protection Agency”, or the authority in charge of the sewerage system into which the wastes are to be discharged. (See sections 6111.44 and 6111.45 of the Revised Code.)
1003.2 Approval. The size, type and location of each interceptor and of each separator shall be designed and installed in accordance with the manufacturer’s instructions and the requirements of this section based on the anticipated conditions of use. Wastes that do not require treatment or separation shall not be discharged into any interceptor or separator.

1003.3 Grease interceptors. Grease interceptors shall comply with the requirements of Sections 1003.3.1 through 1003.3.5.

1003.3.1 Grease interceptors and automatic grease removal devices required. A grease interceptor or automatic grease removal device shall be required to receive the drainage from fixtures and equipment with grease-laden waste located in food preparation areas, such as in restaurants, hotel kitchens, hospitals, school kitchens, bars, factory cafeterias and clubs. Fixtures and equipment shall include pot sinks, prerinse sinks; soup kettles or similar devices; wok stations; floor drains or sinks into which kettles are drained; automatic hood wash units and dishwashers without prerinse sinks. Grease interceptors and automatic grease removal devices shall receive waste only from fixtures and equipment that allow fats, oils or grease to be discharged.

1003.3.2 Food waste grinders. Where food waste grinders connect to grease interceptors, a solids interceptor shall separate the discharge before connecting to the grease interceptor. Solids interceptors and grease interceptors shall be sized and rated for the discharge of the food waste grinder. Emulsifiers, chemicals, enzymes and bacteria shall not discharge into the food waste grinder.

1003.3.3 Grease interceptors and automatic grease removal devices not required. A grease interceptor or an automatic grease removal device shall not be required for individual dwelling units or any private living quarters.

1003.3.4 Grease interceptors and automatic grease removal devices. Grease interceptors and automatic grease removal devices shall be sized in accordance with PDI G101, ASME A112.14.3 Appendix A, or ASME A112.14.4. Grease interceptors and automatic grease removal devices shall be designed and tested in accordance with PDI G101, ASME A112.14.3 or ASME A112.14.4. Grease interceptors and automatic grease removal devices shall be installed in accordance with the manufacturer’s instructions.

Exception: Interceptors that have a volume of not less than 500 gallons (1893 L) and that are located outdoors shall not be required to meet the requirements of this section.

1003.3.4.1 Grease interceptor capacity. Grease interceptors shall have the grease retention capacity indicated in Table 1003.3.4.1 for the flow-through rates indicated.

1003.3.4.2 Rate of flow controls. Grease interceptors shall be equipped with devices to control the rate of water flow so that the water flow does not exceed the rated flow. The flow-control device shall be vented and terminate not less than 6 inches (152 mm) above the flood rim level or be installed in accordance with the manufacturer’s instructions.

1003.3.5 Automatic grease removal devices. Where automatic grease removal devices are installed, such devices shall be located downstream of each fixture or multiple fixtures in accordance with the manufacturer’s instructions. The automatic grease removal device shall be sized to pretreat the measured or calculated flows for all connected fixtures or equipment. Ready access shall be provided for inspection and maintenance.

1003.4 Oil separators required. At repair garages, car-washing facilities, and at factories where oily and flammable liquid wastes are produced, separators shall be installed into which all oil-bearing, grease-bearing or flammable wastes shall be discharged before emptying into the building drainage system or other point of disposal.
TABLE 1003.3.4.1
CAPACITY OF GREASE INTERCEPTORS\(^a\)

<table>
<thead>
<tr>
<th>TOTAL FLOW-THROUGH RATING (gpm)</th>
<th>GREASE RETENTION CAPACITY (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>14</td>
<td>28</td>
</tr>
<tr>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>36</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>35</td>
<td>70</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
</tbody>
</table>

For SI: 1 gallon per minute = 3.785 L/m, 1 pound = 0.454 kg.
\(^a\) For total flow-through ratings greater than 100 (gpm), double the flow-through rating to determine the grease retention capacity (pounds).

1003.4.1 Separation of liquids. A mixture of treated or untreated light and heavy liquids with various specific gravities shall be separated in an approved receptacle.

1003.4.2 Oil separator design. Oil separators shall be designed in accordance with Sections 1003.4.2.1 and 1003.4.2.2.

1003.4.2.1 General design requirements. Oil separators shall have a depth of not less than 2 feet (610 mm) below the invert of the discharge drain. The outlet opening of the separator shall have not less than an 18-inch (457 mm) water seal.

1003.4.2.2 Garages and service stations. Where automobiles are serviced, greased, repaired or washed or where gasoline is dispensed, oil separators shall have a minimum capacity of 6 cubic feet (0.168 m\(^3\)) for the first 100 square feet (9.3 m\(^2\)) of area to be drained, plus 1 cubic foot (0.28 m\(^3\)) for each additional 100 square feet (9.3 m\(^2\)) of area to be drained into the separator. Parking garages in which servicing, repairing or washing is not conducted, and in which gasoline is not dispensed, shall not require a separator. Areas of commercial garages utilized only for storage of automobiles are not required to be drained through a separator.

1003.5 Sand interceptors in commercial establishments. Sand and similar interceptors for heavy solids shall be designed and located so as to be provided with ready access for cleaning, and shall have a water seal of not less than 6 inches (152 mm).
1003.6 Laundries. Laundry facilities not installed within an individual dwelling unit or intended for individual family use shall be equipped with an interceptor with a wire basket or similar device, removable for cleaning, that prevents passage into the drainage system of solids $\frac{1}{2}$ inch (12.7 mm) or larger in size, string, rags, buttons or other materials detrimental to the public sewage system.

1003.7 Bottling establishments. Bottling plants shall discharge process wastes into an interceptor that will provide for the separation of broken glass or other solids before discharging waste into the drainage system.

1003.8 Slaughterhouses. Slaughtering room and dressing room drains shall be equipped with approved separators. The separator shall prevent the discharge into the drainage system of feathers, entrails and other materials that cause clogging.

1003.9 Venting of interceptors and separators. Interceptors and separators shall be designed so as not to become air bound where tight covers are utilized. Each interceptor or separator shall be vented where subject to a loss of trap seal.

1003.10 Access and maintenance of interceptors and separators. Access shall be provided to each interceptor and separator for service and maintenance. Interceptors and separators shall be maintained by periodic removal of accumulated grease, scum, oil, or other floating substances and solids deposited in the interceptor or separator.

SECTION 1004
MATERIALS, JOINTS AND CONNECTIONS

1004.1 General. The materials and methods utilized for the construction and installation of traps, interceptors and separators shall comply with this chapter and the applicable provisions of Chapters 4 and 7. The fittings shall not have ledges, shoulders or reductions capable of retarding or obstructing flow of the piping.
4101:3-11-01 Storm drainage.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 1101
GENERAL

1101.1 Scope. The provisions of this chapter shall govern the materials, design, construction and installation of storm drainage.

1101.2 Where required. All roofs, paved areas, yards, courts and courtyards in buildings shall drain into a separate storm sewer system, or a combined sewer system, or to an approved place of disposal. For one-and two-, and three- family dwellings, and where approved, storm water is permitted to discharge onto flat areas, such as streets or lawns, provided that the storm water flows away from the building.

1101.3 Prohibited drainage. Storm water shall not be drained into sewers intended for sewage only.

1101.4 Tests. The conductors and the building storm drain shall be tested in accordance with Section 312.

1101.5 Change in size. The size of a drainage pipe shall not be reduced in the direction of flow.

1101.6 Fittings and connections. All connections and changes in direction of the storm drainage system shall be made with approved drainage-type fittings in accordance with Table 706.3. The fittings shall not obstruct or retard flow in the system.

1101.7 Roof design. Roofs shall be designed for the maximum possible depth of water that will pond thereon as determined by the relative levels of roof deck and overflow weirs, scuppers, edges or serviceable drains in combination with the deflected structural elements. In determining the maximum possible depth of water, all primary roof drainage means shall be assumed to be blocked.

1101.8 Cleanouts required. Cleanouts shall be installed in the storm drainage system and shall comply with the provisions of this code for sanitary drainage.
pipe cleanouts.

Exception: Subsurface drainage system.

1101.9 Backwater valves. Storm drainage systems shall be provided with backwater valves as required for sanitary drainage systems in accordance with Section 715.

SECTION 1102

MATERIALS

1102.1 General. The materials and methods utilized for the construction and installation of storm drainage systems shall comply with this section and the applicable provisions of Chapter 7.

1102.2 Inside storm drainage conductors. Inside storm drainage conductors installed above ground shall conform to one of the standards listed in Table 702.1.

1102.3 Underground building storm drain pipe. Underground building storm drain pipe shall conform to one of the standards listed in Table 702.2.

1102.4 Building storm sewer pipe. Building storm sewer pipe shall conform to one of the standards listed in Table 1102.4.

TABLE 1102.4

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylonitrile butadiene styrene (ABS) plastic pipe</td>
<td>ASTM D 2661; ASTM D 2751; ASTM F 628; CAN/CSA B181.1; CAN/CSA B182.1</td>
</tr>
<tr>
<td>Asbestos-cement pipe</td>
<td>ASTM C 428</td>
</tr>
<tr>
<td>Cast-iron pipe</td>
<td>ASTM A 74; ASTM A 888; CISPI 301</td>
</tr>
<tr>
<td>Concrete pipe</td>
<td>ASTM C 14; ASTM C 76; CAN/CSA A257.1M; CAN/CSA A257.2M</td>
</tr>
<tr>
<td>Copper or copper-alloy tubing (Type K, L, M or DWV)</td>
<td>ASTM B 75; ASTM B 88; ASTM B 251; ASTM B 306</td>
</tr>
<tr>
<td>Polyethylene (PE) plastic pipe</td>
<td>ASTM F 2306/F 2306M</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC) plastic pipe (Type DWV, SDR26, SDR35, SDR41, PS50 or PS100)</td>
<td>ASTM D 2665; ASTM D 3034; ASTM F 891; CSA B182.4; CSA B181.2; CSA B182.2</td>
</tr>
<tr>
<td>Vitrified clay pipe</td>
<td>ASTM C 4; ASTM C 700</td>
</tr>
</tbody>
</table>
Stainless steel drainage systems, Type 316L

ASME A112.3.1

1102.5 Subsoil drain pipe. Subsoil drains shall be open-jointed, horizontally split or perforated pipe conforming to one of the standards listed in Table 1102.5.

TABLE 1102.5

SUBSOIL DRAIN PIPE

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asbestos-cement pipe</td>
<td>ASTM C 508</td>
</tr>
<tr>
<td>Cast-iron pipe</td>
<td>ASTM A 74; ASTM A 888; CISPI 301</td>
</tr>
<tr>
<td>Polyethylene (PE) plastic pipe</td>
<td>ASTM F 405; CAN/CSA B182.1; CSA B182.6; CAN/CSA B182.8</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC) Plastic pipe (type sewer pipe, PS25, PS50 or PS100)</td>
<td>ASTM D 2729; ASTM F 891; CSA B182.2; CAN/CSA B182.4</td>
</tr>
<tr>
<td>Stainless steel drainage systems, Type 316L</td>
<td>ASME A 112.3.1</td>
</tr>
<tr>
<td>Vitrified clay pipe</td>
<td>ASTM C 4; ASTM C 700</td>
</tr>
</tbody>
</table>

1102.6 Roof drains. Roof drains shall conform to ASME A112.21.2M or ASME A112.3.1.

1102.7 Fittings. Pipe fittings shall be approved for installation with the piping material installed, and shall conform to the respective pipe standards or one of the standards listed in Table 1102.7. The fittings shall not have ledges, shoulders or reductions capable of retarding or obstructing flow in the piping. Threaded drainage pipe fittings shall be of the recessed drainage type.

TABLE 1102.7

PIPE FITTINGS

<table>
<thead>
<tr>
<th>Material</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylonitrile butadiene styrene (ABS) plastic</td>
<td>ASTM D 2661; ASTM D 3311; CSA B181.1</td>
</tr>
<tr>
<td>Cast-iron</td>
<td>ASME B16.4; ASME B16.12; ASTM A 888; CISPI 301; ASTM A 74</td>
</tr>
<tr>
<td>Coextruded composite ABS sewer and drain DR-PS in PS35, PS50, PS100, PS140, PS200</td>
<td>ASTM D 2751</td>
</tr>
<tr>
<td>Coextruded composite ABS DWV Schedule 40 IPS pipe (solid or cellular core)</td>
<td>ASTM D 2661; ASTM D 3311; ASTM F 628</td>
</tr>
<tr>
<td>Coextruded composite PVC DWV Schedule 40 IPS-DR, PS140, PS200 (solid or cellular core)</td>
<td>ASTM D 2665; ASTM D 3311; ASTM F 891</td>
</tr>
<tr>
<td>Coextruded composite PVC sewer and drain DR-PS in PS35, PS50, PS100, PS140, PS200</td>
<td>ASTM D 3034</td>
</tr>
<tr>
<td>Copper or copper alloy</td>
<td>ASME B16.15; ASME B16.18; ASME B16.22;</td>
</tr>
</tbody>
</table>
SECTION 1103

TRAPS

1103.1 **Main trap.** Leaders and storm drains connected to a combined sewer shall be trapped. Individual storm water traps shall be installed on the storm water drain branch serving each conductor, or a single trap shall be installed in the main storm drain just before its connection with the combined building sewer or the public sewer.

1103.2 **Material.** Storm water traps shall be of the same material as the piping system to which they are attached.

1103.3 **Size.** Traps for individual conductors shall be the same size as the horizontal drain to which they are connected.

1103.4 **Cleanout.** An accessible cleanout shall be installed on the building side of the trap.

SECTION 1104

CONDUCTORS AND CONNECTIONS

1104.1 **Prohibited use.** Conductor pipes shall not be used as soil, waste or vent pipes, and soil, waste or vent pipes shall not be used as conductors.

1104.2 **Combining storm with sanitary drainage.** The sanitary and storm drainage systems of a structure shall be entirely separate except where combined sewer systems are utilized. Where a combined sewer is utilized, the building storm drain shall be connected to the sanitary sewer exterior to the building.

1104.3 **Floor drains.** Floor drains shall not be connected to a storm drain.

SECTION 1105
ROOF DRAINS

1105.1 Strainers. Roof drains shall have strainers extending not less than 4 inches (102 mm) above the surface of the roof immediately adjacent to the roof drain. Strainers shall have an available inlet area, above roof level, of not less than one and one-half times the area of the conductor or leader to which the drain is connected.

1105.2 Flat decks. Roof drain strainers for use on sun decks, parking decks and similar areas that are normally serviced and maintained shall comply with Section 1105.1 or shall be of the flat-surface type, installed level with the deck, with an available inlet area not less than two times the area of the conductor or leader to which the drain is connected.

1105.3 Roof drain flashings. The connection between roofs and roof drains which pass through the roof and into the interior of the building shall be made water-tight by the use of approved flashing material.

SECTION 1106
SIZE OF CONDUCTORS, LEADERS AND STORM DRAINS

1106.1 General. The size of the vertical conductors and leaders, building storm drains, building storm sewers, and any horizontal branches of such drains or sewers shall be based on the 100-year hourly rainfall rate indicated in Figure 1106.1 or on other rainfall rates determined from approved local weather data.
FIGURE 1106.1
100-YEAR, 1-HOUR RAINFALL (INCHES) EASTERN UNITED STATES
For SI: 1 inch = 25.4 mm.
TABLE 1106.2(1)
SIZE OF CIRCULAR VERTICAL CONDUCTORS AND LEADERS

<table>
<thead>
<tr>
<th>DIAMETER OF LEADER (inches)*</th>
<th>HORIZONTALLY PROJECTED ROOF AREA (square feet)</th>
<th>Rainfall rate (inches per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2,880</td>
<td>1,440</td>
</tr>
<tr>
<td>3</td>
<td>8,800</td>
<td>4,400</td>
</tr>
<tr>
<td>4</td>
<td>18,400</td>
<td>9,200</td>
</tr>
<tr>
<td>5</td>
<td>34,600</td>
<td>17,300</td>
</tr>
<tr>
<td>6</td>
<td>54,000</td>
<td>27,000</td>
</tr>
<tr>
<td>8</td>
<td>116,000</td>
<td>58,000</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square foot = 0.0929 m².

a. Sizes indicated are the diameter of circular piping. This table is applicable to piping of other shapes, provided the cross-sectional shape fully encloses a circle of the diameter indicated in this table. For rectangular leaders, see Table 1106.2(2). Interpolation is permitted for pipe sizes that fall between those listed in this table.

TABLE 1106.2(2)
SIZE OF RECTANGULAR VERTICAL CONDUCTORS AND LEADERS

<table>
<thead>
<tr>
<th>DIMENSIONS OF COMMON LEADER SIZES width x length (inches)*</th>
<th>HORIZONTALLY PROJECTED ROOF AREA (square feet)</th>
<th>Rainfall rate (inches per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1 ¾ × 2 ½</td>
<td>3,410</td>
<td>1,700</td>
</tr>
<tr>
<td>2 × 3</td>
<td>5,540</td>
<td>2,770</td>
</tr>
<tr>
<td>2 ½ × 4 ¼</td>
<td>12,830</td>
<td>6,410</td>
</tr>
<tr>
<td>3 × 4</td>
<td>13,210</td>
<td>6,600</td>
</tr>
<tr>
<td>3 ½ × 4</td>
<td>15,900</td>
<td>7,950</td>
</tr>
<tr>
<td>3 ½ × 5</td>
<td>21,310</td>
<td>10,650</td>
</tr>
<tr>
<td>3 ¼ × 4 ¾</td>
<td>21,960</td>
<td>10,980</td>
</tr>
</tbody>
</table>
a. Sizes indicated are nominal width × length of the opening for rectangular piping.
b. For shapes not included in this table, Equation 11-1 shall be used to determine the equivalent circular diameter, D_e, of rectangular piping for use in interpolation using the data from Table 1106.2(1).

$$D_e = \sqrt{\frac{\text{width} \times \text{length}}{2}}$$ (Equation 11-1)

where:

D_e = equivalent circular diameter and D_e width and length are in inches.

1106.2 Vertical conductors and leaders. Vertical conductors and leaders shall be sized for the maximum projected roof area, in accordance with Tables 1106.2(1) and 1106.2(2).

1106.3 Building storm drains and sewers. The size of the building storm drain, building storm sewer and their horizontal branches having a slope of one-half unit or less vertical in 12 units horizontal (4-percent slope) shall be based on the maximum projected roof area in accordance with Table 1106.3. The minimum slope of horizontal branches shall be one-eighth unit vertical in 12 units horizontal (1-percent slope) unless otherwise approved.

1106.4 Vertical walls. In sizing roof drains and storm drainage piping, one-half of the area of any vertical wall that diverts rainwater to the roof shall be added to the projected roof area for inclusion in calculating the required size of vertical conductors, leaders and horizontal storm drainage piping.

1106.5 Parapet wall scupper location. Parapet wall roof drainage scupper and overflow scupper location shall comply with the requirements of the building code.

1106.6 Size of roof gutters. The size of semicircular gutters shall be based on the maximum projected roof area in accordance with Table 1106.6.

SECTION 1107
SECONDARY (EMERGENCY) ROOF DRAINS

1107.1 Secondary drainage required. Secondary (emergency) roof drains or
scuppers shall be provided where the roof perimeter construction extends above
the roof in such a manner that water will be entrapped if the primary drains allow
buildup for any reason.

1107.2 Separate systems required. Secondary roof drain systems shall have the
end point of discharge separate from the primary system. Discharge shall be
above grade, in a location that would normally be observed by the building
occupants or maintenance personnel.

1107.3 Sizing of secondary drains. Secondary (emergency) roof drain systems
shall be sized in accordance with Section 1106 based on the rainfall rate for which
the primary system is sized in Tables 1106.2, 1106.3 and 1106.6. Scuppers shall
be sized to prevent the depth of ponding water from exceeding that for which the
roof was designed as determined by Section 1101.7. Scuppers shall not have an
opening dimension of less than 4 inches (102 mm). The flow through the primary
system shall not be considered when sizing the secondary roof drain system.

TABLE 1106.3
SIZE OF HORIZONTAL STORM DRAINAGE PIPING

<table>
<thead>
<tr>
<th>SIZE OF HORIZONTAL PIPING (inches)</th>
<th>HORIZONTALLY PROJECTED ROOF AREA (square feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rainfall rate (inches per hour)</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1/8 unit vertical in 12 units horizontal (1-percent slope)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3,288</td>
</tr>
<tr>
<td>4</td>
<td>7,820</td>
</tr>
<tr>
<td>5</td>
<td>13,360</td>
</tr>
<tr>
<td>6</td>
<td>21,400</td>
</tr>
<tr>
<td>8</td>
<td>46,000</td>
</tr>
<tr>
<td>10</td>
<td>82,800</td>
</tr>
<tr>
<td>12</td>
<td>133,200</td>
</tr>
<tr>
<td>15</td>
<td>218,000</td>
</tr>
<tr>
<td>1/4 unit vertical in 12 units horizontal (2-percent slope)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4,640</td>
</tr>
<tr>
<td>4</td>
<td>10,600</td>
</tr>
<tr>
<td>5</td>
<td>18,880</td>
</tr>
<tr>
<td>6</td>
<td>30,200</td>
</tr>
<tr>
<td>8</td>
<td>65,200</td>
</tr>
<tr>
<td>10</td>
<td>116,800</td>
</tr>
<tr>
<td>12</td>
<td>188,000</td>
</tr>
<tr>
<td>15</td>
<td>336,000</td>
</tr>
<tr>
<td>1/2 unit vertical in 12 units horizontal (4-percent slope)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6,540</td>
</tr>
<tr>
<td>4</td>
<td>13,080</td>
</tr>
<tr>
<td>5</td>
<td>20,620</td>
</tr>
<tr>
<td>6</td>
<td>31,240</td>
</tr>
<tr>
<td>8</td>
<td>62,480</td>
</tr>
<tr>
<td>10</td>
<td>124,960</td>
</tr>
<tr>
<td>12</td>
<td>192,000</td>
</tr>
<tr>
<td>15</td>
<td>360,000</td>
</tr>
</tbody>
</table>
SECTION 1108
COMBINED SANITARY AND STORM SYSTEM

1108.1 Size of combined drains and sewers. Deleted.

SECTION 1109
VALUES FOR CONTINUOUS FLOW

1109.1 Equivalent roof area. Where there is a continuous or semicontinuous discharge into the building storm drain or building storm sewer, such as from a pump, ejector, air conditioning plant or similar device, each gallon per minute (L/m) of such discharge shall be computed as being equivalent to 96 square feet (9 m²) of roof area, based on a rainfall rate of 1 inch (25.4 mm) per hour.

TABLE 1106.6
SIZE OF SEMICIRCULAR ROOF GUTTERS

<table>
<thead>
<tr>
<th>DIAMETER OF GUTTERS (inches)</th>
<th>HORIZONTALLY PROJECTED ROOF AREA (square feet)</th>
<th>Rainfall rate (inches per hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/16 unit vertical in 12 units horizontal (0.5-percent slope)</td>
<td>1/8 unit vertical 12 units horizontal (1-percent slope)</td>
</tr>
<tr>
<td>3</td>
<td>680</td>
<td>340</td>
</tr>
<tr>
<td>4</td>
<td>1,440</td>
<td>720</td>
</tr>
<tr>
<td>5</td>
<td>2,500</td>
<td>1,250</td>
</tr>
<tr>
<td>6</td>
<td>3,840</td>
<td>1,920</td>
</tr>
<tr>
<td>7</td>
<td>5,520</td>
<td>2,760</td>
</tr>
<tr>
<td>8</td>
<td>7,960</td>
<td>3,980</td>
</tr>
<tr>
<td>10</td>
<td>14,400</td>
<td>7,200</td>
</tr>
</tbody>
</table>
SECTION 1110
CONTROLLED FLOW ROOF DRAIN SYSTEMS

1110.1 General. The roof of a structure shall be designed for the storage of water where the storm drainage system is engineered for controlled flow. The controlled flow roof drain system shall be an engineered system in accordance with this section and the design, submittal, approval, inspection and testing requirements of Sections 106.5, 107, and 108 of the building code and Section 312 of this code. The controlled flow system shall be designed based on the required rainfall rate in accordance with Section 1106.1.

1110.2 Control devices. The control devices shall be installed so that the rate of discharge of water per minute shall not exceed the values for continuous flow as indicated in Section 1109.1.

1110.3 Installation. Runoff control shall be by control devices. Control devices shall be protected by strainers.

1110.4 Minimum number of roof drains. Not less than two roof drains shall be installed in roof areas 10,000 square feet (929 m2) or less and not less than four...
roof drains shall be installed in roofs over 10,000 square feet \((929 \text{ m}^2)\) in area.

SECTION 1111
SUBSOIL DRAINS

1111.1 Subsoil drains. Subsoil drains shall be open-jointed, horizontally split or perforated pipe conforming to one of the standards listed in Table 1102.5. Such drains shall not be less than 4 inches \((102 \text{ mm})\) in diameter. Where the building is subject to backwater, the subsoil drain shall be protected by an accessibly located backwater valve. Subsoil drains shall discharge to a trapped area drain, sump, dry well or approved location above ground. The subsoil sump shall not be required to have either a gas-tight cover or a vent. The sump and pumping system shall comply with Section 1113.1.

SECTION 1112
BUILDING SUBDRAINS

1112.1 Building subdrains. Building subdrains located below the public sewer level shall discharge into a sump or receiving tank, the contents of which shall be automatically lifted and discharged into the drainage system as required for building sumps. The sump and pumping equipment shall comply with Section 1113.1.

SECTION 1113
SUMPS AND PUMPING SYSTEMS

1113.1 Pumping system. The sump pump, pit and discharge piping shall conform to Sections 1113.1.1 through 1113.1.4.

1113.1.1 Pump capacity and head. The sump pump shall be of a capacity and head appropriate to anticipated use requirements.

1113.1.2 Sump pit. The sump pit shall not be less than 18 inches \((457 \text{ mm})\) in diameter and 24 inches \((610 \text{ mm})\) deep, unless otherwise approved. The pit shall be accessible and located such that all drainage flows into the pit by gravity. The sump pit shall be constructed of tile, steel, plastic, cast-iron, concrete or other approved material, with a removable cover adequate to support anticipated loads in the area of use. The pit floor shall be solid and provide permanent support for the pump.
1113.1.3 Electrical. Electrical service outlets, when required, shall meet the requirements of NFPA 70.

1113.1.4 Piping. Discharge piping shall meet the requirements of Section 1102.2, 1102.3 or 1102.4 and shall include a full open valve and a full flow check valve. Pipe and fittings shall be the same size as, or larger than, pump discharge tapping.

Exception: In buildings where the “Residential Code of Ohio” applies, only a check valve shall be required, located on the discharge piping from the pump or ejector.

1113.1.5 Water-powered sump pumps. Water-powered sump pumps are only to be used as a secondary back-up pump for the subsoil drainage system and only with appropriate backflow protection in place as required by Section 608.
4101:3-12-01 Special piping and storage systems.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 1201

GENERAL

1201.1 Scope. The provisions of this chapter and Chapter 30 of the fire code shall govern the design and installation of piping and storage systems for nonflammable medical gas systems. All maintenance and operations of such systems shall be in accordance with Chapter 34 of the building code and the applicable chapters of the fire code.

SECTION 1202

MEDICAL GASES

1202.1 Nonflammable medical gases. Nonflammable medical gas systems, inhalation anesthetic systems and vacuum piping systems shall be designed and installed in accordance with NFPA 99C.

Exceptions:
1. This section shall not apply to portable systems or cylinder storage.
2. Deleted.

1202.2 Enforcement. Plan review and inspection of nonflammable medical gas and vacuum systems shall be performed by one of the following:

1. a building department certified to enforce medical gas systems and having in its employ or under contract a certified medical gas inspector; or

2. a local health district requesting enforcement responsibility and having in its employ or under contract a certified medical gas inspector; or

3. if a certified department does not hold the certification to enforce medical gas piping system requirements and a local health district does not request enforcement authority, then the enforcement shall be done by the division of industrial compliance in the department of commerce.

SECTION 1203

OXYGEN SYSTEMS

1203.1 Design and installation. Deleted.
4101:3-13-01 Referenced standards.

1301.1 General. This chapter lists the codes and standards that are referenced in various sections of this document. The standards are listed herein by the promulgating agency of the standard, the standard identification, the effective date, and the title. The application of the referenced standards shall be as specified in Section 102.5 of the building code.

1301.2 Referenced codes. When indicated in the “OPC”, the following codes refer to provisions in the listed chapters of the Administrative Code:

<table>
<thead>
<tr>
<th>Referenced code</th>
<th>Ohio Administrative Code chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Code</td>
<td>4101:1-1 to 4101:1-35</td>
</tr>
<tr>
<td>Fire Code</td>
<td>1301:7-1 to 1301:7-7</td>
</tr>
<tr>
<td>Mechanical Code</td>
<td>4101:2-1 to 4101:2-15</td>
</tr>
<tr>
<td>Ohio Boiler and Pressure Vessel Rules</td>
<td>4101:4-1 to 4101:4-10</td>
</tr>
</tbody>
</table>

1301.3 Referenced Standards.

ANSI American National Standards Institute
25 West 43rd Street, Fourth Floor
New York, NY 10036

<table>
<thead>
<tr>
<th>Standard Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A118.10-10</td>
<td>Specifications for Load Bearing, Bonded, Waterproof Membranes for Thin Set Ceramic Tile and Dimension Stone Installation</td>
</tr>
<tr>
<td>Z4.3—95 (R2005)</td>
<td>Minimum Requirements for Nonsewered Waste-Disposal Systems (Standard is developed by the Portable Sanitation Association International-PSAI)</td>
</tr>
<tr>
<td>Z124.1.2—05</td>
<td>Plastic Bathtub and Shower Units (Standard is developed by IAPMO)</td>
</tr>
<tr>
<td>Z124.3—05</td>
<td>Plastic Lavatories (Standard is developed by IAPMO)</td>
</tr>
<tr>
<td>Z124.4—06</td>
<td>Plastic Water Closet Bowls and Tanks (Standard is developed by IAPMO)</td>
</tr>
<tr>
<td>Z124.6—07</td>
<td>Plastic Sinks (Standard is developed by IAPMO)</td>
</tr>
<tr>
<td>Z124.9—04</td>
<td>Plastic Urinal Fixtures (Standard is developed by IAPMO)</td>
</tr>
</tbody>
</table>
AHRI
Air-Conditioning, Heating, & Refrigeration Institute

4100 North Fairfax Drive, Suite 200
Arlington, VA 22203

<table>
<thead>
<tr>
<th>Standard</th>
<th>Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1010—02 Self-contained, Mechanically Refrigerated Drinking-Water Coolers</td>
</tr>
</tbody>
</table>

ASME
American Society of Mechanical Engineers Three

Park Avenue
New York, NY 10016-5990

<table>
<thead>
<tr>
<th>Standard</th>
<th>Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A112.1.2—2004</td>
<td></td>
<td>Air Gaps in Plumbing Systems</td>
</tr>
<tr>
<td>A112.1.3—2000 (R 2005)</td>
<td></td>
<td>Air Gap Fittings for Use with Plumbing Fixtures, Appliances and Appurtenances</td>
</tr>
<tr>
<td>A112.3.1—2007</td>
<td></td>
<td>Stainless Steel Drainage Systems for Sanitary, DWV, Storm and Vacuum Applications Above and Below Ground</td>
</tr>
<tr>
<td>A112.3.4—2000 (R 2004)</td>
<td></td>
<td>Macerating Toilet Systems and Related Components</td>
</tr>
<tr>
<td>A112.4.1—2009</td>
<td></td>
<td>Water Heater Relief Valve Drain Tubes</td>
</tr>
<tr>
<td>A112.4.3—1999 (R 2004)</td>
<td></td>
<td>Plastic Fittings for Connecting Water Closets to the Sanitary Drainage System</td>
</tr>
<tr>
<td>A112.6.1M—1997 (R2002)</td>
<td></td>
<td>Floor-affixed Supports for Off-the-floor Plumbing Fixtures for Public Use</td>
</tr>
<tr>
<td>A112.6.2—2000 (R2004)</td>
<td></td>
<td>Framing-affixed Supports for Off-the-floor Water Closets with Concealed Tanks</td>
</tr>
<tr>
<td>A112.6.3—2001 (R 2007)</td>
<td></td>
<td>2001 Floor and Trench Drains</td>
</tr>
<tr>
<td>A112.6.7—2001 (R 2007)</td>
<td></td>
<td>Enameled and Epoxy-coated Cast-iron and PVC Plastic Sanitary Floor Sinks</td>
</tr>
<tr>
<td>A112.14.1—2003</td>
<td></td>
<td>Backwater Valves</td>
</tr>
<tr>
<td>A112.14.3—2000</td>
<td></td>
<td>Grease Interceptors</td>
</tr>
<tr>
<td>A112.18.1-2005</td>
<td></td>
<td>Plumbing Supply Fittings</td>
</tr>
<tr>
<td>CSA B125.1-2005/A112.18.2-2005 Plumbing Waste Fittings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSA B125.2-2005/A112.18.3-2002 Performance Requirements for Backflow Protection Devices and Systems in Plumbing Fixture Fittings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A112.18.6—2009</td>
<td></td>
<td>Flexible Water Connectors</td>
</tr>
<tr>
<td>A112.18.7—1999 (R2004)</td>
<td></td>
<td>Deck mounted Bath/Shower Transfer Valves with Integral Backflow Protection</td>
</tr>
<tr>
<td>A112.19.1M—2008</td>
<td></td>
<td>Enameled Cast Iron Plumbing Fixtures</td>
</tr>
<tr>
<td>A112.19.2—2008</td>
<td></td>
<td>Vitreous China Plumbing Fixtures and Hydraulic Requirements for Water Closets and Urinals</td>
</tr>
</tbody>
</table>
A112.19.3M—2008 Stainless Steel Plumbing Fixtures (Designed for Residential
Use
A112.19.5—2005 Trim for Water-closet Bowls, Tanks and Urinals
A112.19.6—1995 Hydraulic Performance Requirements for Water Closets and
Urinals
A112.19.7M—2006 Hydromassage Bathtub Appliances
A112.19.8M—2007 Suction Fittings for Use in Swimming Pools, Wading Pools,
Spas, Hot Tubs
Supplement
A112.19.12—2006 Wall Mounted and Pedestal Mounted, Adjustable, Elevating,
Tilting and Pivoting Lavatory, Sink and Shampoo Bowl
Carrier Systems and Drain Systems
A112.19.15—2005 Bathtub/Whirlpool Bathtubs with Pressure Sealed Doors
A112.19.19—2006 Vitreous China Nonwater Urinals
A112.21.2M—1983 Roof Drains
A112.36.2M—1991(R2002) Cleanouts
B1.20.1—1983(R2006) Pipe Threads, General Purpose (inch
B16.3—2006 Malleable Iron Threaded Fittings Classes 150 and 300
B16.4—2006 Gray Iron Threaded Fittings Classes 125 and 250
B16.12—2009 Cast-iron Threaded Drainage Fittings
B16.15—2006 Cast Bronze Threaded Fittings
B16.18—2001(R 2005) Cast Copper Alloy Solder Joint Pressure Fittings
B16.22—2001 (R2005) Wrought Copper and Copper Alloy Solder Joint Pressure
Fittings
B16.23—2002 (R 2006) Cast Copper Alloy Solder Joint Drainage Fittings DWV
B16.26—2006 Cast Copper Alloys Fittings for Flared Copper Tubes
B16.28—1994 Wrought Steel Buttwelding Short Radius Elbows and Returns
B16.29—2007 Wrought Copper and Wrought Copper Alloy Solder Joint
Drainage Fittings (DWV)
BPVC Section IX-2004 Welding and Brazing Qualifications.

ASSE American Society of Sanitary Engineering
901 Canterbury Road, Suite A
Westlake, OH 44145

<table>
<thead>
<tr>
<th>Standard</th>
<th>Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001—08</td>
<td>Performance Requirements for Atmospheric Type Vacuum Breakers</td>
<td></td>
</tr>
<tr>
<td>1002—08</td>
<td>Performance Requirements for Antisiphon Fill Valves (Ballcocks) for Gravity Water Closet Flush Tanks</td>
<td></td>
</tr>
</tbody>
</table>
Performance Requirements for Water Pressure Reducing Valves.
Performance Requirements for Backflow Prevention Requirements for Commercial Dishwashing Machines.
Performance Requirements for Water Heater Drain Valves.
Performance Requirements for Residential Use Dishwashers.
Performance Requirements for Home Laundry Equipment
Performance Requirements for Household Food Waste Disposer Units
Performance Requirements for Commercial Food Waste Grinder Units
Performance Requirements for Water Hammer Arresters
Performance Requirements for Hose Connection Vacuum Breakers
Performance Requirements for Backflow Preventers with Intermediate Atmospheric Vent.
Performance Requirements for Reduced Pressure Principle Backflow Preventers and Reduced Pressure Fire Protection Principle Backflow Preventers
Performance Requirements for Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies
Performance Requirements for Individual Thermostatic, Pressure Balancing and Combination Control Valves for Individual Fixture Fittings
Performance Requirements for Temperature Actuated Mixing Valves for Hot Water Distribution Systems.
Performance Requirements for Trap Seal Primer Valves; Potable Water Supplied
Performance Requirements for Vacuum Breaker Wall Hydrants, Freeze Resistant, Automatic Draining Type
Performance Requirements for Pressure Vacuum Breaker Assembly
Performance Requirements for Backflow Preventer for Beverage Dispensing Equipment
Performance Requirements for Dual Check Valve Type Backflow Preventers (for Residential Supply Service or Individual Outlets
Performance Requirements for Laboratory Faucet Backflow Preventers
Performance Requirements for Pressurized Flushing Devices for Plumbing Fixtures
Performance Requirements for Trap Seal Primer Devices Drainage Types and Electronic Design Types
Performance Requirements for Reduced Pressure Detector Fire Protection Backflow Prevention Assemblies
Performance Requirements for Double Check Detector Fire Protection Backflow Prevention Assemblies
Performance Requirements for Stack Air Admittance Valves for Sanitary Drainage Systems.
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1051—09</td>
<td>Performance Requirements for Individual and Branch Type Air Admittance Valves for Sanitary Drainage Systems—fixture and Branch Devices</td>
</tr>
<tr>
<td>1052—04</td>
<td>Performance Requirements for Hose Connection Backflow Preventers</td>
</tr>
<tr>
<td>1055—09</td>
<td>Performance Requirements for Chemical Dispensing Systems</td>
</tr>
<tr>
<td>1056—01</td>
<td>Performance Requirements for Spill Resistant Vacuum Breaker</td>
</tr>
<tr>
<td>1060—06</td>
<td>Performance Requirements for Outdoor Enclosures for Backflow Prevention Assemblies</td>
</tr>
<tr>
<td>1061—06</td>
<td>Performance Requirements for Removable and Nonremovable Push Fit Fittings</td>
</tr>
<tr>
<td>1062—06</td>
<td>Performance Requirements for Temperature Actuated, Flow Reduction Valves to Individual Fixture Fittings</td>
</tr>
<tr>
<td>1066—97</td>
<td>Performance Requirements for Individual Pressure Balancing In-line Valves for Individual Fixture Fittings</td>
</tr>
<tr>
<td>1069—05</td>
<td>Performance Requirements for Automatic Temperature Control Mixing Valves</td>
</tr>
<tr>
<td>1070—04</td>
<td>Performance Requirements for Water-temperature Limiting Devices</td>
</tr>
<tr>
<td>1072—07</td>
<td>Performance Requirements for Barrier Type Floor Drain Trap Seal Protection Devices</td>
</tr>
<tr>
<td>1079—05</td>
<td>Dielectric Pipe Unions</td>
</tr>
<tr>
<td>5013—09</td>
<td>Performance Requirements for Testing Reduced Pressure Principle Backflow Prevention Assembly (RPA) and Reduced Pressure Fire Protection Principle Backflow Preventers (RFP)</td>
</tr>
<tr>
<td>5015—09</td>
<td>Performance Requirements for Testing Double Check Valve Backflow Prevention Assembly (DCVA)</td>
</tr>
<tr>
<td>5020—09</td>
<td>Performance Requirements for Testing Pressure Vacuum Breaker Assembly (PVBA)</td>
</tr>
<tr>
<td>5047—09</td>
<td>Performance Requirements for Testing Reduced Pressure Detector Fire Protection Backflow Prevention Assemblies (RPDA)</td>
</tr>
<tr>
<td>5048—09</td>
<td>Performance Requirements for Testing Double Check Valve Detector Assembly (DCDA)</td>
</tr>
<tr>
<td>5052—09</td>
<td>Performance Requirements for Testing Hose Connection Backflow Preventers</td>
</tr>
<tr>
<td>5056—09</td>
<td>Performance Requirements for Testing Spill Resistant Vacuum Breaker</td>
</tr>
</tbody>
</table>

ASTM

ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959

<table>
<thead>
<tr>
<th>Standard</th>
<th>Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification Code</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>A 53/A 53M—10</td>
<td>Specification for Pipe, Steel, Black and Hot-dipped, Zinc-coated Welded and Seamless</td>
<td></td>
</tr>
<tr>
<td>A 74—09</td>
<td>Specification for Cast-iron Soil Pipe and Fittings</td>
<td></td>
</tr>
<tr>
<td>A 312/A 312M—09</td>
<td>Specification for Seamless and Welded Austenitic Stainless Steel Pipes</td>
<td></td>
</tr>
<tr>
<td>A 733—03 (2009)e1</td>
<td>Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples</td>
<td></td>
</tr>
<tr>
<td>A 778—01(2009)e1</td>
<td>Specification for Welded Unannealed Austenitic Stainless Steel Tubular Products</td>
<td></td>
</tr>
<tr>
<td>A 888—09</td>
<td>Specification for Hubless Cast-iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Application</td>
<td></td>
</tr>
<tr>
<td>B 32—08</td>
<td>Specification for Solder Metal</td>
<td></td>
</tr>
<tr>
<td>B 42—10</td>
<td>Specification for Seamless Copper Pipe, Standard Sizes</td>
<td></td>
</tr>
<tr>
<td>B 43—09</td>
<td>Specification for Seamless Red Brass Pipe, Standard Sizes</td>
<td></td>
</tr>
<tr>
<td>B 75—02</td>
<td>Specification for Seamless Copper Tube</td>
<td></td>
</tr>
<tr>
<td>B 88—09</td>
<td>Specification for Seamless Copper Water Tube</td>
<td></td>
</tr>
<tr>
<td>B 152/B 152M—09</td>
<td>Specification for Copper Sheet, Strip Plate and Rolled Bar</td>
<td></td>
</tr>
<tr>
<td>B 251—10</td>
<td>Specification for General Requirements for Wrought Seamless Copper and Copper-alloy Tube</td>
<td></td>
</tr>
<tr>
<td>B 302—07</td>
<td>Specification for Threadless Copper Pipe, Standard Sizes</td>
<td></td>
</tr>
<tr>
<td>B 306—09</td>
<td>Specification for Copper Drainage Tube (DWV)</td>
<td></td>
</tr>
<tr>
<td>B 447—07</td>
<td>Specification for Welded Copper Tube</td>
<td></td>
</tr>
<tr>
<td>B 687—99(2005)e01</td>
<td>Specification for Brass, Copper and Chromium-plated Pipe Nipples</td>
<td></td>
</tr>
<tr>
<td>B 813—10</td>
<td>Specification for Liquid and Paste Fluxes for Soldering of Copper and Copper Alloy Tube</td>
<td></td>
</tr>
<tr>
<td>B 828—02</td>
<td>Practice for Making Capillary Joints by Soldering of Copper and Copper Alloy Tube and Fittings.</td>
<td></td>
</tr>
<tr>
<td>C 14—07</td>
<td>Specification for Nonreinforced Concrete Sewer, Storm Drain and Culvert Pipe.</td>
<td></td>
</tr>
<tr>
<td>C 76—10a</td>
<td>Specification for Reinforced Concrete Culvert, Storm Drain and Sewer Pipe</td>
<td></td>
</tr>
<tr>
<td>C 296-00 (2009)e1</td>
<td>Specification for Asbestos-cement Pressure Pipe</td>
<td></td>
</tr>
<tr>
<td>C 443—05ae1</td>
<td>Specification for Joints for Concrete Pipe and Manholes, Using Rubber Gaskets</td>
<td></td>
</tr>
<tr>
<td>C 508-00 (2009)e1</td>
<td>Specification for Asbestos-cement Underdrain Pipe</td>
<td></td>
</tr>
<tr>
<td>C 564—09a</td>
<td>Specification for Rubber Gaskets for Cast-iron Soil Pipe and Fittings</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>C 1277—09a</td>
<td>Specification for Shielded Coupling Joining Hubless Cast-iron Soil Pipe and Fittings</td>
<td></td>
</tr>
<tr>
<td>C 1440—08</td>
<td>Specification for Thermoplastic Elastomeric (TPE) Gasket Materials for Drain, Waste, and Vent (DWV), Sewer, Sanitary and Storm Plumbing Systems</td>
<td></td>
</tr>
<tr>
<td>C 1460—08</td>
<td>Specification for Shielded Transition Couplings for Use with Dissimilar DWV Pipe and Fittings Above Ground</td>
<td></td>
</tr>
<tr>
<td>C 1461—08</td>
<td>Specification for Mechanical Couplings Using Thermoplastic Elastomeric (TPE) Gaskets for Joining Drain, Waste and Vent (DWV) Sewer, Sanitary and Storm Plumbing Systems for Above and Below Ground Use</td>
<td></td>
</tr>
<tr>
<td>C 1540—09a</td>
<td>Specification for Heavy Duty Shielded Couplings Joining Hubless Cast-iron Soil Pipe and Fittings</td>
<td></td>
</tr>
<tr>
<td>D 1785—06</td>
<td>Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80 and 120</td>
<td></td>
</tr>
<tr>
<td>D 1869—95(2005)e1</td>
<td>Specification for Rubber Rings for Asbestos-cement Pipe</td>
<td></td>
</tr>
<tr>
<td>D 2239—03</td>
<td>Specification for Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameter</td>
<td></td>
</tr>
<tr>
<td>D 2241—09</td>
<td>Specification for Poly (Vinyl Chloride) (PVC) Pressure-rated Pipe (SDR-Series)</td>
<td></td>
</tr>
<tr>
<td>D 2464—06</td>
<td>Specification for Threaded Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80</td>
<td></td>
</tr>
<tr>
<td>D 2466—06</td>
<td>Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 40</td>
<td></td>
</tr>
<tr>
<td>D 2467—06</td>
<td>Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80</td>
<td></td>
</tr>
<tr>
<td>D 2468—96a</td>
<td>Specification for Acrylonitrile-Butadiene-Styrene (ABS) Plastic Pipe Fittings, Schedule 40</td>
<td></td>
</tr>
<tr>
<td>D 2564—04 (2009) e01</td>
<td>Specification for Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Piping Systems</td>
<td></td>
</tr>
<tr>
<td>D 2657—07</td>
<td>Practice for Heat Fusion-joining of Polyolefin Pipe and Fittings</td>
<td></td>
</tr>
<tr>
<td>D 2661—08</td>
<td>Specification for Acrylonitrile-Butadiene-Styrene (ABS) Schedule 40 Plastic Drain, Waste, and Vent Pipe and Fittings</td>
<td></td>
</tr>
</tbody>
</table>
D 2683—10 Standard Specification for Socket-type Polyethylene fittings for Outside Diameter-controlled Polyethylene Pipe and Tubing
D 2729—03 Specification for Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings
D 2737—03 Specification for Polyethylene (PE) Plastic Tubing
D 2751—05 Specification for Acrylonitrile-Butadiene-Styrene (ABS) Sewer Pipe and Fittings
D 2846/D 2846M—09b Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Hot and Cold Water Distribution Systems
D 3034—08 Specification for Type PSM Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings
D 3035-08 Standard Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside Diameter
D 3212—07 Specification for Joints for Drain and Sewer Plastic Pipes Using Flexible Elastomeric Seals
D 3311—06a09a Specification for Drain, Waste and Vent (DWV) Plastic Fittings Patterns
D 4068—09 Specification for Chlorinated Polyethylene (CPE) Sheeting for Concealed Water-containment Membrane
D 4551—96(2008) e1 Specification for Poly (Vinyl Chloride) (PVC) Plastic Flexible Con Painment Membrane
F 405—05 Specification for Corrugated Polyethylene (PE) Tubing and Fittings
F 437—09 Specification for Threaded Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80
F 438—09 Specification for Socket-type Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 40
F 441/F 441M—09 Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80
F 442/F 442M—09 Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe (SDR-PR)
F 477—10 Specification for Elastic Seals (Gaskets) for Joining Plastic Pipe
F 493—10 Specification for Solvent Cements for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe and Fittings
<table>
<thead>
<tr>
<th>ASTM Code</th>
<th>Standard Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 628—08</td>
<td>Specification for Acrylonitrile-Butadiene-Styrene (ABS) Schedule 40 Plastic Drain, Waste, and Vent Pipe with a Cellular Core</td>
</tr>
<tr>
<td>F 656—10</td>
<td>Specification for Primers for Use in Solvent Cement Joints of Poly (Vinyl Chloride) (PVC) Plastic Pipe and Fittings</td>
</tr>
<tr>
<td>F 714—08</td>
<td>Specification for Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter</td>
</tr>
<tr>
<td>F 876—10</td>
<td>Specification for Cross-linked Polyethylene (PEX) Tubing</td>
</tr>
<tr>
<td>F 877—07</td>
<td>Specification for Cross-linked Polyethylene (PEX) Plastic Hot and Cold Water Distribution Systems</td>
</tr>
<tr>
<td>F 891—10</td>
<td>Specification for Coextruded Poly (Vinyl Chloride) (PVC) Plastic Pipe with a Cellular Core</td>
</tr>
<tr>
<td>F 1055—98(2006)</td>
<td>Standard Specification for Electrofusion Type Polyethylene Fittings for Outside Diameter Controlled Polyethylene Pipe and Tubing</td>
</tr>
<tr>
<td>F 1281—07</td>
<td>Specification for Cross-linked Polyethylene/Aluminum/Cross-linked Polyethylene (PEX-AL-PEX) Pressure Pipe</td>
</tr>
<tr>
<td>F 1282—10</td>
<td>Specification for Polyethylene/Aluminum/Polyethylene (PE-AL-PE) Composite Pressure Pipe</td>
</tr>
<tr>
<td>F 1412—09</td>
<td>Specification for Polyolefin Pipe and Fittings for Corrosive Waste Drainage</td>
</tr>
<tr>
<td>F 1488—09</td>
<td>Specification for Coextruded Composite Pipe</td>
</tr>
<tr>
<td>F 1673—10</td>
<td>PolyvinylideneFluoride (PVDF) Corrosive Waste Drainage</td>
</tr>
<tr>
<td>F 1807—07</td>
<td>Specification for Metal Insert Fittings Utilizing a Copper Crimp Ring for SDR9 Cross-linked Polyethylene (PEX) Tubing</td>
</tr>
<tr>
<td>F 1866—07</td>
<td>Specification for Poly (Vinyl Chloride) (PVC) Plastic Schedule 40 Drainage and DWV Fabricated Fittings</td>
</tr>
<tr>
<td>F 1960—10</td>
<td>Specification for Cold Expansion Fittings with PEX Reinforcing Rings for use with Cross-linked Polyethylene (PEX) Tubing</td>
</tr>
<tr>
<td>F 1974—09</td>
<td>Specification for Metal Insert Fittings for Polyethylene/Aluminum/Polyethylene and Cross-linked Polyethylene/Aluminum/Cross-linked Polyethylene Composite Pressure Pipe</td>
</tr>
<tr>
<td>F 1986—01(2006)</td>
<td>Specification for Multilayer Pipe, Type 2, Compression Fittings and Compression Joints for Hot and Cold Drinking Water Systems,</td>
</tr>
<tr>
<td>F 2080—09</td>
<td>Specifications for Cold-expansion Fittings with Metal Compression-sleeves for Cross-linked Polyethylene (PEX) Pipe</td>
</tr>
<tr>
<td>F 2098—08</td>
<td>Standard specification for Stainless Steel Clamps for Securing SDR9 Cross-linked Polyethylene (PEX) Tubing to Metal Insert Fittings</td>
</tr>
<tr>
<td>F 2159—10</td>
<td>Specification for Plastic Insert Fittings Utilizing a Copper Crimp Ring for SDR9 Cross-linked Polyethylene (PEX) Tubing</td>
</tr>
<tr>
<td>F 2262—09</td>
<td>Specification for Cross-linked Polyethylene/Aluminum/Cross-linked Polyethylene Tubing OD Controlled SDR9</td>
</tr>
</tbody>
</table>
F 2306/F 2306M-08 12" to 60" Annular Corrugated Profile-wall Polyethylene (PE) Pipe and Fittings for Gravity Flow Storm Sewer and Subsurface Drainage Applications
F 2389—10 Specification for Pressure-rated Polypropylene (PP) Piping Systems

AWS American Welding Society
550 N.W. LeJeune Road
Miami, FL 33126

<table>
<thead>
<tr>
<th>Standard Referred</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5.8—04</td>
<td>Specifications for Filler Metals for Brazing and Braze Welding</td>
</tr>
</tbody>
</table>

AWWA American Water Works Association
6666 West Quincy Avenue
Denver, CO 80235

<table>
<thead>
<tr>
<th>Standard Referred</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>C104/A21.4-08</td>
<td>Standard for Cement-mortar Lining for Ductile-iron Pipe and Fittings for Water</td>
</tr>
<tr>
<td>C110/A21.10—08</td>
<td>Standard for Ductile-iron and Gray-iron Fittings, 3 Inches through 48 Inches, for Water</td>
</tr>
<tr>
<td>C111/A21.11-06</td>
<td>Standard for Rubber-gasket Joints for Ductile-iron Pressure Pipe and Fittings</td>
</tr>
<tr>
<td>C115/A21.15—05</td>
<td>Standard for Flanged Ductile-iron Pipe with Ductile-iron or Gray-iron Threaded Flanges</td>
</tr>
<tr>
<td>C151/A21.51—09</td>
<td>Standard for Ductile-iron Pipe, Centrifugally Cast for Water</td>
</tr>
<tr>
<td>C153/A21.53—06</td>
<td>Standard for Ductile-iron Compact Fittings for Water Service</td>
</tr>
<tr>
<td>C510—07</td>
<td>Double Check Valve Backflow Prevention Assembly</td>
</tr>
<tr>
<td>C511—07</td>
<td>Reduced-pressure Principle Backflow Prevention Assembly</td>
</tr>
<tr>
<td>C651—05</td>
<td>Disinfecting Water Mains</td>
</tr>
<tr>
<td>C652—02</td>
<td>Disinfection of Water-storage Facilities</td>
</tr>
</tbody>
</table>
CISPI
Cast Iron Soil Pipe Institute
5959 Shallowford Road, Suite 419
Chattanooga, TN 37421

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>301—09</td>
<td>Specification for Hubless Cast-iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste and Vent Piping Applications</td>
</tr>
<tr>
<td>310—09</td>
<td>Specification for Coupling for Use in Connection with Hubless Cast-iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste and Vent Piping Applications</td>
</tr>
</tbody>
</table>

CSA
Canadian Standards Association
5060 Spectrum Way,
Mississauga, Ontario, Canada L4W 5N6

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>B45.1—02 (R2008)</td>
<td>Ceramic Plumbing Fixtures.</td>
</tr>
<tr>
<td>B45.2—02 (R2008)</td>
<td>Enameled Cast-iron Plumbing Fixtures</td>
</tr>
<tr>
<td>B45.3—02 (R2008)</td>
<td>Porcelain Enamelled Steel Plumbing Fixtures</td>
</tr>
<tr>
<td>B45.4—02 (R2008)</td>
<td>Stainless-steel Plumbing Fixtures</td>
</tr>
<tr>
<td>B45.5—02 (R2008)</td>
<td>Plastic Plumbing Fixtures</td>
</tr>
<tr>
<td>B45.9—99 (R2008)</td>
<td>Macerating Systems and Related Components</td>
</tr>
<tr>
<td>B64.1.2—07</td>
<td>Vacuum Breakers, Pressure Type (PVB)</td>
</tr>
<tr>
<td>B64.2.1—07</td>
<td>Vacuum Breakers, Hose Connection Type (HCVB) with Manual Draining Feature</td>
</tr>
<tr>
<td>B64.2.1—07</td>
<td>Vacuum Breakers, Hose Connection Dual Check Type (HCDVB)</td>
</tr>
<tr>
<td>B64.4.1—07</td>
<td>Backflow Preventers, Reduced Pressure Principle Type for Fire Sprinklers (RPF)</td>
</tr>
<tr>
<td>B64.5—07</td>
<td>Backflow Preventers, Double Check Type (DCVA)</td>
</tr>
<tr>
<td>B64.5.1—07</td>
<td>Backflow Preventers, Double Check Type for Fire Systems (DCVAF)</td>
</tr>
<tr>
<td>B64.6—07</td>
<td>Backflow Preventers, Dual Check Valve Type (DuC)</td>
</tr>
<tr>
<td>B64.7—07</td>
<td>Vacuum Breakers, Laboratory Faucet Type (LFVB)</td>
</tr>
<tr>
<td>B64.10/B64.10.1—07</td>
<td>Manual for the Selection and Installation of Backflow Prevention Devices/Manual for the Maintenance and Field Testing of Backflow Prevention Devices</td>
</tr>
<tr>
<td>B79—08</td>
<td>Floor, Area and Shower Drains, and Cleanouts for Residential Construction</td>
</tr>
<tr>
<td>B125—01</td>
<td>Plumbing Fittings</td>
</tr>
<tr>
<td>B125.3—2005</td>
<td>Plumbing Fittings</td>
</tr>
</tbody>
</table>
B137.1-09 Polyethylene Pipe, Tubing and Fittings for Cold Water Pressure Services
B137.2-09 PVC Injection-moulded Gasketed Fittings for Pressure Applications
B137.3-09 Rigid Poly (Vinyl Chloride) (PVC) Pipe for Pressure Applications
B137.5-09 Cross-linked Polyethylene (PEX) Tubing Systems for Pressure Applications—with Revisions through September 1992
B137.6-09 CPVC Pipe, Tubing and Fittings for Hot and Cold Water Distribution Systems—with Revisions through May 1986
B137.11—02 Polypropylene (PP-R) Pipe and Fittings for Pressure Applications
B181.1—06 ABS Drain, Waste and Vent Pipe and Pipe Fittings
B181.2—06 PVC Drain, Waste, and Vent Pipe and Pipe Fittings—with Revisions through December 1993
B182.1—06 Plastic Drain and Sewer Pipe and Pipe Fittings
B182.2—06 PVC Sewer Pipe and Fittings (PSM Type)
B182.4—06 Profile PVC Sewer Pipe and Fittings
B182.6—06 Profile Polyethylene Sewer Pipe and Fittings for Leak-proof Sewer Applications
B182.8—06 Profile Polyethylene Storm Sewer and Drainage Pipe and Fittings
CAN/CSA-A257.1M—09 Circular Concrete Culvert, Storm Drain, Sewer Pipe and Fittings
CAN/CSA-A257.2M—09 Reinforced Circular Concrete Culvert, Storm Drain, Sewer Pipe and Fittings
CAN/CSA-A257.3M—09 Joints for Circular Concrete Sewer and Culvert Pipe, Manhole Sections and Fittings Using Rubber Gaskets
CAN/CSA-B64.1.1—07 Vacuum Breakers, Atmospheric Type (AVB)
CAN/CSA-B64.2—07 Vacuum Breakers, Hose Connection Type (HCVB)
CAN/CSA-B64.2.2—07 Vacuum Breakers, Hose Connection Type (HCVB) with Automatic Draining Feature
CAN/CSA-B64.3—07 Backflow Preventers, Dual Check Valve Type with Atmospheric Port (DCAP)
CAN/CSA-B64.4—07 Backflow Preventers, Reduced Pressure Principle Type (RP)
CAN/CSA-B64.10—07 Manual for the Selection, Installation, Maintenance and Field Testing of Backflow Prevention Devices
CAN/CSA-B137.9—09 Polyethylene/Aluminum/Polyethylene Composite Pressure Pipe Systems
CAN/CSA-B137.10M—09 Cross-linked Polyethylene/Aluminum/Polyethylene Composite Pressure Pipe Systems
CAN/CSA-B181.3—06 Polyolefin Laboratory Drainage Systems
CAN/CSA-B182.4—06 Profile PVC Sewer Pipe and Fittings
CAN/CSA-B602—10 Mechanical Couplings for Drain, Waste and Vent Pipe and Sewer Pipe

ICC International Code Council, Inc.
<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFGC—09</td>
<td>International Fuel Gas Code (including ICC Emergency Amendment changing IFGC Sections 406.7)</td>
</tr>
</tbody>
</table>

ISEA International Safety Equipment Association
1901 N. Moore Street, Suite 808
Arlington, VA 22209

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z358.1—09</td>
<td>Emergency Eyewash and Shower Equipment</td>
</tr>
</tbody>
</table>

NFPA National Fire Protection Association
1 Batterymarch Park
Quincy, MA 02169-7471

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>70—11</td>
<td>National Electrical Code</td>
</tr>
<tr>
<td>99C—05</td>
<td>Gas and Vacuum Systems</td>
</tr>
</tbody>
</table>

NSF NSF International
789 Dixboro Road
Ann Arbor, MI 48105

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3—2009</td>
<td>Commercial Warewashing Equipment</td>
</tr>
<tr>
<td>14—2010</td>
<td>Plastic Piping System Components and Related Materials</td>
</tr>
<tr>
<td>18—2009</td>
<td>Manual Food and Beverage Dispensing Equipment</td>
</tr>
<tr>
<td>42—2009</td>
<td>Drinking Water Treatment Units—Aesthetic Effects</td>
</tr>
<tr>
<td>44—2009</td>
<td>Residential Cation Exchange Water Softeners</td>
</tr>
<tr>
<td>53—2009e</td>
<td>Drinking Water Treatment Units—Health Effects,</td>
</tr>
<tr>
<td>58—2009</td>
<td>Reverse Osmosis Drinking Water Treatment Systems</td>
</tr>
<tr>
<td>61—2010a</td>
<td>Drinking Water System Components—Health Effects</td>
</tr>
<tr>
<td>62—2009</td>
<td>Drinking Water Distillation Systems</td>
</tr>
<tr>
<td>Standard</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL 508—99</td>
<td>Industrial Control Equipment with Revision through July 2005</td>
</tr>
</tbody>
</table>