July 2018

At its meeting on July 13, 2018, the Ohio Board of Building Standards adopted the rule changes identified as Amendments Group 95. These rule amendments were adopted with an **effective date of August 1, 2018**.

Amendments Group 95 included the amended Ohio Building Code rules shown below. For your use, the complete text of the final-filed amended rules can be found following this coversheet.

<table>
<thead>
<tr>
<th>Rule Number</th>
<th>Action</th>
<th>Certification Rule Title</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>4101:1-1-01</td>
<td>Amend</td>
<td>Administration.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:1-2-01</td>
<td>Amend</td>
<td>Definitions.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:1-3-01</td>
<td>Amend</td>
<td>Use and occupancy classification.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:1-7-01</td>
<td>Amend</td>
<td>Fire and smoke protection features.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:1-9-01</td>
<td>Amend</td>
<td>Fire protection systems.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:1-10-01</td>
<td>Amend</td>
<td>Means of egress.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:1-16-01</td>
<td>Amend</td>
<td>Structural design.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:1-22-01</td>
<td>Amend</td>
<td>Steel.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:1-23-01</td>
<td>Amend</td>
<td>Wood.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:1-25-01</td>
<td>Amend</td>
<td>Gypsum board, gypsum panel products and plaster.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:1-26-01</td>
<td>Amend</td>
<td>Plastic.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:1-34-01</td>
<td>Amend</td>
<td>Existing buildings and structures.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:1-35-01</td>
<td>Amend</td>
<td>Referenced standards.</td>
<td>August 1, 2018</td>
</tr>
</tbody>
</table>

Reason for Changes: The Board amended the Ohio Administrative Code rules as follows: 4101:1-1-01 to clarify intent of exemption for signs, retaining walls, bridges, walkways or site stairs; add an exception for primitive transient lodging structures that are 400 sq. ft. or less in area; and modify charging paragraph to clarify intent of “Work exempt from approval”, 4101:1-2-01 to modify definitions to incorporate ICC errata and adds definitions for primitive transient lodging structure, semi-primitive lodging structure, and transient lodging structure, 4101:1-3-01 to incorporate ICC Errata; clarify that certain Boarding Houses and Congregate Living facilities with transient occupants would not be classified as Group R-1; add requirements for transient lodging structures; add pointer to SFM licensing requirements; add requirements for semi-primitive transient lodging structures that are 400 sq. ft. or smaller; add requirements for primitive or semi-primitive transient lodging structures that are greater than 400 sq. ft. in area; clarify the classification of Boarding Houses and Congregate Living facilities with 10 or fewer occupants; clarify the classification of Boarding Houses and Congregate Living facilities; clarify the classification of Boarding Houses and Congregate Living facilities with 16 or fewer occupants; clarify the classification of Boarding Houses and Congregate Living facilities; clarify that an owner-occupied lodging house with 5 or fewer guest rooms is Group R-3; clarify that some Group R-3 occupancies may use the RCO; and clarify the classification of Boarding Houses and Congregate Living facilities with more than 16 occupants, 4101:1-7-01 to
incorporate ICC Errata; bring back the reference to NFPA 221 which recognizes cantilevered fire walls and tied fire walls; incorporate language from approved petition 17-01 prescribing damper access door requirements; and delete ICC Exception #2 as a result of broader new Ohio Exception #6 for smoke dampers, 4101:1-9-01 to incorporate provisions to promote fire/building official coordination; incorporate ICC Errata; and add language from approved petition 17-05 removing fire extinguisher exception 1.1 for Groups A, B and E and adds another option for Group E (exception 1.2 from 2018 IBC), 4101:1-10-01 to incorporate ICC Errata; and brings back the “Luminous Egress Path Markings” section, including the subsections, but clarifies that the markings are not mandatory, 4101:1-16-01 to incorporate ICC Errata and bring back reference to AWC WFCM, 4101:1-22-01 to delete requirement for certificate of compliance; and to bring back reference to AISI S230 for townhouses, 4101:1-23-01 to bring back reference to AWC WFCM, 4101:1-25-01 to incorporate ICC Errata, 4101:1-26-01 to incorporate ICC Errata, 4101:1-34-01 to correct code references; renumber sections 3401.4 - 3401.6 to 3401.3 - 3401.5 and corrects the internal references to those sections due to incorrect section numbering in the original rule (missing Section 3401.3); add a new section which references ACI 562 for the design of concrete repairs and rehabilitation; clarify that newer existing buildings undergoing a proposed change of occupancy can be evaluated using the methodology found in Section 3412; bring in 2015 IEBC text for I-2 smoke compartments; add Group I-2 and category f from 2015 IEBC in Table 3412.6.8; add Category f from 2015 IEBC in Section 3412.6.8.1; bring in 2015 IEBC text for Group I-2 in Table 3412.6.9; bring in 2015 IEBC text for Group I-2 in Tables 3412.6.10 and 3412.6.11, and 4101:1-35-01 to update references to ACI, AWC, NFPA, and TMS standards.

If you should have any questions regarding these rule changes, please call BBS staff at (614)644-2613.
4101:1-1-01 Administration.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:1-35-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

Section 101
General

101.1 Title. Chapters 4101:1-1 to 4101:1-35 of the Administrative Code shall be designated as the “Ohio Building Code” for which the designation “OBC” may be substituted. The “International Building Code 2015, first printing, Chapters 2 to 35,” as published by the “International Code Council, Inc.” is used as the basis of this document. References in these chapters to “this code” or to the “building code” in other sections of the Administrative Code shall mean the “Ohio Building Code.”

101.2 Scope. The provisions of the “Ohio Building Code”, the “Ohio Mechanical Code”, and the “Ohio Plumbing Code” shall apply to the construction, alteration, movement, enlargement, replacement, repair, equipment, use and occupancy, location, maintenance, removal and demolition of every building or structure or any appurtenances connected or attached to such buildings or structures. As provided in division (B) of section 3791.04 of the Revised Code, no plans or specifications shall be approved or inspection approval given unless the building represented by those plans or specifications would, if constructed, repaired, erected, or equipped according to those plans or specifications, comply with Chapters 3781. and 3791. of the Revised Code and any rules adopted by the board. An owner may exceed the requirements of the “Ohio Building Code” in compliance with section 102.9. This code applies to detached one-, two-, and three-family dwellings and structures accessory to those dwellings only to the extent indicated in section 310 of this code.

Exceptions:

1. Detached one-, two-, or three-family dwellings, structures accessory to those dwellings, or those single-family dwellings with five or fewer persons receiving care in a supervised environment but capable of self-preservation with or without limited verbal or physical assistance are within the scope of the “Residential Code of Ohio for One-, Two-, or Three-Family Dwellings”.
2. **Buildings owned by and used for a function of the United States government.**

3. **Buildings or structures which are incident to the use for agricultural purposes of the land on which said buildings or structures are located, provided such buildings or structures are not used in the business of retail trade; for the purposes of this section, a building or structure is not considered used in the business of retail trade if fifty per cent or more of the gross income received from sales of products in the building or structure by the owner or operator is from sales of products produced or raised in a normal crop year on farms owned or operated by the seller (see sections 3781.06 and 3781.061 of the Revised Code).**

4. **Agricultural labor camps.**

5. **Type A or Type B family day-care homes, except for the inspection required for licensure by the “Ohio Department of Jobs and Family Services (ODJFS)”. This required inspection shall be conducted by the certified building department having jurisdiction or the division of industrial compliance and labor in accordance with the inspection checklist found on the board of building standard’s website.**

6. **Buildings or structures which are designed, constructed, and maintained in accordance with federal standards and regulations and are used primarily for federal and state military purposes where the U.S. secretary of defense, pursuant to 10 U.S.C. Sections 18233(A)(1) and 18237, has acquired by purchase, lease, or transfer, and constructs, expands, rehabilitates, or corrects and equips, such buildings or structures as he determines to be necessary to carry out the purposes of Chapter 1803 of the U.S.C.**

7. **Manufactured homes constructed under “24 CFR Part 3280,” “Manufactured Home Construction and Safety Standards” and within the scope of the rules adopted by the Ohio Manufactured Home Commission, including additions, alterations and all utility connections from the utility service point to the manufactured home. This exception does not apply to changes of occupancy of manufactured homes, except that a manufactured home located within a manufactured home park and used by the park operator to promote the sale/rental of manufactured homes in that park remains exempt.**

8. **Sewerage systems, treatment works, and disposal systems (tanks, piping, and process equipment associated with these systems) regulated by the legislative authority of a municipal corporation or the governing board of a county or special district owning or operating a publicly owned treatment works or sewerage system as stated in division (A) of section 6111.032 of the Revised Code, however, a building that houses such process equipment is within the scope of this code.**

9. **Building sewer piping.**
10. Amusement rides and portable electric generators and wiring supplying carnival and amusement rides regulated by the Ohio Department of Agriculture pursuant to sections 1711.50 to 1711.57 of the Revised Code.

11. Structures on the premises of and directly related to the operation of a generating plant defined as a major utility facility regulated by the power siting board, including the structures associated with generation, transmission, and distribution. As a condition of the power siting board’s approval, the building department may be requested to review and inspect these structures for compliance with the rules of the board of building standards. However, the building department has no enforcement authority.

12. Structures associated with pipelines used for the transmission of natural gas and other hydrocarbons.

13. Public water systems (the tanks, foundations, piping, and process equipment associated with these systems) regulated by the Ohio Environmental Protection Agency in accordance with division (A) of section 6109.07 of the Revised Code, however, a building that houses such process equipment is within the scope of this code.

14. Private water systems (the tanks, foundations, piping, and process equipment associated with these systems) regulated by the Ohio Department of Health in accordance with section 3701.344 of the Revised Code, however, a building that houses such process equipment is within the scope of this code.

15. Fixed or floating docks (including the electrical wiring, lighting, and fire protection systems serving the docks) at marinas or boatyards, unless the docks directly serve as a means of egress from, or an accessible route to, a regulated building located at the marina or boatyard.

16. Portable mobile vehicles which have been issued a Vehicle Identification Number (VIN) by the United States department of transportation. The vehicles have wheels and license plates and are intended for transportation on the public streets and highways. Examples of the exempt vehicles include, but are not limited to, recreational vehicles, book mobiles, blood mobiles, mobile medical imaging units, mobile concession trailers, network television transmission and production trailers used at sporting events, mobile restroom facilities, mobile pet grooming units, etc.

17. Wind turbines, pumps, site lighting, and flagpoles not connected to building services equipment.

18. Mine elevator shafts and structures.

19. Ground signs. Unless otherwise required by this code, ground signs not over six feet in height above the adjacent grade.

20. Oil or gas beam pumping units and derricks.
22. Retaining walls, bridges, walkways or site stairs are not unless associated with a building or building egress or necessary for the building or the building egress to comply with the rules of the board.
23. Primitive transient lodging structures with only provisions for sleeping, with no building services equipment or piping, and not greater than 400 sq. ft. in area.

101.2.1 Appendices. The content of the appendices to the Administrative Code is not adopted material but is approved by the board of building standards and provided as a reference for code users.

101.3 Intent. The purpose of this code is to establish uniform minimum requirements for the erection, construction, repair, alteration, and maintenance of buildings, including construction of industrialized units. Such requirements shall relate to the conservation of energy, safety, and sanitation of buildings for their intended use and occupancy with consideration for the following:

1. Performance. Establish such requirements, in terms of performance objectives for the use intended.
2. Extent of use. Permit to the fullest extent feasible, the use of materials and technical methods, devices, and improvements which tend to reduce the cost of construction without affecting minimum requirements for the health, safety, and security of the occupants of buildings without preferential treatment of types or classes of materials or products or methods of construction.
3. Standardization. To encourage, so far as may be practicable, the standardization of construction practices, methods, equipment, material and techniques, including methods employed to produce industrialized units.

The rules of the board and proceedings shall be liberally construed in order to promote its purpose. When the building official finds that the proposed design is a reasonable interpretation of the provisions of this code, it shall be approved. Materials, equipment and devices approved by the building official pursuant to section 114 shall be constructed and installed in accordance with such approval.

101.4 Referenced codes. The other codes listed in sections 101.4.1 to 101.4.7 and referenced elsewhere in this code shall be considered part of the requirements of this code to the prescribed extent of each such reference.

101.4.1 Mechanical. Chapters 4101:2-1 to 4101:2-15 of the Administrative Code, designated as the “Ohio Mechanical Code,” shall apply to the
installation, alterations, repairs, and replacement of mechanical systems, including equipment, appliances, fixtures, fittings and/or appurtenances, including ventilating, heating, cooling, air-conditioning and refrigeration systems, incinerators, and other energy-related systems.

101.4.2 Plumbing. Chapters 4101:3-1 to 4101:3-15 of the Administrative Code, designated as the “Ohio Plumbing Code,” shall apply to the installation, alterations, repairs and replacement of plumbing systems, including equipment, appliances, fixtures, fittings and appurtenances, and where connected to a water or sewerage system and all aspects of a medical gas system.

101.4.3 Elevator. The provisions of the “Ohio Elevator Code” (Chapters 4101:5-1 to 4101:5-3 of the Administrative Code) shall apply to the design, construction, repair, alteration and maintenance of elevators and other lifting devices as listed and defined therein.

101.4.4 Fire prevention. The provisions of the “Ohio Fire Code” (Chapters 1301:7-1 to 1301:7-7 of the Administrative Code) shall apply to the preventive measures which provide for fire-safe conduct and operations in buildings and includes the maintenance of fire-detection, fire alarm, and fire extinguishing equipment and systems, exit facilities, opening protectives, safety devices, good housekeeping practices and fire drills.

101.4.5 Boiler. The provisions of the “Ohio Boiler and Pressure Vessel Rules” (Chapters 4101:4-1 to 4101:4-10 of the Administrative Code) shall apply to the design, construction, repair, alteration and maintenance of boilers and unfired pressure vessels as listed and defined therein.

Section 102
Applicability and Jurisdictional Authority

102.1 General. Where, in any specific case, different sections of this code specify different materials, methods of construction or other requirements, the most restrictive shall govern. Where there is a conflict between a general requirement and a specific requirement, the specific requirement shall be applicable.

102.2 Other laws. The provisions of this code shall not be deemed to nullify any provisions of state or federal law. Municipal corporations may make further and additional regulations, not in conflict with Chapters 3781. and 3791. of the Revised Code or with the rules of the board of building standards. However approval by the board of building standards of any fixture, device, material, system, assembly
or product of a manufacturing process, or method or manner of construction or installation shall constitute approval for their use anywhere in Ohio.

102.3 Other rules. As provided in division (B) of section 3781.11 of the Revised Code, the rules of the board of building standards shall supersede and govern any order, standard, or rule of the divisions of the fire marshal or industrial compliance in the department of commerce, and the department of health and of counties and townships, in all cases where such orders, standards or rules are in conflict with the rules of the board of building standards, except that rules adopted and orders issued by the fire marshal pursuant to Chapter 3743. of the Revised Code prevail in the event of a conflict.

There may be other requirements owners may be required to meet as set forth by other licensing agencies such as the Ohio State Fire Marshal, Ohio Department of Health, the Ohio Department of Jobs and Family Services, Ohio Department of Mental Health and Addiction Services, Ohio Department of Developmental Disabilities, federal agencies, or other licensing authorities. Owners and designers should investigate these additional licensing agency requirements to ensure they are incorporated into the building design before submitting to the certified building department for plan approval.

The rules of the board of building standards adopted pursuant to section 3781.10 of the Revised Code shall govern any rule or standard adopted by the board pursuant to sections 4104.02 and 4105.011 of the Revised Code.

102.4 Application of references. References to chapter or section numbers, or to provisions not specifically identified by number, shall be construed to refer to such chapter, section or provision of this code.

102.5 Referenced codes and standards. When a reference is made within the building, mechanical, or plumbing codes to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in Chapter 35 of the building code, Chapter 15 of the mechanical code, or Chapter 15 of the plumbing code.

The codes and standards referenced in the building, mechanical, and plumbing codes shall be considered part of the requirements of these codes as though the text were printed in this code, to the prescribed extent of each such reference. Where differences occur between provisions of these codes and the referenced standards, the provisions of these codes shall apply.
102.6 Partial invalidity. In the event any part or provision of this code is held to be illegal or void, this shall not have the effect of making void or illegal any of the other parts or provisions thereof, and it shall be presumed that this code would have been adopted without such illegal or invalid parts or provisions.

102.7 Existing structures. The provisions of Chapter 34 shall control the alteration, repair, addition, maintenance, and change of occupancy of any existing structure. The occupancy of any structure currently existing on the date of adoption of this code shall be permitted to continue without change provided there are no orders of the building official pending, no evidence of fraud, or no serious safety or sanitation hazard. When requested, such approvals shall be in the form of a “Certificate of Occupancy for an Existing Building” in accordance with section 111.2. Buildings constructed in accordance with plans which have been approved prior to the effective date of this code are existing buildings.

102.8 Temporary Structures. The building official is authorized to issue approvals for temporary structures. Such approvals shall be in the form of a “Certificate of Occupancy for a Temporary Building” in accordance with section 111.1.6. This section does not apply to time-limited occupancies in existing structures. See section 111.1.5 for time-limited occupancies.

102.8.1 Conformance. Temporary structures shall conform to the structural strength, fire safety, means of egress, accessibility, light, ventilation and sanitary requirements of this code as necessary to ensure the public health, safety and general welfare. Temporary tents and membrane structures shall also comply with the applicable provisions in section 3103.

102.8.2 Termination of approval. The building official is authorized to terminate approval for a temporary structure and to order the temporary structure to be discontinued if conditions of the approval have been violated or the structure or occupancy poses an immediate hazard to the public or occupants of the structure.

102.9 Non-required work. Any component, building element, equipment, system or portion thereof not required by this code shall be permitted to be installed as a partial or complete system provided that it is constructed or installed in accordance with this code to the extent of the installation.
102.10 Work exempt from approval. Approval shall not be required for the following work; however, this work shall comply with all applicable provisions of the rules of the board:

Building:
1. One-story detached accessory structures used as tool and storage sheds, playhouses and similar uses, provided the floor area does not exceed one hundred twenty square feet (11.15 m²) and playground structures.
2. Fences not over six feet (1829 mm) high.
3. Retaining walls which are not over four feet (1219 mm) in height measured from the bottom of the footing to the top of the wall, unless supporting a surcharge or impounding Class I, II or III-A liquids.
4. Water tanks supported directly upon grade if the capacity does not exceed five thousand gallons (18 927 L) and the ratio of height to diameter or width does not exceed two to one.
5. Sidewalks and driveways not more than thirty inches (762 mm) above grade and not over any basement or story below and which are not part of an accessible route.
6. Finishes not regulated by this code, decorating, or other work defined as maintenance or minor repair.
7. Temporary motion picture, television and theater stage sets and scenery.
8. Window awnings supported by an exterior wall of Group R-3.
9. Tents and membrane structures exempted in section 3103.1.3.
10. Above-ground storage tanks as defined in rule 4101:1-2-01 of the Administrative Code and the associated tank foundations.
11. Battery operated smoke or carbon monoxide alarms installed in existing buildings where no construction is taking place.

Electrical:
1. Minor repair work, including the replacement of lamps or the connection of approved portable electrical equipment to approved permanently installed receptacles.
2. Electrical equipment used for radio and television transmissions except equipment and wiring for power supply, and the installations of towers and antennas.
3. The installation of any temporary system required for the testing or servicing of electrical equipment or apparatus.
4. Electrical wiring, devices, appliances, apparatus or equipment operating at less than twenty-five volts and not capable of supplying more than fifty watts of energy, unless specifically addressed in this code.
5. Process equipment and the associated wiring on the load side of the power disconnect to the equipment.
6. Electrical wiring equipment not connected to building services equipment in and adjacent to natural or artificially made bodies of water as defined in Article 682 of NFPA 70 as referenced in Chapter 35.

Gas:
1. Portable heating appliances;
2. Replacement of any part that does not alter approval of equipment or make such equipment unsafe.
3. Gas distribution piping owned and maintained by public or municipal utilities and located upstream of the point of delivery.
4. Process equipment, including the associated tanks, foundations, and process piping. For combination building services/process or power piping systems, the power or process piping located downstream of the control valve which separates the process from the building services piping is exempt from approval.

Mechanical:
1. Portable heating appliances;
2. Portable ventilation equipment;
3. Portable cooling units;
4. Replacement of any part which does not alter its approval or make it unsafe;
5. Portable evaporative cooler;
6. Process equipment including the associated tanks, foundations, and process piping. For combination building services/process or power piping systems, the power or process piping located downstream of the control valve which separates the process from the building services piping is exempt from approval.
7. Heating and cooling distribution piping installed and maintained by public or municipal utilities.

Plumbing:
1. The repair of leaks in drains, water, soil, waste or vent pipe; provided, however, that if any concealed trap, drain-pipe, water, soil, waste or vent pipe becomes defective and it becomes necessary to remove and replace the same with new material, such work shall be considered as new work and an approval shall be obtained and inspection made as provided in this code.
2. The clearance of stoppages or the repair of leaks in pipes, valves or fixtures, and the removal and reinstallation of water closets, provided such repairs
do not involve or require the replacement of more than one fixture or rearrangement of valves, pipes or fixtures.

3. Process equipment including the associated tanks, foundations, and process piping. For combination building services/process or power piping systems, the power or process piping located downstream of the control valve which separates the process from the building services piping is exempt from approval.

102.10.1 Emergency repairs. Where equipment replacements and repairs must be performed in an emergency situation, an application for approval shall be submitted within the next working business day to the building official.

102.10.2 Minor repairs. Minor repairs to structures may be made without application or notice to the building official. Such repairs shall not include the cutting away of any wall, partition or portion thereof, the removal or cutting of any structural beam or load bearing support, or the removal or change of any required means of egress, or rearrangement of parts of a structure affecting the egress requirements; nor shall minor repairs include addition to, alteration of, replacement or relocation of any standpipe, water supply, sewer, drainage, drain leader, gas, soil, waste, vent or similar piping, electric wiring or mechanical or other work affecting public health or general safety.

102.11 Building department jurisdictional limitations. A municipal, township, or county building department that has been certified by the board of building standards, pursuant to section 103.2, shall enforce provisions of the rules of the board and of Chapters 3781. and 3791. of the Revised Code, relating to construction, arrangement, and the erection of buildings or parts thereof as defined in the rules of the board in accordance with the certification except as follows:

1. **Fire.** The state fire marshal or fire chief of municipal corporations or townships, having fire departments, shall enforce all provisions of the rules of the board relating to fire prevention.

2. **Health.** The department of health, or the boards of health of city or general health districts, the division of industrial compliance of the department of commerce, or the departments of building inspection of municipal corporations, townships, or counties shall enforce such provisions relating to sanitary construction.

3. **Sewerage and drainage system.** In accordance with Section 3781.03 of the Revised Code, the department of the city engineer, in cities having such departments, the boards of health of health districts, or the sewer purveyor, as appropriate, shall have complete supervision and regulation of the entire sewerage and drainage system of the jurisdiction, including the building
sewer and all laterals draining into the street sewers. Such department or agency shall have control and supervision of the installation and construction of all drains and sewers that become a part of the sewerage system of the jurisdiction and shall issue all the necessary permits and licenses for the construction and installation of all building sewers and of all other lateral drains that empty into the main sewers. Such department or agency shall keep a permanent record of the installation and location of every drain and sewerage system of the city.

4. **Power Generation.** Structures on the premises of and directly related to the operation of a generating plant defined as a major utility facility regulated by the power siting board, including the structures associated with generation, transmission, and distribution. As a condition of the power siting board’s approval, the building department may be requested to review and inspect these structures for compliance with the rules of the board of building standards. However, the building department has no enforcement authority.

5. **State Projects.** Certification does not confer any jurisdiction to a certified building department to regulate:

5.1 The construction of buildings by the state of Ohio or on land owned by the state of Ohio including, but is not limited to, its agencies, authorities, boards, commissions, administrative departments, instrumentalities, community or technical college districts, but does not include other political subdivisions.

Exception: On other than land owned by the State of Ohio, local school district building projects funded by the Ohio school facilities commission in accordance with Chapter 3318. of the Revised Code when the local certified building department is authorized by the board to regulate construction of school facilities.

5.2 Park districts created pursuant to Chapter 1545. of the Revised Code. A certified municipal, township, or county building department may exercise enforcement authority, accept and approve plans and specifications, and make inspections for a park district created pursuant to Chapter 1545. of the Revised Code upon the approval, by resolution, of the board of park commissioners of the park district requesting the department to exercise that authority and conduct those activities.

5.3 The construction of buildings or structures within the scope of the building code on the premises of, and directly related to the operation of, natural gas liquids fractionation, natural gas cracking, or natural gas processing facilities.

Note: The lands owned by Miami university in the city of Oxford and Oxford township in Butler County and leased to private individuals or corporations
under the land rent provisions of the Act of February 17, 1809, as set forth at 7 Ohio laws 184, are subject to local certified building department jurisdiction and are exempt from these provisions.

Section 103
Certified building departments, personnel, and appeals boards

Refer to division 4101:7 of the Administrative Code for existing relocated building department, building department personnel, and boards of building appeals certification requirements.

Section 104
Duties and responsibilities of building department personnel

104.1 General. Local boards of building appeals and personnel of building departments that have been certified by the board of building standards, pursuant to division 4101:7 of the Administrative Code, shall be responsible for performing the duties described in this section.

104.2 Building department personnel duties and responsibilities. Municipal, township, or county building departments certified by the board shall have personnel qualified to perform the enforcement duties and responsibilities described in this section.

104.2.1 Building official. The building official is responsible for the enforcement of the rules of the board and of Chapters 3781. and 3791. of the Revised Code relating to the construction, arrangement, and the erection of buildings or parts thereof. All building officials shall conduct themselves in a professional, courteous, impartial, responsive, and cooperative manner. The building official shall render interpretations of this code and to adopt policies and procedures in order to clarify the application of its provisions. Such interpretations, policies, and procedures shall be in compliance with the intent and purpose of this code. Building officials shall be responsible to assure that a system is in place to track and audit all projects, to assure that all building department personnel perform their duties in accordance with this section, and for the overall administration of a building department as follows:

104.2.1.1 Applications and plan approvals. The building official shall receive applications, require or cause the submitted construction documents to be examined, ascertain by such examinations whether the construction indicated and described is in accordance with the
requirements of this code, and shall issue plan approvals for the
construction, erection, alteration, demolition, and moving of buildings and
structures. The building official shall require a master plans examiner or
elective plans examiners to examine the construction documents to verify
the construction indicated is in accordance with the requirements of this
code and shall assure coordination of plan review.

104.2.1.1 Plan examination by the building official. When the
building department does not have in its full-time employ a certified
master plans examiner, the certified building official shall examine
construction documents to determine compliance with the rules of the
board if the registered design professional elects to submit construction
documents that contain a written certification by the registered design
professional indicating conformance with the requirements of the rules
of the board and Chapters 3781. and 3791. of the Revised Code.

104.2.1.2 Orders. The building official shall issue all orders in accordance
with section 109 to ensure compliance with this code.

104.2.1.3 Inspections. If the plans for the erection, construction, repair,
alteration, relocating, or equipment of a building are subject to inspection
by the building official, under section 108, the building official shall cause
to be made such inspections, investigations, and determinations as are
necessary to determine whether or not the work which has been performed
and the installations which have been made are in conformity with the
approved construction documents. The building official shall identify any
special conditions that would affect the timing of inspections and schedule
inspections times mutually agreed upon by the building official and the
owner.
Exception: Special inspections required under section 1704.

104.2.1.4 Department records. The building official shall keep official
records of applications received, certificates of plan approval issued,
notices and orders issued, certificates of occupancy, certificates of
completion, and other such records required by the rules of the board of
building standards. Such information shall be retained in the official
permanent record for each project. One set of approved construction
documents shall be retained by the building official for a period of not less
than one hundred eighty days from date of completion of the permitted work,
or as required by document retention regulations.
104.2.1.5 Department reports. The building official shall be responsible for the submission of reports and any requested special information to the board of building standards as required in paragraph (F) of rule 4101:7-2-01 of the Administrative Code. Failure to submit these reports as required by rule or by special request or inquiry of the board of building standards may be grounds for board action as described in paragraph (F)(7) of rule 4101:7-3-01 of the Administrative Code.

104.2.2 Plans Examiners. A plans examiner is responsible for the examination of construction documents in accordance with section 107, within the limits of their certification, to determine compliance with the rules of the board. All plan examiners shall effectively communicate the results of their plan review as designated by the building official. All plans examiners shall conduct themselves in a professional, courteous, impartial, responsive, and cooperative manner.

104.2.2.1 Master plans examiner. A master plans examiner is responsible for the examination of all types of construction documents to determine compliance with the rules of the board, except when the building official examines the construction documents pursuant to section 104.2.1.1.1. If elective plans examiners are utilized by the building department, the master plans examiner shall assure coordination of plan reviews.

104.2.2.1.1 Master plans examiner trainee. A master plans examiner trainee is responsible for the examination of all types of construction documents to determine compliance with the rules of the board under the direct supervision of the trainee supervisor as required in paragraph (F)(5)(b) of rule 4101:7-3-01 of the Administrative Code.

104.2.2.2 Elective plans examiners. Building departments may employ or have under contract elective plans examiners. The elective plans examiner(s) may be designated by the building official as responsible for examination of construction documents for which they are certified to determine compliance with the rules of the board. If the department does not have in its employ or under contract persons holding any of the elective plans examiners certifications, then the examination of the construction documents for compliance with the specific provisions of the code shall be done by the master plans examiner.

104.2.2.2.1 Building plans examiner. A building plans examiner is responsible for the examination of construction documents related to all
general building construction and associated structural work to
determine compliance with the rules of the board.

104.2.2.2.1 Building plans examiner trainee. A building plans
examiner trainee is responsible for the examination of construction
documents related to all general building construction and
associated structural work to determine compliance with the rules
of the board under the direct supervision of the trainee supervisor
as required in paragraph (F)(5)(b) of rule 4101:7-3-01 of the
Administrative Code.

104.2.2.2 Mechanical plans examiner. A mechanical plans examiner
is responsible for the examination of construction documents related to
heating, ventilating, and air conditioning ("HVAC") systems and the
associated refrigeration, fuel gas, and heating piping to determine
compliance with the rules of the board.

104.2.2.2.2 Mechanical plans examiner trainee. A mechanical
plans examiner trainee is responsible for the examination of
construction documents related to heating, ventilating, and air
conditioning ("HVAC") systems and the associated refrigeration,
fuel gas, and heating piping to determine compliance with the rules
of the board under the direct supervision of the trainee supervisor
as required in paragraph (F)(5)(b) of rule 4101:7-3-01 of the
Administrative Code.

104.2.2.3 Electrical plans examiner. An electrical plans examiner is
responsible for the examination of construction documents related to
electrical systems to determine compliance with the rules of the board.

104.2.2.3.1 Electrical plans examiner trainee. An electrical plans
examiner trainee is responsible for the examination of construction
documents related to electrical systems to determine compliance
with the rules of the board under the direct supervision of the trainee
supervisor as required in paragraph (F)(5)(b) of rule 4101:7-3-01
of the Administrative Code.

104.2.2.4 Plumbing plans examiner. A plumbing plans examiner is
responsible for the examination of construction documents related to
plumbing systems to determine compliance with the rules of the board.
104.2.2.4.1 Plumbing plans examiner trainee. A plumbing plans examiner trainee is responsible for the examination of construction documents related to plumbing systems to determine compliance with the rules of the board under the direct supervision of the trainee supervisor as required in paragraph (F)(5)(b) of rule 4101:7-3-01 of the Administrative Code.

104.2.2.5 Fire protection plans examiner. A fire protection plans examiner is responsible for the examination of construction documents related to fire protection systems (automatic sprinkler systems, alternative automatic fire-extinguishing systems, standpipe systems, fire alarm and detection systems, and fire pumps) to determine compliance with the rules of the board.

104.2.2.5.1 Fire protection plans examiner trainee. A fire protection plans examiner trainee is responsible for the examination of construction documents related to fire protection systems (automatic sprinkler systems, alternative automatic fire-extinguishing systems, standpipe systems, fire alarm and detection systems, and fire pumps) to determine compliance with the rules of the board under the trainee supervisor as required in paragraph (F)(5)(b) of rule 4101:7-3-01 of the Administrative Code.

104.2.3 Inspectors. An inspector is responsible for performing inspections and determining that work, for which they are certified to make inspections, is performed in compliance with the approved construction documents. All inspectors shall inspect the work to the extent of the approval given when construction documents were approved by the building official and for which the inspection was requested. All inspectors shall effectively communicate the results of their inspections as required by section 108, and shall conduct themselves in a professional, courteous, impartial, responsive, and cooperative manner.

104.2.3.1 Building inspector. A building inspector is responsible to determine compliance with the approved construction documents in accordance with section 108. A building inspector trainee is designated to determine compliance with approved construction documents, in accordance with section 108, under the direct supervision of an individual holding a building inspector certification.
104.2.3.2 **Plumbing inspector.** A plumbing inspector is responsible to determine plumbing system compliance with approved construction documents in accordance with section 108.
A plumbing inspector trainee is designated to determine plumbing system compliance with approved construction documents, in accordance with section 108, under the direct supervision of an individual holding a plumbing inspector certification.

104.2.3.3 **Electrical safety inspector.** An electrical safety inspector is responsible to determine electrical systems compliance with approved construction documents in accordance with section 108.
An electrical safety inspector trainee is designated to determine electrical systems compliance with approved construction documents, in accordance with section 108, under the direct supervision of an individual holding an electrical safety inspector certification.

104.2.3.4 **Elective inspectors.** Building departments may elect to employ inspectors designated as responsible for determining that work, for which they are certified to make inspections, is performed in compliance with approved construction documents.

104.2.3.4.1 **Mechanical inspector.** A mechanical inspector is responsible to determine compliance with the approved construction documents for heating, ventilating and air conditioning (HVAC) systems, and the associated refrigeration, fuel gas, and heating piping systems in accordance with section 108.
If the department does not have in its employ or under contract persons holding the mechanical inspector certification, then the inspection of the mechanical systems shall be performed by persons holding the building inspector certification.
A mechanical inspector trainee is designated to determine compliance with the approved construction documents for heating, ventilating and air conditioning (HVAC) systems, and the associated refrigeration, fuel gas, and heating piping systems, in accordance with section 108, under the direct supervision of an individual holding a mechanical inspector certification.

104.2.3.4.2 **Fire protection inspector.** A fire protection inspector is responsible to determine compliance with approved construction documents for fire protection systems (automatic sprinkler systems, alternative automatic fire-extinguishing systems, standpipe systems, fire
alarm and detection systems, and fire pump) in accordance with section 108.
If the department does not have in its employ or under contract persons holding the fire protection inspector certification, then the inspections of the fire protection systems shall be performed by persons holding the building inspector certification.

104.2.3.4.3 Medical gas piping inspector. A medical gas piping inspector is responsible to determine compliance with approved construction documents for non-flammable medical gas, medical oxygen, and medical vacuum systems in accordance with section 108.
If the department does not have in its employ or under contract persons holding a medical gas piping inspector certification, then all enforcement of medical gas piping systems shall be deferred to either of the following: the local health district when that district requests to enforce those piping systems and the district has employed or hired under contract a person holding the medical gas piping inspector certification; or the superintendent of the division of industrial compliance in the department of commerce.

104.2.4 Liability. Liability of certified building department personnel for any tortious act will be determined by Ohio courts to the applicable provisions of Chapter 2744. of the Revised Code.

104.3 Certified boards of building appeals duties and responsibilities. Before performing its duties, a jurisdiction wishing to establish a local board of building appeals shall receive certification by the board of building standards as required in section 3781.10 of the Revised Code and rule 4101:7-4-01 of the Administrative Code.

104.3.1 Powers, local boards of building appeals. Certified municipal and county boards of building appeals shall hear and decide the adjudication hearings referred to in section 109.1 within the jurisdiction of and arising from orders of the local building official in the enforcement of Chapters 3781. and 3791. of the Revised Code and rules adopted thereunder. The orders may be reversed or modified by the board if it finds:
1. The order contrary to such laws or rules;
2. The order contrary to a fair interpretation or application thereof; or
3. That a variance from the provisions of such laws or rules, in a specific case, will not be contrary to the public interest where literal enforcement of such provisions will result in unnecessary hardship.
104.3.2 State board of building appeals. The Ohio board of building appeals shall conduct the adjudication hearings in political subdivisions without certified boards or without contracts with certified boards.

104.3.3 Materials. A certified board of building appeals may not prohibit the use of materials or assemblages authorized for statewide use by the board of building standards pursuant to section 3781.12 of the Revised Code.

104.4 Violation of duties. Any person affected by alleged improper actions of any building department, building official, plans examiner, inspector, fire protection system designer, or local board of building appeals certified by the board of building standards may file a written complaint with the board. Complaints will be processed by the board in accordance with the procedures outlined in the applicable certification rule found in division 4101:7 of the Administrative Code.

Section 105
Approvals

105.1 Approvals required. Any owner or owner’s representative who intends to construct, enlarge, alter, repair, move, or change the occupancy of a building or structure, or portion thereof, to erect, install, enlarge, alter, repair, remove, convert or replace any electrical, gas, mechanical, plumbing system, other building service equipment, or piping system the installation of which is regulated by this code, or to cause any such work to be done, shall first make application to the building official and obtain the required approval.

105.1.1 Nonconformance approval. When construction documents are submitted which do not conform with the requirements of the rules of the board, such documents may be approved by the building official provided such nonconformance is not considered to result in a serious hazard and the owner or owner’s representative subsequently submits revised construction documents showing evidence of compliance with the applicable provisions of the rules of the board. In the event such construction documents are not received within thirty days, the building official shall issue an adjudication order revoking the plan approval.

105.1.2 Conditional approval. When construction documents are submitted which cannot be approved under the other provisions of this rule, the building official, may at the request of the owner or owner’s representative, issue a conditional plan approval when an objection to any portion of the construction
documents results from conflicting interpretations of the code, or compliance requires only minor modifications to the building design or construction. No conditional approval shall be issued where the objection is to the application of specific technical requirements of the code or correction of the objection would cause extensive changes in the building design or construction. A conditional approval is a conditional license to proceed with construction or materials up to the point where construction or materials objected to by the agency are to be incorporated into the building. The conditions objected to shall be in writing from the building official which shall be an adjudication order denying the issuance of a license and may be appealed in accordance with section 3781.19 of the Revised Code. In the absence of fraud or a serious safety or sanitation hazard, all items previously examined shall be conclusively presumed to comply with Chapters 3781. and 3791. of the Revised Code and the rules of the board. Reexamination of the construction documents shall be limited to those items in the adjudication order. A conditional plan approval is not a phased plan approval.

105.1.3 Previous approvals. This code shall not require changes in the construction documents, construction or designated occupancy of a structure for which a lawful approval has previously been issued or otherwise lawfully authorized, and the construction of which has been pursued in good faith within one year of the approval of construction documents. One extension shall be granted for an additional year if requested by the owner at least ten days in advance of the expiration of the approval and upon payment of any fee not to exceed one hundred dollars. If, after the start of construction, work is delayed or suspended for more than six months, the approval is invalid. Two extensions shall be granted for six months if requested by the owner at least ten days in advance of the expiration of the approval and upon payment of any fee for each extension not to exceed one hundred dollars.

105.1.4 Phased approval. The building official shall issue an approval for the construction of foundations or any other part of a building, structure, or building service equipment before the construction documents for the whole building, structure or building service equipment have been submitted, provided that adequate information and detailed statements have been filed complying with applicable requirements of this code. The holder of such approval for the foundation or other parts of a building or structure shall proceed at the holder's own risk with the building operation and without assurance that an approval for the entire structure will be granted. Such approvals shall be issued for various stages in the sequence of construction provided that all information and data required by the code for that portion of
the building or structure has been submitted. The holder of a phased plan approval may proceed only to the point for which approval has been given.

105.1.5 Annual approval. In lieu of an individual approval for each alteration to an existing electrical, gas, mechanical, plumbing, or piping installation, the building official may issue an annual approval upon application to any person, firm or corporation regularly employing individuals holding the related board certification in the building, structure or on the premises owned or operated by the applicant for the approval.

105.1.5.1 Annual approval records. The person to whom an annual approval is issued shall keep a detailed record of alterations made under such annual approval. The building official shall have access to such records at all times or such records shall be filed with the building official as designated. These records shall include the applicable construction documents in accordance with section 106.1.

105.2 Validity of approval. The construction, erection, and alteration of a building, and any addition thereto, and the equipment and maintenance thereof, shall conform to required plans which have been approved by the building official, except for minor deviations which do not involve a violation of the rules of the board. In the absence of fraud or a serious safety or sanitation hazard, any structure built in accordance with approved plans shall be conclusively presumed to comply with Chapters 3781. and 3791. of the Revised Code and the rules of the board.

Exception: Industrialized units shall be constructed to conform to the plans approved by the board.

105.3 Expiration. The approval of plans or drawings and specifications or data by the building official is invalid if construction, erection, alteration, or other work upon the building has not commenced within twelve months of the approval of the plans or drawings and specifications. One extension shall be granted for an additional twelve-month period if requested by the owner at least ten days in advance of the expiration of the approval and upon payment of a fee not to exceed one hundred dollars.

105.4 Extension. If, in the course of construction, work is delayed or suspended for more than six months, the approval of plans or drawings and specifications or data is invalid. Two extensions shall be granted for six months each if requested by the owner at least ten days in advance of the expiration of the approval and upon payment of a fee for each extension of not more than one hundred dollars.
105.5 Certificate of plan approval. After plans have been approved in accordance with section 107, the building official shall furnish the owner/applicant a certificate of plan approval.

105.5.1 Content. The form of the certificate shall be as prescribed by the building official and shall show the serial number of the certificate, the address at which the building or equipment under consideration is or is to be located, the name and address of the owner, the signature of the building official who issued the certificate, the date of issuance and such other information as is necessary to facilitate and ensure the proper enforcement of the rules of the board.

105.5.2 Duplicate issued upon request. Upon application by the owner, the building official shall issue a duplicate certificate of plan approval to replace a lost or destroyed original.

Section 106
Construction documents

106.1 Submittal documents. Construction documents, statement of special inspections required and other data shall be submitted in two or more sets with each application for an approval. Before beginning the construction of any building for which construction documents are required under section 105, the owner or the owner’s representative shall submit construction documents to the building official for approval. When construction documents have been found to be in compliance with the rules of the board of building standards in accordance with section 107 by a certified building department, that determination of compliance shall be deemed sufficient to obtain approval for construction pursuant to section 105.2 and the building official shall issue the certificate of plan approval. Construction documents for the installation of industrialized units shall be submitted to the building official for approval in accordance with the provisions of section 106.1.2(1).

Exception: No construction documents need be filed with the division of industrial compliance for site installation of industrialized units used exclusively as one-, two-, or three-family dwellings.

106.1.1 Information on construction documents. Construction documents shall be dimensioned and drawn upon suitable material. Electronic media documents are permitted to be submitted when approved by the building official. Construction documents shall be coordinated and of sufficient clarity
to indicate the location, nature and extent of the work proposed and show in
detail that it will conform to the provisions of this code. Construction
documents, adequate for the scope of the project, shall include information
necessary to determine compliance with the building, mechanical, plumbing,
fire, electrical, energy, and fuel gas codes such as:

1. **Index.** An index of drawings located on the first sheet which shall also
include all occupancy classification(s), type(s) of construction, the area
in gross square feet for each level, the maximum design occupant load,
the structural design loads, and the seismic design category and site
class;

2. **Site plan.** A site plan showing a north orientation arrow, the size and
location of new construction and all existing structures on the site, all
property and interior lot line locations with setback and side yard
dimensions and distances from buildings to lot lines, the locations of the
nearest streets, the established street grades, the locations, types and
sizes of all utility lines, the location of any fences, and the elevations of
all proposed finished grades; and it shall be drawn in accordance with
an accurate boundary line survey. In the case of demolition, the site plan
shall show construction to be demolished and the location and size of
existing structures and construction that are to remain on the site or
plot. The building official is authorized to waive or modify the
requirement for a site plan when the application for approval is for
alteration or repair or when otherwise warranted.

2.1 **Buildings or structures located in flood hazard areas.** Construction
documents submitted for buildings or structures located in
communities with identified flood hazard areas, pursuant to section
1612, shall include the current FEMA “Flood Hazard Boundary
Map” (FHBM), “Flood Insurance Rate Map” (FIRM) or “Flood
Boundary Floodway Map” (FBFM) for the project location. The
required site plan shall include building elevations using the same
datum as the related flood hazard map. The owner shall be
responsible for the compliance with local flood damage prevention
regulations for additional critical elevation information for the
project site.

2.2 **Site Accessibility Plan.** Information in plan view and details shall
be submitted indicating compliance with the accessibility provisions
of this code for the exterior of the building in addition to accessible
features of the interior. When applicable, the plans shall include:
the exterior accessible route between all facilities required to be
connected; ramp locations and elevations along the exterior
accessible route; number of and details for the required accessible
van and car parking spaces and passenger loading areas; location and detail of required accessibility signage; grade/topographic elevations before and after proposed grading when site impracticality is intended to be applied.

3. **Floor plans.** Building configuration layout drawings with all walls and partitions shown including: plans of full or partial basements and full or partial attics and penthouses, grade elevations at the building perimeter, and references to other details and elevations. Floor plans must show all relevant information such as door swings, stairs and ramps, windows, shafts, all portions of the means of egress, plumbing fixtures, built-in fixtures, special equipment, vertical transportation, etc., and shall be sufficiently dimensioned to describe all relevant space sizes. Spaces shall be identified by appropriate code appellations (an "auditorium" may not be identified as a "meeting room" if its attributes indicate that it is an auditorium). The construction documents shall designate the number of occupants to be accommodated on every floor, and in all rooms and spaces;

4. **Demolition.** In the case of demolition, the floor plan shall identify construction to be demolished and the location, arrangement, and dimensions of existing construction that is to remain.

5. **Roof plan.** Roof outline, overall dimensions and dimensions of setbacks, slope of roof, drainage, reference to other details, roof materials, penetrations through roof, and roof-mounted equipment;

6. **Exterior elevations.** Vertical dimensions, floor-to-floor heights, opening heights, references to other details, floor lines, elevations of major elements, grade lines, foundation lines, material indications and notes, symbols for window schedule, gutters, signs and windows, doors, and all other openings.

7. **Building sections.** Vertical dimensions, elevations of the top of structural components and finish floor lines, materials, footings and foundations, reference to other details, ceiling lines, and major mechanical services.

8. **Exterior building envelope.** The exterior envelope shall be described in sufficient detail to determine compliance with this code and the referenced standards. Details shall be provided which describe flashing, intersections with dissimilar materials, corners, end details, control joints, intersections at roof, eaves, or parapets, means of drainage, water-resistive membrane details around openings, location and type of vapor retarders, window and door “U”-values, and insulation location and “R”-values. The supporting documentation
shall fully describe the exterior wall system, which was tested, where applicable, as well as the test procedure used.

9. **Wall Sections.** Face of wall dimensions to other components, vertical dimensions from foundations to parapet relating all elements to top of structural elements, all connection methods, wall, ceiling, floor, foundation, and roof materials and construction details.

10. **Interior elevations.** Vertical dimensions to critical elements, references to other details, openings in walls, wall finishes, built-in items, and locations of switches, thermostats, and other wall-mounted equipment.

11. **Schedules.** Information or tables that describe the room finishes, doors, windows, and door hardware and controls. Wall and floor materials shall be described by cross-hatching (with explanatory key), by notation, or by other clearly understandable method.

12. **Structure.** Complete structural description of the building including size and location of all structural elements and a table of live, wind, snow, and seismic loads used in the design of the building and other data as required to fully describe the structural system.

13. **Fire suppression system.** Areas of protection, fire suppression system occupancy hazard classification, and water supply data.

14. **Fire-resistance Ratings.** The fire-resistance ratings of all structural elements as required by this code, data substantiating all required fire-resistance ratings including details showing how penetrations will be made for electrical, mechanical, plumbing, and communication conduits, pipes, and systems, and the materials and methods for maintaining the required structural integrity, fire-resistance rating, and firestopping.

15. **System descriptions.** Complete description of the plumbing, mechanical and electrical systems, including: materials, insulation “R”-values, general routing and sizes of all piping; location and type of plumbing fixtures and equipment; plumbing schematics and isometrics; materials, insulation “R”-values, general routing and sizes of all ductwork, vents, and louvers; location and type of heating, ventilation, air conditioning, and other mechanical equipment; location and type of all fire alarm, lighting and power equipment; type and size of all electrical conductors.

16. **Operations.** Information shall be provided regarding operations, the types, quantities, and arrangement of flammable, combustible, or hazardous materials proposed to be produced, used, dispensed, or stored in the facility; material safety data sheets for hazardous materials produced, used, or stored in the facility, the commodity and arrangement of high piled or rack storage, control areas, etc.
17. **Additional information.** Additional information required by the building official to determine compliance with this code.

106.1.1.1 Fire protection system drawings. Construction documents shall be approved prior to the start of system installation. Related product listing information shall be provided and drawings shall contain all information as required by the installation standards referenced in Chapter 9. In the event that the product listing information is not known at the time of plan examination, conditional plan approval shall be granted subject to subsequent submission of the listing information prior to installation of any part of the fire protection systems.

106.1.1.2 Special inspections. Where application is made for construction as described in this section, the owner or the registered design professional in responsible charge acting as the owner’s representative shall identify those special inspections needed during construction on the types of work listed under section 1704.

106.1.2 Special provisions. The following are special provisions:

1. When construction includes the use of industrialized units or alternative materials, designs and methods of construction or equipment approved by the board, documentation shall be provided to the building official describing how they are to be used. Before these items are installed or used, the following shall be submitted:
 1.1 A copy of the construction documents approved by the board; and
 1.2 Details pertaining to on-site interconnection of modules or assemblies.

Exception: When construction includes the use of industrialized units for one-, two-, and three-family dwellings and their accessory structures, the documents shall be provided to the residential building official. If no residential department is certified in a jurisdiction, construction documents for one-, two-, or three-family dwellings comprised of industrialized units are not required to be submitted for approval.

2. Construction documents submitted that include construction of public swimming pools shall include documentation indicating approval of the pool construction documents by the Ohio department of health in accordance with section 3109.1.1 of the “OBC”.

3. Construction documents submitted that include alterations or construction of, or additions to buildings where sales, display, storage or manufacture of consumer fireworks, 1.4g or display fireworks, 1.3g
shall include documentation indicating that the applicant has received preliminary approval for construction issued by the state fire marshal pursuant to sections 3743.04 and 3743.17 of the Revised Code.

4. The elevation certification provided by a registered surveyor and dry floodproofing certification, when required in section 1612.5 for buildings or structures located in communities with identified flood hazard areas, shall be submitted to the building official.

5. When a certified building department receives an application for plan approval in a jurisdiction in which the local fire official has requested an opportunity to provide input to the certified building department on issues related to fire protection systems by submitting a completed “Request for Participation” form prescribed by the board and provided by the building official to the local fire official annually, the building official shall require that the applicant provide a set of relevant construction documents for the local fire official. The building official shall evaluate the local fire official’s comments related to fire protection system provisions of this code that are received within the timeframe established by the building official and section 3791.04 of the Revised Code prior to issuing the certificate of plan approval required in Section 105.5. In the absence of timely input from the fire official during the plan review process, the building official shall proceed as outlined in Section 107.5.1

6. Construction documents submitted that include alterations or construction of, or additions to jails, workhouses, or municipal lockups shall include documentation indicating that the applicant has received preliminary approval for construction issued by the Ohio department of rehabilitation and corrections.

7. When, as a part of work subject to this code, construction includes or relates to the storage or use of hazardous, flammable or combustible liquids or gases connected to and utilized for the operation of building service equipment, such construction shall be in accordance with the provisions of this code. Notification of such storage or use shall be provided to the fire official for emergency planning purposes. When construction includes or relates to the storage or use of hazardous, flammable or combustible liquids or gases not associated with the operation of building service equipment, the owner shall notify the building official in accordance with Sections 106.1.1(item #16) and 414.1.3 to ensure that the building has been adequately protected to address the hazard. However, approval of the storage and use shall be obtained from the fire official in accordance with the fire code.
106.2 Evidence of responsibility. Required construction documents, when submitted for review as required under section 107, shall bear the identification of the person primarily responsible for their preparation.

106.2.1 Seal requirements. Construction documents shall bear the seal of a registered design professional pursuant to section 3791.04 of the Revised Code. Exceptions: The seal of a registered design professional is not required on construction documents for:
1. Buildings or structures classified as one-, two-, or three-family dwellings and accessory structures;
2. Energy conservation design for buildings or structures classified as one-, two-, or three-family dwellings;
3. Fire protection system designs submitted under the signature of an individual certified in accordance with section 107.4.4;
4. Installation of replacement devices, equipment or systems that are equivalent in type and design to the replaced devices, equipment or systems; and
5. Alterations, construction or repairs to any buildings or structures subject to sections 3781.06 to 3781.18 and 3791.04 of the Revised Code where the building official determines that the proposed work does not involve the technical design analysis of work affecting public health or general safety in the following areas: means of egress, structural, mechanical, electrical, plumbing, or fire protection.
5.1 For the purpose of this exception, technical design analysis is defined as the development of integrated solutions using analytical methods in accordance with established scientific and engineering principles.

106.3 Amended construction documents. If substantive changes to the building and/or systems are contemplated after first document submission, or during construction, those changes must be submitted to the building official for review and approval prior to those changes being executed. The building official may waive this requirement in the instance of an emergency repair, or similar instance.

106.4 Alternative materials and methods of construction and equipment. For approval of a device, material or assembly that does not conform to the performance requirements in this code, section 114 shall apply.

106.5 Alternative engineered design. The design, documentation, inspection, testing and approval of an alternative engineered system shall comply with sections 106.5.1 to 106.5.3 of this rule.
106.5.1 **Design criteria.** An alternative engineered design shall conform to the intent of the provisions of this code and shall provide an equivalent level of quality, strength, effectiveness, fire resistance, durability and safety. Materials, equipment or components shall be designed and installed in accordance with the manufacturer’s installation instructions.

106.5.2 **Submittal.** The registered design professional shall indicate on the application that the system is an alternative engineered design. The approval and permanent approval records shall indicate that an alternative engineered design was part of the approved installation. Where special conditions exist, the building official is authorized to require additional construction documents to be prepared by a registered design professional.

106.5.3 **Technical data.** The registered design professional shall submit sufficient technical data to substantiate the proposed alternative engineered design and to prove that the performance meets the intent of this code.

Exception: Approval of alternative materials, products, assemblies and methods of construction in accordance with Section 114.3.2.

Section 107

Plan approval process

107.1 **Plan review required.** Where the rules of the board are applicable under section 101.2, before a building or addition to a building is constructed or erected, and before a building is altered or relocated, or building equipment is installed, or there is a change of occupancy, or a resubmission of construction documents is required or received, construction documents relating to the work and equipment under consideration shall be prepared in conformity with section 106 and be submitted to the building department for examination and approval.

107.2 **Application for plan approval.** To obtain a plan approval, the owner or the owner’s representative shall first file an application in writing on a form furnished by the building department for that purpose. Such application shall:

1. Identify and describe the work to be covered for which application is made for approval.
2. Describe the land on which the proposed work is to be done, street address or similar description that will readily identify and locate the proposed building or work.
3. Indicate the use and occupancy(ies) for which the proposed work is intended.
4. Be accompanied by construction documents and other information as required in section 106.1.
5. Be signed by the owner, or the owner’s representative.
6. Give such other data and information as required by the building official.
7. Identify and clearly indicate whether the project or portion of a project intends to utilize an industrialized unit, as defined in section 113.2.
8. Identify and clearly indicate whether the project or portion of a project intends to utilize an assembly of individually listed or labeled products.

107.2.1 Time limitation of application. The approval of plans under this section is a “license” and the failure to approve such plans as submitted within thirty days after filing or the disapproval of such plans is an “adjudication order denying the issuance of a license” requiring the opportunity for an “adjudication hearing” as provided by sections 119.07 to 119.13 of the Revised Code and as modified by sections 3781.031 and 3781.19 of the Revised Code. In accordance with section 109, an adjudication order denying the issuance of a license shall specify the reasons for such denial.

If construction documents have been reviewed for compliance with the rules of the board, an adjudication order has been issued to the owner and the owner’s representative, and the owner has neither exercised the right to appeal pursuant to section 110 nor resubmitted corrected documents, the application is invalid six months from the date of the issuance of the adjudication order.

107.3 Order of plan review. Construction documents submitted for approval shall be examined for compliance with the rules of the board in the order received, unless otherwise consented to by the building owners affected by deferred examination.

107.4 Review of plans. When construction documents have been submitted to the building department for review and approval, the building official shall cause the construction documents to be examined for compliance with the rules of the board by assigning the examination duty to an appropriately certified master plans examiner or certified elective plans examiners. The plans examiner(s) shall first determine whether the construction documents being reviewed are adequate as required in section 106. If so, the plans examiner(s) shall examine the construction documents to determine compliance with the rules of the board.

When utilizing elective plans examiners and when the scope of the work requires more than one elective plans examiner certification, the master plans examiner shall assure coordination of plan review.
107.4.1 Inadequate construction documents. If construction documents are determined to be incomplete or inadequate for examination, the plans examiner shall report the findings to the building official. The plans examiner shall examine the construction documents to the extent possible and identify what information from section 106 is missing and needed to complete the required examination. Upon receipt and review of the report, the building official shall proceed as required in section 107.6.

107.4.2 Resubmitted documents. If construction documents are resubmitted in response to an adjudication order, the review for compliance shall be limited to determining that the item of non-compliance, and any work affected, has been corrected and shall not be deemed to authorize another review of unmodified construction documents previously determined to comply.

107.4.3 Sealed construction documents. Construction documents which have been prepared by an Ohio registered design professional who prepared the same as conforming to the requirements of the rules of the board pertaining to design loads, stresses, strength, and stability, or other requirements involving technical analysis, need be examined only to the extent necessary to determine conformity of such construction documents with other requirements of the rules of the board.

107.4.4 Fire protection system construction documents. Construction documents for fire protection systems authorized to be submitted by individuals certified pursuant to Chapter 4101:7-5 of the Administrative Code shall:

1. When submitted under the signature of an individual certified under section 3781.105 of the Revised Code, be processed in the same manner as construction documents submitted under the signature of a registered design professional. Any statistical data, reports, explanations, plan description, or information that would not also be required for a similar submission by a registered design professional need not be submitted by a certified designer.

2. If certified by a registered design professional or individual certified under section 3781.105 of the Revised Code as conforming to requirements of the rules of the board pertaining to design loads, stresses, strength, stability, or other requirements involving technical analysis, be examined by the building department official only to the extent necessary to determine conformity of such construction documents with other requirements adopted by the board under Chapters 3781. and 3791. of the Revised Code.
107.5 Plan review, compliance with rules of the board. If the construction documents are determined to comply with the rules of the board, the plans examiner shall communicate the findings and recommend the conditions and type of approval to the building official.

107.5.1 Building official approval. The building official shall evaluate the plans examiner’s recommendations and any communications received from the fire official as described in section 106.1.2. When the construction documents have been determined to conform to the applicable provisions of the rules of the board, the building official shall endorse or stamp such plans as approved and issue the certificate of plan approval in accordance with section 105.5.

107.5.2 Posting. The certificate of plan approval shall be posted in a conspicuous location on the site. The owner and the contractor shall preserve and keep the certificate posted until the final inspections have been completed.

107.6 Plan review, items of noncompliance. When the construction documents are examined and items of noncompliance with the rules of the board are found by the plans examiner, the building official shall proceed as required in either section 107.6.1 or section 107.6.2.

107.6.1 Communication process for items of non-compliance.
1. Item(s) of non-compliance shall be communicated to the owner or the owner’s representative and offer the following options:
 1.1. The owner will revise the drawings and resubmit to the department.
 1.2. The items of noncompliance will not be brought into compliance and will be referred to the building official as indicated in item 4 below.
2. The owner or the owner’s representative shall indicate which option (item 1 above) will be exercised.
3. Notations of the communication shall be made on a plan review record. The notations shall include the plans examiner’s name, the date of the communication with the owner or the owner’s representative, the observed items of noncompliance, the code citation related to the item(s) of noncompliance, the action necessary to correct the item(s) of noncompliance, the option chosen by the owner or the owner’s representative, the name of the person communicated with, and the estimated dates of compliance and resubmission, if applicable.
4. If the owner or the owner’s representative indicates that the work will not be brought into compliance with the rules of the board or requests
an adjudication order, the plans examiner shall report to the building official in accordance with section 107.6.2.

107.6.2 Building official determination of noncompliance. The building official shall evaluate the plans examiner’s report and any reports received from the fire official as described in section 106.1.2 and render a final determination as to whether the items of non-compliance are to be communicated to the owner in the form of an adjudication order complying with section 109. The building official shall also determine whether any approvals are possible, and issue the appropriate approval as described in section 105.

107.7 Approved construction document sets. One set of approved construction documents shall be kept by the building official. The other set(s) shall be returned to the applicant, kept at the work site, along with manufacturers’ installation instructions and product information, and shall be available for use by the inspector.

Section 108
Inspection process

108.1 General. After construction documents have been approved, construction or work may proceed in accordance with the approved documents. Construction or work for which an approval is required shall be subject to inspection. It shall be the duty of the owner or the owner’s representative to notify the building department when work is ready for inspection. Access to and means for inspection of such work shall be provided for any inspections that are required by this code. It shall be the duty of the owner or the owner’s representative to cause the work to remain accessible and exposed for inspection purposes. Such construction or work shall remain accessible and exposed for inspection purposes until the work has been inspected to verify compliance with the approved construction documents, but failure of the inspectors to inspect the work within four days, exclusive of Saturdays, Sundays, and legal holidays, after the work is ready for inspection, allows the work to proceed.
Subsequent work is allowed to proceed only to the point of the next required inspection.

108.2 Required inspections. At the time that the certificate of plan approval is issued, the building official shall provide, to the owner or the owner’s representative, a list of all required inspections for each project. The required inspection list shall be created from the applicable inspections set forth in sections
108.2.1 to 108.2.14. The building official, upon notification from the owner or the owner’s representative that the work is ready for inspection, shall cause the inspections set forth in the required inspection list to be made by an appropriately certified inspector in accordance with the approved construction documents.

108.2.1 Lot line markers required. Before any work is started in the construction of a building or an addition to a building to which the rules of the board are applicable under section 101.2, all boundary lines shall be clearly marked at their intersections with permanent markers or with markers which are offset at a distance which is of record with the owner.

108.2.2 Footing or foundation inspection. Footing and foundation inspections shall be made after excavations for footings are complete and any required reinforcing steel is in place. For concrete foundations, any required forms shall be in place prior to inspection. Materials for the foundation shall be on the job, except where concrete is ready mixed in accordance with “ASTM C 94”, the concrete need not be on the job.

108.2.3 Concrete slab and under-floor inspection. Concrete slab and under-floor inspections shall be made after in-slab and under-floor reinforcing steel and building service equipment, conduit, insulation, vapor retarder, piping accessories and other ancillary equipment items are in place, but before any concrete is placed or floor sheathing installed, including the subfloor.

108.2.4 Lowest floor elevation. The elevation certification required in section 1612.5 shall be submitted to the building official.

108.2.5 Frame inspection. Framing inspections shall be made after the roof deck or sheathing, all framing, fire blocking and bracing are in place and pipes, chimneys and vents to be concealed are complete and the rough electrical, plumbing, heating wires, pipes and ducts are approved.

108.2.6 Lath or gypsum board inspection. Lath and gypsum board inspections shall be made after lathing and gypsum board, interior and exterior, is in place, but before any plastering is applied or before gypsum board joints and fasteners are taped and finished.

Exception: Gypsum board that is not part of a fire-resistive assembly or a shear assembly.
108.2.7 Fire-resistant penetrations. Protection of joints and penetrations in fire-resistance-rated assemblies shall not be concealed from view until inspected and approved.

108.2.8 Energy efficiency inspections. Inspections shall be made to determine compliance with Chapter 13 of the “OBC” and shall include, but not be limited to, inspections for: envelope insulation “R” and “U” values, fenestration “U” value, duct system “R” value, infiltration air barriers, caulking/sealing of openings in envelope and ductwork, and “HVAC” and water heating equipment efficiency.

108.2.9 Building services equipment inspections. Inspections shall be made of all building services equipment to ensure that it has been installed in accordance with the approved construction documents, the equipment listings, and the manufacturer’s installation instructions. Inspections shall include, but not be limited to, inspections for the following systems and their associated components: mechanical heating and ventilating systems, mechanical exhaust systems, plumbing systems, fire protection systems, and electrical systems.

108.2.9.1 Inspections of elevators. Inspection of work related to elevators shall be coordinated with the division of industrial compliance and made in accordance with rules adopted pursuant to Chapter 4105 of the Revised Code and as required in Section 3006.1. A completed inspection form prescribed by the board shall be provided to the superintendent of the division of industrial compliance upon completion of the inspections.

108.2.9.2 Inspections of boilers. Inspection of work related to boilers shall be made in accordance with rules adopted pursuant to Chapter 4104 of the Revised Code.

108.2.10 Other inspections. In addition to the inspections specified above, the building official is authorized to cause to be made or require other inspections of any construction work to be made to ascertain compliance with the provisions of this code. Where applications are submitted for projects of unusual magnitude of construction, the building official may require inspections or full-time project representation by a registered design professional or inspection agency. This inspector/project representative shall keep daily records and submit reports as required by the building official.
Exception: Where the building official requires full-time project inspection, the installation of a fire protection system may be inspected by a person certified under section 3781.105 of the Revised Code. The person shall be certified in the appropriate subfield of fire protection systems being inspected – water-based fire protection systems (formerly automatic sprinkler systems), fire alarm, or special hazards systems design.

108.2.11 Special inspections. For special inspections, see section 1704.

108.2.12 Inspections, completion. When all of the required successive inspections have been satisfactorily completed and the inspectors have verified compliance with the approved construction documents, the inspectors shall communicate their findings to the building official. The building official, after review of the findings, shall issue the certificate of occupancy or the certificate of completion as described in section 111.

108.2.12.1 Fire protection system final inspections. Fire protection system final inspections shall be coordinated with the fire official in accordance with Section 901.2.1.2.

108.2.13 Industrialized unit inspections. Approved industrialized units and the on-site construction to complete the installation of the industrialized units shall be inspected. Such inspections shall include:
 1. Connection to on-site construction, interconnection of modules, connection to utilities. The inspections and conducting of required tests shall not require the destruction or disassembly of any factory-constructed component authorized by the board.
 2. Inspection of the unit for damage resulting from transportation, improper protection of exposed parts from inclement weather or other causes. Damage shall be repaired as required by the building official to comply with the applicable provisions of the rules of the board;
 3. Inspection of the unit to determine if it is marked by an insignia furnished by the board; and
 4. Inspect the unit to determine if the floor plan, exterior elevations, and exposed details are in conformance with the plans approved by the board.

108.3 Inspection agencies. The building official is authorized to accept reports of approved inspection agencies, provided such agencies are approved in accordance with the rules of the board of building standards.
108.4 **Right of entry.** The building official, or the building official’s designee, is authorized to enter the structure or premises at reasonable times to inspect or to perform the duties imposed by this code, provided that credentials are presented to the occupant and that entry is requested and obtained. Where permission to enter has not been obtained, is denied, or the building official has probable cause to believe that there exists in a structure or upon a premises a condition which is a serious hazard the building official shall proceed as required in section 109 and shall also have recourse to the remedies provided by law to secure entry.

108.5 **Inspections, compliance with construction documents.** When an inspector from the department having jurisdiction finds that completed work is in accordance with the approved construction documents, the inspector shall communicate the findings to the owner or owner’s representative, shall make a note of the inspection on an on-site inspection record and in the inspector’s log, and communicate their findings to the building official. The building official, after review of the findings, shall issue the certificate of occupancy or certificate of completion in accordance with section 111.

108.6 **Inspections, observation of violations, unsafe conditions, or serious hazards.** When an inspector from the department having jurisdiction finds that any work in connection with the location, erection, construction, repair, alteration, moving, or equipment of a building is contrary to the approved construction documents for the same, the building inspector shall proceed as required in either section 108.6.1 or 108.7.

108.6.1 **Communication process for work contrary to approved construction documents.**

1. Communicate the nature of the differences to the owner or the owner’s on-site representative and offer the following options
 1.1 The owner will bring the item of noncompliance into compliance,
 1.2 The owner will revise the drawings and resubmit to the department,
 1.3 The items of noncompliance will not be brought into compliance and will be referred to the building official as indicated in item 4 below.
2. The owner or the owner’s on-site representative shall indicate which option (item 1 above) will be exercised
3. Notations on the on-site inspection record and in the inspector’s log shall be made. The notations shall include the inspector’s name, the date of the inspection, the type of inspection, the observed items of noncompliance, the option chosen by the owner or the owner’s on-site representative, the name of the person communicated with, and the estimated dates of compliance and follow-up inspections, if applicable.
4. If the owner or the owner’s on-site representative indicates that the work
will not be brought into compliance with the approved construction
documents, the inspector shall submit a report to the building official for
the final determination of noncompliance in accordance with section
108.7.

108.6.2 Observation of violations not shown on plans. If an inspector, in
the course of performing the assigned or requested inspections, observes a
code violation that was either shown incorrectly or not adequately
addressed or detailed in the approved construction documents, the
inspector shall communicate the finding to the building official so that the
building official can make a determination of whether the code violation is
of such significance to warrant communicating the finding to the owner or
the owner’s representative as a notice of recommended change.

108.6.3 Observation of unsafe conditions or serious hazards. If an
inspector, in the course of performing the assigned or requested
inspections, observes an unsafe condition or a serious hazard, the inspector
shall communicate that condition to the owner or the owner’s on-site
representative and shall report the findings immediately to the building
official so that the building official can make a final determination of
whether the violation constitutes a serious hazard which requires the
issuance of an adjudication order as required in section 109.

108.6.4 Industrialized units, observations of noncompliance. When an
inspector from the department having jurisdiction finds that an
industrialized unit has been constructed contrary to the plans approved by
the board, the inspector shall report the nonconformance to the building
official. The building official shall notify the board of all violations of
section 108.2.13. The board or its designee and the building official shall
determine the corrective action to be taken before the building is approved
to be occupied.

108.7 Building official determination of noncompliance. The building official
shall evaluate the inspector’s report and render a final determination as to whether
the items of non-compliance are to be communicated to the owner in the form of an
adjudication order complying with section 109 or whether any additional
approvals are necessary. The building official shall make the determination within
four days of the inspector reporting as required in sections 108.6.2 and 108.6.3,
exclusive of Saturdays, Sundays, and legal holidays.
108.8 Acceptance, performance, and operational testing. Acceptance, performance, and operational testing shall be conducted as required in the applicable code or referenced standard. Advanced notice of the test schedule shall be given to the building official. The building official may require that the tests be conducted in the presence of the building official or certified inspector. Testing and inspection records shall be made available to the building official or inspector, upon request, at all times during the fabrication of the systems and the erection of the building.

108.8.1 Fire protection system acceptance testing. Fire protection system acceptance tests shall be coordinated with the fire official in accordance with Sections 901.2.1.2 and 901.5.

108.8.2 New, altered, extended or repaired systems. New systems and parts of existing systems, which have been altered, extended, renovated or repaired, shall be tested as prescribed herein to disclose leaks and defects.

108.8.3 Apparatus, material and labor for tests. Apparatus, material and labor required for testing a system or part thereof shall be furnished by the owner or the owner’s representative. Required tests shall be conducted by and at the expense of the owner or the owner’s representative.

108.8.4 Reinspection and testing. Where any work or installation does not pass an initial test or inspection, the inspector shall proceed as outlined in section 108.6.

108.9 Posting of occupant and structural loads. Postings required by Section 1004.3 and 1603.2 shall be verified.

Section 109
Orders, Violations, and Unsafe Buildings

109.1 Adjudication orders required. When the building official denies any approval or takes action in response to findings of non-compliance with the rules of the board, such action shall be initiated by issuing an adjudication order, prior to seeking any remedy, civil or criminal. Every adjudication order shall:

1. Clearly identify the rules of the board violated;
 1.1 Clearly identify, in a contrasting and obviously marked manner, all violations related to accessibility.

2. Specifically indicate which detail, installation, site preparation, material, appliance, device, addition, alteration to structures, construction
documents, assemblages or procedures are necessary to change to comply with the order;

2.1 When issued to stop work, the order shall also clearly indicate the specific work that is required to cease, when the work must cease and the conditions under which the cited work will be permitted to resume. The order to stop work shall be given to the owner of the property involved, to the owner's representative and the person doing the work.

3. Include notice of the procedure for appeal and right to a hearing if requested within thirty days of the mailing of the order. The order shall also indicate that, at the hearing, the owner may be represented by counsel, present arguments or contentions orally or in writing, and present evidence and examine witnesses appearing for or against the owner;

3.1 Any hearing(s) scheduled for accessibility issues shall cause the building official or the appeals board to notify a local advocate organization for people with disabilities of the scheduled hearing. When a local advocate organization is not available, a state organization representing people with disabilities, such as the “Governor’s Council on People with Disabilities” shall be notified;

4. Specify a reasonable period of time in which to bring the item(s) on the order into compliance;

5. Include the signature of the building official;

6. The order shall be sent to the owner and owner’s representatives.

109.2 Response to orders. The person receiving an order shall exercise their right to appeal within 30 days of the mailing of the order, comply with the order, or otherwise be released from the order by the building official.

109.3 Prosecution and penalties. When an owner fails to comply with section 109.2, the owner may be prosecuted and is subject to a fine of not more than five hundred dollars as provided for in section 3791.04 of the Revised Code.

109.3.1 Unlawful continuance. Failure to cease work after receipt of an order to stop work is hereby declared a public nuisance.

109.4 Unsafe buildings. Structures or existing equipment that are unsafe or unsanitary due to inadequate means of egress facilities, inadequate light and ventilation, or which constitute a fire hazard, or are otherwise dangerous to human life, shall be deemed a serious hazard. Where a building is found to be a serious hazard, such hazard shall be eliminated or the building shall be vacated, and where such building, when vacated, remains a serious hazard, it shall be razed.
109.4.1 Orders, injunction proceedings. Where the building official finds that a building is a serious hazard and the owner of such building fails, in the time specified in an order from the building official, to eliminate such hazard, or to vacate or raze the building, the building official shall proceed under section 3781.15 of the Revised Code.

109.4.2 Restoration. Where the structure or equipment is determined to be unsafe by the building official, it is permitted to be restored to a safe condition. To the extent that repairs, alterations or additions are intended to be made or a change of occupancy occurs during the restoration of the structure, such repairs, alterations, additions or change of occupancy shall comply with Chapter 34 and this chapter.

Section 110
Appeals

110.1 Hearing and right of appeal, local board of building appeals. Adjudication hearings shall be in accordance with sections 119.09 to 119.13 of the Revised Code, as required by section 3781.031 of the Revised Code, and the following:

1. Requests for hearing shall be within thirty days of the mailing date of an adjudication order. The local board shall schedule a hearing and notify the party. If the hearing concerns section 3781.111 of the Revised Code or rules adopted thereunder, reasonable notice of time, date, place, and subject of the hearing shall be given to any local organization composed of or representing persons with disabilities, as defined in section 3781.111 of the Revised Code, or if there is no local organization, then to any statewide organization composed of or representing persons with disabilities.

1.1 For purposes of conducting adjudication hearings, the local board may require attendance of witnesses, production of records and papers, and may take depositions of witnesses in accordance with section 119.09 of the Revised Code.

1.2 Testimony shall be under oath and, as outlined in section 109.1, a stenographic or mechanical record of testimony and other evidence submitted shall be taken at the expense of the local board of building appeals.

1.3 The local board may postpone or continue any adjudication hearing on its own motion or upon the application of any party.

1.4 The board shall keep a full and complete record of all proceedings which shall be open to public inspection.

2. The Board shall render its decision within thirty days after the hearing.
3. Following the hearing, an order shall be entered on its journal, and the local board shall serve by certified mail, return receipt requested, upon the party affected thereby, a certified copy of the order and a statement of the time and method by which an appeal may be perfected. A copy of the order shall be mailed to the attorney or other representatives of record representing the party.

4. Any municipal or county officer, official municipal or county board, or person who was a party to the hearing before the municipal or county board of building appeals, may apply to the state board of building appeals for a de novo hearing, or may appeal to the court of common pleas of the county in which he is a resident or in which the premises affected by such order is located.

5. In addition, when the adjudication hearing concerns section 3781.111 of the Revised Code, or any rule made thereunder, any local organization composed of or representing persons with disabilities, or if no local organization exists, then any statewide organization representing persons with disabilities may file appeals as indicated in paragraph 4. of this section.

6. Application for a de novo hearing before the state board shall be made no later than thirty days after the municipal or county board renders its decision.

Section 111
Certificate of occupancy and certificate of completion

111.1 Approval required to occupy. No building or structure, in whole or in part, shall be used or occupied until the building official has issued an approval in the form of a certificate of occupancy or certificate of completion in compliance with this section.

111.1.1 Certificate of occupancy. The certificate of occupancy shall indicate the conditions under which the building shall be used. The building owner shall only use the structure in compliance with the certificate of occupancy and any stated conditions. The structure and all approved building service equipment shall be maintained in accordance with the approval.
When a building or structure is entitled thereto, the building official shall issue a certificate of occupancy provided there are not violations of the rules of the board or orders of the building official pending or as permitted in this section. A copy of the certificate of occupancy shall be forwarded to the local fire official.
111.1.1.1 New buildings and additions. A building or structure erected, enlarged or extended shall not be used or occupied, in whole or in part, until the certificate of occupancy has been issued by the building official. Occupancy of spaces within a building which are unaffected by the work shall be allowed to continue if the building official determines the existing spaces can be occupied safely.

111.1.1.2 Change of occupancy. Change of occupancy of an existing structure shall not be made except as specified in Chapter 34. A building or structure hereafter changed, in whole or in part, from one occupancy to another shall not be occupied for the new occupancy until the certificate of occupancy has been issued by the building official reflecting such changed portions. Existing occupancy of spaces within the building which are unaffected by the change of occupancy and any related alterations shall be allowed to continue if the building official determines the existing spaces can be occupied safely until the completion of the alterations.

111.1.1.3 Partial occupancy. Upon the request of the owner or owner’s representative, a building official shall issue a certificate of occupancy before the completion of the entire work, provided that the building official determines that the space can be safely occupied prior to full completion of the building, structure, or portion without endangering life or public welfare. The certificate shall indicate the extent of the areas approved for occupancy and any time limits for completion of the work.

111.1.1.4 Time-limited occupancy. A building or structure hereafter changed in part from one occupancy to another for a limited time may receive a certificate of occupancy reflecting that time-limited occupancy provided:

1. There are no violations of law or orders of the building official pending;
2. It is established after inspection and investigation that the proposed use is not deemed to endanger public safety and welfare;
3. The building official has approved the use for an alternative purpose on a temporary basis;
4. The building official has issued a certificate of occupancy indicating any special conditions under which the building or part of the building can be used for the alternative purpose within the time limit specified.
111.1.5 Temporary structures occupancy. A building intended to be erected, placed and used for a period of time not to exceed one hundred eighty days that has been determined by the building official to be in compliance with section 102.8 shall be issued a “Certificate of Occupancy for Temporary Structures.” The building official is authorized to grant extensions for demonstrated cause.

111.1.2 Certificate of completion for alterations and repairs. The certificate of completion for alterations and repairs shall indicate the conditions under which the building shall be used. The building owner shall only use the structure in accordance with the certificate of completion and any stated conditions. The structure and all approved building service equipment shall be maintained in accordance with the approval.

When the work in a building or structure is entitled thereto, the building official shall issue a certificate of completion for the work provided there are not violations of the rules of the board or orders of the building official pending or as permitted in this section. Occupancy of spaces within a building which are unaffected by the work shall be allowed to continue if the building official determines the existing spaces can be occupied safely.

111.2 Certificate issued. The certificate shall certify compliance with the provisions of this code, Chapters 3781. and 3791. of the Revised Code, and the purpose for which the building or structure may be used in its several parts. The certificate of occupancy or certificate of completion shall contain the following:

1. The plan approval application number.
2. The address.
3. A description of that portion of the structure for which the certificate is issued.
4. The signature of all building officials having jurisdiction. When more than one building official has jurisdiction for a building (when the certification of the building department is limited for such systems as plumbing or piping systems) each shall sign the certificate with an indication of the scope of their individual approvals.
5. The edition of the code under which the plan approval was issued.
6. The use and occupancy, in accordance with the provisions of Chapter 3.
7. The type of construction as defined in Chapter 6.
8. The design occupant load.
9. If an automatic sprinkler systems is provided, whether the sprinkler system is required.
10. The hazard classification or storage configuration, including aisle widths, for which the automatic sprinkler system is designed.
11. The automatic sprinkler and standpipe system demand at the base of the riser.

12. Any special stipulations and conditions of the plan approval including any variances granted to the requirements of this code.

111.3 Validity of a certificate of occupancy or certificate of completion. The certificate represents an approval that is valid only when the building or structure is used as approved and certifies conformance with applicable provisions of the “Ohio Building Code” and Chapters 3781. and 3791. of the Revised Code. The approval is conditioned upon the building systems and equipment being maintained and tested in accordance with the approval, the “Ohio Building Code”, and applicable equipment and systems schedules.

111.4 Existing buildings. Upon written request from the owner of an existing building or structure, the building official shall issue a certificate of occupancy, provided there are not violations of law or orders of the building official pending, and it is established after inspection and investigation that the alleged occupancy of the building or structure has previously existed. This code shall not require the removal, alteration or abandonment of, or prevent the continuance of, the occupancy of a lawfully existing building or structure, unless such use is deemed to endanger public safety and welfare.

111.5 Connection of service utilities. No connections shall be made from a utility, source of energy, fuel or power to any building or system that is regulated by this code for which a plan approval and inspections are required, until approved by the building official.

111.6 Temporary connection. The building official shall approve the temporary connection of the building or system to the utility source of energy, fuel or power.

Section 112
Changes to the code

112.1 Code change petition process. In accordance with section 3781.10 of the Revised Code, the board may, on its own motion or upon receipt of a petition, adopt, amend, or rescind rules through the administrative rule process.

112.1.1 Changes, applications for. Any person may apply to the board to adopt, amend, or rescind rules of the board. The application for rule change shall be on forms and in format prescribed by the board. Twelve printed copies of the application shall be filed with the secretary of the
board.

112.1.2. Processing applications for changes. When the secretary of the board receives a conforming application for an adoption, amendment, or annulment of a provision of the rules of the board, the secretary shall promptly deliver or mail a copy of the application to each member of the board.

After receiving an application for the adoption, amendment, or annulment of a provision of the rules of the board, the board shall proceed under sections 3781.101 and 3781.12 of the Revised Code.

112.2 Changes to the codes and code enforcement. The building department shall exercise enforcement authority to accept and approve plans and specifications and make inspections using the rules of the board that were in effect on the date of the first application for plan approval for that project. Such approvals shall be subject to the limitations of sections 105.3 and 105.4.

Section 113
Industrialized units

113.1 Industrialized units. Industrialized units shall be approved by the board in accordance with the provisions in this section.

Exceptions:
1. Alternative materials, design and methods of construction and equipment approved by the board in accordance with section 114.3.
2. Construction for which the provisions of section 1704 applies. Where panels or components are constructed to include elements not provided for or accounted for in section 1704, then this section shall apply. (For example, engineered gluelam beams, precast concrete panels or welded steel components that have been constructed offsite with electrical or mechanical components in them so that a detailed inspection of the mechanical or electrical components cannot be done on the site of their intended use would be required to comply with this section.)
3. Foam plastic insulation conforming to the provisions of section 2603. (However, a foam plastic insulation panel that is constructed, listed and labeled in accordance with section 2603, is required to comply with this section if structural, electrical or other components not covered by section 2603 are enclosed within the panel).
4. Materials, devices and products in directories listed in Table 114.3 used for building service equipment systems in accordance with the listing and this code.
113.2 Definitions.

Closed construction. An assembly of materials or products manufactured in such a manner that its structural, plumbing, electrical, environmental control, or fire protection elements or components are concealed and are not readily accessible for inspection at the site of its erection, without disassembly, damage, or destruction. Closed construction includes assemblies where only one of the components is not accessible for inspection. (For example, an equipment enclosure where all the electrical conductors and components are exposed for inspection and its roof and wall panels have exposed structural members but the floor panel structural members are not exposed, would be required to comply with this section.)

Industrialized units. Industrialized units are prefabricated components comprised of closed construction manufactured at a location remote from the site of intended use and transported to a building site for its subsequent use. Industrialized units are not restricted to housing for one-, two-, and three-family dwellings, but includes all prefabricated forms of building elements and assembled construction units, intended for both structural and service equipment purposes in all buildings of all groups. Prefabricated shop assemblies may be shipped in structurally complete units ready for installation in the building structure or in knock-down and packaged form for assembly at the site.

113.2.1 General terms. Such terms as heart modules or cores, modules, modulars, service cores, prefabs, sectional or sectionalized, panels or panelized construction, and specific terms including "prefabricated-subassembly, -building, -unit, -unit service equipment" shall be considered industrialized units. They may be self-sufficient or interdependent as a unit or group of units and used together or incorporated with standard construction methods to form a completed structural entity.

113.3 Application. The application for approval, including revisions and renewals for existing approvals, shall be submitted to the board together with the fee required in section 113.8 of this chapter. The required information shall be provided as prescribed by the board on its website. Construction documents shall be included in conformity with the applicable provisions of section 106, and shall describe all essential elements of the structure or assembly and details of interconnection of: assemblies; service equipment; electrical wiring; plumbing; mechanical; and any other equipment whether installed at the site or in the
manufacturing facility. The design and construction of the units shall be in conformance with the provisions of the Ohio building, mechanical and plumbing codes based on the intended use and/or occupancy type. Industrialized units intended to be used exclusively for one-, two-, or three-family dwellings shall comply with the applicable provisions of the “Residential Code of Ohio for One-, Two-, and Three-Family Dwellings” listed in section 3501.2 or shall meet the provisions of the board’s rules applicable to “Group R-3”. Only the person holding an approval may apply to the board for a revision or renewal of the approval.

113.3.1 Manufacturers with facilities outside Ohio. Each application for manufacturers with manufacturing facilities outside Ohio shall also identify the individual or agency that will be performing in-plant inspections of the units intended for placement in Ohio. The application shall also include a letter from the designated individual or agency indicating that they have a contractual relationship with the manufacturer to perform the inspections. This letter shall include the name(s) and board certification(s) of the individual(s) who will be assigned to perform the inspections.

113.3.2 Manufacturers with facilities in Ohio. Each application for manufacturers with manufacturing facilities in Ohio shall include the same information required in section 113.3.1 or, as an alternative, the manufacturer shall indicate their intention to have the inspections conducted by inspectors designated by the board.

113.4 Evaluation. After receipt of the application, the board or such agency designated by the board shall proceed with review of the industrialized unit construction documents and cause such inspections of the manufacturer's quality control processes used to ensure compliance with the rules of the board.

113.4.1 Tests. The board shall have the authority to require tests as evidence of compliance. Test methods shall be as specified in this code or by other recognized test standards. In the absence of recognized and accepted test methods, the board shall approve the testing procedures. Tests shall be performed by an approved agency. Reports of such tests shall be retained by the board for the period required for retention of public records.

113.4.2 Plant evaluations. An initial plant evaluation inspection shall be required at each plant of manufacture to observe and ensure that the manufacturer's facilities and quality control program maintains acceptable control of materials and processes used in the manufacture of industrialized
units to ensure conformance with the approved construction documents. The plant evaluation inspection shall include all subassembly plants supplying the manufacturer, as the board may deem necessary.

113.5 Approval. The board, upon determination of compliance, shall issue an approval to the applicant. Industrialized units approved by the board may be used anywhere in Ohio subject to the conditions for their use and application as indicated in the approval.

113.5.1 Revisions. Any changes to board approved construction documents affecting the conditions listed in the approval shall require a revision of the approval.

113.5.2 Code changes. When any changes to the rules of the board are adopted which affect the use, safety or sanitation of any approved industrialized unit, the holder of the approval shall apply to the board for a revision of the approval. Failure to apply for revision of approvals within the time specified by the board, shall constitute failure to comply with the conditions of the approval.

113.5.3 Revocation of approval. Upon failure of the holder of an approval to comply with the conditions of the approval and this chapter, the board, on its own motion, shall order a hearing in accordance with section 119.03 of the Revised Code to revoke an existing approval.

113.5.4 Validity of the approval for the use of an industrialized unit. An industrialized unit manufactured under an approval by the board, not transported to a building site for use but stored at a manufacturer’s or dealer’s facility, can be used in Ohio as an industrialized unit for a maximum of two years after the effective date upon which the board adopts building code rules using another edition of a model code as the basis of this code. After this two-year time period, the unit’s approval is no longer valid and the unit is no longer considered an industrialized unit but shall be regulated as a moved structure in accordance with Chapter 34.

113.6 Inspections, board insignias, and shipping reports. Each industrialized unit shall be inspected in-plant during each phase of the manufacturing process by inspectors certified by the board of such persons designated by the board until in-plant inspections demonstrate that the manufacturer’s quality control program is capable of assuring that the industrialized units produced are built in accordance with the construction documents approved by the board. When it has been
determined that the manufacturer’s quality control program is capable of assuring compliance with the board approved construction documents, then at one overall inspection of “open” construction shall be performed in-plant for each unit by an inspector certified or designated by the board.

Exception: When a manufacturer with manufacturing facilities in Ohio has chosen to have inspections conducted by designees of the board, the inspection frequency shall be based upon the reliability or effectiveness of the manufacturer in maintaining sufficient control of the materials and processes to ensure that the units are constructed in accordance with the approved construction documents.

An insignia shall be obtained from the board for each industrialized unit module to be used within the state of Ohio. The insignia shall be affixed to each unit after a determination is made by the inspector that the unit is constructed in accordance with the construction documents approved by the Board, which shall constitute final approval of the unit.

After an insignia has been affixed, the manufacturer shall record its use in shipping records, to be submitted monthly to the board, which shall record:

1. The shipping insignia number;
2. Ohio board of building standards industrialized unit group assigned project file number appearing on the board-approved construction documents;
3. The date the insignia was affixed to the individual unit;
4. Name and address of the construction inspector and inspection agency.
5. Manufacturer’s unit serial number;
6. Manufacturer’s model number;
7. Dealer name and address and;
8. Site installation destination address and owner name.

113.6.1 Increased inspection. When an inspection determines that the quality control program does not sufficiently ensure compliance with the construction documents approved by the board, the certified inspector or person designated by the board shall, by written notification, inform the manufacturer that the inspection frequency will be increased so that each assembly or component affected by the nonconforming item will be inspected. These inspections shall continue until an inspection determines that the manufacturer’s control of the materials and processes used is sufficient to ensure that the units are constructed in accordance with the approved construction documents.

113.7 Manufacturer responsibility. The manufacturer shall maintain responsibility over all work completed in the factory until the unit is approved for first occupancy and shall rectify any deviations from the approved construction
documents, which are found either in the field or at the place of manufacture. The manufacturer shall submit to the board such periodic reports, notifications and information as required by board procedures.

113.7.1 Document submission to building departments. The manufacturer shall ensure that the construction documents approved by the board are presented to the building official in accordance with section 106.1.2(1) before placing the industrialized unit on site.

Exception: Industrialized units construction documents previously approved by the board and site related construction documents are not required to be submitted to the division of industrial compliance where industrialized units are used exclusively as one-, two, or three family dwellings.

113.7.2 Change in personnel. Whenever there are changes in company name, ownership, subsidiary status, address or change in the manufacturer's management personnel who are responsible for making policy concerning quality control, the manufacturer shall immediately notify the board, in writing, and the manufacturing plant(s) affected by the change will be subject to a plant evaluation inspection.

113.8 Fees. All costs associated with industrialized unit approval applications, processing, construction document review, inspections and insignias shall be in accordance with sections 113.8.1 to 113.8.5.

113.8.1 Applications. Each initial application or revision submittal to the board shall be accompanied by nonrefundable fees, designated by the board to include: application processing fee; one-hour minimum plan review fee; and other costs, when incurred, such as mailing and check processing.

113.8.2 Evaluation of construction documents. All costs of application processing, evaluation of construction documents or other documentation submitted to the board shall be paid by the applicant.

113.8.3 Plant evaluation and inspection costs. All costs of plant evaluations and inspections shall be paid by the manufacturer of the unit including travel, food, lodging, and administrative costs.

113.8.4 Insignias. The fee for insignia for all assembled modular units manufactured for use in the state of Ohio shall be fifty dollars per unit (any preassembled combination of walls to floor, ceilings, roof, and other such
components).
The fee for insignia for all panelized units manufactured for use in the state of Ohio shall be one dollar for each twenty square feet of surface area of preassembled individual components (wall, floor, ceiling or roof sections, and other such components) intended to be shipped to the site and attached to other components at the site of intended use.

113.8.5 Tests. Tests required by the board to be performed to determine compliance pursuant to section 113.4.1, shall be conducted at no expense to the board. Costs associated with any required testing or research necessary to provide evidence of compliance shall be the responsibility of the applicant.

Section 114
Products and materials

114.1 General. Any material, product, assembly or method of construction used in a building or structure shall be approved by the building official. The provisions of this section describe the product approval process intended by the board of building standards in accordance with Section 3781.10 (C) of the Revised Code.

114.2 Definitions. The following words and terms shall, for the purposes of this section, have the meanings shown herein:

Accreditation. The formal recognition of a conformity assessment body’s adherence and operation under a documented quality system whereby a third party (Accreditation Body) attests to technical competence and the specific scope of accreditation of the conformity assessment body.

Accreditation body. An authoritative body that is an established, independent, internationally recognized, third-party organization that performs accreditation to ascribe initial recognition and monitors, on an cyclical basis, the competency, integrity, and performance of conformity assessment bodies in accordance with established standards.

Assembly. A preassembled grouping of materials, products and/or components designed to act as a whole. This does not include industrialized units regulated by section 113.

Calibration laboratory. An established, independent, nationally recognized and accredited, third-party organization that regularly provides calibration services such as, but not limited to, tolerance testing to ensure the accuracy of measuring equipment used in construction.
Conformity assessment body. A body that performs conformity assessment services and can be an object of accreditation, such as a testing laboratory, inspection body, product certification body.

Evaluation service. An established, independent, nationally recognized and accredited, third-party conformity assessment body that is accredited as a product certification body and performs technical evaluations of building materials, products, and methods of construction where code requirements are not clear or the innovative products do not have national consensus standards. The evaluation of the product results in the issuance of a research report establishing the code compliance and conditions of its use based upon multiple sources of information including test reports, test data, performance data, or acceptance criteria, and can be approved for installation by the building official in accordance with the rules of the board.

Fabricator inspection agency. An established, independent, nationally recognized and accredited, third-party conformity assessment body regularly engaged in fabrication of construction materials and methods of construction.

Field evaluation body. An established, independent, nationally recognized and accredited, third-party conformity assessment body regularly engaged in furnishing field inspection, observation, testing, or reporting services for construction materials, products, and methods of construction.

Industry trade association certification program. A certification program operated by an established and nationally recognized organization, founded and funded by businesses that operate in a specific industry, where the main focus is to monitor quality assurance among associated members.

Insignia. A mark or label prescribed in accordance with board procedures.

Inspection body. An established, independent, nationally recognized and accredited, third-party conformity assessment body regularly engaged in furnishing inspection, observation, testing, or reporting services for construction materials, products, and methods of construction. Such services include, but are not limited to geotechnical inspections, environmental inspections, mechanical and metallurgical analysis, non-destructive testing and evaluation, chemical analysis, and structural and product testing.
Listing agency. An established, independent, nationally recognized and accredited, third-party conformity assessment body that is accredited as a product certification body and conducts tests on materials, products, or methods of construction to certify products that meet the criteria for compliance with nationally recognized codes and standards. The product certification body allows its insignia of conformity to be placed on a material or product by the manufacturer, identifying that the material or product has been certified by the product certification body. The product certification body maintains a list or directory of all of the materials and products that they have certified and the conditions of their use.

Material. A manufactured form or substance designed to act as a whole.

Method of construction. A procedure or system intended to result in a finished building, structure or portion thereof.

Product. A material or device designed and manufactured to perform a predetermined function. Appliances, assemblies and equipment are also considered products.

Product certification body. An established, independent, nationally recognized and accredited, third-party conformity assessment body regularly engaged in conducting evaluation services, inspections and tests on materials and products to certify compliance with nationally recognized codes and standards. Product Certification Bodies are sub-classified as either Evaluation Services or Listing Agencies.

Recognition. An acceptance by the board of building standards of an accreditation body, a conformity assessment body, or an industry trade association certification program in accordance with the rules of the board of building standards.

Special inspection agency. An established, independent, nationally recognized and accredited, third-party conformity assessment body regularly engaged in performing special inspections as required by Chapter 17.

Testing laboratory. An established, independent, nationally recognized and accredited, third-party conformity assessment body regularly engaged in conducting tests of materials, products, or methods of construction to determine compliance with a specification or testing standard. The testing laboratory issues a report documenting the test results.
114.3 Building official approval process. The building official shall approve the use of products in accordance with Sections 114.3.1 through 114.3.3.

114.3.1 Materials, products, assemblies and methods of construction
prescribed in the code.

114.3.1.1 Testing laboratories. When test reports are required to be submitted or when the rules of the Board require materials, products, assemblies and methods of construction to conform to specific referenced standards, the building official shall verify that the proposed material, product, assembly, and method of construction has been tested by a testing laboratory recognized by the board and published on the list titled “Recognized Conformity Assessment Bodies” found on the board’s website at http://www.com.ohio.gov/dico/bbs.

The building official shall verify that the testing laboratory is accredited to perform the specific tests prescribed in the code by verifying the testing laboratory’s “scope of accreditation” found on the testing laboratory’s website.

Exceptions:

1. Acceptance, performance, and operational testing reports submitted in accordance with Section 108.8 are permitted to be prepared and submitted by the individual performing the acceptance, performance, and operational tests. Board recognition is not required for persons conducting acceptance, performance, or operational tests.

2. Special inspection reports submitted in accordance with Section 1704.1.2 are permitted to be prepared and submitted by the special inspector defined in Section 1702.1 and qualified in accordance with Section 1704.1. Board recognition is not required for all special inspectors.

114.3.1.2 Listing agencies. When the rules of the Board require materials, products, assemblies and methods of construction to be marked or listed and labeled in accordance with a specific referenced standard, the building official shall verify that the proposed material, product, assembly, and method of construction has been listed and labeled by a listing agency recognized by the board and published on the list titled “Recognized Conformity Assessment Bodies” found on the board’s website at http://www.com.ohio.gov/dico/bbs.

Building officials are authorized to approve listed and labeled materials, products, assemblies and methods of construction after verifying all of the following additional information:

1. The product is listed on the product certification body’s website directory.

2. The listing is current.
3. The product is proposed to be installed/used in accordance with the listing.
4. When used as an assembly, the assembly is proposed to be installed/used in compliance with this code.
5. The extent of the listing does not include in its scope, elements of design, construction or installation otherwise in conflict with the provisions of this code such as fire-resistance and structural design.

114.3.2 Alternative materials, products, assemblies and methods of construction not prescribed in the code. The provisions of this code are not intended to prevent the installation of any material or to prohibit any material, product, assembly or method of construction not specifically prescribed by this code, provided that any such alternative shall have a valid evaluation service report, as described in section 114.3.2.1, or listing from a product certification body recognized by the board and published on a list titled “Recognized Conformity Assessment Bodies” found on the board’s website at http://www.com.ohio.gov/dico/bbs.

The alternative material, product, assembly, or method of construction shall be deemed to be approved provided it complies with the conditions listed in the evaluation service report or listing found on the product certification body’s website.

Exceptions:
1. Alternative materials, products, assemblies, or methods of construction submitted pursuant to section 106.5.
2. Industrialized units shall be approved and constructed in accordance with section 113.1 of this chapter.

114.3.2.1 Evaluation Service Reports. Building officials are authorized to accept evaluation service reports for materials, products, assemblies, and methods of construction from recognized evaluation service agencies after reviewing and verifying all of the following minimum information in the evaluation service report:

1. Identification and description of the product specifically addressed in the report and a description of how the product can be identified;
2. Identification of the specific code provisions to which the product was evaluated as a suitable alternative to the requirements of the code;
3. The product installation requirements;
4. The statement of the conditions and limitations of use of the product; and
5. List the test reports used in the evaluation.
114.3.3 Used materials and products. The use of used materials and products which meet the requirements of this code for new materials and products is permitted. Used products and materials shall not be reused unless approved by the building official.

114.4 Process for board-recognition of “Accreditation Bodies,” “Conformity Assessment Bodies,” and “Industry Trade Association Certification Programs.” All accreditation bodies, conformity assessment bodies, and industry trade association certification programs shall be recognized by the board in accordance with division 4101:7 of the Administrative Code.

Section 115
Board Organization

115.1 Meetings.
1. Meeting schedule. No later than December thirty-first of each year, the board shall establish a schedule of the dates, times, and locations of all regular board meetings and meetings of board committees for the following calendar year. Such schedule shall be posted on the board’s website: http://www.com.ohio.gov/dico/bbs.

2. Meeting location. All meetings of the board shall be held in offices of the Ohio department of commerce, training room #1, 6606 Tussing Rd., Reynoldsburg, Ohio, 43068, unless otherwise designated.

115.2 Notices. Prior to all regular or special meetings of the board, the executive secretary shall distribute the agenda, including meeting date, time, and location, by electronic mail to any person who has requested such information.

115.3 Rules. All rules of the board shall be adopted in accordance with Chapter 119. of the Revised Code.

115.4 Board committees and duties. The board shall have three standing committees.
1. Code committee. The code committee provides general oversight of the board’s rule promulgation and code development activities. The committee reviews proposed rule changes and petitions for code changes and shall make recommendations to the board for action.

2. Education committee. The education committee provides general oversight
to the board’s continuing education program. The committee reviews continuing education course applications submitted for approval pursuant to paragraph (G) of rule 4101:7-3-01 of the Administrative Code and shall make recommendations to the board for action on the applications.

3. **Certification committee.** The certification committee provides general oversight to the board’s personnel and building department certification program. The committee reviews personnel and building department certification applications submitted for approval pursuant to paragraph (G) of rule 4101:7-3-01 of the Administrative Code and shall make recommendations to the board for action on the applications.
Effective: 8/1/2018
Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A), 4104.43(A)(1)
Rule Amplifies: 2744., 3781.03, 3781.031, 3781.10, 3781.11, 3791.04
4101:1-2-01 Definitions.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:1-35-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 201
GENERAL

201.1 Scope. Unless otherwise expressly stated, the following words and terms shall, for the purposes of this code, have the meanings shown in this chapter.

201.2 Interchangeability. Words used in the present tense include the future; words stated in the masculine gender include the feminine and neuter; the singular number includes the plural and the plural, the singular.

201.3 Terms defined in other codes. Where terms are not defined in this code and are defined in the International Energy Conservation Code, International Fuel Gas Code, fire code, mechanical code or plumbing code, such terms shall have the meanings ascribed to them as in those codes.

201.4 Terms not defined. Where terms are not defined through the methods authorized by this section, such terms shall have ordinarily accepted meanings such as the context implies.

SECTION 202
DEFINITIONS

AAC MASONRY. Masonry made of autoclaved aerated concrete (AAC) units, manufactured without internal reinforcement and bonded together using thin- or thick-bed mortar.

ABOVE-GROUND STORAGE TANK. A vessel, intended for fixed installation above grade, at grade, or below grade without backfill, used for the purpose of bulk storage, dispensing, handling or processing of hazardous, flammable or combustible liquids or gases and not connected to and utilized for the operation of building service equipment.

ACCESSIBLE. A site, building, facility or portion thereof that complies with Chapter 11.
ACCESSIBLE MEANS OF EGRESS. A continuous and unobstructed way of egress travel from any accessible point in a building or facility to a public way.

ACCESSIBLE ROUTE. A continuous, unobstructed path that complies with Chapter 11.

ACCESSIBLE UNIT. A dwelling unit or sleeping unit that complies with this code and the provisions for Accessible units in ICC A117.1.

ACCREDITATION BODY. Refer to Section 114.2.

ACTIVE SHOOTER DRILL. An exercise performed by staff and occupants to evaluate their efficiency and effectiveness in executing an adopted school safety plan to respond to an active shooter event by sheltering and securing occupants in place within a building when normal evacuation would put occupants at risk. See 1008.1.9.11.

ADDITION. An extension or increase in floor area, number of stories, or height of a building or structure.

ADHERED MASONRY VENEER. Veneer secured and supported through the adhesion of an approved bonding material applied to an approved backing.

ADMINISTRATIVE AUTHORITY OF A SCHOOL BUILDING. The superintendent, principal, chief administrative officer, or other person having supervisory authority of a school building. See section 1008.1.9.11.

ADOBE CONSTRUCTION. Construction in which the exterior load-bearing and nonload bearing walls and partitions are of unfired clay masonry units, and floors, roofs and interior framing are wholly or partly of wood or other approved materials.

Adobe, stabilized. Unfired clay masonry units to which admixtures, such as emulsified asphalt, are added during the manufacturing process to limit the units’ water absorption so as to increase their durability.

Adobe, unstabilized. Unfired clay masonry units that do not meet the definition of “Adobe, stabilized.”

AEROSOL. A product that is dispensed from an aerosol container by a propellant. Aerosol products shall be classified by means of the calculation of their chemical heats of combustion and shall be designated Level 1, Level 2 or Level 3.

Level 1 aerosol products. Those with a total chemical heat of combustion that is less than or equal to 8,600 British thermal units per pound (Btu/lb) (20 kJ/g).

Level 2 aerosol products. Those with a total chemical heat of combustion that is greater than 8,600 Btu/lb (20 kJ/ g), but less than or equal to 13,000 Btu/lb (30 kJ/g).
Level 3 aerosol products. Those with a total chemical heat of combustion that is greater than 13,000 Btu/lb (30 kJ/g).

AEROSOL CONTAINER. A metal can or a glass or plastic bottle designed to dispense an aerosol.

AGGREGATE. In roofing, crushed stone, crushed slag or water-worn gravel used for surfacing for roof coverings.

AGRICULTURAL BUILDING. A structure designed and constructed to house farm implements, hay, grain, poultry, livestock or other horticultural products. This structure shall not be a place of human habitation or a place of employment where agricultural products are processed, treated or packaged, nor shall it be a place used by the public. (see “AGRICULTURAL PURPOSES”, section 101.2, and section 312 of this code).

AGRICULTURAL LABOR CAMPS. Camps as defined in section 3733.41 of the Revised Code.

AGRICULTURAL PURPOSES: Includes agriculture, farming, dairying, pasturage, apiculture, horticultural, floriculture, viticulture, ornamental horticulture, olericulture, pomiculture, animal and poultry husbandry, etc.

AIRCRAFT HANGER, RESIDENTIAL. An accessory building less than 2,000 square feet (186 m²) and 20 feet (6096 mm) in building height constructed on a one-, two-, or three-family property where aircraft are stored. Such use will be considered as a residential accessory use incidental to the dwelling.

AIR-IMPERMEABLE INSULATION. An insulation having an air permeance equal to or less than 0.02 l/s × m² at 75 pa pressure differential tested in accordance with ASTM E 2178 or ASTM E 283.

AIR-INFLATED STRUCTURE. A structure that uses air-pressurized membrane beams, arches or other elements to enclose space. Occupants of such a structure do not occupy the pressurized area used to support the structure.

AIR-SUPPORTED STRUCTURE. A structure wherein the shape of the structure is attained by air pressure and occupants of the structure are within the elevated pressure area. Air-supported structures are of two basic types:

Double skin. Similar to a single skin, but with an attached liner that is separated from the outer skin and provides an airspace which serves for insulation, acoustic, aesthetic or similar purposes.

Single skin. Where there is only the single outer skin and the air pressure is directly against that skin.

AISLE. An unenclosed exit access component that defines and provides a path of egress travel.

AISLE ACCESSWAY. That portion of an exit access that leads to an aisle.

ALARM NOTIFICATION APPLIANCE. A fire alarm system component such as a bell, horn, speaker, light or text display that provides audible, tactile or visible outputs, or any combination thereof.
ALARM SIGNAL. A signal indicating an emergency requiring immediate action, such as a signal indicative of fire.

ALARM VERIFICATION FEATURE. A feature of automatic fire detection and alarm systems to reduce unwanted alarms wherein smoke detectors report alarm conditions for a minimum period of time, or confirm alarm conditions within a given time period, after being automatically reset, in order to be accepted as a valid alarm-initiation signal.

ALLOWABLE STRESS DESIGN. A method of proportioning structural members, such that elastically computed stresses produced in the members by nominal loads do not exceed specified allowable stresses (also called “working stress design”).

ALTERATION. Any construction or renovation to an existing structure other than repair or addition.

ALTERNATING TREAD DEVICE. A device that has a series of steps between 50 and 70 degrees (0.87 and 1.22 rad) from horizontal, usually attached to a center support rail in an alternating manner so that the user does not have both feet on the same level at the same time.

AMBULATORY CARE FACILITY. Buildings or portions thereof used to provide medical, surgical, psychiatric, nursing or similar care for fewer than twenty-four hours per day to individuals who are rendered incapable of self-preservation by the services provided.

AMUSEMENT RIDE. Any mechanical, aquatic, or inflatable device, or combination of those devices that carries or conveys passengers on, along, around, over, or through a fixed or restricted course or within a defined area for the purpose of providing amusement, pleasure, or excitement and includes carnival rides, bungee jumping facilities, and fair rides but does not include passenger tramways as defined in section 4169.01 of the Revised Code or amusement rides operated solely at trade shows for a limited period of time. For regulation and definitions, see sections 1711.50 to 1711.57 of the Revised Code. Amusement rides are not regulated by this code but are regulated by the Ohio department of agriculture. Also see section 411, Special Amusement Buildings.

ANCHOR BUILDING. An exterior perimeter building of a group other than H having direct access to a covered or open mall building but having required means of egress independent of the mall.

ANCHORED MASONRY VENEER. Veneer secured with approved mechanical fasteners to an approved backing.

ANNULAR SPACE. The opening around the penetrating item.

ANNUNCIATOR. A unit containing one or more indicator lamps, alphanumeric displays or other equivalent means in which each indication provides status information about a circuit, condition or location.

APPROVED. Determined to be in compliance by the authority having
jurisdiction in accordance with the rules of the board.

APPROVED AGENCY. An established and accredited testing laboratory, listing agency, inspection body, or field evaluation body recognized by the board of building standards providing services consistent with their accreditation and the code section requiring the approved agency service. The registered design professional in responsible charge and engineers of record involved in the design of the project are permitted to act as the approved agency and their personnel are permitted to act as the special inspector for the work designed by them, provided those personnel meet the qualification requirements of section 1704.

APPROVED FABRICATOR. An established and qualified person, firm or corporation approved in accordance with the rules of the board of building standards.

APPROVED NATIONAL AND ACCREDITATION SERVICE. An established and nationally recognized service regularly engaged in evaluating the competency of agencies to conduct tests and inspections required by the rules of the board.

APPROVED SOURCE. Deleted.

AREA (for masonry).
- **Gross cross-sectional.** The area delineated by the out-to-out specified dimensions of masonry in the plane under consideration.
- **Net cross-sectional.** The area of masonry units, grout and mortar crossed by the plane under consideration based on out-to-out specified dimensions.

AREA, BUILDING. The area included within surrounding exterior walls (or exterior walls and fire walls) exclusive of vent shafts and courts. Areas of the building not provided with surrounding walls shall be included in the building area if such areas are included within the horizontal projection of the roof or floor above.

AREA OF REFUGE. An area where persons unable to use stairways can remain temporarily to await instructions or assistance during emergency evacuation.

AREA OF SPORT ACTIVITY. That portion of an indoor or outdoor space where the play or practice of a sport occurs.

AREAWAY. A subsurface space adjacent to a building open at the top or protected at the top by a grating or guard.

ASSEMBLY SEATING, MULTILEVEL. See “Multilevel assembly seating.”

ATRIUM. An opening connecting two or more stories other than enclosed stairways, elevators, hoistways, escalators, plumbing, electrical, air-conditioning or other equipment, which is closed at the top and not defined as a mall. Stories, as used in this definition, do not include balconies within assembly groups or mezzanines that comply with Section 505.

ATTIC. The space between the ceiling beams of the top story and the roof rafters.
AUDIBLE ALARM NOTIFICATION APPLIANCE.
A notification appliance that alerts by the sense of hearing.

AUTOCLAVED AERATED CONCRETE (AAC). Low density cementitious product of calcium silicate hydrates, whose material specifications are defined in ASTM C 1386.

AUTOMATIC. As applied to fire protection devices, a device or system providing an emergency function without the necessity for human intervention and activated as a result of a predetermined temperature rise, rate of temperature rise or combustion products.

AUTOMATIC FIRE-EXTINGUISHING SYSTEM.
An approved system of devices and equipment which automatically detects a fire and discharges an approved fire-extinguishing agent onto or in the area of a fire.

AUTOMATIC SMOKE DETECTION SYSTEM.
A fire alarm system that has initiation devices that utilize smoke detectors for protection of an area such as a room or space with detectors to provide early warning of fire.

AUTOMATIC SPRINKLER SYSTEM. An automatic sprinkler system, for fire protection purposes, is an integrated system of underground and overhead piping designed in accordance with fire protection engineering standards. The system includes a suitable water supply. The portion of the system above the ground is a network of specially sized or hydraulically designed piping installed in a structure or area, generally overhead, and to which automatic sprinklers are connected in a systematic pattern. The system is usually activated by heat from a fire and discharges water over the fire area.

AUTOMATIC WATER MIST SYSTEM. A system consisting of a water supply, a pressure source, and a distribution piping system with attached nozzles, which, at or above a minimum operating pressure, defined by its listing, discharges water in fine droplets meeting the requirements of NFPA 750 for the purpose of the control, suppression or extinguishment of a fire. Such systems include wet-pipe, dry-pipe and pre-action types. The systems are designed as engineered, pre-engineered, local-application or total flooding systems.

AVERAGE AMBIENT SOUND LEVEL. The root mean square, A-weighted sound pressure level measured over a 24-hour period, or the time any person is present, whichever time period is less.

AWNING. An architectural projection that provides weather protection, identity or decoration and is partially or wholly supported by the building to which it is attached. An awning is comprised of a lightweight frame structure over which a covering is attached.

BACKING. The wall or surface to which the veneer is secured.

BALANCED DOOR. A door equipped with double-pivoted hardware so designed as to cause a semicounterbalanced swing action when opening.
BALED COTTON. A natural seed fiber wrapped in and secured with industry accepted materials, usually consisting of burlap, woven polypropylene, polyethylene or cotton or sheet polyethylene, and secured with steel, synthetic or wire bands or wire; also includes linters (lint removed from the cottonseed) and motes (residual materials from the ginning process).

BALED COTTON, DENSELY PACKED. Cotton made into banded bales with a packing density of not less than 22 pounds per cubic foot (360 kg/m³), and dimensions complying with the following: a length of 55 inches (1397 mm), a width of 21 inches (533.4 mm) and a height of 27.6 to 35.4 inches (701 to 899 mm).

BALLAST. In roofing, ballast comes in the form of large stones or paver systems or light-weight interlocking paver systems and is used to provide uplift resistance for roofing systems that are not adhered or mechanically attached to the roof deck.

BARRICADE. A structure that consists of a combination of walls, floor and roof, which is designed to withstand the rapid release of energy in an explosion and which is fully confined, partially vented or fully vented; or other effective method of shielding from explosive materials by a natural or artificial barrier.

Artificial barricade. An artificial mound or revetment a minimum thickness of 3 feet (914 mm).

Natural barricade. Natural features of the ground, such as hills, or timber of sufficient density that the surrounding exposures that require protection cannot be seen from the magazine or building containing explosives when the trees are bare of leaves.

BASE FLOOD. The flood having a 1-percent chance of being equaled or exceeded in any given year.

BASE FLOOD ELEVATION. The elevation of the base flood, including wave height, relative to the National Geodetic Vertical Datum (NGVD), North American Vertical Datum (NAVD) or other datum specified on the Flood Insurance Rate Map (FIRM).

BASEMENT (for flood loads). The portion of a building having its floor subgrade (below ground level) on all sides. This definition of “Basement” is limited in application to the provisions of Section 1612.

BASEMENT. A story that is not a story above grade plane (see “Story above grade plane”). This definition of “Basement” does not apply to the provisions of Section 1612 for flood loads.

BEARING WALL STRUCTURE. A building or other structure in which vertical loads from floors and roofs are primarily supported by walls.

BED JOINT. The horizontal layer of mortar on which a masonry unit is laid.
BLEACHERS. Tiered seating supported on a dedicated structural system and two or more rows high and is not a building element (see “Grandstand”).

BOARDING HOUSE. A building arranged or used for lodging for compensation, with or without meals, and not occupied as a single-family unit.

BOILING POINT. The temperature at which the vapor pressure of a liquid equals the atmospheric pressure of 14.7 pounds per square inch (psia) (101 kPa) or 760 mm of mercury. Where an accurate boiling point is unavailable for the material in question, or for mixtures which do not have a constant boiling point, for the purposes of this classification, the 20-percent evaporated point of a distillation performed in accordance with ASTM D 86 shall be used as the boiling point of the liquid.

BRACED WALL LINE. A straight line through the building plan that represents the location of the lateral resistance provided by the wall bracing.

BRACED WALL PANEL. A full-height section of wall constructed to resist in-plane shear loads through interaction of framing members, sheathing material and anchors. The panel’s length meets the requirements of its particular bracing method and contributes toward the total amount of bracing required along its braced wall line.

BREAKOUT. For revolving doors, a process whereby wings or door panels can be pushed open manually for means of egress travel.

BRICK.

Calcium silicate (sand lime brick). A pressed and subsequently autoclaved unit that consists of sand and lime, with or without the inclusion of other materials.

Clay or shale. A solid or hollow masonry unit of clay or shale, usually formed into a rectangular prism, then burned or fired in a kiln; brick is a ceramic product.

Concrete. A concrete masonry unit made from Portland cement, water, and suitable aggregates, with or without the inclusion of other materials.

BUILDING. Any structure consisting of foundations, walls, columns, girders, beams, floors, and roof, or a combination of any number of these parts, with or without other parts or appurtenances.

BUILDING AREA. See “Area, building.”

BUILDING DEPARTMENT. An agency, department or division of the state or of the government of a municipal corporation, township, or county, which has been created and authorized in conformity with law for the purpose of enforcing construction code provisions of the board’s rules applicable to structures specified in section 3781.06 of the Revised Code.
BUILDING ELEMENT. A fundamental component of building construction, listed in Table 601, which may or may not be of fire-resistance-rated construction and is constructed of materials based on the building type of construction.

BUILDING HEIGHT. See “Height, building.”

BUILDING-INTEGRATED PHOTOVOLTAIC (BIPV) PRODUCT. A building product that incorporates photovoltaic modules and functions as a component of the building envelope.

BUILDING LINE. The line established by law, beyond which a building shall not extend, except as specifically provided by law.

BUILDING OFFICIAL. The superintendent of the division of industrial compliance of the Ohio department of commerce or the person appointed by the superintendent to enforce this code in that division, or the designated authority charged with the administration and enforcement of this code, approved by the board in accordance with section 103 of this code, in a municipal corporation, township or county having a building department, certified by the board pursuant to section 3781.10 of the Revised Code, or the health commissioner or his authorized representative in health districts, whichever one has jurisdiction.

BUILDING SERVICE EQUIPMENT. Equipment, appliances, materials, devices, and systems integrated into a building which provide space heating, air conditioning, ventilation, fire protection, lighting, electricity, sanitation, water, heating, cooking, medical gas, medical vacuum, and clothes drying. Building service equipment begins from the connected stored source of liquid or gas fuel or electrical power supplying the equipment or the utility service point/point of delivery and extends through the point of use but does not include process equipment that may also be connected to the same source.

BUILDING SERVICES PIPING. All piping systems and their component parts that are part of a building system and that promote the safe, sanitary, and energy efficient occupancy of a building. Building services piping includes, but is not limited to, cold and hot potable water distribution for plumbing fixtures; sanitary lines from plumbing fixtures; nonflammable medical gas systems; medical oxygen systems; medical vacuum systems; fire protection piping systems and compressed air in dry systems; refrigeration, chilled water, condenser and cooling tower water, brine, and water/antifreeze systems; steam, steam condensate, and hot water piping systems; and fuel oil piping and fuel gas piping for heating, cooling, and cooking applications.

BUILT-UP ROOF COVERING. Two or more layers of felt cemented together and surfaced with a cap sheet, mineral aggregate, smooth coating or similar surfacing material.

CABLE-RESTRAINED, AIR-SUPPORTED STRUCTURE. A structure in which the uplift is resisted by cables or webbings which are anchored to either foundations or dead men. Reinforcing cable or webbing is attached by various methods to the membrane or is an integral part of the membrane. This is not a cable-supported structure.
CANOPY. A permanent structure or architectural projection of rigid construction over which a covering is attached that provides weather protection, identity or decoration. A canopy is permitted to be structurally independent or supported by attachment to a building on one or more sides.

CARBON DIOXIDE EXTINGUISHING SYSTEMS.
A system supplying carbon dioxide (CO2) from a pressurized vessel through fixed pipes and nozzles. The system includes a manual- or automatic-actuating mechanism.

CARE FACILITY. A building or portion of a building that is held out to the public for and intended to provide all the following: (1) housing or accommodation; (2) personal, custodial, or medical care; and (3) a supervised environment. Care provided in a dwelling or dwelling unit that is the permanent residence of the care provider is not a care facility.

CARE SUITE. In Group I-2 occupancies, a group of treatment rooms, care recipient sleeping rooms and the support rooms or spaces and circulation space within the suite where staff are in attendance for supervision of all care recipients within the suite, and the suite is in compliance with the requirements of Section 407.4.4.

CAST STONE. A building stone manufactured from Portland cement concrete precast and used as a trim, veneer or facing on or in buildings or structures.

CEILING LIMIT. The maximum concentration of an air-borne contaminant to which one may be exposed. The ceiling limits utilized are those published in DOL 29 CFR Part 1910.1000. The ceiling Recommended Exposure Limit (REL-C) concentrations published by the U.S. National Institute for Occupational Safety and Health (NIOSH), Threshold Limit Value—Ceiling (TLV-C) concentrations published by the American Conference of Governmental Industrial Hygienists (ACGIH), Ceiling Workplace Environmental Exposure Level (WEEL-Ceiling) Guides published by the American Industrial Hygiene Association (AIHA), and other approved, consistent measures are allowed as surrogates for hazardous substances not listed in DOL 29 CFR Part 1910.1000.

CEILING RADIATION DAMPER. A listed device installed in a ceiling membrane of a fire-resistance-rated floor/ceiling or roof/ceiling assembly to limit automatically the radiative heat transfer through an air inlet/outlet opening. Ceiling radiation dampers include air terminal units, ceiling dampers and ceiling air diffusers.

CELL (Group I-3 occupancy). A room within a housing unit in a detention or correctional facility used to confine inmates or prisoners.

CELL (masonry). A void space having a gross cross-sectional area greater than 1½ square inches (967 mm²).
CELL TIER. Levels of cells vertically stacked above one another within a housing unit.

CEMENT PLASTER. A mixture of Portland or blended cement, Portland cement or blended cement and hydrated lime, masonry cement or plastic cement and aggregate and other approved materials as specified in this code.

CERAMIC FIBER BLANKET. A high-temperature mineral wool insulation material made of alumina-silica ceramic or calcium magnesium silicate soluble fibers and weighing 4 to 10 pounds per cubic foot (pcf) (64 to 160 kg/m³).

CERTIFICATE OF COMPLIANCE. A certificate stating that materials and products meet specified standards or that work was done in compliance with approved construction documents.

CHANGE OF OCCUPANCY. A change in the purpose or level of activity within a building that involves a change in application of the requirements of the code. Such a change could be to an entire building or a portion of a building. A change of occupancy shall include any change of occupancy classification, any change from one group to another group within an occupancy classification, any change in use within a group for a specific occupancy classification or any change that causes an increase in risk.

CHIMNEY. A primarily vertical structure containing one or more flues, for the purpose of carrying gaseous products of combustion and air from a fuel-burning appliance to the outdoor atmosphere.

Factory-built chimney. A listed and labeled chimney composed of factory-made components, assembled in the field in accordance with manufacturer’s instructions and the conditions of the listing.

Masonry chimney. A field-constructed chimney composed of solid masonry units, bricks, stones, or concrete.

Metal chimney. A field-constructed chimney of metal.

CHIMNEY TYPES.

High-heat appliance type. An approved chimney for removing the products of combustion from fuel-burning, high-heat appliances producing combustion gases in excess of 2000°F (1093°C) measured at the appliance flue outlet (see Section 2113.11.3).

Low-heat appliance type. An approved chimney for removing the products of combustion from fuel-burning, low-heat appliances producing combustion gases not in excess of 1000°F (538°C) under normal operating conditions, but capable of producing combustion gases of 1400°F (760°C) during intermittent forces firing for periods up to 1 hour. Temperatures shall be measured at the appliance flue outlet.

Masonry type. A field-constructed chimney of solid masonry units or stones.

Medium-heat appliance type. An approved chimney for removing the products of combustion from fuel-burning, medium-heat appliances
producing combustion gases not exceeding 2000°F (1093°C) measured at the appliance flue outlet (see Section 2113.11.2).

CIRCULATION PATH. An exterior or interior way of passage from one place to another for pedestrians.

CLEAN AGENT. Electrically nonconducting, volatile or gaseous fire extinguishant that does not leave a residue upon vaporization.

CLIMATE ZONE. A geographical region that has been assigned climatic criteria as specified in Chapters 3CE and 3RE of the International Energy Conservation Code.

CLINIC, OUTPATIENT. Buildings or portions thereof used to provide medical care for fewer than twenty-four hours per day to persons who are not rendered incapable of self-preservation by the services provided.

CLOSED CONSTRUCTION. An assembly of materials or products manufactured in such a manner that its structural, plumbing, electrical, environmental control, or fire protection elements or components are concealed and are not readily accessible for inspection at the site of its erection, without disassembly, damage, or destruction. Closed construction includes assemblies where only one of the components is not accessible for inspection. (For example, an equipment enclosure where all the electrical conductors and components are exposed for inspection and its roof and wall panels have exposed structural members but the floor panel structural members are not exposed, would be required to comply with this section.)

CLOSED SYSTEM. The use of a solid or liquid hazardous material involving a closed vessel or system that remains closed during normal operations where vapors emitted by the product are not liberated outside of the vessel or system and the product is not exposed to the atmosphere during normal operations; and all uses of compressed gases. Examples of closed systems for solids and liquids include product conveyed through a piping system into a closed vessel, system or piece of equipment.

COASTAL A ZONE. Area within a special flood hazard area, landward of a V zone or landward of an open coast without mapped coastal high hazard areas. In a coastal A zone, the principal source of flooding must be astronomical tides, storm surges, seiches or tsunamis, not riverine flooding. During the base flood conditions, the potential for breaking wave height shall be greater than or equal to 1½ feet (457 mm). The inland limit of the coastal A zone is (a) the Limit of Moderate Wave Action if delineated on a FIRM, or (b) designated by the authority having jurisdiction.

COASTAL HIGH HAZARD AREA. Area within the special flood hazard area extending from offshore to the inland limit of a primary dune along an open coast and any other area that is subject to high-velocity wave action from
storms or seismic sources, and shown on a Flood Insurance Rate Map (FIRM) or other flood hazard map as velocity Zone V, VO, VE or V1-30.

COLLAR JOINT. Vertical longitudinal space between wythes of masonry or between masonry wythe and backup construction that is permitted to be filled with mortar or grout.

COLLECTOR. A horizontal diaphragm element parallel and in line with the applied force that collects and transfers diaphragm shear forces to the vertical elements of the lateral force-resisting system or distributes forces within the diaphragm, or both.

COMBINATION FIRE/SMOKE DAMPER. A listed device installed in ducts and air transfer openings designed to close automatically upon the detection of heat and resist the passage of flame and smoke. The device is installed to operate automatically, controlled by a smoke detection system, and where required, is capable of being positioned from a fire command center.

COMBUSTIBLE DUST. Finely divided solid material that is 420 microns or less in diameter and which, when dispersed in air in the proper proportions, could be ignited by a flame, spark or other source of ignition. Combustible dust will pass through a U.S. No. 40 standard sieve.

COMBUSTIBLE FIBERS. Readily ignitable and free-burning materials in a fibrous or shredded form, such as cocoa fiber, cloth, cotton, excelsior, hay, hemp, henequen, istle, jute, kapok, oakum, rags, sisal, Spanish moss, straw, tow, wastepaper, certain synthetic fibers or other like materials. This definition does not include densely packed baled cotton.

COMBUSTIBLE LIQUID. A liquid having a closed cup flash point at or above 100°F (38°C). Combustible liquids shall be subdivided as follows:

- **Class II.** Liquids having a closed cup flash point at or above 100°F (38°C) and below 140°F (60°C).
- **Class IIIA.** Liquids having a closed cup flash point at or above 140°F (60°C) and below 200°F (93°C).
- **Class IIIB.** Liquids having a closed cup flash point at or above 200°F (93°C).

The category of combustible liquids does not include compressed gases or cryogenic fluids.

COMBUSTIBLE MATERIAL. Any material not defined as noncombustible.

COMMERCIAL COOKING RECIRCULATING SYSTEM. Self-contained system consisting of the exhaust hood, the cooking equipment, the filters, and the fire suppression system. The system is designed to capture cooking vapors and residues generated from commercial cooking equipment. The system removes contaminants from the exhaust air and recirculates the air to the space from which it was withdrawn.
COMMERCIAL FOOD SERVICE ESTABLISHMENT. A building or portion thereof that is frequently used for the preparation and/or serving of food using listed commercial cooking appliances, or, depending upon the duration, frequency, and purposes of the cooking operations, establishments that utilize listed household or domestic cooking appliances for the preparation and/or serving of large quantities of food may also be considered commercial food service establishments. Such establishments include, but are not limited to, food processing facilities and food service operations typically found in restaurants, hotels, clubs, banquet halls, school cafeterias, hospital cafeterias, and catering businesses. (Establishments that utilize listed household or domestic cooking appliances in a manner similar to a typical residential setting such as fire stations, office break rooms, day care facilities, church halls, and dwelling units are not commercial food service establishments.)

COMMERCIAL MOTOR VEHICLE. A motor vehicle used to transport passengers or property where the motor vehicle:

1. Has a gross vehicle weight rating of 10,000 pounds (4540 kg) or more; or
2. Is designed to transport 16 or more passengers, including the driver.

COMMON PATH OF EGRESS TRAVEL. That portion of the exit access travel distance measured from the most remote point within a story to that point where the occupants have separate and distinct access to two exits or exit access doorways.

COMMON USE. Interior or exterior circulation paths, rooms, spaces or elements that are not for public use and are made available for the shared use of two or more people.

COMPRESSED GAS. A material, or mixture of materials, that:

1. Is a gas at 68°F (20°C) or less at 14.7 pounds per square inch atmosphere (psia) (101 kPa) of pressure; and
2. Has a boiling point of 68°F (20°C) or less at 14.7 psia (101 kPa) which is either liquefied, nonliquefied or in solution, except those gases which have no other health- or physical-hazard properties are not considered to be compressed until the pressure in the packaging exceeds 41 psia (282 kPa) at 68°F (20°C).

The states of a compressed gas are categorized as follows:

1. Nonliquefied compressed gases are gases, other than those in solution, which are in a packaging under the charged pressure and are entirely gaseous at a temperature of 68°F (20°C).
2. Liquefied compressed gases are gases that, in a packaging under the charged pressure, are partially liquid at a temperature of 68°F (20°C).
3. Compressed gases in solution are nonliquefied gases that are dissolved in a solvent.
4. Compressed gas mixtures consist of a mixture of two or more compressed gases contained in a packaging, the hazard properties of which are represented by the properties of the mixture as a whole.

CONCRETE.

Carbonate aggregate. Concrete made with aggregates consisting mainly of calcium or magnesium carbonate, such as limestone or dolomite, and containing 40 percent or less quartz, chert or flint.

Cellular. A lightweight insulating concrete made by mixing a preformed foam with Portland cement slurry and having a dry unit weight of approximately 30 pcf (480 kg/m³).

Lightweight aggregate. Concrete made with aggregates of expanded clay, shale, slag or slate or sintered fly ash or any natural lightweight aggregate meeting ASTM C 330 and possessing equivalent fire-resistance properties and weighing 85 to 115 pcf (1360 to 1840 kg/m³).

Perlite. A lightweight insulating concrete having a dry unit weight of approximately 30 pcf (480 kg/m³) made with perlite concrete aggregate. Perlite aggregate is produced from a volcanic rock which, when heated, expands to form a glass-like material of cellular structure.

Sand-lightweight. Concrete made with a combination of expanded clay, shale, slag, slate, sintered fly ash, or any natural lightweight aggregate meeting ASTM C 330 and possessing equivalent fire-resistance properties and natural sand. Its unit weight is generally between 105 and 120 pcf (1680 and 1920 kg/m³).

Siliceous aggregate. Concrete made with normal-weight aggregates consisting mainly of silica or compounds other than calcium or magnesium carbonate, which contains more than 40-percent quartz, chert or flint.

Vermiculite. A lightweight insulating concrete made with vermiculite concrete aggregate which is laminated micaceous material produced by expanding the ore at high temperatures. When added to a Portland cement slurry the resulting concrete has a dry unit weight of approximately 30 pcf (480 kg/m³).

CONGREGATE LIVING FACILITIES. A building or part thereof that contains sleeping units where residents share bathroom or kitchen facilities, or both.

CONSTANTLY ATTENDED LOCATION. A designated location at a facility staffed by trained personnel on a continuous basis where alarm or supervisory signals are monitored and facilities are provided for notification of the fire department or other emergency services.

CONSTRUCTION DOCUMENTS. Written, graphic and pictorial documents prepared or assembled for describing the design, location and physical
characteristics of the elements of a project necessary for obtaining plan approval in accordance with section 106.

CONSTRUCTION TYPES. See Section 602.
 Type I. See Section 602.2.
 Type II. See Section 602.2.
 Type III. See Section 602.3.
 Type IV. See Section 602.4.
 Type V. See Section 602.5.

CONTINUOUS GAS DETECTION SYSTEM. A gas detection system where the analytical instrument is maintained in continuous operation and sampling is performed without interruption. Analysis is allowed to be performed on a cyclical basis at intervals not to exceed 30 minutes.

CONTROL AREA. Spaces within a building where quantities of hazardous materials not exceeding the maximum allowable quantities per control area are stored, dispensed, used or handled. See the definition of “Outdoor control area” in the fire code.

CONTROLLED LOW-STRENGTH MATERIAL. A selfcompacted, cementitious material used primarily as a backfill in place of compacted fill.

CONVENTIONAL LIGHT-FRAME CONSTRUCTION. A type of construction whose primary structural elements are formed by a system of repetitive wood-framing members. See Section 2308 for conventional light-frame construction provisions.

CORNICE. A projecting horizontal molded element located at or near the top of an architectural feature.

CORRIDOR. An enclosed exit access component that defines and provides a path of egress travel.

CORRIDOR, OPEN-ENDED. See “Open-ended corridor.”

CORRIDOR DAMPER. A listed device intended for use where air ducts penetrate or terminate at horizontal openings in the ceilings of fire-resistance-rated corridors, where the corridor ceiling is permitted to be constructed as required for the corridor walls.

CORROSION RESISTANCE. The ability of a material to withstand deterioration of its surface or its properties when exposed to its environment.

CORROSIVE. A chemical that causes visible destruction of, or irreversible alterations in, living tissue by chemical action at the point of contact. A chemical shall be considered corrosive if, when tested on the intact skin of albino rabbits by the method described in DOTn 49 CFR, Part 173.137, such chemical destroys or changes irreversibly the structure of the tissue at the point of contact following an exposure period of 4 hours. This term does not refer to action on inanimate surfaces.
COURT. An open, uncovered space, unobstructed to the sky, bounded on three or more sides by exterior building walls or other enclosing devices.

COVERED MALL BUILDING. A single building enclosing a number of tenants and occupants, such as retail stores, drinking and dining establishments, entertainment and amusement facilities, passenger transportation terminals, offices and other similar uses wherein two or more tenants have a main entrance into one or more malls. Anchor buildings shall not be considered as a part of the covered mall building. The term “covered mall building” shall include open mall buildings as defined below.

Mall. A roofed or covered common pedestrian area within a covered mall building that serves as access for two or more tenants and not to exceed three levels that are open to each other. The term “mall” shall include open malls as defined below.

Open mall. An unroofed common pedestrian way serving a number of tenants not exceeding three levels. Circulation at levels above grade shall be permitted to include open exterior balconies leading to exits discharging at grade.

Open mall building. Several structures housing a number of tenants, such as retail stores, drinking and dining establishments, entertainment and amusement facilities, offices, and other similar uses, wherein two or more tenants have a main entrance into one or more open malls. Anchor buildings are not considered as a part of the open mall building.

CREDENTIALS. The badge of office, certificate, or letter issued by a governmental department to an employee for the identification of said employee in the performance of his duties.

CRIPPLE WALL. A framed stud wall extending from the top of the foundation to the underside of floor framing for the lowest occupied floor level.

CRITICAL CIRCUIT. A circuit that requires continuous operation to ensure safety of the structure and occupants.

CROSS-LAMINATED TIMBER. A prefabricated engineered wood product consisting of not less than three layers of solid-sawn lumber or structural composite lumber where the adjacent layers are cross oriented and bonded with structural adhesive to form a solid wood element.

CRYOGENIC FLUID. A liquid having a boiling point lower than -150°F (-101°C) at 14.7 pounds per square inch atmosphere (psia) (an absolute pressure of 101 kPa).

CUSTODIAL CARE. Assistance with day-to-day living tasks; such as assistance with cooking, taking medication, bathing, using toilet facilities and other tasks of daily living. Custodial care includes persons receiving care who have the ability to respond to emergency situations and evacuate at a slower rate and/or who have mental and psychiatric complications. Persons who receive
custodial care may or may not require assistance with evacuation depending on the occupancy and/or the “condition” in the occupancy.

DALLE GLASS. A decorative composite glazing material made of individual pieces of glass that are embedded in a cast matrix of concrete or epoxy.

DAMPER. See “Ceiling radiation damper,” “Combination fire/smoke damper,” “Corridor damper,” “Fire damper” and “Smoke damper.”

DANGEROUS. Any building, structure or portion thereof that meets any of the conditions described below shall be deemed dangerous:

1. The building or structure has collapsed, has partially collapsed, has moved off its foundation or lacks the necessary support of the ground.
2. There exists a significant risk of collapse, detachment or dislodgment of any portion, member, appurtenance or ornamentation of the building or structure under service loads.

DAY BOX. A portable magazine designed to hold explosive materials constructed in accordance with the requirements for a Type 3 magazine as defined and classified in Chapter 33 of the fire code.

DEAD LOAD. The weight of materials of construction incorporated into the building, including but not limited to walls, floors, ceilings, stairways, built-in partitions, finishes, cladding and other similarly incorporated architectural and structural items, and the weight of fixed service equipment, such as cranes, plumbing stacks and risers, electrical feeders, heating, ventilating and air-conditioning systems and automatic sprinkler systems.

DECORATIVE GLASS. A carved, leaded or Dalle glass or glazing material whose purpose is decorative or artistic, not functional; whose coloring, texture or other design qualities or components cannot be removed without destroying the glazing material and whose surface, or assembly into which it is incorporated, is divided into segments.

DECORATIVE MATERIALS. All materials applied over the building interior finish for decorative, acoustical or other effect including, but not limited to, curtains, draperies, fabrics and streamers; and all other materials utilized for decorative effect including, but not limited to, bulletin boards, artwork, posters, photographs, batting, cloth, cotton, hay, stalks, straw, vines, leaves, trees, moss and similar items, foam plastics and materials containing foam plastics. Decorative materials do not include wall coverings, ceiling coverings, floor coverings, ordinary window shades, interior finish and materials 0.025 inch (0.64 mm) or less in thickness applied directly to and adhering tightly to a substrate.

DEEP FOUNDATION. A deep foundation is a foundation element that does not satisfy the definition of a shallow foundation.

DEFEND IN PLACE. A method of emergency response that engages building components and trained staff to provide occupant safety during an emergency.
Emergency response involves remaining in place, relocating within the building, or both, without evacuating the building.

DEFERRED SUBMITTAL. Deleted.

DEFLAGRATION. An exothermic reaction, such as the extremely rapid oxidation of a flammable dust or vapor in air, in which the reaction progresses through the unburned material at a rate less than the velocity of sound. A deflagration can have an explosive effect.

DELUGE SYSTEM. A sprinkler system employing open sprinklers attached to a piping system connected to a water supply through a valve that is opened by the operation of a detection system installed in the same areas as the sprinklers. When this valve opens, water flows into the piping system and discharges from all sprinklers attached thereto.

DESIGN DISPLACEMENT. See Section 1905.1.1.

DESIGN EARTHQUAKE GROUND MOTION. The earthquake ground motion that buildings and structures are specifically proportioned to resist in Section 1613.

DESIGN FLOOD. The flood associated with the greater of the following two areas:

1. Area with a flood plain subject to a 1-percent or greater chance of flooding in any year.
2. Area designated as a flood hazard area on a community’s flood hazard map, or otherwise legally designated.

DESIGN FLOOD ELEVATION. The elevation of the “design flood,” including wave height, relative to the datum specified on the community’s legally designated flood hazard map. In areas designated as Zone AO, the design flood elevation shall be the elevation of the highest existing grade of the building’s perimeter plus the depth number (in feet) specified on the flood hazard map. In areas designated as Zone AO where a depth number is not specified on the map, the depth number shall be taken as being equal to 2 feet (610 mm).

DESIGN PROFESSIONAL, REGISTERED. See “Registered design professional.”

DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE, REGISTERED. Deleted.

DESIGN STRENGTH. The product of the nominal strength and a resistance factor (or strength reduction factor).

DESIGNATED SEISMIC SYSTEM. Those nonstructural components that require design in accordance with Chapter 13 of ASCE 7 and for which the component importance factor, Ip, is greater than 1 in accordance with Section 13.1.3 of ASCE 7.
DETACHED BUILDING. A separate single-story building, without a basement or crawl space, used for the storage or use of hazardous materials and located an approved distance from all structures.

DETAILED PLAIN CONCRETE STRUCTURAL WALL. See Section 1905.1.1

DETECTABLE WARNING. A standardized surface feature built in or applied to walking surfaces or other elements to warn visually impaired persons of hazards on a circulation path.

DETECTOR, HEAT. A fire detector that senses heat—either abnormally high temperature or rate of rise, or both.

DETONATION. An exothermic reaction characterized by the presence of a shock wave in the material which establishes and maintains the reaction. The reaction zone progresses through the material at a rate greater than the velocity of sound. The principal heating mechanism is one of shock compression. Detonations have an explosive effect.

DETOXIFICATION FACILITIES. Facilities that provide treatment for substance abuse, serving care recipients who are incapable of self-preservation or who are harmful to themselves or others.

DIAPHRAGM. A horizontal or sloped system acting to transmit lateral forces to vertical elements of the lateral force-resisting system. When the term “diaphragm” is used, it shall include horizontal bracing systems.

Diaphragm, blocked. In light-frame construction, a diaphragm in which all sheathing edges not occurring on a framing member are supported on and fastened to blocking.

Diaphragm boundary. In light-frame construction, a location where shear is transferred into or out of the diaphragm sheathing. Transfer is either to a boundary element or to another force-resisting element.

Diaphragm chord. A diaphragm boundary element perpendicular to the applied load that is assumed to take axial stresses due to the diaphragm moment.

Diaphragm, unblocked. A diaphragm that has edge nailing at supporting members only. Blocking between supporting structural members at panel edges is not included. Diaphragm panels are field nailed to supporting members.

DIMENSIONS (for Chapter 21).

Nominal. The specified dimension plus an allowance for the joints with which the units are to be laid. Nominal dimensions are usually stated in whole numbers. Thickness is given first, followed by height and then length.

Specified. Dimensions specified for the manufacture or construction of a unit, joint or element.
DIRECT ACCESS. A path of travel from a space to an immediately adjacent space through an opening in the common wall between the two spaces.

DISPENSING. The pouring or transferring of any material from a container, tank or similar vessel, whereby vapors, dusts, fumes, mists or gases are liberated to the atmosphere.

DOOR, BALANCED. See “Balanced door.”

DOOR, LOW-ENERGY POWER-OPERATED. See “Low-energy power-operated door.”

DOOR, POWER-ASSISTED. See “Power-assisted door.”

DOOR, POWER-OPERATED. See “Power-operated door.”

DOORWAY, EXIT ACCESS. See “Exit access doorway.”

DORMITORY. A space in a building where group sleeping accommodations are provided in one room, or in a series of closely associated rooms, for persons not members of the same family group, under joint occupancy and single management, as in college dormitories or fraternity houses.

DRAFTSTOP. A material, device or construction installed to restrict the movement of air within open spaces of concealed areas of building components such as crawl spaces, floor/ceiling assemblies, roof/ceiling assemblies and attics.

DRAG STRUT. See “Collector.”

DRILLED SHAFT. A cast-in-place deep foundation element constructed by drilling a hole (with or without permanent casing) into soil or rock and filling it with fluid concrete.

Socketed drilled shaft. A drilled shaft with a permanent pipe or tube casing that extends down to bedrock and an uncased socket drilled into the bedrock.

DRY-CHEMICAL EXTINGUISHING AGENT. A powder composed of small particles, usually of sodium bicarbonate, potassium bicarbonate, urea-potassium-based bicarbonate, potassium chloride or monoammonium phosphate, with added particulate material supplemented by special treatment to provide resistance to packing, resistance to moisture absorption (caking) and the proper flow capabilities.

DRY FLOODPROOFING. A combination of design modifications that results in a building or structure, including the attendant utilities and equipment and sanitary facilities, being water tight with walls substantially impermeable to the passage of water and with structural components having the capacity to resist loads as identified in ASCE 7.

DWELLING. Any building that exclusively contains one, two, or three dwelling units, each of which may be occupied by a family and no more than five lodgers or boarders, intended, or designed to be built, used, rented, leased, let or hired out to be occupied, or that is occupied for living purposes, physically separated from adjacent structures, and with an independent exit from each dwelling unit.

DWELLING, ONE-, TWO-, OR THREE- FAMILY. See Dwelling.
DWELLING UNIT. A single unit providing complete, independent living facilities for one or more persons, including permanent provisions for living, sleeping, eating, cooking and sanitation. *The dwelling unit may include any accessory space intended for the exclusive use of the occupants of an individual dwelling unit such as a private garage, greenhouse, etc.*

DWELLING UNIT OR SLEEPING UNIT, MULTI-STORY. See “Multistory unit.”

EGRESS COURT. A court or yard which provides access to a public way for one or more exits.

ELECTRICAL CIRCUIT PROTECTIVE SYSTEM. A specific construction of devices, materials, or coatings installed as a fire-resistive barrier system applied to electrical system components, such as cable trays, conduits and other raceways, open run cables and conductors, cables, and conductors.

ELEVATOR GROUP. A grouping of elevators in a building located adjacent or directly across from one another that responds to common hall call buttons.

EMERGENCY ALARM SYSTEM. A system to provide indication and warning of emergency situations involving hazardous materials.

EMERGENCY CONTROL STATION. An approved location on the premises where signals from emergency equipment are received and which is staffed by trained personnel.

EMERGENCY ESCAPE AND RESCUE OPENING. An operable window, door or other similar device that provides for a means of escape and access for rescue in the event of an emergency.

EMERGENCY POWER SYSTEM. A source of automatic electric power of a required capacity and duration to operate required life safety, fire alarm, detection and ventilation systems in the event of a failure of the primary power. Emergency power systems are required for electrical loads where interruption of the primary power could result in loss of human life or serious injuries.

EMERGENCY SITUATION. An incident requiring a response to prevent loss of life or injury at a school building involving an active shooter or similar occurrence where normal evacuation could put occupants at risk, but shall not include fire, tornado/earthquake, building collapse, boiler failure, or similar occurrence caused by natural activity or building failure. See section 1008.1.9.11.

EMERGENCY VOICE/ALARM COMMUNICATIONS. Dedicated manual or automatic facilities for originating and distributing voice instructions, as well as alert and evacuation signals pertaining to a fire emergency, to the occupants of a building.

EMPLOYEE WORK AREA. All or any portion of a space used only by employees and only for work. Corridors, toilet rooms, kitchenettes and break rooms are not employee work areas.
ENGINE-MOUNTED TANK. A fuel tank furnished by the engine manufacturer or the emergency power system supplier and mounted on the engine, the engine-frame, or under as a subbase.

ENGINEERED WOOD RIM BOARD. A full-depth structural composite lumber, wood structural panel, structural glued laminated timber or prefabricated wood I-joist member designed to transfer horizontal (shear) and vertical (compression) loads, provide attachment for diaphragm sheathing, siding and exterior deck ledgers, and provide lateral support at the ends of floor or roof joists or rafters.

ENTRANCE, PUBLIC. See “Public entrance.”

ENTRANCE, RESTRICTED. See “Restricted entrance.”

ENTRANCE, SERVICE. See “Service entrance.”

EQUIPMENT PLATFORM. An unoccupied, elevated platform used exclusively for mechanical systems or industrial process equipment, including the associated elevated walkways, stairways, alternating tread devices and ladders necessary to access the platform (see Section 505.3).

ESSENTIAL FACILITIES. Buildings and other structures that are intended to remain operational in the event of extreme environmental loading from flood, wind, snow or earthquakes.

EXHAUSTED ENCLOSURE. An appliance or piece of equipment that consists of a top, a back and two sides providing a means of local exhaust for capturing gases, fumes, vapors and mists. Such enclosures include laboratory hoods, exhaust fume hoods and similar appliances and equipment used to locally retain and exhaust the gases, fumes, vapors and mists that could be released. Rooms or areas provided with general ventilation, in themselves, are not exhausted enclosures.

EXISTING STRUCTURE. A structure regulated by this code that was erected or one for which a plan approval has been issued. For application of provisions in flood hazard areas, an existing structure is any building or structure for which the start of construction commenced before the effective date of the community’s first flood plain management code, ordinance or standard.

EXIT. That portion of a means of egress system between the exit access and the exit discharge or public way. Exit components include exterior exit doors at the level of exit discharge, interior exit stairways and ramps, exit passageways, exterior exit stairways and ramps and horizontal exits.

EXIT ACCESS. That portion of a means of egress system that leads from any occupied portion of a building or structure to an exit.

EXIT ACCESS DOORWAY. A door or access point along the path of egress travel from an occupied room, area or space where the path of egress enters an intervening room, corridor, exit access stairway or ramp.
EXIT ACCESS RAMP. A ramp within the exit access portion of the means of egress system.

EXIT ACCESS STAIRWAY. A stairway within the exit access portion of the means of egress system.

EXIT DISCHARGE. That portion of a means of egress system between the termination of an exit and a public way.

EXIT DISCHARGE, LEVEL OF. The story at the point at which an exit terminates and an exit discharge begins.

EXIT, HORIZONTAL. See “Horizontal exit.”

EXIT PASSAGEWAY. An exit component that is separated from other interior spaces of a building or structure by fire-resistance-rated construction and opening protectives, and provides for a protected path of egress travel in a horizontal direction to an exit or to the exit discharge.

EXPANDED VINYL WALL COVERING. Wall covering consisting of a woven textile backing, an expanded vinyl base coat layer and a nonexpanded vinyl skin coat. The expanded base coat layer is a homogeneous vinyl layer that contains a blowing agent. During processing, the blowing agent decomposes, causing this layer to expand by forming closed cells. The total thickness of the wall covering is approximately 0.055 inch to 0.070 inch (1.4 mm to 1.78 mm).

EXPLOSION. An effect produced by the sudden violent expansion of gases, which may be accompanied by a shock wave or disruption, or both, of enclosing materials or structures. An explosion could result from any of the following:

1. Chemical changes such as rapid oxidation, deflagration or detonation, decomposition of molecules and run-away polymerization (usually detonations).
2. Physical changes such as pressure tank ruptures.
3. Atomic changes (nuclear fission or fusion).

EXPLOSIVE. A chemical compound, mixture or device, the primary or common purpose of which is to function by explosion. The term includes, but is not limited to, dynamite, black powder, pellet powder, initiating explosives, detonators, safety fuses, squibs, detonating cord, igniter cord, igniters and display fireworks, 1.3G.

The term “explosive” includes any material determined to be within the scope of USC Title 18: Chapter 40 and also includes any material classified as an explosive other than consumer fireworks, 1.4G by the hazardous materials regulations of DOTn 49 CFR Parts 100-185.

High explosive. Explosive material, such as dynamite, which can be caused to detonate by means of a No. 8 test blasting cap when unconfined.

Low explosive. Explosive material that will burn or deflagrate when ignited. It is characterized by a rate of reaction that is less than the speed of sound. Examples of low explosives include, but are not limited to, black powder;
safety fuse; igniters; igniter cord; fuse lighters; fireworks, 1.3G and propellants, 1.3C.

Mass-detonating explosives. Division 1.1, 1.2 and 1.5 explosives alone or in combination, or loaded into various types of ammunition or containers, most of which can be expected to explode virtually instantaneously when a small portion is subjected to fire, severe concussion, impact, the impulse of an initiating agent or the effect of a considerable discharge of energy from without. Materials that react in this manner represent a mass explosion hazard. Such an explosive will normally cause severe structural damage to adjacent objects. Explosive propagation could occur immediately to other items of ammunition and explosives stored sufficiently close to and not adequately protected from the initially exploding pile with a time interval short enough so that two or more quantities must be considered as one for quantity-distance purposes.

UN/DOTn Class 1 explosives. The former classification system used by DOTn included the terms “high” and “low” explosives as defined herein. The following terms further define explosives under the current system applied by DOTn for all explosive materials defined as hazard Class 1 materials. Compatibility group letters are used in concert with the division to specify further limitations on each division noted (i.e., the letter G identifies the material as a pyrotechnic substance or article containing a pyrotechnic substance and similar materials).

- **Division 1.1.** Explosives that have a mass explosion hazard. A mass explosion is one which affects almost the entire load instantaneously.
- **Division 1.2.** Explosives that have a projection hazard but not a mass explosion hazard.
- **Division 1.3.** Explosives that have a fire hazard and either a minor blast hazard or a minor projection hazard or both, but not a mass explosion hazard.
- **Division 1.4.** Explosives that pose a minor explosion hazard. The explosive effects are largely confined to the package and no projection of fragments of appreciable size or range is to be expected. An external fire must not cause virtually instantaneous explosion of almost the entire contents of the package.
- **Division 1.5.** Very insensitive explosives. This division is comprised of substances that have a mass explosion hazard, but that are so insensitive there is very little probability of initiation or of transition from burning to detonation under normal conditions of transport.
- **Division 1.6.** Extremely insensitive articles which do not have a mass explosion hazard. This division is comprised of articles that contain only extremely insensitive detonating substances and which demonstrate a negligible probability of accidental initiation or propagation.
EXTERIOR EXIT RAMP. An exit component that serves to meet one or more means of egress design requirements, such as required number of exits or exit access travel distance, and is open to yards, courts or public ways.

EXTERIOR EXIT STAIRWAY. An exit component that serves to meet one or more means of egress design requirements, such as required number of exits or exit access travel distance, and is open to yards, courts or public ways.

EXTERIOR INSULATION AND FINISH SYSTEMS (EIFS). EIFS are nonstructural, nonload-bearing, exterior wall cladding systems that consist of an insulation board attached either adhesively or mechanically, or both, to the substrate; an integrally reinforced base coat and a textured protective finish coat.

EXTERIOR INSULATION AND FINISH SYSTEMS (EIFS) WITH DRAINAGE. An EIFS that incorporates a means of drainage applied over a water-resistive barrier.

EXTERIOR SURFACES. Weather-exposed surfaces.

EXTERIOR WALL. A wall, bearing or nonbearing, that is used as an enclosing wall for a building, other than a fire wall, and that has a slope of 60 degrees (1.05 rad) or greater with the horizontal plane.

EXTERIOR WALL COVERING. A material or assembly of materials applied on the exterior side of exterior walls for the purpose of providing a weather-resisting barrier, insulation or for aesthetics, including but not limited to, veneers, siding, exterior insulation and finish systems, architectural trim and embellishments such as cornices, soffits, facias, gutters and leaders.

EXTERIOR WALL ENVELOPE. A system or assembly of exterior wall components, including exterior wall finish materials, that provides protection of the building structural members, including framing and sheathing materials, and conditioned interior space, from the detrimental effects of the exterior environment.

F RATING. The time period that the through-penetration firestop system limits the spread of fire through the penetration when tested in accordance with ASTM E 814 or UL 1479.

FABRIC PARTITION. A partition consisting of a finished surface made of fabric, without a continuous rigid backing, that is directly attached to a framing system in which the vertical framing members are spaced greater than 4 feet (1219 mm) on center.

FABRICATED ITEM. Structural, load-bearing or lateral load-resisting members of assemblies consisting of materials assembled prior to installation in a building or structure, or subjected to operations such as heat treatment, thermal cutting, cold working or reforming after manufacture and prior to installation in a building or structure. Materials produced in accordance with standards referenced by this code, such as rolled structural steel shapes, steel reinforcing bars, masonry
units and wood structural panels, or in accordance with a referenced standard that provides requirements for quality control done under the supervision of an approved agency, are not “fabricated items.”

FABRICATION AREA. An area within a semiconductor fabrication facility and related research and development areas in which there are processes using hazardous production materials. Such areas are allowed to include ancillary rooms or areas such as dressing rooms and offices that are directly related to the fabrication area processes.

FACILITY. All or any portion of buildings, structures, site improvements, elements and pedestrian or vehicular routes located on a site.

FACTORED LOAD. The product of a nominal load and a load factor.

FAMILY DAY-CARE HOME, TYPE A. A home where the administrator permanently resides and where care is provided for seven to twelve children under six years of age or four to twelve children when at least four are under two years of age. Licensure is required of these homes by the Ohio Department of Job and Family Services when at least one of the children cared for is not a sibling of the others and the home is not the permanent residence of the children. These homes are also referred to as Type A Homes and Type A Child Care and are exempt from the rules of the board. Also see Chapter 5104. of the Revised Code.

FAMILY DAY-CARE HOME, TYPE B. A home where the administrator permanently resides and where care is provided for one to six children under six years of age with no more than three children under two years of age when at least one of the children cared for is not a sibling of the others and the home is not the permanent residence of the children. These homes are also referred to as Type B Homes and Type B Child Care and are exempt from the rules of the board. Also see Chapter 5104. of the Revised Code.

FENESTRATION. Skylights, roof windows, vertical windows (fixed or moveable), opaque doors, glazed doors, glazed block and combination opaque/glazed doors. Fenestration includes products with glass and nonglass glazing materials.

FIBER-CEMENT (BACKER BOARD, SIDING, SOFFIT, TRIM AND UNDERLAYMENT) PRODUCTS. Manufactured thin section composites of hydraulic cementitious matrices and discrete nonasbestos fibers.

FIBER-REINFORCED POLYMER. A polymeric composite material consisting of reinforcement fibers, such as glass, impregnated with a fiber-binding polymer which is then molded and hardened. Fiber-reinforced polymers are permitted to contain cores laminated between fiber-reinforced polymer facings.

FIBERBOARD. A fibrous, homogeneous panel made from lignocellulosic fibers (usually wood or cane) and having a density of less than 31 pounds per cubic foot (pcf) (497 kg/m³) but more than 10 pcf (160 kg/m³).
FIELD NAILING. See “Nailing, field.”
FIRE ALARM BOX, MANUAL. See “Manual fire alarm box.”
FIRE ALARM CONTROL UNIT. A system component that receives inputs from automatic and manual fire alarm devices and may be capable of supplying power to detection devices and transponders or off-premises transmitters. The control unit may be capable of providing a transfer of power to the notification appliances and transfer of condition to relays or devices.
FIRE ALARM SIGNAL. A signal initiated by a fire alarm-initiating device such as a manual fire alarm box, automatic fire detector, waterflow switch or other device whose activation is indicative of the presence of a fire or fire signature.
FIRE ALARM SYSTEM. A system or portion of a combination system consisting of components and circuits arranged to monitor and annunciate the status of fire alarm or supervisory signal-initiating devices and to initiate the appropriate response to those signals.
FIRE AREA. The aggregate floor area enclosed and bounded by fire walls, fire barriers, exterior walls or horizontal assemblies of a building. Areas of the building not provided with surrounding walls shall be included in the fire area if such areas are included within the horizontal projection of the roof or floor next above.
FIRE BARRIER. A fire-resistance-rated wall assembly of materials designed to restrict the spread of fire in which continuity is maintained.
FIRE CODE. “Ohio Fire Code”.
FIRE COMMAND CENTER. The principal attended or unattended location where the status of detection, alarm communications and control systems is displayed, and from which the systems can be manually controlled.
FIRE DAMPER. A listed device installed in ducts and air transfer openings designed to close automatically upon detection of heat and resist the passage of flame. Fire dampers are classified for use in either static systems that will automatically shut down in the event of a fire, or in dynamic systems that continue to operate during a fire. A dynamic fire damper is tested and rated for closure under elevated temperature airflow.
FIRE DETECTOR, AUTOMATIC. A device designed to detect the presence of a fire signature and to initiate action.
FIRE DOOR. The door component of a fire door assembly.
FIRE DOOR ASSEMBLY. Any combination of a fire door, frame, hardware and other accessories that together provide a specific degree of fire protection to the opening.
FIRE DOOR ASSEMBLY, FLOOR. See “Floor fire door assembly.”
FIRE EXIT HARDWARE. Panic hardware that is listed for use on fire door assemblies.
FIRE LANE. A road or other passageway developed to allow the passage of fire apparatus. A fire lane is not necessarily intended for vehicular traffic other than fire apparatus. *A fire lane shall not be interpreted to mean a residential and/or public street.*

FIRE PARTITION. A vertical assembly of materials designed to restrict the spread of fire in which openings are protected.

FIRE PREVENTION. *The preventative measures which provide for the safe conduct and operation of hazardous processes, storage of combustible and flammable materials, conducting of fire drills and the maintenance of fire protection, detection and extinguishing service equipment and good housekeeping conditions.*

FIRE PROTECTION RATING. The period of time that an opening protective will maintain the ability to confine a fire as determined by tests specified in Section 745716. Ratings are stated in hours or minutes.

FIRE PROTECTION SYSTEM. Approved devices, equipment and systems or combinations of systems used to detect a fire, activate an alarm, extinguish or control a fire, control or manage smoke and products of a fire or any combination thereof.

FIRE-RATED GLAZING. Glazing with either a fire protection rating or a fire-resistance rating.

FIRE-RESISTANCE. That property of materials or their assemblies that prevents or retards the passage of excessive heat, hot gases or flames under conditions of use.

FIRE-RESISTANCE RATING. The period of time a building element, component or assembly maintains the ability to confine a fire, continues to perform a given structural function, or both, as determined by the tests, or the methods based on tests, prescribed in Section 703.

FIRE-RESISTANT JOINT SYSTEM. An assemblage of specific materials or products that are designed, tested and fire-resistance rated in accordance with either ASTM E 1966 or UL 2079 to resist for a prescribed period of time the passage of fire through joints made in or between fire-resistance-rated assemblies.

FIRE SAFETY FUNCTIONS. Building and fire control functions that are intended to increase the level of life safety for occupants or to control the spread of harmful effects of fire.

FIRE SEPARATION DISTANCE. The distance measured from the building face to one of the following:

1. The closest interior lot line.
2. To the centerline of a street, an alley or public way.
3. To an imaginary line between two buildings on the lot.

The distance shall be measured at right angles from the face of the wall.
FIRE WALL. A fire-resistance-rated wall having protected openings, which restricts the spread of fire and extends continuously from the foundation to or through the roof, with sufficient structural stability under fire conditions to allow collapse of construction on either side without collapse of the wall.

FIRE WINDOW ASSEMBLY. A window constructed and glazed to give protection against the passage of fire.

FIREBLOCKING. Building materials, or materials approved for use as fireblocking, installed to resist the free passage of flame to other areas of the building through concealed spaces.

FIREPLACE. A hearth and fire chamber or similar pre-prepared place in which a fire may be made and which is built in conjunction with a chimney.

FIREPLACE THROAT. The opening between the top of the firebox and the smoke chamber.

FIRESTOP, MEMBRANE-PENETRATION. See “Membrane-penetration firestop.”

FIRESTOP, PENETRATION. See “Penetration firestop.”

FIRESTOP SYSTEM, THROUGH-PENETRATION. See “Through-penetration firestop system.”

FIREWORKS. Any composition or device for the purpose of producing a visible or audible effect for entertainment purposes by combustion, deflagration or detonation that meets the definition of 1.4G fireworks or 1.3G fireworks.

Fireworks, 1.3G. Large fireworks devices, which are explosive materials, intended for use in fireworks displays and designed to produce audible or visible effects by combustion, deflagration or detonation. Such 1.3G fireworks include, but are not limited to, firecrackers containing more than 130 milligrams (2 grains) of explosive composition, aerial shells containing more than 40 grams of pyrotechnic composition, and other display pieces which exceed the limits for classification as 1.4G fireworks. Such 1.3G fireworks are also described as fireworks, UN0335 by the DOTn.

Fireworks, 1.4G. Small fireworks devices containing restricted amounts of pyrotechnic composition designed primarily to produce visible or audible effects by combustion. Such 1.4G fireworks which comply with the construction, chemical composition and labeling regulations of the DOTn for fireworks, UN0336, and the U.S. Consumer Product Safety Commission (CPSC) as set forth in CPSC 16 CFR: Parts 1500 and 1507, are not explosive materials for the purpose of this code.

FIXED BASE OPERATOR (FBO). A commercial business granted the right by the airport sponsor to operate on an airport and provide aeronautical services, such as fueling, hangaring, tie-down and parking, aircraft rental, aircraft maintenance and flight instruction.
FIXED SEATING. Furniture or fixture designed and installed for the use of sitting and secured in place including bench-type seats and seats with or without backs or arm rests.

FLAME SPREAD. The propagation of flame over a surface.

FLAME SPREAD INDEX. A comparative measure, expressed as a dimensionless number, derived from visual measurements of the spread of flame versus time for a material tested in accordance with ASTM E 84 or UL 723.

FLAMMABLE GAS. A material that is a gas at 68°F (20°C) or less at 14.7 pounds per square inch atmosphere (psia) (101 kPa) of pressure [a material that has a boiling point of 68°F (20°C) or less at 14.7 psia (101 kPa)] which:

1. Is ignitable at 14.7 psia (101 kPa) when in a mixture of 13 percent or less by volume with air; or
2. Has a flammable range at 14.7 psia (101 kPa) with air of at least 12 percent, regardless of the lower limit.

The limits specified shall be determined at 14.7 psi (101 kPa) of pressure and a temperature of 68°F (20°C) in accordance with ASTM E 681.

FLAMMABLE LIQUEFIED GAS. A liquefied compressed gas which, under a charged pressure, is partially liquid at a temperature of 68°F (20°C) and which is flammable.

FLAMMABLE LIQUID. A liquid having a closed cup flash point below 100°F (38°C). Flammable liquids are further categorized into a group known as Class I liquids. The Class I category is subdivided as follows:

Class IA. Liquids having a flash point below 73°F (23°C) and a boiling point below 100°F (38°C).
Class IB. Liquids having a flash point below 73°F (23°C) and a boiling point at or above 100°F (38°C).
Class IC. Liquids having a flash point at or above 73°F (23°C) and below 100°F (38°C). The category of flammable liquids does not include compressed gases or cryogenic fluids.

FLAMMABLE MATERIAL. A material capable of being readily ignited from common sources of heat or at a temperature of 600°F (316°C) or less.

FLAMMABLE SOLID. A solid, other than a blasting agent or explosive, that is capable of causing fire through friction, absorption or moisture, spontaneous chemical change, or retained heat from manufacturing or processing, or which has an ignition temperature below 212°F (100°C) or which burns so vigorously and persistently when ignited as to create a serious hazard. A chemical shall be considered a flammable solid as determined in accordance with the test method of CPSC 16 CFR; Part 1500.44, if it ignites and burns with a self-sustained flame at a rate greater than 0.1 inch (2.5 mm) per second along its major axis.

FLAMMABLE VAPORS OR FUMES. The concentration of flammable constituents in air that exceeds 25 percent of their lower flammable limit (LFL).
FLASH POINT. The minimum temperature in degrees Fahrenheit at which a liquid will give off sufficient vapors to form an ignitable mixture with air near the surface or in the container, but will not sustain combustion. The flash point of a liquid shall be determined by appropriate test procedure and apparatus as specified in ASTM D 56, ASTM D 93 or ASTM D 3278.

FLIGHT. A continuous run of rectangular treads, winders or combination thereof from one landing to another.

FLOOD or FLOODING. A general and temporary condition of partial or complete inundation of normally dry land from:
1. The overflow of inland or tidal waters.
2. The unusual and rapid accumulation or runoff of surface waters from any source.

FLOOD DAMAGE-RESISTANT MATERIALS. Any construction material capable of withstanding direct and prolonged contact with floodwaters without sustaining any damage that requires more than cosmetic repair.

FLOOD, DESIGN. See “Design flood.”

FLOOD ELEVATION, DESIGN. See “Design flood elevation.”

FLOOD HAZARD AREA. The greater of the following two areas:
1. The area within a flood plain subject to a 1-percent or greater chance of flooding in any year.
2. The area designated as a flood hazard area on a community’s flood hazard map, or otherwise legally designated.

FLOOD HAZARD AREAS, SPECIAL. See “Special flood hazard area.”

FLOOD HAZARD AREA SUBJECT TO HIGH VELOCITY WAVE ACTION. Area within the flood hazard area that is subject to high-velocity wave action, and shown on a Flood Insurance Rate Map (FIRM) or other flood hazard map as Zone V, VO, VE or V1-30.

FLOOD INSURANCE RATE MAP (FIRM). An official map of a community on which the Federal Emergency Management Agency (FEMA) has delineated both the special flood hazard areas and the risk premium zones applicable to the community.

FLOOD INSURANCE STUDY. The official report provided by the Federal Emergency Management Agency containing the Flood Insurance Rate Map (FIRM), the Flood Boundary and Floodway Map (FBFM), the water surface elevation of the base flood and supporting technical data.

FLOODWAY. The channel of the river, creek or other watercourse and the adjacent land areas that must be reserved in order to discharge the base flood without cumulatively increasing the water surface elevation more than a designated height.

FLOOR AREA, GROSS. The floor area within the inside perimeter of the exterior walls of the building under consideration, exclusive of vent shafts and
courts, without deduction for corridors, stairways, ramps, closets, the thickness of interior walls, columns or other features. The floor area of a building, or portion thereof, not provided with surrounding exterior walls shall be the usable area under the horizontal projection of the roof or floor above. The gross floor area shall not include shafts with no openings or interior courts.

FLOOR AREA, NET. The actual occupied area not including unoccupied accessory areas such as corridors, stairways, ramps, toilet rooms, mechanical rooms and closets.

FLOOR FIRE DOOR ASSEMBLY. A combination of a fire door, a frame, hardware and other accessories installed in a horizontal plane, which together provide a specific degree of fire protection to a through-opening in a fire-resistance-rated floor (see Section 712.1.13.1).

FOAM-EXTINGUISHING SYSTEM. A special system discharging a foam made from concentrates, either mechanically or chemically, over the area to be protected.

FOAM PLASTIC INSULATION. A plastic that is intentionally expanded by the use of a foaming agent to produce a reduced-density plastic containing voids consisting of open or closed cells distributed throughout the plastic for thermal insulating or acoustical purposes and that has a density less than 20 pounds per cubic foot (pcf) (320 kg/m³).

FOLDING AND TELESCOPIC SEATING. Tiered seating having an overall shape and size that is capable of being reduced for purposes of moving or storing and is not a building element.

FOOD COURT. A public seating area located in the mall that serves adjacent food preparation tenant spaces.

FOSTER CARE FACILITIES. Facilities that provide care to more than five children, 2½ years of age or less.

FOUNDATION PIER (for Chapter 21). An isolated vertical foundation member whose horizontal dimension measured at right angles to its thickness does not exceed three times its thickness and whose height is equal to or less than four times its thickness.

FRAME STRUCTURE. A building or other structure in which vertical loads from floors and roofs are primarily supported by columns.

FUEL TANK. A tank containing fuel for an engine(s) or appliance.

FURNACE ROOM. A room primarily utilized for the installation of fuel-burning space-heating and water-heating appliances other than boilers.

GABLE. The triangular portion of a wall beneath the end of a dual-slope, pitched, or mono-slope roof or portion thereof and above the top plates of the story or level of the ceiling below.

GAS CABINET. A fully enclosed, ventilated noncombustible enclosure used to provide an isolated environment for compressed gas cylinders in storage or
use. Doors and access ports for exchanging cylinders and accessing pressure-regulating controls are allowed to be included.

GAS ROOM. A separately ventilated, fully enclosed room in which only compressed gases and associated equipment and supplies are stored or used.

GASEOUS HYDROGEN SYSTEM. An assembly of piping, devices and apparatus designed to generate, store, contain, distribute or transport a nontoxic, gaseous hydrogen- containing mixture having not less than 95-percent hydrogen gas by volume and not more than 1-percent oxygen by volume. Gaseous hydrogen systems consist of items such as compressed gas containers, reactors and appurtenances, including pressure regulators, pressure relief devices, manifolds, pumps, compressors and interconnecting piping and tubing and controls.

GLASS FIBERBOARD. Fibrous glass roof insulation consisting of inorganic glass fibers formed into rigid boards using a binder. The board has a top surface faced with asphalt and kraft reinforced with glass fiber.

GRADE FLOOR OPENING. A window or other opening located such that the sill height of the opening is not more than 44 inches (1118 mm) above or below the finished ground level adjacent to the opening.

GRADE (LUMBER). The classification of lumber in regard to strength and utility in accordance with American Softwood Lumber Standard DOC PS 20 and the grading rules of an approved lumber rules-writing agency.

GRADE PLANE. A reference plane representing the average of finished ground level adjoining the building at exterior walls. Where the finished ground level slopes away from the exterior walls, the reference plane shall be established by the lowest points within the area between the building and the lot line or, where the lot line is more than 6 feet (1829 mm) from the building, between the building and a point 6 feet (1829 mm) from the building.

GRADE PLANE, STORY ABOVE. See “Story above grade plane.”

GRANDSTAND. Tiered seating supported on a dedicated structural system and two or more rows high and is not a building element (see “Bleachers”).

GROSS LEASABLE AREA. The total floor area designed for tenant occupancy and exclusive use. The area of tenant occupancy is measured from the centerlines of joint partitions to the outside of the tenant walls. All tenant areas, including areas used for storage, shall be included in calculating gross leasable area.

GROUP HOME. A facility for social rehabilitation, substance abuse or mental health problems that contains a group housing arrangement that provides custodial care but does not provide medical care.

GUARD. A building component or a system of building components located at or near the open sides of elevated walking surfaces that minimizes the possibility of a fall from the walking surface to a lower level.
GUEST ROOM. A room used or intended to be used by one or more guests for living or sleeping purposes.

GYPSUM BOARD. The generic name for a family of sheet products consisting of a noncombustible core primarily of gypsum with paper surfacing. Gypsum wallboard, gypsum sheathing, gypsum base for gypsum veneer plaster, exterior gypsum soffit board, predecorated gypsum board and water-resistant gypsum backing board complying with the standards listed in Tables 2506.2, 2507.2 and Chapter 35 are types of gypsum board.

GYPSUM PANEL PRODUCT. The general name for a family of sheet products consisting essentially of gypsum.

GYPSUM PLASTER. A mixture of calcined gypsum or calcined gypsum and lime and aggregate and other approved materials as specified in this code.

GYPSUM VENEER PLASTER. Gypsum plaster applied to an approved base in one or more coats normally not exceeding ¼ inch (6.4 mm) in total thickness.

HEAD JOINT. Vertical mortar joint placed between masonry units within the wythe at the time the masonry units are laid.

HEALTH HAZARD. A classification of a chemical for which there is statistically significant evidence that acute or chronic health effects are capable of occurring in exposed persons. The term “health hazard” includes chemicals that are toxic or highly toxic, and corrosive.

HEAT DETECTOR. See “Detector, heat.”

HEIGHT, BUILDING. The vertical distance from grade plane to the average height of the highest roof surface.

HELICAL PILE. Manufactured steel deep foundation element consisting of a central shaft and one or more helical bearing plates. A helical pile is installed by rotating it into the ground. Each helical bearing plate is formed into a screw thread with a uniform defined pitch.

HELIPAD. A structural surface that is used for the landing, taking off, taxiing and parking of helicopters.

HELIPORT. An area of land or water or a structural surface that is used, or intended for use, for the landing and taking off of helicopters, and any appurtenant areas that are used, or intended for use, for heliport buildings or other heliport facilities.

HELISTOP. The same as “heliport,” except that no fueling, defueling, maintenance, repairs or storage of helicopters is

HABITABLE SPACE. A space in a building for living, sleeping, eating or cooking. Bathrooms, toilet rooms, closets, halls, storage or utility spaces and similar areas are not considered habitable spaces.

HALOGENATED EXTINGUISHING SYSTEM. A fire-extinguishing system using one or more atoms of an element from the halogen chemical series: fluorine, chlorine, bromine and iodine.
HANDLING. The deliberate transport by any means to a point of storage or use.

HANDRAIL. A horizontal or sloping rail intended for grasping by the hand for guidance or support.

HARDBOARD. A fibrous-felted, homogeneous panel made from lignocellulosic fibers consolidated under heat and pressure in a hot press to a density not less than 31 pcf (497 kg/m³).

HARDWARE. See “Fire exit hardware” and “Panic hardware.”

HIGH-PRESSURE DECORATIVE EXTERIOR- GRADE COMPACT LAMINATE (HPL). Panels consisting of layers of cellulose fibrous material impregnated with thermosetting resins and bonded together by a high-pressure process to form a homogeneous nonporous core suitable for exterior use.

HIGH-PRESSURE DECORATIVE EXTERIOR- GRADE COMPACT LAMINATE (HPL) SYSTEM. An exterior wall covering fabricated using HPL in a specific assembly including joints, seams, attachments, substrate, framing and other details as appropriate to a particular design.

HIGH-RISE BUILDING. A building with an occupied floor located more than 75 feet (22 860 mm) above the lowest level of fire department vehicle access.

HIGHLY TOXIC. A material which produces a lethal dose or lethal concentration that falls within any of the following categories:

1. A chemical that has a median lethal dose (LD₅₀) of 50 milligrams or less per kilogram of body weight when administered orally to albino rats weighing between 200 and 300 grams each.

2. A chemical that has a median lethal dose (LD₅₀) of 200 milligrams or less per kilogram of body weight when administered by continuous contact for 24 hours (or less if death occurs within 24 hours) with the bare skin of albino rabbits weighing between 2 and 3 kilograms each.

3. A chemical that has a median lethal concentration (LC₅₀) in air of 200 parts per million by volume or less of gas or vapor, or 2 milligrams per liter or less of mist, fume or dust, when administered by continuous inhalation for 1 hour (or less if death occurs within 1 hour) to albino rats weighing between 200 and 300 grams each.

Mixtures of these materials with ordinary materials, such as water, might not warrant classification as highly toxic. While this system is basically simple in application, any hazard evaluation that is required for the precise categorization of this type of material shall be performed by experienced, technically competent persons.

HAZARDOUS MATERIALS. Those chemicals or substances that are physical hazards or health hazards as classified in Section 307 and the fire code, whether the materials are in usable or waste condition.

HAZARDOUS PRODUCTION MATERIAL (HPM). A solid, liquid or gas associated with semiconductor manufacturing that has a degree-of-hazard rating.
in health, flammability or instability of Class 3 or 4 as ranked by NFPA 704 and which is used directly in research, laboratory or production processes which have as their end product materials that are not hazardous.

HISTORIC BUILDING. Any building or structure that is one or more of the following:

1. Listed, or certified as eligible for listing, by the State Preservation Office at the Ohio History Connection or the Keeper of the National Register of Historic Places, in the National Register of Historic Places.
2. Designated as historic under an applicable state or local law.
3. Certified as a contributing resource within a National Register, state designated or locally designated historic district. See 3409.

HORIZONTAL ASSEMBLY. A fire-resistance-rated floor or roof assembly of materials designed to restrict the spread of fire in which continuity is maintained.

HORIZONTAL EXIT. An exit component consisting of fire-resistance-rated construction and opening protectives intended to compartmentalize portions of a building thereby creating refuge areas that afford safety from the fire and smoke from the area of fire origin.

HOSPITALS AND PSYCHIATRIC HOSPITALS. Facilities that provide care or treatment for the medical, psychiatric, obstetrical, or surgical treatment of care recipients who are incapable of self-preservation.

HOUSING UNIT. A dormitory or a group of cells with a common dayroom in Group I-3.

HPM ROOM. A room used in conjunction with or serving a Group H-5 occupancy, where HPM is stored or used and which is classified as a Group H-2, H-3 or H-4 occupancy.

HURRICANE-PRONE REGIONS. Areas vulnerable to hurricanes defined as:

1. The U. S. Atlantic Ocean and Gulf of Mexico coasts where the ultimate design wind speed, \(V_{ult} \), for Risk Category II buildings is greater than 115 mph (51.4 m/s);
2. Hawaii, Puerto Rico, Guam, Virgin Islands and American Samoa.

HYDROGEN FUEL GAS ROOM. A room or space that is intended exclusively to house a gaseous hydrogen system.

ICE-SENSITIVE STRUCTURE. A structure for which the effect of an atmospheric ice load governs the design of a structure or portion thereof. This includes, but is not limited to, lattice structures, guyed masts, overhead lines, light suspension and cable-stayed bridges, aerial cable systems (e.g., for ski lifts or logging operations), amusement rides, open catwalks and platforms, flagpoles and signs.

IMMEDIATELY DANGEROUS TO LIFE AND HEALTH (IDLH). The concentration of air-borne contaminants which poses a threat of death,
immediate or delayed permanent adverse health effects, or effects that could pre-vent escape from such an environment. This contaminant concentration level is established by the National Institute of Occupational Safety and Health (NIOSH) based on both toxicity and flammability. It generally is expressed in parts per million by volume (ppmv/v) or milligrams per cubic meter (mg/m3). If adequate data do not exist for precise establishment of IDLH concentrations, an independent certified industrial hygienist, industrial toxicologist, appropriate regulatory agency or other source approved by the building official shall make such determination.

IMPACT LOAD. The load resulting from moving machinery, elevators, cranes, vehicles and other similar forces and kinetic loads, pressure and possible surcharge from fixed or moving loads.

INCAPABLE OF SELF-PRESERVATION. Persons who, because of age, physical limitations, mental limitations, chemical dependency or medical treatment, cannot respond as an individual aid or participate in the completion of their own evacuation in response to an emergency situation to complete building evacuation.

INCOMPATIBLE MATERIALS. Materials that, when mixed, have the potential to react in a manner that generates heat, fumes, gases or byproducts which are hazardous to life or property.

INDUSTRIALIZED UNITS. Industrialized units are prefabricated components comprised of closed construction manufactured at a location remote from the site of intended use and transported to a building site for its subsequent use. Industrialized units are not restricted to housing for one-, two-, and three-family dwellings, but includes all prefabricated forms of building elements and assembled construction units, intended for both structural and service equipment purposes in all buildings of all groups. Prefabricated shop assemblies may be shipped in structurally complete units ready for installation in the building structure or in knock-down and packaged form for assembly at the site.

INERT GAS. A gas that is capable of reacting with other materials only under abnormal conditions such as high temperatures, pressures and similar extrinsic physical forces. Within the context of the code, inert gases do not exhibit either physical or health hazard properties as defined (other than acting as a simple asphyxiant) or hazard properties other than those of a compressed gas. Some of the more common inert gases include argon, helium, krypton, neon, nitrogen and xenon.

INITIATING DEVICE. A system component that originates transmission of a change-of-state condition, such as in a smoke detector, manual fire alarm box or supervisory switch.

INSTITUTION OF HIGHER EDUCATION. A state institution of higher education as defined in section 3345.011 of the Revised Code, a private nonprofit
college or university located in this state that possesses a certificate of authorization issued pursuant to Chapter 1713. of the Revised Code, or a school located in this state that possesses a certificate of registration and one or more program authorizations issued by the state board of career colleges and schools under Chapter 3322. of the Revised Code. See School Building.

INTENDED TO BE OCCUPIED AS A RESIDENCE.
This refers to a dwelling unit or sleeping unit that can or will be used all or part of the time as the occupant’s place of abode.

INTERIOR EXIT RAMP. An exit component that serves to meet one or more means of egress design requirements, such as required number of exits or exit access travel distance, and provides for a protected path of egress travel to the exit discharge or public way.

INTERIOR EXIT STAIRWAY. An exit component that serves to meet one or more means of egress design requirements, such as required number of exits or exit access travel distance, and provides for a protected path of egress travel to the exit discharge or public way.

INTERIOR FINISH. Interior finish includes interior wall and ceiling finish and interior floor finish.

INTERIOR FLOOR FINISH. The exposed floor surfaces of buildings including coverings applied over a finished floor or stair, including risers.

INTERIOR FLOOR-WALL BASE. Interior floor finish trim used to provide a functional or decorative border at the intersection of walls and floors.

INTERIOR SURFACES. Surfaces other than weather exposed surfaces.

INTERIOR WALL AND CEILING FINISH. The exposed interior surfaces of buildings, including but not limited to: fixed or movable walls and partitions; toilet room privacy partitions; columns; ceilings; and interior wainscoting, paneling or other finish applied structurally or for decoration, acoustical correction, surface insulation, structural fire-resistance or similar purposes, but not including trim.

INTERLAYMENT. A layer of felt or nonbituminous saturated felt not less than 18 inches (457 mm) wide, shingled between each course of a wood-shake roof covering.

INTUMESCENT FIRE-RESISTANT COATINGS. Thin film liquid mixture applied to substrates by brush, roller, spray or trowel which expands into a protective foamed layer to provide fire-resistant protection of the substrates when exposed to flame or intense heat.

JOINT. The opening in or between adjacent assemblies that is created due to building tolerances, or is designed to allow independent movement of the building in any plane caused by thermal, seismic, wind or any other loading.
JURISDICTION. The authority to enforce this code by municipal corporations, townships or counties certified by the board in accordance with section 3781.10 of the Revised Code or the division of industrial compliance in the department of commerce.

L RATING. The air leakage rating of a through penetration firestop system or a fire-resistant joint system when tested in accordance with UL 1479 or UL 2079, respectively.

LABEL. An identification applied on a product by the manufacturer that contains the name of the manufacturer, the function and performance characteristics of the product or material and the name and identification of an approved agency, and that indicates that the representative sample of the product or material has been tested and evaluated by an approved agency (see Section 1703.5, “Manufacturer’s designation” and “Mark”).

LABELED. Equipment, materials or products to which has been affixed a label, seal, symbol or other identifying mark of a nationally recognized testing laboratory, approved agency or other organization concerned with product evaluation that maintains periodic inspection of the production of the above-labeled items and whose labeling indicates either that the equipment, material or product meets identified standards or has been tested and found suitable for a specified purpose.

LEVEL OF EXIT DISCHARGE. See “Exit discharge, level of.”

LIGHT-DIFFUSING SYSTEM. Construction consisting in whole or in part of lenses, panels, grids or baffles made with light-transmitting plastics positioned below independently mounted electrical light sources, skylights or light-transmitting plastic roof panels. Lenses, panels, grids and baffles that are part of an electrical fixture shall not be considered as a light-diffusing system.

LIGHT-FRAME CONSTRUCTION. A type of construction whose vertical and horizontal structural elements are primarily formed by a system of repetitive wood or cold-formed steel framing members.

LIGHT-TRANSMITTING PLASTIC ROOF PANELS. Structural plastic panels other than skylights that are fastened to structural members, or panels or sheathing and that are used as light-transmitting media in the plane of the roof.

LIGHT-TRANSMITTING PLASTIC WALL PANELS. Plastic materials that are fastened to structural members, or to structural panels or sheathing, and that are used as light-transmitting media in exterior walls.

LIMIT OF MODERATE WAVE ACTION. Line shown on FIRMs to indicate the inland limit of the 1½ foot (457 mm) breaking wave height during the base flood.

LIMIT STATE. A condition beyond which a structure or member becomes unfit for service and is judged to be no longer useful for its intended function (serviceability limit state) or to be unsafe (strength limit state).
LIMITED SPRAYING SPACE. An area in which spraying operations for touch-up or spot painting of a surface area of nine square feet (0.84 m²) or less are conducted.

LIQUID. A material that has a melting point that is equal to or less than 68°F (20°C) and a boiling point that is greater than 68°F (20°C) at 14.7 pounds per square inch absolute (psia) (101 kPa). When not otherwise identified, the term “liquid” includes both flammable and combustible liquids.

LIQUID STORAGE ROOM. A room classified as a Group H-3 occupancy used for the storage of flammable or combustible liquids in a closed condition.

LIQUID USE, DISPENSING AND MIXING ROOM. A room in which Class I, II and IIIA flammable or combustible liquids are used, dispensed or mixed in open containers.

LISTED. Equipment, materials, products or services included in a list published by an organization acceptable to the building official and concerned with evaluation of products or services that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services and whose listing states either that the equipment, material, product or service meets identified standards or has been tested and found suitable for a specified purpose.

LIVE/WORK UNIT. A dwelling unit or sleeping unit in which a significant portion of the space includes a nonresidential use that is operated by the tenant. See Section 419.

LIVE LOAD. A load produced by the use and occupancy of the building or other structure that does not include construction or environmental loads such as wind load, snow load, rain load, earthquake load, flood load or dead load.

LIVE LOAD, ROOF. A load on a roof produced:
• During maintenance by workers, equipment and materials;
• During the life of the structure by movable objects such as planters or other similar small decorative appurtenances that are not occupancy related; or
• By the use and occupancy of the roof such as for roof gardens or assembly areas.

LOAD AND RESISTANCE FACTOR DESIGN (LRFD). A method of proportioning structural members and their connections using load and resistance factors such that no applicable limit state is reached when the structure is subjected to appropriate load combinations. The term “LRFD” is used in the design of steel and wood structures.

LOAD EFFECTS. Forces and deformations produced in structural members by the applied loads.

LOAD FACTOR. A factor that accounts for deviations of the actual load from the nominal load, for uncertainties in the analysis that transforms the load into a
load effect, and for the probability that more than one extreme load will occur simultaneously.

LOADS. Forces or other actions that result from the weight of building materials, occupants and their possessions, environmental effects, differential movement and restrained dimensional changes. Permanent loads are those loads in which variations over time are rare or of small magnitude, such as dead loads. All other loads are variable loads (see “Nominal loads”).

LODGING HOUSE. A one-family dwelling where one or more occupants are primarily permanent in nature and rent is paid for guest rooms.

LOT. A portion or parcel of land considered as a unit.

LOT LINE. A line dividing one lot from another, or from a street or any public place.

LOW-ENERGY POWER-OPERATED DOOR. Swinging door which opens automatically upon an action by a pedestrian such as pressing a push plate or waving a hand in front of a sensor. The door closes automatically, and operates with decreased forces and decreased speeds (see “Power-assisted door” and “Power-operated door”).

LOWER FLAMMABLE LIMIT (LFL). The minimum concentration of vapor in air at which propagation of flame will occur in the presence of an ignition source. The LFL is sometimes referred to as “LEL” or “lower explosive limit.”

LOWEST FLOOR. The floor of the lowest enclosed area, including basement, but excluding any unfinished or flood-resistant enclosure, usable solely for vehicle parking, building access or limited storage provided that such enclosure is not built so as to render the structure in violation of Section 1612.

MAIN WINDFORCE-RESISTING SYSTEM. An assemblage of structural elements assigned to provide support and stability for the overall structure. The system generally receives wind loading from more than one surface.

MAINTENANCE. Work necessary to assure that equipment, systems, devices and safeguards continue to operate in good working order and in accordance with the approval.

MALL BUILDING, COVERED and MALL BUILDING, OPEN. See “Covered mall building.”

MANUAL FIRE ALARM BOX. A manually operated device used to initiate an alarm signal.

MANUFACTURER’S DESIGNATION. An identification applied on a product by the manufacturer indicating that a product or material complies with a specified standard or set of rules (see “Label” and “Mark”).

MARK. An identification applied on a product by the manufacturer indicating the name of the manufacturer and the function of a product or material (see “Label” and “Manufacturer’s designation”).

MARQUEE. A permanent roofed structure projecting over an entrance
attached to and supported by a building for the purpose of supporting a marquee sign.

MASONRY. A built-up construction or combination of building units or materials of clay, shale, concrete, glass, gypsum, stone or other approved units bonded together with or without mortar or grout or other accepted methods of joining.

 - **Glass unit masonry.** Masonry composed of glass units bonded by mortar.
 - **Plain masonry.** Masonry in which the tensile resistance of the masonry is taken into consideration and the effects of stresses in reinforcement are neglected.
 - **Reinforced masonry.** Masonry construction in which reinforcement acting in conjunction with the masonry is used to resist forces.
 - **Solid masonry.** Masonry consisting of solid masonry units laid contiguously with the joints between the units filled with mortar.
 - **Unreinforced (plain) masonry.** Masonry in which the tensile resistance of masonry is taken into consideration and the resistance of the reinforcing steel, if present, is neglected.

MASONRY UNIT. Brick, tile, stone, glass block or concrete block conforming to the requirements specified in Section 2103.

 - **Hollow.** A masonry unit whose net cross-sectional area in any plane parallel to the load-bearing surface is less than 75 percent of its gross cross-sectional area measured in the same plane.
 - **Solid.** A masonry unit whose net cross-sectional area in every plane parallel to the load-bearing surface is 75 percent or more of its gross cross-sectional area measured in the same plane.

MASTIC FIRE-RESISTANT COATINGS. Liquid mixture applied to a substrate by brush, roller, spray or trowel that provides fire-resistant protection of a substrate when exposed to flame or intense heat.

MEANS OF EGRESS. A continuous and unobstructed path of vertical and horizontal egress travel from any occupied portion of a building or structure to a public way. A means of egress consists of three separate and distinct parts: the exit access, the exit and the exit discharge.

MECHANICAL-ACCESS OPEN PARKING GARAGES.
Open parking garages employing parking machines, lifts, elevators or other mechanical devices for vehicles moving from and to street level and in which public occupancy is prohibited above the street level.

MECHANICAL CODE. The “Ohio Mechanical Code.”

MECHANICAL EQUIPMENT SCREEN. A rooftop structure, not covered by a roof, used to aesthetically conceal plumbing, electrical or mechanical equipment from view.

MEDICAL CARE. Care involving medical or surgical procedures, nursing or for psychiatric purposes.
MEMBRANE-COVERED CABLE STRUCTURE. A nonpressurized structure in which a mast and cable system provides support and tension to the membrane weather barrier and the membrane imparts stability to the structure.

MEMBRANE-COVERED FRAME STRUCTURE. A nonpressurized building wherein the structure is composed of a rigid framework to support a tensioned membrane which provides the weather barrier.

MEMBRANE PENETRATION. A breach in one side of a floor-ceiling, roof-ceiling or wall assembly to accommodate an item installed into or passing through the breach.

MEMBRANE-PENETRATION FIRESTOP. A material, device or construction installed to resist for a prescribed time period the passage of flame and heat through openings in a protective membrane in order to accommodate cables, cable trays, conduit, tubing, pipes or similar items.

MEMBRANE-PENETRATION FIRESTOP SYSTEM. An assemblage consisting of a fire-resistance-rated floor-ceiling, roof-ceiling or wall assembly, one or more penetrating items installed into or passing through the breach in one side of the assembly and the materials or devices, or both, installed to resist the spread of fire into the assembly for a prescribed period of time.

MERCHANDISE PAD. A merchandise pad is an area for display of merchandise surrounded by aisles, permanent fixtures or walls. Merchandise pads contain elements such as nonfixed and moveable fixtures, cases, racks, counters and partitions as indicated in Section 105.2 from which customers browse or shop.

METAL COMPOSITE MATERIAL (MCM). A factory-manufactured panel consisting of metal skins bonded to both faces of a solid plastic core.

METAL COMPOSITE MATERIAL (MCM) SYSTEM. An exterior wall covering fabricated using MCM in a specific assembly including joints, seams, attachments, substrate, framing and other details as appropriate to a particular design.

METAL ROOF PANEL. An interlocking metal sheet having a minimum installed weather exposure of 3 square feet (0.279 m²) per sheet.

METAL ROOF SHINGLE. An interlocking metal sheet having an installed weather exposure less than 3 square feet (0.279 m²) per sheet.

MEZZANINE. An intermediate level or levels between the floor and ceiling of any story and in accordance with Section 505.

MICROPILE. A micropile is a bored, grouted-in-place deep foundation element that develops its load-carrying capacity by means of a bond zone in soil, bedrock or a combination of soil and bedrock.

MINERAL BOARD. A rigid felted thermal insulation board consisting of either felted mineral fiber or cellular beads of expanded aggregate formed into flat rectangular units.
MINERAL FIBER. Insulation composed principally of fibers manufactured from rock, slag or glass, with or without binders.

MINERAL WOOL. Synthetic vitreous fiber insulation made by melting predominately igneous rock or furnace slag, and other inorganic materials, and then physically forming the melt into fibers.

MINOR REPAIR. See REPAIR, MINOR.

MODIFIED BITUMEN ROOF COVERING. One or more layers of polymer-modified asphalt sheets. The sheet materials shall be fully adhered or mechanically attached to the substrate or held in place with an approved ballast layer.

MORTAR. A mixture consisting of cementitious materials, fine aggregates, water, with or without admixtures, that is used to construct unit masonry assemblies.

MORTAR, SURFACE-BONDING. A mixture to bond concrete masonry units that contains hydraulic cement, glass fiber reinforcement with or without inorganic fillers or organic modifiers and water.

MULTILEVEL ASSEMBLY SEATING. Seating that is arranged in distinct levels where each level is comprised of either multiple rows, or a single row of box seats accessed from a separate level.

MULTIPLE-STATION ALARM DEVICE. Two or more single-station alarm devices that can be interconnected such that actuation of one causes all integral or separate audible alarms to operate. A multiple-station alarm device can consist of one single-station alarm device having connections to other detectors or to a manual fire alarm box.

MULTIPLE-STATION SMOKE ALARM. Two or more single-station alarm devices that are capable of interconnection such that actuation of one causes the appropriate alarm signal to operate in all interconnected alarms.

MULTISTORY UNIT. A dwelling unit or sleeping unit with habitable space located on more than one story.

NAILING, BOUNDARY. A special nailing pattern required by design at the boundaries of diaphragms.

NAILING, EDGE. A special nailing pattern required by design at the edges of each panel within the assembly of a diaphragm or shear wall.

NAILING, FIELD. Nailing required between the sheathing panels and framing members at locations other than boundary nailing and edge nailing.

NATURAL GAS PROCESSING FACILITIES – Installations, including associated buildings, pipes, valves, tanks, and other equipment, used to separate various fluids, hydrocarbons, natural gas liquids, and impurities from the raw natural gas, manufacturing residue gas suitable for transmission and distribution to end users.

NATURAL GAS LIQUIDS FRACTIONATION FACILITIES – Installations,
including associated buildings, pipes, valves, tanks, and other equipment, used for
the separation of mixtures of light hydrocarbons or natural gas liquids into
individual, purity natural gas liquid products, which include ethane, propane,
normal butane, iso-butane, and natural gasolines.

NATURALLY DURABLE WOOD. The heartwood of the following species
except for the occasional piece with corner sapwood, provided 90 percent or
more of the width of each side on which it occurs is heartwood.

Decay resistant. Redwood, cedar, black locust and black walnut.

Termite resistant. Redwood, Alaska yellow cedar, East- ern red cedar and
Western red cedar.

NOMINAL LOADS. The magnitudes of the loads specified in Chapter 16
(dead, live, soil, wind, snow, rain, flood and earthquake).

NOMINAL SIZE (LUMBER). The commercial size designation of width and
depth, in standard sawn lumber and glued-laminated lumber grades; somewhat
larger than the standard net size of dressed lumber, in accordance with DOCPS
20 for sawn lumber and with the AWC NDS for glued-laminated lumber.

NONCOMBUSTIBLE MATERIALS. Materials that, when tested in accordance
with ASTM E 136, have at least three or four specimens tested meeting all of the
following criteria:

The recorded temperature of the surface and interior thermocouples shall not
at any time during the test rise more than 54°F (30°C) above the furnace
temperature at the beginning of the test.

There shall not be flaming from the specimen after the first 30 seconds.

If the weight loss of the specimen during the testing exceeds fifty percent, the
recorded temperature of the surface and the interior thermocouples shall not at
any time during the test rise above the furnace air temperature at the beginning of
the test, and there not be flaming of the specimen.

NONCOMBUSTIBLE MEMBRANE STRUCTURE. A membrane structure
in which the membrane and all component parts of the structure are
noncombustible.

NONSTRUCTURAL CONCRETE. Any element made of plain or reinforced
concrete that is not part of a structural system required to transfer either gravity or
lateral loads to the ground.

NORMAL TEMPERATURE AND PRESSURE (NTP). A temperature of
70°F (21°C) and a pressure of 1 atmosphere [14.7 psia (101 kPa)].

NOSING. The leading edge of treads of stairs and of landings at the top of
stairway flights.

NOTIFICATION ZONE. See “Zone, notification.”
NUISANCE ALARM. An alarm caused by mechanical failure, malfunction, improper installation or lack of proper maintenance, or an alarm activated by a cause that cannot be determined.

NURSING HOMES. Facilities that provide care, including both intermediate care facilities and skilled nursing facilities where any of the persons are incapable of self-preservation.

OCCUPANCY. The purpose for which a building, or portion thereof, is used.

OCCUPANCY, CHANGE OF. See “Change of Occupancy.”

OCCUPANT LOAD. The number of persons for which the means of egress of a building or portion thereof is designed.

OCCUPIABLE SPACE. A room or enclosed space designed for human occupancy in which individuals congregate for amusement, educational or similar purposes or in which occupants are engaged at labor, and which is equipped with means of egress and light and ventilation facilities meeting the requirements of this code.

OPEN-ENDED CORRIDOR. An interior corridor that is open on each end and connects to an exterior stairway or ramp at each end with no intervening doors or separation from the corridor.

OPEN PARKING GARAGE. A structure or portion of a structure with the openings as described in Section 406.5.2 on two or more sides that is used for the parking or storage of private motor vehicles as described in Section 406.5.3.

OPEN SYSTEM. The use of a solid or liquid hazardous material involving a vessel or system that is continuously open to the atmosphere during normal operations and where vapors are liberated, or the product is exposed to the atmosphere during normal operations. Examples of open systems for solids and liquids include dispensing from or into open beakers or containers, dip tank and plating tank operations.

OPERATING BUILDING. A building occupied in conjunction with the manufacture, transportation or use of explosive materials. Operating buildings are separated from one another with the use of intraplant or intraline distances.

ORDINARY PRECAST STRUCTURAL WALL. See Section 1905.1.1.

ORDINARY REINFORCED CONCRETE STRUCTURAL WALL. See Section 1905.1.1.

ORDINARY STRUCTURAL PLAIN CONCRETE WALL. See Section 1905.1.1.

ORGANIC PEROXIDE. An organic compound that contains the bivalent -O-O- structure and which may be considered to be a structural derivative of hydrogen peroxide where one or both of the hydrogen atoms have been replaced by an organic radical. Organic peroxides can pose an explosion hazard (detonation or deflagration) or they can be shock sensitive. They can also decompose into various unstable compounds over an extended period of time.
Class I. Those formulations that are capable of deflagration but not detonation.

Class II. Those formulations that burn very rapidly and that pose a moderate reactivity hazard.

Class III. Those formulations that burn rapidly and that pose a moderate reactivity hazard.

Class IV. Those formulations that burn in the same manner as ordinary combustibles and that pose a minimal reactivity hazard.

Class V. Those formulations that burn with less intensity than ordinary combustibles or do not sustain combustion and that pose no reactivity hazard.

Unclassified detonable. Organic peroxides that are capable of detonation. These peroxides pose an extremely high explosion hazard through rapid explosive decomposition.

ORTHOGONAL. To be in two horizontal directions, at 90 degrees (1.57 rad) to each other.

OTHER STRUCTURES (for Chapters 16-23). Structures, other than buildings, for which loads are specified in Chapter 16.

OUTPATIENT CLINIC. See “Clinic, outpatient.”

OWNER. Any person, agent, operator, entity, firm or corporation having any legal or equitable interest in the property; or recorded in the official records of the state, county or municipality as holding an interest or title to the property; or otherwise having possession or control of the property, including the guardian of the estate of any such person, and the executor or administrator of the estate of such person if ordered to take possession of real property by a court.

OXIDIZER. A material that readily yields oxygen or other oxidizing gas, or that readily reacts to promote or initiate combustion of combustible materials and, if heated or contaminated, can result in vigorous self-sustained decomposition.

Class 4. An oxidizer that can undergo an explosive reaction due to contamination or exposure to thermal or physical shock and that causes a severe increase in the burning rate of combustible materials with which it comes into contact. Additionally, the oxidizer causes a severe increase in the burning rate and can cause spontaneous ignition of combustibles.

Class 3. An oxidizer that causes a severe increase in the burning rate of combustible materials with which it comes in contact.

Class 2. An oxidizer that will cause a moderate increase in the burning rate of combustible materials with which it comes in contact.

Class 1. An oxidizer that does not moderately increase the burning rate of combustible materials.

OXIDIZING GAS. A gas that can support and accelerate combustion of other materials more than air does.
PANEL (PART OF A STRUCTURE). The section of a floor, wall or roof comprised between the supporting frame of two adjacent rows of columns and girders or column bands of floor or roof construction.

PANIC HARDWARE. A door-latching assembly incorporating a device that releases the latch upon the application of a force in the direction of egress travel. See “Fire exit hardware.”

PARTICLEBOARD. A generic term for a panel primarily composed of cellulosic materials (usually wood), generally in the form of discrete pieces or particles, as distinguished from fibers. The cellulosic material is combined with synthetic resin or other suitable bonding system by a process in which the interparticle bond is created by the bonding system under heat and pressure.

PENETRATION FIRESTOP. A through-penetration fire-stop or a membrane-penetration firestop.

PENTHOUSE. An enclosed, unoccupied rooftop structure used for sheltering mechanical and electrical equipment, tanks, elevators and related machinery, and vertical shaft openings.

PERFORMANCE CATEGORY. A designation of wood structural panels as related to the panel performance used in Chapter 23.

PERMIT. Deleted.

PERSON. An individual, heirs, executors, administrators or assigns, and also includes a firm, partnership or corporation, its or their successors or assigns, or the agent of any of the aforesaid. Whenever the word "person" is used in any section of this code prescribing a penalty or fine, as to partnerships or associations, the word shall include the partners or members thereof, and as to corporations, shall include the officer, agents or members thereof who are responsible for any violation of such section.

PERSONAL CARE SERVICE. The care of persons who do not require medical care. Personal care involves responsibility for the safety of the persons while inside the building.

PHOTOLUMINESCENT. Having the property of emitting light that continues for a length of time after excitation by visible or invisible light has been removed.

PHOTOVOLTAIC MODULE. A complete, environmentally protected unit consisting of solar cells, optics and other components, exclusive of tracker, designed to generate DC power when exposed to sunlight.

PHOTOVOLTAIC PANEL. A collection of modules mechanically fastened together, wired and designed to provide a field-installable unit.

PHOTOVOLTAIC PANEL SYSTEM. A system that incorporates discrete photovoltaic panels, that converts solar radiation into electricity, including rack support systems.
PHOTOVOLTAIC SHINGLES. A roof covering resembling shingles that incorporates photovoltaic modules.

PHYSICAL HAZARD. A chemical for which there is evidence that it is a combustible liquid, cryogenic fluid, explosive, flammable (solid, liquid or gas), organic peroxide (solid or liquid), oxidizer (solid or liquid), oxidizing gas, pyrophoric (solid, liquid or gas), unstable (reactive) material (solid, liquid or gas) or water-reactive material (solid or liquid).

PHYSIOLOGICAL WARNING THRESHOLD LEVEL. A concentration of air-borne contaminants, normally expressed in parts per million (ppm) or milligrams per cubic meter (mg/m3), that represents the concentration at which persons can sense the presence of the contaminant due to odor, irritation or other quick-acting physiological response. When used in conjunction with the permissible exposure limit (PEL) the physiological warning threshold levels are those consistent with the classification system used to establish the PEL. See the definition of “Permissible exposure limit (PEL)” in the fire code.

PLACE OF RELIGIOUS WORSHIP. See “Religious worship, place of.”

PLASTIC, APPROVED. Any thermoplastic, thermosetting or reinforced thermosetting plastic material that conforms to combustibility classifications specified in the section applicable to the application and plastic type.

PLASTIC COMPOSITE. A generic designation that refers to wood/plastic composites and plastic lumber.

PLASTIC GLAZING. Plastic materials that are glazed or set in frame or sash and not held by mechanical fasteners that pass through the glazing material.

PLASTIC LUMBER. A manufactured product made primarily of plastic materials (filled or unfilled) which is generally rectangular in cross section.

PLATFORM. A raised area within a building used for worship, the presentation of music, plays or other entertainment; the head table for special guests; the raised area for lecturers and speakers; boxing and wrestling rings; theater-in-the-round stages; and similar purposes wherein, other than horizontal sliding curtains, there are no overhead hanging curtains, drops, scenery or stage effects other than lighting and sound. A temporary platform is one installed for not more than 30 days.

PLAY AREA. A portion of a site containing play components designed and constructed for children.

PLUMBING CODE. The “Ohio Plumbing Code.”

POLYPROPYLENE SIDING. A shaped material, made principally from polypropylene homopolymer, or copolymer, which in some cases contains fillers or reinforcements, that is used to clad exterior walls of buildings.

PORCELAIN TILE. Tile that conforms to the requirements of ANSI A137.1-1983, Section 3.0 for ceramic tile having an absorption of 0.5 percent or less
in accordance with ANSI 137.4.1–Class Table A137.1 Section 4.1 and ANSI 137.1.6.1 Allowable Properties by Tile Type–Section 6.1 Table 10.

POSITIVE ROOF DRAINAGE. The drainage condition in which consideration has been made for all loading deflections of the roof deck, and additional slope has been provided to ensure drainage of the roof within 48 hours of precipitation.

POWER-ASSISTED DOOR. Swinging door which opens by reduced pushing or pulling force on the door-operating hardware. The door closes automatically after the pushing or pulling force is released and functions with decreased forces. See “Low-energy power-operated door” and “Power-operated door.”

POWER-OPERATED DOOR. Swinging, sliding, or folding door which opens automatically when approached by a pedestrian or opens automatically upon an action by a pedestrian. The door closes automatically and includes provisions such as presence sensors to prevent entrapment. See “Low energy power-operated door” and “Power-assisted door.”

POWER PIPING. Piping systems and their component parts that are not building services piping systems, and that may be installed within electric power generating stations, industrial and institutional plants, utility geothermal heating systems, and central and district heating and cooling systems. Power piping includes, but is not limited to, piping used in the distribution of plant and process steam at boiler pressures greater than fifteen pounds per square inch gauge, high temperature water piping from high pressure and high temperature boilers, power boiler steam condensate piping, high pressure and high temperature water condensate piping, and compressed air and hydraulic piping upstream of the first stop valve off a system distribution header.

PREFABRICATED WOOD I-JOIST. Structural member manufactured using sawn or structural composite lumber flanges and wood structural panel webs bonded together with exterior exposure adhesives, which forms an “I” cross-sectional shape.

PREMISES. A lot, plot or parcel of land, including any structure thereon.

PRESTRESSED MASONRY. Masonry in which internal stresses have been introduced to counteract potential tensile stresses in masonry resulting from applied loads.

PRIMARY FUNCTION. A primary function is a major activity for which the facility is intended. Areas that contain a primary function include, but are not limited to, the customer service lobby of a bank, the dining area of a cafeteria, the meeting rooms in a conference center, as well as offices and other work areas in which the activities of the public accommodation or other private entity using the facility are carried out. Mechanical rooms, boiler rooms, supply storage rooms,
employee lounges or locker rooms, janitorial closets, entrances, corridors and restrooms are not areas containing a primary function.

PRIMARY STRUCTURAL FRAME. The primary structural frame shall include all of the following structural members:

1. The columns.
2. Structural members having direct connections to the columns, including girders, beams, trusses and spandrels.
3. Members of the floor construction and roof construction having direct connections to the columns.
4. Bracing members that are essential to the vertical stability of the primary structural frame under gravity loading shall be considered part of the primary structural frame whether or not the bracing member carries gravity loads.

PRIMARILY TRANSIENT. Use of a space for sleeping that has facilities for sanitation, with or without other spaces used for living purposes, offered or otherwise intended to be used for short periods of time but not intended to be used as a permanent residence or an institutional-use group facility where care or supervision is provided.

PRIMITIVE TRANSIENT LODGING STRUCTURE. See TRANSIENT LODGING STRUCTURE.

PRIVATE GARAGE. A building or portion of a building in which motor vehicles used by the tenants of the building or buildings on the premises are stored or kept, without provisions for repairing or servicing such vehicles for profit.

PRIVATE RESIDENTIAL SWIMMING POOL. Any indoor or outdoor structure, chamber, or tank containing a body of water for swimming, diving or bathing intended to serve a residential structure containing not more than 3 dwelling units and used exclusively by the residents and their nonpaying guests. Any swimming pool other than a private residential swimming pool shall be classified as a public swimming pool.

PRIVATE SCHOOL. A chartered nonpublic school or a nonchartered nonpublic school. See School Building.

PROCESS PIPING. Piping systems and their component parts that are not building services or power piping systems and that may be installed in petroleum refineries; chemical, pharmaceutical, textile, paper, semiconductor, and cryogenic plants; and related processing plants and terminals.

PROCESSING EQUIPMENT. Equipment, machinery and devices specifically intended and used exclusively for manufacturing and other similar purposes. Processing equipment does not include the building electrical service and distribution system, mechanical and plumbing systems related to space heating, air conditioning, ventilation, water distribution and sanitation or other systems
regulated by board rules.

PROSCENIUM WALL. The wall that separates the stage from the auditorium or assembly seating area.

PSYCHIATRIC HOSPITALS. See “Hospitals.”

PUBLIC ENTITY. (1) Any state or local government; (2) Any department, agency, special purpose district, or other instrumentality of Ohio or local government; and (3) The national railroad passenger corporation, and any commuter authority (as defined in section 103(8) of the "Rail Passenger Service Act”).

PUBLIC ENTRANCE. An entrance that is not a service entrance or a restricted entrance.

PUBLIC SCHOOL. Any school operated by a school district board of education, any community school established under Chapter 3314. of the Revised Code, any STEM school established under Chapter 3326. of the Revised Code, and any college-preparatory boarding school established under Chapter 3328. of the Revised Code. See School Building.

PUBLIC SWIMMING POOL. Any indoor or outdoor structure, chamber, or tank containing a body of water for swimming, diving, or bathing that is intended to be used collectively for swimming, diving, or bathing and is operated by any person whether as the owner, lessee, operator, licensee, or concessionaire, regardless of whether or not a fee is charged for use, but does not mean any public bathing area, private residential swimming pool or any structure, chamber and tank that is easily portable when empty with a capacity of no more than 150 gallons.

PUBLIC-USE AREAS. Interior or exterior rooms or spaces that are made available to the general public.

PUBLIC WAY. A street, alley or other parcel of land open to the outside air leading to a street, that has been deeded, dedicated or otherwise permanently appropriated to the public for public use and which has a clear width and height of not less than 10 feet (3048 mm).

PYROPHORIC. A chemical with an auto-ignition temperature in air, at or below a temperature of 130°F (54.4°C).

PYROTECHNIC COMPOSITION. A chemical mixture that produces visible light displays or sounds through a self-propagating, heat-releasing chemical reaction which is initiated by ignition.

RADIANT BARRIER. A material having a low-emittance surface of 0.1 or less installed in building assemblies.

RAMP. A walking surface that has a running slope steeper than one unit vertical in 20 units horizontal (5-percent slope).
RAMP-ACCESS OPEN PARKING GARAGES. Open parking garages employing a series of continuously rising floors or a series of interconnecting ramps between floors permitting the movement of vehicles under their own power from and to the street level.

RAMP, EXIT ACCESS. See “Exit access ramp.”

RAMP, EXTERIOR EXIT. See “Exterior exit ramp.”

RAMP, INTERIOR EXIT. See “Interior exit ramp.”

RECORD DRAWINGS. Drawings (“as built”) that document the location of all devices, appliances, wiring sequences, wiring methods and connections of the components of a fire alarm system as installed.

REFLECTIVE PLASTIC CORE INSULATION. An insulation material packaged in rolls, that is less than ½ inch (12.7 mm) thick, with not less than one exterior low-emittance surface (0.1 or less) and a core material containing voids or cells.

REGISTERED DESIGN PROFESSIONAL. Any architect holding a certificate issued under sections 4703.10 and 4703.36 of the Revised Code or any engineer holding a certificate issued under section 4733.14 of the Revised Code.

REGISTERED DESIGN PROFESSIONAL IN RESPONSIBLE CHARGE. Deleted.

RELIGIOUS WORSHIP, PLACE OF. A building or portion thereof intended for the performance of religious services.

REPAIR. The reconstruction or renewal of any part of an existing building for the purpose of its maintenance or to correct damage.

REPAIR, MINOR. The reconstruction or renewal of any part of an existing building for the purpose of its maintenance when the work has limited impact on access, safety or health. Minor repairs do not include the cutting away of any wall, partition or portions of walls, the removal or cutting of any structural beam or load bearing support, or the removal or change of any required element of accessibility, means of egress, or rearrangement of parts of a structure affecting the egress requirements. Minor repairs do not include addition to, alteration of, replacement or relocation of any standpipe, water supply, sewer, drainage, drain leader, gas, soil, waste, vent or similar piping, electric wiring or mechanical or other work affecting public health or general safety.

REROOFING. The process of recovering or replacing an existing roof covering. See “Roof recover” and “Roof replacement.”

RESIDENTIAL AIRCRAFT HANGAR. An accessory building less than 2,000 square feet (186 m²) and 20 feet (6096 mm) in building height constructed on a one- or two- family property where aircraft are stored. Such use will be considered as a residential accessory use incidental to the dwelling.

RESIDENTIAL SWIMMING POOL. Any indoor or outdoor swimming pool
meeting the definition of a public swimming pool and intended to serve a residential structure containing more than 3 dwelling units and used exclusively by the residents and their nonpaying guests.

RESISTANCE FACTOR. A factor that accounts for deviations of the actual strength from the nominal strength and the manner and consequences of failure (also called “strength reduction factor”).

RESTRICTED ENTRANCE. An entrance that is made available for common use on a controlled basis, but not public use, and that is not a service entrance.

RETRACTABLE AWNING. A retractable awning is a cover with a frame that retracts against a building or other structure to which it is entirely supported.

REVISED CODE. All statutes of a permanent and general nature of this state as revised and consolidated into general provisions, titles, chapters, and sections.

RISK CATEGORY. A categorization of buildings and other structures for determination of flood, wind, snow, ice and earthquake loads based on the risk associated with unacceptable performance.

RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE R) GROUND MOTION RESPONSE ACCELERATIONS. The most severe earthquake effects considered by this code, determined for the orientation that results in the largest maximum response to horizontal ground motions and with adjustment for targeted risk.

ROOF ASSEMBLY (For application to Chapter 15 only). A system designed to provide weather protection and resistance to design loads. The system consists of a roof covering and roof deck or a single component serving as both the roof covering and the roof deck. A roof assembly includes the roof deck, vapor retarder, substrate or thermal barrier, insulation, vapor retarder and roof covering.

ROOF COVERING. The covering applied to the roof deck for weather resistance, fire classification or appearance.

ROOF COVERING SYSTEM. See “Roof assembly.”

ROOF DECK. The flat or sloped surface constructed on top of the exterior walls of a building or other supports for the purpose of enclosing the story below, or sheltering an area, to protect it from the elements, not including its supporting members or vertical supports.

ROOF DRAINAGE, POSITIVE. See “Positive roof drainage.”

ROOF RECOVER. The process of installing an additional roof covering over a prepared existing roof covering without removing the existing roof covering.

ROOF REPAIR. Reconstruction or renewal of any part of an existing roof for the purposes of its maintenance.

ROOF REPLACEMENT. The process of removing the existing roof covering, repairing any damaged substrate and installing a new roof covering.
ROOF VENTILATION. The natural or mechanical process of supplying conditioned or unconditioned air to, or removing such air from, attics, cathedral ceilings or other enclosed spaces over which a roof assembly is installed.

ROOFTOP STRUCTURE. A structure erected on top of the roof deck or on top of any part of a building.

RUNNING BOND. The placement of masonry units such that head joints in successive courses are horizontally offset at least one-quarter the unit length.

SAFE. As applied to a building, means free from danger or hazard to the life, safety, health or welfare of persons occupying or frequenting it, or of the public, and from danger of settlement, movement, disintegration, or collapse, whether such danger arises from the method or materials of its construction or from equipment installed therein, for the purpose of lighting, heating, the transmission or utilization of electric current, or from its location or otherwise.

SALLYPORT. A security vestibule with two or more doors or gates where the intended purpose is to prevent continuous and unobstructed passage by allowing the release of only one door or gate at a time.

SANITARY. As applied to a building, means free from danger or hazard to the health of persons occupying or frequenting it or to that of the public, if such danger arises from the method or materials of its construction or from any equipment installed therein for the purpose of lighting, heating, ventilating, or plumbing.

SCHOOL BUILDING. A structure used for the instruction of students by a public or private school or institution of higher education.

SCISSOR STAIRWAY. Two interlocking stairways providing two separate paths of egress located within one exit enclosure.

SCUPPER. An opening in a wall or parapet that allows water to drain from a roof.

SECONDARY MEMBERS. The following structural members shall be considered secondary members and not part of the primary structural frame:

1. Structural members not having direct connections to the columns.
2. Members of the floor construction and roof construction not having direct connections to the columns.
3. Bracing members other than those that are part of the primary structural frame.

SEISMIC DESIGN CATEGORY. A classification assigned to a structure based on its risk category and the severity of the design earthquake ground motion at the site.

SEISMIC FORCE-RESISTING SYSTEM. That part of the structural system that has been considered in the design to provide the required resistance to the prescribed seismic forces.
SELF-CLOSING. As applied to a fire door or other opening protective, means equipped with a device that will ensure closing after having been opened.

SELF-LUMINOUS. Illuminated by a self-contained power source, other than batteries, and operated independently of external power sources.

SELF-PRESERVATION, INCAPABLE OF. See “Incapable of self-preservation.”

SELF-SERVICE STORAGE FACILITY. Real property designed and used for the purpose of renting or leasing individual storage spaces to customers for the purpose of storing and removing personal property on a self-service basis.

SEMI-PRIMITIVE TRANSIENT LODGING STRUCTURE. See TRANSIENT LODGING STRUCTURE.

SERIOUS HAZARD. A hazard of considerable consequence to safety or health through the design, location, construction, or equipment of a building, or the condition thereof, which hazard has been established through experience to be of certain or probable consequence, or which can be determined to be, or which is obviously such a hazard.

SERVICE CORRIDOR. A fully enclosed passage used for transporting HPM and purposes other than required means of egress.

SERVICE ENTRANCE. An entrance intended primarily for delivery of goods or services.

SHAFT. An enclosed space extending through one or more stories of a building, connecting vertical openings in successive floors, or floors and roof.

SHAFT ENCLOSURE. The walls or construction forming the boundaries of a shaft.

SHALLOW FOUNDATION. A shallow foundation is an individual or strip footing, a mat foundation, a slab-on-grade foundation or a similar foundation element.

SHEAR WALL (for Chapter 23). A wall designed to resist lateral forces parallel to the plane of a wall.

Shear wall, perforated. A wood structural panel sheathed wall with openings, that has not been specifically designed and detailed for force transfer around openings.

Shear wall segment, perforated. A section of shear wall with full-height sheathing that meets the height-to-width ratio limits of Section 4.3.4 of AWC SDPWS.

SHINGLE FASHION. A method of installing roof or wall coverings, water-resistant barriers, flashing or other building components such that upper layers of material are placed overlapping lower layers of material to provide for drainage via gravity and moisture control.

SIGN. Any fabricated panel or display structure or illuminated device consisting of any letter, figure, character, mark, picture, stroke, stripe, line, trademark,
reading matter or other types of graphics, which is constructed, placed, attached, erected, fastened, or manufactured in a manner that is used for the attraction of the public to any place, subject, person, firm, corporation, public performance, article, machine, or merchandise, which is displayed outdoors for recognized advertising purposes. Signs shall be classified and conform to the requirements of those classifications as set forth in this code.

Sign, Combination. A sign incorporating any combination of the features of a pole, projecting or roof sign.

Sign, Display. The area made available by the sign structure for the purpose of displaying the advertising message.

Sign, Electric. A sign containing electrical wiring, but not including signs illuminated by an exterior light source.

Sign, Ground. A billboard or similar type of sign which is supported by one or more uprights, poles or braces, in or upon the ground other than a pole sign, as defined by this code. A sign attached to an independent structure with a permanent foundation or decorative base and is not dependent upon support from any building.

Sign, Marquee. A sign attached to or hung from a marquee projecting from and supported by the building and extending beyond the building wall, building line or street lot line.

Sign, Pole. A sign wholly supported by one or more poles in the ground.

Sign, Projecting. A sign other than a wall sign, which projects from and is supported by a wall of a building or structure.

Sign, Roof. A sign erected upon or above a roof or parapet of a building or structure.

Sign, Wall. Any sign attached to or erected against the wall of a building or structure, with the exposed face of the sign in a plane parallel to the plane of the wall.

Sign Structure. Any structure which supports a sign as defined in this code. A sign structure is permitted to be a single pole and is not required to be an integral part of the building.

SINGLE-PLY MEMBRANE. A roofing membrane that is field applied using one layer of membrane material (either homogeneous or composite) rather than multiple layers.

SINGLE-STATION SMOKE ALARM. An assembly incorporating the detector, the control equipment and the alarm-sounding device in one unit, operated from a power supply either in the unit or obtained at the point of installation.

SITE. A parcel of land bounded by a lot line or a designated portion of a public right-of-way.
SITE CLASS. A classification assigned to a site based on the types of soils present and their engineering properties as defined in Section 1613.3.2.

SITE COEFFICIENTS. The values of F_a and F_v indicated in Tables 1613.3.3(1) and 1613.3.3(2), respectively.

SITE-FABRICATED STRETCH SYSTEM. A system, fabricated on site and intended for acoustical, tackable or aesthetic purposes, that is composed of three elements:

1. A frame (constructed of plastic, wood, metal or other material) used to hold fabric in place;
2. A core material (infill, with the correct properties for the application); and
3. An outside layer, composed of a textile, fabric or vinyl, that is stretched taut and held in place by tension or mechanical fasteners via the frame.

SKYLIGHT, UNIT. A factory-assembled, glazed fenestration unit, containing one panel of glazing material that allows for natural lighting through an opening in the roof assembly while preserving the weather-resistant barrier of the roof.

SKYLIGHTS AND SLOPED GLAZING. Glass or other transparent or translucent glazing material installed at a slope of 15 degrees (0.26 rad) or more from vertical. Glazing material in skylights, including unit skylights, tubular daylighting devices, solariums, sunrooms, roofs and sloped walls, are included in this definition.

SLEEPING UNIT. A room or space in which people sleep, which can also include permanent provisions for living, eating, and either sanitation or kitchen facilities but not both. Such rooms and spaces that are also part of a dwelling unit are not sleeping units.

SMOKE ALARM. A single- or multiple-station alarm responsive to smoke. See “Multiple-station smoke alarm” and “Single-station smoke alarm.”

SMOKE BARRIER. A continuous membrane, either vertical or horizontal, such as a wall, floor or ceiling assembly, that is designed and constructed to restrict the movement of smoke.

SMOKE COMPARTMENT. A space within a building enclosed by smoke barriers on all sides, including the top and bottom.

SMOKE DAMPER. A listed device installed in ducts and air transfer openings designed to resist the passage of smoke. The device is installed to operate automatically, controlled by a smoke detection system, and where required, is capable of being positioned from a fire command center.

SMOKE DETECTOR. A listed device that senses visible or invisible particles of combustion.

SMOKE-DEVELOPED INDEX. A comparative measure, expressed as a dimensionless number, derived from measurements of smoke obscuration versus time for a material tested in accordance with ASTM E 84.
SMOKE-PROTECTED ASSEMBLY SEATING. Seating served by means of egress that is not subject to smoke accumulation within or under a structure.

SMOKEPROOF ENCLOSURE. An exit stairway or ramp designed and constructed so that the movement of the products of combustion produced by a fire occurring in any part of the building into the enclosure is limited.

SOLID. A material that has a melting point, decomposes or sublimes at a temperature greater than 68°F (20°C).

SPECIAL AMUSEMENT BUILDING. A special amusement building is any temporary or permanent building or portion thereof that is occupied for amusement, entertainment or educational purposes and that contains a device or system that conveys passengers or provides a walkway along, around or over a course in any direction so arranged that the means of egress path is not readily apparent due to visual or audio distractions or is intentionally confounded or is not readily available because of the nature of the attraction or mode of conveyance through the building or structure.

SPECIAL FLOOD HAZARD AREA. The land area subject to flood hazards and shown on a Flood Insurance Rate Map or other flood hazard map as Zone A, AE, A1-30, A99, AR, AO, AH, V, VO, VE or V1-30.

SPECIAL INSPECTION. Inspection of construction requiring the expertise of an approved special inspector in order to ensure compliance with this code and the approved construction documents.

Continuous special inspection. Special inspection by the special inspector who is present continuously when and where the work to be inspected is being performed.

Periodic special inspection. Special inspection by the special inspector who is intermittently present where the work to be inspected has been or is being performed.

SPECIAL INSPECTION AGENCY. An established, independent, nationally recognized and accredited, third-party conformity assessment body regularly engaged in performing special inspections as required by Chapter 17.

SPECIAL INSPECTOR. A qualified person who shall demonstrate competence for the inspection of the particular type of construction or operation requiring special inspection. A special inspector shall be an employee of an accredited special inspection agency recognized by the board in accordance with section 114 and rule 4101:7-6-01 of the Administrative Code, the registered design professional of record involved in the design of the project, or an agent contracted by the owner or registered design professional to perform special inspections whose qualifications comply with section 1704.1.

SPECIAL STRUCTURAL WALL. See Section 1905.1.1.

SPECIFIED COMpressive STRENGTH OF MASONRY, f_{cm}. Minimum compressive strength, expressed as force per unit of net cross-sectional area,
required of the masonry used in construction by the approved construction documents, and upon which the project design is based. Whenever the quantity \(f_m \) is under the radical sign, the square root of numerical value only is intended and the result has units of pounds per square inch (psi) (MPa).

SPLICE. The result of a factory and/or field method of joining or connecting two or more lengths of a fire-resistant joint system into a continuous entity.

SPORT ACTIVITY, AREA OF. See “Area of sport activity.”

SPRAY BOOTH. A mechanically ventilated appliance of varying dimensions and construction provided to enclose or accommodate a spraying operation and to confine and limit the escape of spray vapor and residue and to exhaust it safely.

SPRAY ROOM. A room designed to accommodate spraying operations constructed in accordance with this code and separated from the remainder of the building by a minimum one-hour fire barrier.

SPRAYING SPACE. An area in which dangerous quantities of flammable vapors or combustible residues, dusts or deposits are present due to the operation of spraying processes. The building official is authorized to define the limits of the spraying space in any specific case.

SPRAYED FIRE-RESISTANT MATERIALS. Cementitious or fibrous materials that are sprayed to provide fire-resistant protection of the substrates.

SRO (Single room occupancy) FACILITY. A facility with more than five sleeping rooms that is kept, used, maintained, advertised or held out to the public as a place where sleeping rooms are offered on a single room occupancy (SRO) basis and that is intended for use as a primary residence for residential guests for a period of more than thirty days. SRO facilities are required to be licensed by the state fire marshal in accordance with section 3731.02 of the Revised Code and do not include agricultural labor camps, apartment houses, lodging houses, rooming houses or college dormitories.

STAGE. A space within a building utilized for entertainment or presentations, which includes overhead hanging curtains, drops, scenery or stage effects other than lighting and sound.

STAIR. A change in elevation, consisting of one or more risers.

STAIRWAY. One or more flights of stairs, either exterior or interior, with the necessary landings and platforms connecting them, to form a continuous and uninterrupted passage from one level to another.

STAIRWAY, EXIT ACCESS. See “Exit access stairway.”

STAIRWAY, EXTERIOR EXIT. See “Exterior exit stairway.”

STAIRWAY, INTERIOR EXIT. See “Interior exit stairway.”

STAIRWAY, SCISSOR. See “Scissor stairway.”
STAIRWAY, SPIRAL. A stairway having a closed circular form in its plan view with uniform section-shaped treads attached to and radiating from a minimum-diameter supporting column.

STANDBY POWER SYSTEM. A source of automatic electric power of a required capacity and duration to operate required building, hazardous materials or ventilation systems in the event of a failure of the primary power. Standby power systems are required for electrical loads where interruption of the primary power could create hazards or hamper rescue or fire-fighting operations.

STANDPIPE SYSTEM, CLASSES OF. Standpipe classes are as follows:

- **Class I system.** A system providing 2½-inch (64 mm) hose connections to supply water for use by fire departments and those trained in handling heavy fire streams.
- **Class II system.** A system providing 1½-inch (38 mm) hose stations to supply water for use primarily by the building occupants or by the fire department during initial response.
- **Class III system.** A system providing 1½-inch (38 mm) hose stations to supply water for use by building occupants and 2½-inch (64 mm) hose connections to supply a larger volume of water for use by fire departments and those trained in handling heavy fire streams.

STANDPIPE, TYPES OF. Standpipe types are as follows:

- **Automatic dry.** A dry standpipe system, normally filled with pressurized air, that is arranged through the use of a device, such as dry pipe valve, to admit water into the system piping automatically upon the opening of a hose valve. The water supply for an automatic dry standpipe system shall be capable of supplying the system demand.
- **Automatic wet.** A wet standpipe system that has a water supply that is capable of supplying the system demand automatically.
- **Manual dry.** A dry standpipe system that does not have a permanent water supply attached to the system. Manual dry standpipe systems require water from a fire department pumper to be pumped into the system through the fire department connection in order to meet the system demand.
- **Manual wet.** A wet standpipe system connected to a water supply for the purpose of maintaining water within the system but does not have a water supply capable of delivering the system demand attached to the system. Manual wet standpipe systems require water from a fire department pumper (or the like) to be pumped into the system in order to meet the system demand.
- **Semiautomatic dry.** A dry standpipe system that is arranged through the use of a device, such as a deluge valve, to admit water into the system piping upon activation of a remote control device located at a hose connection. A remote control activation device shall be provided at each hose connection.
connection. The water supply for a semiautomatic dry standpipe system shall be capable of supplying the system demand.

START OF CONSTRUCTION. The date of issuance for new construction and substantial improvements to existing structures, provided the actual start of construction, repair, reconstruction, rehabilitation, addition, placement or other improvement is within 180 days after the date of issuance. The actual start of construction means the first placement of permanent construction of a building (including a manufactured home) on a site, such as the pouring of a slab or footings, installation of pilings or construction of columns.

Permanent construction does not include land preparation (such as clearing, excavation, grading or filling), the installation of streets or walkways, excavation for a basement, footings, piers or foundations, the erection of temporary forms or the installation of accessory buildings such as garages or sheds not occupied as dwelling units or not part of the main building. For a substantial improvement, the actual “start of construction” means the first alteration of any wall, ceiling, floor or other structural part of a building, whether or not that alteration affects the external dimensions of the building.

STEEL CONSTRUCTION, COLD-FORMED. That type of construction made up entirely or in part of steel structural members cold formed to shape from sheet or strip steel such as roof deck, floor and wall panels, studs, floor joists, roof joists and other structural elements.

STEEL ELEMENT, STRUCTURAL. Any steel structural member of a building or structure consisting of rolled shapes, pipe, hollow structural sections, plates, bars, sheets, rods or steel castings other than cold-formed steel or steel joist members.

STEEL JOIST. Any steel structural member of a building or structure made of hot-rolled or cold-formed solid or open-web sections, or riveted or welded bars, strip or sheet steel members, or slotted and expanded, or otherwise deformed rolled sections.

STEEL MEMBER, STRUCTURAL. Any steel structural member of a building or structure consisting of a rolled steel structural shape other than cold-formed steel or steel joist members.

STEEP SLOPE. A roof slope greater than two units vertical in 12 units horizontal (17-percent slope).

STONE MASONRY. Masonry composed of field, quarried or cast stone units bonded by mortar.

STORAGE, HAZARDOUS MATERIALS. The keeping, retention or leaving of hazardous materials in closed containers, tanks, cylinders, or similar vessels; or vessels supplying operations through closed connections to the vessel.

STORAGE RACKS. Cold-formed or hot-rolled steel structural members which are formed into steel storage racks, including pallet storage racks, movable-shelf
racks, rack-supported systems, automated storage and retrieval systems (stacker racks), push-back racks, pallet-flow racks, case-flow racks, pick modules and rack-supported platforms. Other types of racks, such as drive-in or drive-through racks, cantilever racks, portable racks or racks made of materials other than steel, are not considered storage racks for the purpose of this code.

STORM SHELTER. A building, structure or portions thereof, constructed in accordance with ICC 500 and designated for use during a severe wind storm event, such as a hurricane or tornado.

- **Community storm shelter.** A storm shelter not defined as a “Residential storm shelter.”
- **Residential storm shelter.** A storm shelter serving occupants of dwelling units and having an occupant load not exceeding 16 persons.

STORY. That portion of a building included between the upper surface of a floor and the upper surface of the floor or roof next above (see “Basement,” “Building height,” “Grade plane” and “Mezzanine”). A story is measured as the vertical distance from top to top of two successive tiers of beams or finished floor surfaces and, for the topmost story, from the top of the floor finish to the top of the ceiling joists or, where there is not a ceiling, to the top of the roof rafters.

STORY ABOVE GRADE PLANE. Any story having its finished floor surface entirely above grade plane, or in which the finished surface of the floor next above is:

1. More than 6 feet (1829 mm) above grade plane; or
2. More than 12 feet (3658 mm) above the finished ground level at any point.

STRENGTH (For Chapter 21).

- **Design strength.** Nominal strength multiplied by a strength reduction factor.
- **Nominal strength.** Strength of a member or cross section calculated in accordance with these provisions before application of any strength-reduction factors.
- **Required strength.** Strength of a member or cross section required to resist factored loads.

STRENGTH (for Chapter 16).

- **Nominal strength.** The capacity of a structure or member to resist the effects of loads, as determined by computations using specified material strengths and dimensions and equations derived from accepted principles of structural mechanics or by field tests or laboratory tests of scaled models, allowing for modeling effects and differences between laboratory and field conditions.
Required strength. Strength of a member, cross section or connection required to resist factored loads or related internal moments and forces in such combinations as stipulated by these provisions.

Strength design. A method of proportioning structural members such that the computed forces produced in the members by factored loads do not exceed the member design strength [also called “load and resistance factor design” (LRFD)]. The term “strength design” is used in the design of concrete and masonry structural elements.

STRUCTURAL COMPOSITE LUMBER. Structural member manufactured using wood elements bonded together with exterior adhesives. Examples of structural composite lumber are:

- **Laminated strand lumber (LSL).** A composite of wood strand elements with wood fibers primarily oriented along the length of the member, where the least dimension of the wood strand elements is 0.10 inch (2.54 mm) or less and their average lengths not less than 150 times the least dimension of the wood strand elements.

- **Laminated veneer lumber (LVL).** A composite of wood veneer sheet elements with wood fibers primarily oriented along the length of the member, where the veneer element thicknesses are 0.25 inches (6.4 mm) or less.

- **Oriented strand lumber (OSL).** A composite of wood strand elements with wood fibers primarily oriented along the length of the member, where the least dimension of the wood strand elements is 0.10 inches (2.54 mm) or less and their average lengths not less than 75 times and less than 150 times the least dimension of the strand elements.

- **Parallel strand lumber (PSL).** A composite of wood strand elements with wood fibers primarily oriented along the length of the member, where the least dimension of the wood strand elements is 0.25 inches (6.4 mm) or less and their average lengths not less than 300 times the least dimension of the wood strand elements.

STRUCTURAL GLUED-LAMINATED TIMBER.
An engineered, stress-rated product of a timber laminating plant, comprised of assemblies of specially selected and pre-prepared wood laminations in which the grain of all laminations is approximately parallel longitudinally and the laminations are bonded with adhesives.

STRUCTURAL OBSERVATION. The visual observation of the structural system by a registered design professional for general conformance to the approved construction documents.

STRUCTURE. That which is built or constructed.

SUBSTANTIAL DAMAGE. Damage of any origin sustained by a structure whereby the cost of restoring the structure to its before-damaged condition would
equal or exceed 50 percent of the market value of the structure before the
damage occurred.

SUBSTANTIAL IMPROVEMENT. Any repair, reconstruction, rehabilitation,
alteration, addition or other improvement of a building or structure, the cost
of which equals or exceeds 50 percent of the market value of the structure before
the improvement or repair is started. If the structure has sustained substantial
damage, any repairs are considered substantial improvement regardless of the
actual repair work performed. The term does not, however, include either:

1. Any project for improvement of a building required to correct existing
 health, sanitary or safety code violations identified by the building official
 and that are the minimum necessary to assure safe living conditions.

2. Any alteration of a historic structure provided that the alteration will not
 preclude the structure’s continued designation as a historic structure.

SUBSTANTIAL STRUCTURAL DAMAGE. A condition where one or both of
the following apply:

1. The vertical elements of the lateral force-resisting system have suffered
damage such that the lateral load-carrying capacity of any story in any
horizontal direction has been reduced by more than 33 percent from its
predamage condition.

2. The capacity of any vertical component carrying gravity load, or any
group of such components, that supports more than 30 percent of the
total area of the structure’s floors and roofs has been reduced more than 20
percent from its predamage condition and the remaining capacity of such
affected elements, with respect to all dead and live loads, is less than 75
percent of that required by this code for new buildings of similar structure,
purpose and location.

SUNROOM. A one-story structure attached to a building with a glazing area in
excess of 40 percent of the gross area of the structure’s exterior walls and roof.

SUPERVISING STATION. A facility that receives signals and at which
personnel are in attendance at all times to respond to these signals.

SUPERVISORY SERVICE. The service required to monitor performance of
guard tours and the operative condition of fixed suppression systems or other
systems for the protection of life and property.

SUPERVISORY SIGNAL. A signal indicating the need of action in connection
with the supervision of guard tours, the fire suppression systems or equipment or
the maintenance features of related systems.

SUPERVISORY SIGNAL-INITIATING DEVICE. An initiation device,
such as a valve supervisory switch, water-level indicator or low-air pressure
switch on a dry-pipe sprinkler system, whose change of state signals an off-normal
condition and its restoration to normal of a fire protection or life safety system,
or a need for action in connection with guard tours, fire suppression systems or equipment or maintenance features of related systems.

SUSCEPTIBLE BAY. A roof or portion thereof with:

1. A slope less than ¼-inch per foot (0.0208 rad); or
2. On which water is impounded, in whole or in part, and the secondary drainage system is functional but the primary drainage system is blocked.

A roof surface with a slope of ¼-inch per foot (0.0208 rad) or greater towards points of free drainage is not a susceptible bay.

SWIMMING POOL. Any structure intended for swimming, recreational bathing or wading that contains water over 24 inches (610 mm) deep. This includes in-ground, above-ground and on-ground pools; hot tubs; spas and fixed-in-place wading pools.

T RATING. The time period that the penetration firestop system, including the penetrating item, limits the maximum temperature rise to 325°F (163°C) above its initial temperature through the penetration on the nonfire side when tested in accordance with ASTM E 814 or UL 1479.

TECHNICAL PRODUCTION AREA. Open elevated areas or spaces intended for entertainment technicians to walk on and occupy for servicing and operating entertainment technology systems and equipment. Galleries, including fly and lighting galleries, gridirons, catwalks, and similar areas are designed for these purposes.

TECHNICALLY INFEASIBLE. An alteration of a building or a facility that has little likelihood of being accomplished because the existing structural conditions require the removal or alteration of a load-bearing member that is an essential part of the structural frame, or because other existing physical or site constraints prohibit modification or addition of elements, spaces or features which are in full and strict compliance with the minimum requirements for new construction and which are necessary to provide accessibility.

TEMPORARY DOOR LOCKING DEVICE. An assembly of parts intended to be engaged by a trained school staff member in a school building for the purpose of preventing both ingress and egress through a door in a school building for a finite period of time in an emergency situation and during active shooter drills. See Section 1008.1.9.11.

TENSILE MEMBRANE STRUCTURE. A membrane structure having a shape that is determined by tension in the membrane and the geometry of the support structure. Typically, the structure consists of both flexible elements (e.g., membrane and cables), nonflexible elements (e.g., struts, masts, beams and arches) and the anchorage (e.g., supports and foundations). This includes frame-supported tensile membrane structures.
TENT. A structure, enclosure or shelter, with or without sidewalls or drops, constructed of fabric or pliable material supported in any manner except by air or the contents it protects.

THERMAL ISOLATION. A separation of conditioned spaces, between a sunroom and a dwelling unit, consisting of existing or new walls, doors or windows.

THERMOPLASTIC MATERIAL. A plastic material that is capable of being repeatedly softened by increase of temperature and hardened by decrease of temperature.

THERMOSETTING MATERIAL. A plastic material that is capable of being changed into a substantially nonreformable product when cured.

THROUGH PENETRATION. A breach in both sides of a floor, floor-ceiling or wall assembly to accommodate an item passing through the breaches.

THROUGH-PENETRATION FIRESTOP SYSTEM. An assemblage consisting of a fire-resistance-rated floor, floor-ceiling, or wall assembly, one or more penetrating items passing through the breaches in both sides of the assembly and the materials or devices, or both, installed to resist the spread of fire through the assembly for a prescribed period of time.

TIE-DOWN (HOLD-DOWN). A device used to resist uplift of the chords of shear walls.

TIE, WALL. Metal connector that connects wythes of masonry walls together.

TILE, STRUCTURAL CLAY. A hollow masonry unit composed of burned clay, shale, fire clay or mixture thereof, and having parallel cells.

TIRES, BULK STORAGE OF. Storage of tires where the area available for storage exceeds 20,000 cubic feet (566 m3).

TOWNHOUSE. A single-family dwelling unit constructed in a group of three or more attached units in which each unit extends from the foundation to roof and with open space on at least two sides.

TOXIC. A chemical falling within any of the following categories:

1. A chemical that has a median lethal dose (LD$_{50}$) of more than 50 milligrams per kilogram, but not more than 500 milligrams per kilogram of body weight when administered orally to albino rats weighing between 200 and 300 grams each.

2. A chemical that has a median lethal dose (LD$_{50}$) of more than 200 milligrams per kilogram, but not more than 1,000 milligrams per kilogram of body weight when administered by continuous contact for 24 hours (or less if death occurs within 24 hours) with the bare skin of albino rabbits weighing between 2 and 3 kilograms each.

3. A chemical that has a median lethal concentration (LC$_{50}$) in air of more than 200 parts per million, but not more than 2,000 parts per million by volume of gas or vapor, or more than 2 milligrams per liter but not more
than 20 milligrams per liter of mist, fume or dust, when administered by continuous inhalation for 1 hour (or less if death occurs within 1 hour) to albino rats weighing between 200 and 300 grams each.

TRANSIENT. Occupancy of a dwelling unit or sleeping unit for not more than 30 days.

TRANSIENT AIRCRAFT. Aircraft based at another location and that is at the transient location for not more than 90 days.

TRANSIENT LODGING STRUCTURE. A single dwelling unit structure held out to the public for lodging of no more than twenty transient occupants. Examples may include, but are not limited to, cabins, cottages, bungalows, yurts, and chalets.

- **PRIMITIVE TRANSIENT LODGING STRUCTURE.** A transient lodging structure with only provisions for sleeping and no building services equipment or piping.
- **SEMI-PRIMITIVE TRANSIENT LODGING STRUCTURE.** A transient lodging structure that provides permanent provisions for only sleeping or for sleeping with either sanitation or kitchen facilities, but not both.

TREATED WOOD. Wood products that are conditioned to enhance fire-retardant or preservative properties.

- **Fire-retardant-treated wood.** Wood products that, when impregnated with chemicals by a pressure process or other means during manufacture, exhibit reduced surface-burning characteristics and resist propagation of fire.
- **Preservative-treated wood.** Wood products that, conditioned with chemicals by a pressure process or other means, exhibit reduced susceptibility to damage by fungi, insects or marine borers.

TRIM. Picture molds, chair rails, baseboards, handrails, door and window frames and similar decorative or protective materials used in fixed applications.

TROUBLE SIGNAL. A signal initiated by the fire alarm system or device indicative of a fault in a monitored circuit or component.

TUBULAR DAYLIGHTING DEVICE (TDD). A non-operable fenestration unit primarily designed to transmit daylight from a roof surface to an interior ceiling via a tubular conduit. The basic unit consists of an exterior glazed weathering surface, a light-transmitting tube with a reflective interior surface, and an interior-sealing device such as a translucent ceiling panel. The unit can be factory assembled, or field-assembled from a manufactured kit.

TYPE A FAMILY DAY-CARE HOME. See “Family Day-Care Home, Type A.”

TYPE A UNIT. A dwelling unit or sleeping unit designed and constructed for accessibility in accordance with this code and the provisions for Type A units in ICC A117.1.

TYPE B FAMILY DAY-CARE HOME. See “Family Day-Care Home, Type B.”
TYPE B UNIT. A dwelling unit or sleeping unit designed and constructed for accessibility in accordance with this code and the provisions for Type B units in ICC A117.1, consistent with the design and construction requirements of the federal Fair Housing Act.

UNDERLAYMENT. One or more layers of felt, sheathing paper, nonbituminous saturated felt or other approved material over which a steep-slope roof covering is applied.

UNIT SKYLIGHT. See “Skylight, unit.”

UNSTABLE (REACTIVE) MATERIAL. A material, other than an explosive, which in the pure state or as commercially produced, will vigorously polymerize, decompose, condense or become self-reactive and undergo other violent chemical changes, including explosion, when exposed to heat, friction or shock, or in the absence of an inhibitor, or in the presence of contaminants, or in contact with incompatible materials. Unstable (reactive) materials are subdivided as follows:

Class 4. Materials that in themselves are readily capable of detonation or explosive decomposition or explosive reaction at normal temperatures and pressures. This class includes materials that are sensitive to mechanical or localized thermal shock at normal temperatures and pressures.

Class 3. Materials that in themselves are capable of detonation or of explosive decomposition or explosive reaction but which require a strong initiating source or which must be heated under confinement before initiation. This class includes materials that are sensitive to thermal or mechanical shock at elevated temperatures and pressures.

Class 2. Materials that in themselves are normally unstable and readily undergo violent chemical change but do not detonate. This class includes materials that can undergo chemical change with rapid release of energy at normal temperatures and pressures, and that can undergo violent chemical change at elevated temperatures and pressures.

Class 1. Materials that in themselves are normally stable but which can become unstable at elevated temperatures and pressure.

USE (MATERIAL). Placing a material into action, including solids, liquids and gases.

VAPOR AREA. An area containing flammable vapors in the vicinity of dip tanks, drain boards or associated drying, conveying or other equipment during operation or shutdown periods. The code official is authorized to determine the extent of the vapor area, taking into consideration the characteristics of the liquid, the degree of sustained ventilation and the nature of the operations.

VAPOR PERMEABLE MEMBRANE. The property of having a moisture vapor permeance rating of 5 perms (2.9 × 10⁻¹⁰ kg/Pa × s × m²) or greater,
when tested in accordance with the desiccant method using Procedure A of ASTM E 96. A vapor permeable material permits the passage of moisture vapor. **VAPOR RETARDER CLASS.** A measure of a material or assembly’s ability to limit the amount of moisture that passes through that material or assembly. Vapor retarder class shall be defined using the desiccant method of ASTM E 96 as follows:

- **Class I:** 0.1 perm or less.
- **Class II:** 0.1 < perm ≤ 1.0 perm.
- **Class III:** 1.0 < perm ≤ 10 perm.

VEGETATIVE ROOF. An assembly of interacting components designed to waterproof and normally insulate a building’s top surface that includes, by design, vegetation and related landscape elements.

VEHICLE BARRIER. A component or a system of components, near open sides or walls of a garage floor, ramp, or building walls that act as a restraint for vehicles.

VEHICULAR GATE. A gate that is intended for use at a vehicular entrance or exit to a facility, building or portion thereof, and that is not intended for use by pedestrian traffic.

VENEER. A facing attached to a wall for the purpose of providing ornamentation, protection or insulation, but not counted as adding strength to the wall.

VENTILATION. The natural or mechanical process of supplying conditioned or unconditioned air to, or removing such air from, any space.

VINYL SIDING. A shaped material, made principally from rigid polyvinyl chloride (PVC), that is used as an exterior wall covering.

VISIBLE ALARM NOTIFICATION APPLIANCE. A notification appliance that alerts by the sense of sight.

WALKWAY, PEDESTRIAN. A walkway used exclusively as a pedestrian trafficway.

WALL (for Chapter 21). A vertical element with a horizontal length-to-thickness ratio greater than three, used to enclose space.

- **Cavity wall.** A wall built of masonry units or of concrete, or a combination of these materials, arranged to provide an airspace within the wall, and in which the inner and outer parts of the wall are tied together with metal ties.

- **Dry-stacked, surface-bonded wall.** A wall built of concrete masonry units where the units are stacked dry, without mortar on the bed or head joints, and where both sides of the wall are coated with a surface-bonding mortar.

- **Parapet wall.** The part of any wall entirely above the roof line.

WALL, LOAD-BEARING. Any wall meeting either of the following classifications:
1. Any metal or wood stud wall that supports more than 100 pounds per linear foot (1459 N/m) of vertical load in addition to its own weight.

2. Any masonry or concrete wall that supports more than 200 pounds per linear foot (2919 N/m) of vertical load in addition to its own weight.

WALL, NONLOAD-BEARING. Any wall that is not a load-bearing wall.

WATER-REACTIVE MATERIAL. A material that explodes; violently reacts; produces flammable, toxic or other hazardous gases; or evolves enough heat to cause autoignition or ignition of combustibles upon exposure to water or moisture. Water-reactive materials are subdivided as follows:

- **Class 3.** Materials that react explosively with water without requiring heat or confinement.
- **Class 2.** Materials that react violently with water or have the ability to boil water. Materials that produce flammable, toxic or other hazardous gases or evolve enough heat to cause autoignition or ignition of combustibles upon exposure to water or moisture.
- **Class 1.** Materials that react with water with some release of energy, but not violently.

WATER-RESISTIVE BARRIER. A material behind an exterior wall covering that is intended to resist liquid water that has penetrated behind the exterior covering from further intruding into the exterior wall assembly.

WEATHER-EXPOSED SURFACES. Surfaces of walls, ceilings, floors, roofs, soffits and similar surfaces exposed to the weather except the following:

- 1. Ceilings and roof soffits enclosed by walls, fascia, bulkheads or beams that extend not less than 12 inches (305 mm) below such ceiling or roof soffits.
- 2. Walls or portions of walls beneath an unenclosed roof area, where located a horizontal distance from an open exterior opening equal to not less than twice the height of the opening.
- 3. Ceiling and roof soffits located a minimum horizontal distance of 10 feet (3048 mm) from the outer edges of the ceiling or roof soffits.

WET-CHEMICAL EXTINGUISHING SYSTEM. A solution of water and potassium-carbonate-based chemical, potassium-acetate-based chemical or a combination thereof, forming an extinguishing agent.

WHEELCHAIR SPACE. A space for a single wheelchair and its occupant.

WILDLAND-URBAN INTERFACE AREA. That geographical area where structures and other human development meets or intermingles with wildland or vegetative fuels.

WIND-BORNE DEBRIS REGION. Areas within hurricane-prone regions located:

- 1. Within 1 mile (1.61 km) of the coastal mean high water line where the ultimate design wind speed, V_{ult}, is 130 mph (58 m/s) or greater; or
In areas where the ultimate design wind speed is 140 mph (63.6 m/s) or greater, or Hawaii.

For Risk Category II buildings and structures and Risk Category III buildings and structures, except health care facilities, the wind-borne debris region shall be based on Figure 1609.3.(1). For Risk Category IV buildings and structures and Risk Category III health care facilities, the wind-borne debris region shall be based on Figure 1609.3(2).

WINDFORCE-RESISTING SYSTEM, MAIN. See “Main windforce-resisting system.”

WIND SPEED, V_{ult}. Ultimate design wind speeds.

WIND SPEED, V_{adv}. Nominal design wind speeds.

WINDBORER. A tread with nonparallel edges.

WIRE BACKING. Horizontal strands of tautened wire attached to surfaces of vertical supports which, when covered with the building paper, provide a backing for cement plaster.

WIRELESS PROTECTION SYSTEM. A system or a part of a system that can transmit and receive signals without the aid of wire.

WOOD/PLASTIC COMPOSITE. A composite material made primarily from wood or cellulose-based materials and plastic.

WOOD SHEAR PANEL. A wood floor, roof or wall component sheathed to act as a shear wall or diaphragm.

WOOD STRUCTURAL PANEL. A panel manufactured from veneers, wood strands or wafers or a combination of veneer and wood strands or wafers bonded together with waterproof synthetic resins or other suitable bonding systems. Examples of wood structural panels are:

- **Composite panels.** A wood structural panel that is comprised of wood veneer and reconstituted wood-based material and bonded together with waterproof adhesive;

- **Oriented strand board (OSB).** A mat-formed wood structural panel comprised of thin rectangular wood strands arranged in cross-aligned layers with surface layers normally arranged in the long panel direction and bonded with waterproof adhesive; or

- **Plywood.** A wood structural panel comprised of plies of wood veneer arranged in cross-aligned layers. The plies are bonded with waterproof adhesive that cures on application of heat and pressure.

WORKSTATION. A defined space or an independent principal piece of equipment using HPM within a fabrication area where a specific function, laboratory procedure or research activity occurs. Approved or listed hazardous materials storage cabinets, flammable liquid storage cabinets or gas cabinets serving a workstation are included as part of the workstation. A workstation is
allowed to contain ventilation equipment, fire protection devices, detection devices, electrical devices and other processing and scientific equipment.

WYTHE. Each continuous, vertical section of a wall, one masonry unit in thickness.

YARD. An open space, other than a court, unobstructed from the ground to the sky, except where specifically provided by this code, on the lot on which a building is situated.

ZONE. A defined area within the protected premises. A zone can define an area from which a signal can be received, an area to which a signal can be sent or an area in which a form of control can be executed.

ZONE, NOTIFICATION. An area within a building or facility covered by notification appliances which are activated simultaneously.
Effective: 8/1/2018
Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3781.106, 3791.04
4101:1-3-01 Use and occupancy classification.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:1-35-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 301
GENERAL

301.1 Scope. The provisions of this chapter shall control the classification of all buildings and structures as to use and occupancy and are established to organize and prescribe the appropriate features of construction and occupant safety requirements for buildings and are not established for compliance with any conditions of licensure which are outside the jurisdiction of this code. There may be other requirements owners may be required to meet as set forth by other licensing agencies such as the Ohio State Fire Marshal, Ohio Department of Health, the Ohio Department of Jobs and Family Services, Ohio Department of Mental Health and Addiction Services, Ohio Department of Developmental Disabilities, federal agencies, or other licensing authorities. Owners and designers should investigate these additional licensing agency requirements to ensure they are incorporated into the building design before submitting to the certified building department for plan approval.

SECTION 302
CLASSIFICATION

302.1 General. Structures or portions of structures shall be classified with respect to occupancy in one or more of the groups listed in this section. A room or space that is intended to be occupied at different times for different purposes shall comply with all of the requirements that are applicable to each of the purposes for which the room or space will be occupied. Structures with multiple occupancies or uses shall comply with Section 508. Where a structure is proposed for a purpose that is not specifically provided for in this code, such structure shall be classified in the group that the occupancy most nearly resembles, according to the fire safety and relative hazard involved.

2. Business (see Section 304): Group B.
3. Educational (see Section 305): Group E.
7. Mercantile (see Section 309): Group M.
8. Residential (see Section 310): Groups R-1, R-2, R-3 and R-4.
10. Utility and Miscellaneous (see Section 312): Group U.

SECTION 303
ASSEMBLY GROUP A

303.1 Assembly Group A. Assembly Group A occupancy includes, among others, the use of a building or structure, or a portion thereof, for the gathering of persons for purposes such as civic, social or religious functions; recreation, food or drink consumption or awaiting transportation.

303.1.1 Small buildings and tenant spaces. A building or tenant space used for assembly purposes with an occupant load of less than 50 persons shall be classified as a Group B occupancy.

303.1.2 Small assembly spaces. The following rooms and spaces shall not be classified as Assembly occupancies:
 1. A room or space used for assembly purposes with an occupant load of less than 50 persons and accessory to another occupancy shall be classified as a Group B occupancy or as part of that occupancy.
 2. A room or space used for assembly purposes that is less than 750 square feet (70 m²) in area and accessory to another occupancy shall be classified as a Group B occupancy or as part of that occupancy.

303.1.3 Associated with Group E occupancies. A room or space used for assembly purposes that is associated with a Group E occupancy is not considered a separate occupancy.

303.1.4 Accessory to places of religious worship. Accessory religious educational rooms and religious auditoriums with occupant loads of less than 100 per room or space are not considered separate occupancies.

303.2 Assembly Group A-1. Group A-1 occupancy includes assembly uses, usually with fixed seating, intended for the production and viewing of the performing arts or motion pictures including, but not limited to:
Motion picture theaters
Symphony and concert halls
Television and radio studios admitting an audience
Theaters

303.3 Assembly Group A-2. Group A-2 occupancy includes assembly uses intended for food and/or drink consumption including, but not limited to:
 Banquet halls
 Casinos (gaming areas)
 Nightclubs
 Restaurants, cafeterias and similar dining facilities (including associated commercial food service establishments)
 Taverns and bars

303.4 Assembly Group A-3. Group A-3 occupancy includes assembly uses intended for worship, recreation or amusement and other assembly uses not classified elsewhere in Group A including, but not limited to:
 Amusement arcades
 Art galleries
 Bowling alleys
 Community halls
 Courtrooms
 Dance halls (not including food or drink consumption)
 Exhibition halls
 Funeral parlors
 Gymnasiums (without spectator seating)
 Indoor swimming pools (without spectator seating) Indoor tennis courts (without spectator seating)
 Lecture halls
 Libraries
 Museums
 Places of religious worship
 Pool and billiard parlors
 Waiting areas in transportation terminals

303.5 Assembly Group A-4. Group A-4 occupancy includes assembly uses intended for viewing of indoor sporting events and activities with spectator seating including, but not limited to:
 Arenas
 Skating rinks
 Swimming pools
Tennis courts

303.6 Assembly Group A-5. Group A-5 occupancy includes assembly uses intended for participation in or viewing outdoor activities including, but not limited to:

- Amusement park structures
- Bleachers
- Grandstands
- Stadiums

SECTION 304
BUSINESS GROUP B

304.1 Business Group B. Business Group B occupancy includes, among others, the use of a building or structure, or a portion thereof, for office, professional or service-type transactions, including storage of records and accounts. Business occupancies shall include, but not be limited to, the following:

- Airport traffic control towers
- Ambulatory care facilities
- Animal hospitals, kennels and pounds
- Banks
- Barber and beauty shops
- Car wash
- Civic administration
- Clinic, outpatient
- Dry cleaning and laundries: pick-up and delivery stations and self-service
- Educational occupancies for students above the 12th grade
- Electronic data processing
- Food processing establishments and commercial food service establishments not associated with restaurants, cafeterias and similar dining facilities not more than 2,500 square feet (232 m²) in area.
- Laboratories: testing and research
- Motor vehicle showrooms
- Post offices
- Print shops
- Professional services (architects, attorneys, dentists, physicians, engineers, etc.)
- Radio and television stations
- Telephone exchanges
- Training and skill development not in a school or academic program (this shall include, but not be limited to, tutoring centers, martial arts studios, gymnastics and similar uses regardless of the ages served, and where not
classified as a Group A occupancy).

304.2 Definitions. The following terms are defined in Chapter 2:

AMBULATORY CARE FACILITY.

CLINIC, OUTPATIENT.

SECTION 305

EDUCATIONAL GROUP E

305.1 Educational Group E. Educational Group E occupancy includes, among others, the use of a building or structure, or a portion thereof, by six or more persons at any one time for educational purposes through the 12th grade.

305.1.1 Accessory to places of religious worship. Religious educational rooms and religious auditoriums, which are accessory to places of religious worship in accordance with Section 303.1.4 and have occupant loads of less than 100 per room or space, shall be classified as Group A-3 occupancies.

305.2 Group E, day care facilities – more than 2 ½ years of age. Except for a Type A or Type B Family Daycare facilities, this group includes buildings and structures or portions thereof occupied by more than five children older than 2½ years of age who receive educational, supervision or personal care services for fewer than 24 hours per day.

305.2.1 Within places of religious worship. Rooms and spaces within places of religious worship providing such day care during religious functions shall be classified as part of the primary occupancy.

305.2.2 Five or fewer children. Except for a Type A or Type B Family Daycare facilities, a facility having five or fewer children receiving such day care shall be classified as part of the primary occupancy.

305.2.3 Five or fewer children in a dwelling unit. Except for a Type A or Type B Family Daycare facilities, a facility such as the above within a dwelling unit and having five or fewer children receiving such day care shall be classified as a Group R-3. The facility may comply with the construction requirements of the “Residential Code of Ohio for One-, Two-, or Three-Family Dwellings.”

305.3 Group E, day care facilities - 2 ½ years or less of age. A day care facility
that provides care for more than five but no more than 100 children 2 ½ years or less of age and the day care facilities are at the level of exit discharge, and where every room where care is provided has no fewer than one exterior exit door for which the exit access and exit discharge do not require the traversing of stairs.

SECTION 306
FACTORY GROUP F

306.1 Factory Industrial Group F. Factory Industrial Group F occupancy includes, among others, the use of a building or structure, or a portion thereof, for assembling, disassembling, fabricating, finishing, manufacturing, packaging, repair or processing operations that are not classified as a Group H hazardous or Group S storage occupancy.

306.2 Moderate-hazard factory industrial, Group F-1. Factory industrial uses that are not classified as Factory Industrial F-2 Low Hazard shall be classified as F-1 Moderate Hazard and shall include, but not be limited to, the following:

- Aircraft (manufacturing, not to include repair)
- Appliances
- Athletic equipment
- Automobiles and other motor vehicles
- Bakeries
- Beverages: over 16-percent alcohol content
- Bicycles
- Boats
- Brooms or brushes Business machines
- Cameras and photo equipment
- Canvas or similar fabric
- Carpets and rugs (includes cleaning)
- Clothing
- Construction and agricultural machinery
- Disinfectants
- Dry cleaning and dyeing Electric generation plants
- Electronics
- Engines (including rebuilding)
- Food processing establishments and commercial food service establishments not associated with restaurants, cafeterias and similar dining facilities more than 2,500 square feet (232 m²) in area.
- Furniture
- Hemp products
- Jute products
Laundries
Leather products
Machinery
Metals
Millwork (sash and door)
Motion pictures and television filming (without spectators)
Musical instruments
Optical goods
Paper mills or products
Photographic film
Plastic products
Printing or publishing
Recreational vehicles
Refuse incineration
Shoes
Soaps and detergents
Textiles
Tobacco
Trailers
Upholstering
Wood; distillation
Woodworking (cabinet)

306.3 Low-hazard factory industrial, Group F-2. Factory industrial uses that involve the fabrication or manufacturing of noncombustible materials that during finishing, packing or processing do not involve a significant fire hazard shall be classified as F-2 occupancies and shall include, but not be limited to, the following:

- Beverages: up to and including 16-percent alcohol content
- Brick and masonry
- Ceramic products
- Foundries
- Glass products
- Gypsum
- Ice
- Metal products (fabrication and assembly)

SECTION 307
HIGH-HAZARD GROUP H

307.1 High-hazard Group H. High-hazard Group H occupancy includes,
among others, the use of a building or structure, or a portion thereof, that involves the manufacturing, processing, generation or storage of materials that constitute a physical or health hazard in quantities in excess of those allowed in control areas complying with Section 414, based on the maximum allowable quantity limits for control areas set forth in Tables 307.1(1) and 307.1(2). Hazardous occupancies are classified in Groups H-1, H-2, H-3, H-4 and H-5 and shall be in accordance with this section, the requirements of Section 415 and the fire code. Hazardous materials stored, or used on top of roofs or canopies, shall be classified as outdoor storage or use and shall comply with the fire code.

307.1.1 Uses other than Group H. An occupancy that stores, uses or handles hazardous materials as described in one or more of the following items shall not be classified as Group H, but shall be classified as the occupancy that it most nearly resembles.

1. Buildings and structures occupied for the application of flammable finishes, provided that such buildings or areas conform to the requirements of Section 416 and the fire code.
2. Wholesale and retail sales and storage of flammable and combustible liquids in mercantile occupancies conforming to the fire code.
3. Closed piping system containing flammable or combustible liquids or gases utilized for the operation of machinery, building service equipment, or process equipment.
4. Cleaning establishments that utilize combustible liquid solvents having a flash point of 140°F (60°C) or higher in closed systems employing equipment listed by an approved testing agency, provided that this occupancy is separated from all other areas of the building by 1-hour fire barriers constructed in accordance with Section 707 or 1-hour horizontal assemblies constructed in accordance with Section 711, or both.
5. Cleaning establishments that utilize a liquid solvent having a flash point at or above 200°F (93°C).
7. Refrigeration systems.
8. The storage or utilization of materials for agricultural purposes on the premises.
9. Stationary batteries utilized for facility emergency power, uninterruptable power supply or telecommunication facilities, provided that the batteries are provided with safety venting caps and ventilation is provided in accordance with the mechanical code.
10. Corrosive personal or household products in their original packaging used in retail display.
11. Commonly used corrosive building materials.
12. Buildings and structures occupied for aerosol storage shall be classified as Group S-1, provided that such buildings conform to the requirements of the fire code.
13. Display and storage of nonflammable solid and nonflammable or noncombustible liquid hazardous materials in quantities not exceeding the maximum allowable quantity per control area in Group M or S occupancies complying with Section 414.2.5.
14. The storage of black powder, smokeless propellant and small arms primers in Groups M and R-3 and special industrial explosive devices in Groups B, F, M and S, provided such storage conforms to the quantity limits and requirements prescribed in the fire code.

307.1.2 Hazardous materials. Hazardous materials in any quantity shall conform to the requirements of this code, including Section 414, and the fire code.

307.2 Definitions. The following terms are defined in Chapter 2:

AEROSOL
 Level 1 aerosol products.
 Level 2 aerosol products.
 Level 3 aerosol products.
AEROSOL CONTAINER.
BALED COTTON.
BALED COTTON, DENSELY PACKED.
BARRICADE.
 Artificial barricade.
 Natural barricade.
BOILING POINT.
CLOSED SYSTEM.
COMBUSTIBLE DUST.
COMBUSTIBLE FIBERS.
COMBUSTIBLE LIQUID.
Class II.
Class IIIA.
Class IIIB.
COMPRESSED GAS.
CONTROL AREA.
CORROSIVE.
CRYOGENIC FLUID.
DAY BOX.
DEFLAGRATION.
DETONATION.
DISPENSING.
EXPLOSION.
EXPLOSIVE.
 High explosive.
 Low explosive.
 Mass-detonating explosives.
UN/DOTn Class 1 explosives.
 Division 1.1.
 Division 1.2.
 Division 1.3.
 Division 1.4.
 Division 1.5.
 Division 1.6.
FIREWORKS.
 Fireworks, 1.3G.
 Fireworks, 1.4G.
FLAMMABLE GAS.
FLAMMABLE LIQUEFIED GAS. FLAMMABLE LIQUID.
 Class IA.
 Class IB.
 Class IC.
FLAMMABLE MATERIAL.
FLAMMABLE SOLID.
FLASH POINT.
HANDLING.
HAZARDOUS MATERIALS.
HEALTH HAZARD.
HIGHLY TOXIC.
INCOMPATIBLE MATERIALS.
INERT GAS.
OPEN SYSTEM.
OPERATING BUILDING.
ORGANIC PEROXIDE.
 Class I.
 Class II.
 Class III.
 Class IV. Class V.
 Unclassified detonable.
OXIDIZER.
Class 4.
Class 3.
Class 2.
Class 1.

OXIDIZING GAS.
PHYSICAL HAZARD.
PYROPHORIC.
PYROTECHNIC COMPOSITION.
TOXIC.
UNSTABLE (REACTIVE) MATERIAL.
Class 4.
Class 3.
Class 2.
Class 1.

WATER-REACTIVE MATERIAL.
Class 3.
Class 2.
Class 1.

307.3 High-hazard Group H-1. Buildings and structures containing materials that pose a detonation hazard shall be classified as Group H-1. Such materials shall include, but not be limited to, the following:

- Detonable pyrophoric materials
- Explosives:
 - Division 1.1
 - Division 1.2
 - Division 1.3
 - Division 1.4
 - Division 1.5
 - Division 1.6
- Organic peroxides, unclassified detonable Oxidizers, Class 4
- Unstable (reactive) materials, Class 3 detonable and Class 4

TABLE 307.1(1)
MAXIMUM ALLOWABLE QUANTITY PER CONTROL AREA OF HAZARDOUS MATERIALS POSING A PHYSICAL HAZARD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>CLASS</th>
<th>GROUP WHEN THE MAXIMUM ALLOWABLE QUANTITY IS EXCEEDED</th>
<th>STORAGE<sup>b</sup></th>
<th>USE-CLOSED SYSTEMS<sup>b</sup></th>
<th>USE-OPEN SYSTEMS<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Solid pounds (cubic feet)</td>
<td>Liquid gallons (pounds)</td>
<td>Gas cubic feet at NTP</td>
<td>Solid pounds (cubic feet)</td>
</tr>
<tr>
<td>Combustible dust</td>
<td>NA</td>
<td>H-2</td>
<td>See Note q</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>------------------</td>
<td>----</td>
<td>-----</td>
<td>------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Combustible fiberq</td>
<td>Loose</td>
<td>H-3</td>
<td>(100) (1,000)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Combustible liquidc, i</td>
<td>II</td>
<td>H-2</td>
<td>120d, e</td>
<td>330d, e</td>
<td>13,200c, f</td>
</tr>
<tr>
<td>Consumer fireworks</td>
<td>1.4G</td>
<td>H-3</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Cryogenic flammable</td>
<td>NA</td>
<td>H-2</td>
<td>NA</td>
<td>45d</td>
<td>NA</td>
</tr>
<tr>
<td>Cryogenic inert</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Cryogenic oxidizing</td>
<td>NA</td>
<td>H-3</td>
<td>NA</td>
<td>45d</td>
<td>NA</td>
</tr>
</tbody>
</table>

Explosives

Division 1.1	H-1	1e, g	(1)e, g	0.25g	(0.25)g	0.25g	(0.25)g		
Division 1.2	H-1	1e, g	(1)e, g	0.25g	(0.25)g	0.25g	(0.25)g		
Division 1.3	H-1 or H-2	5e, g	(5)e, g	1g	(1)g	1g	(1)g		
Division 1.4	H-3	50e, g	(50)e, g	NA	50g	(50)g	NA	NA	NA
Division 1.4G	H-3	0	NA						
Division 1.5	H-1	1e, g	(1)e, g	0.25g	(0.25)g	0.25g	(0.25)g		
Division 1.6	H-1	1e, g	NA						

Flammable gas

| Gaseous Liquefied | H-2 | NA | NA | 1,000d, e | NA | NA | 1,000d, e | NA | NA |

Flammable liquidc

| IA | H-2 or H-3 | NA | 30d, e | 120d, e | NA | NA | 30d | 120d |

Flammable liquid, combination (IA, IB, IC)

| NA | H-2 or H-3 | NA | 120d, e, h | NA | NA | 120d, h | NA | NA | 30d, h |

(continued)
TABLE 307.1(1)—continued
MAXIMUM ALLOWABLE QUANTITY PER CONTROL AREA OF HAZARDOUS MATERIALS POSING A PHYSICAL HAZARD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>CLASS</th>
<th>GROUP WHEN THE MAXIMUM ALLOWABLE QUANTITY IS EXCEEDED</th>
<th>STORAGE<sup>b</sup></th>
<th>USE-CLOSED SYSTEMS<sup>b</sup></th>
<th>USE-OPEN SYSTEMS<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Solid pounds (cubic feet)</td>
<td>Liquid gallons (pounds)</td>
<td>Gas cubic feet at NTP</td>
<td>Solid pounds (cubic feet)</td>
</tr>
<tr>
<td>Flammable solid</td>
<td>NA</td>
<td>H-3</td>
<td>125<sup>d, e</sup></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Inert gas</td>
<td>Gaseous Liquefied</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NL</td>
</tr>
<tr>
<td>Organic peroxide</td>
<td>UD</td>
<td>H-1</td>
<td>1<sup>c, g</sup></td>
<td>(1)<sup>c, g</sup></td>
<td>5<sup>d, e</sup></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>H-2</td>
<td>50<sup>d, e</sup></td>
<td>(50)<sup>d, e</sup></td>
<td>(125)<sup>d, e</sup></td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>H-3</td>
<td>10<sup>d, e</sup></td>
<td>(10)<sup>d, e</sup></td>
<td>(250)<sup>d, e</sup></td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>H-3</td>
<td>10<sup>d, e</sup></td>
<td>(10)<sup>d, e</sup></td>
<td>(250)<sup>d, e</sup></td>
</tr>
<tr>
<td></td>
<td>IV</td>
<td>NA</td>
<td>NL</td>
<td>NL</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>NA</td>
<td>NL</td>
<td>NL</td>
<td>NA</td>
</tr>
<tr>
<td>Oxidizer</td>
<td>4 H-1</td>
<td>H-1</td>
<td>1<sup>g</sup></td>
<td>(1)<sup>c, g</sup></td>
<td>(10)<sup>d, e</sup></td>
</tr>
<tr>
<td></td>
<td>4<sup>1/2</sup> H-2 or H-3</td>
<td>H-3</td>
<td>10<sup>d, e</sup></td>
<td>(10)<sup>d, e</sup></td>
<td>(250)<sup>d, e</sup></td>
</tr>
<tr>
<td></td>
<td>4<sup>1/2</sup></td>
<td>H-3</td>
<td>10<sup>d, e</sup></td>
<td>(10)<sup>d, e</sup></td>
<td>(250)<sup>d, e</sup></td>
</tr>
<tr>
<td></td>
<td>1 NA</td>
<td>NA</td>
<td>NL</td>
<td>NL</td>
<td>NA</td>
</tr>
<tr>
<td>Oxidizing gas</td>
<td>Gaseous Liquefied</td>
<td>H-3</td>
<td>NA</td>
<td>(150)<sup>d, e</sup></td>
<td>NA</td>
</tr>
<tr>
<td>Pyrophoric</td>
<td>NA</td>
<td>H-2</td>
<td>4<sup>c, g</sup></td>
<td>(4)<sup>c, g</sup></td>
<td>50<sup>c, g</sup></td>
</tr>
<tr>
<td>Unstable (reactive)</td>
<td>4 H-1</td>
<td>H-1</td>
<td>1<sup>g</sup></td>
<td>(1)<sup>c, g</sup></td>
<td>(5)<sup>d, e</sup></td>
</tr>
<tr>
<td></td>
<td>3<sup>1/2</sup> H-1 or H-2</td>
<td>H-3</td>
<td>50<sup>d, e</sup></td>
<td>(50)<sup>d, e</sup></td>
<td>750<sup>d, e</sup></td>
</tr>
<tr>
<td></td>
<td>3<sup>1/2</sup></td>
<td>H-3</td>
<td>50<sup>d, e</sup></td>
<td>(50)<sup>d, e</sup></td>
<td>750<sup>d, e</sup></td>
</tr>
<tr>
<td></td>
<td>1 NA</td>
<td>NA</td>
<td>NL</td>
<td>NL</td>
<td>NA</td>
</tr>
<tr>
<td>Water reactive</td>
<td>3 H-2</td>
<td>H-3</td>
<td>50<sup>d, e</sup></td>
<td>(50)<sup>d, e</sup></td>
<td>(50)<sup>d, e</sup></td>
</tr>
<tr>
<td></td>
<td>2<sup>1/2</sup> H-3</td>
<td>NA</td>
<td>50<sup>d, e</sup></td>
<td>(50)<sup>d, e</sup></td>
<td>(50)<sup>d, e</sup></td>
</tr>
<tr>
<td></td>
<td>1 NA</td>
<td>NA</td>
<td>NL</td>
<td>NL</td>
<td>NA</td>
</tr>
</tbody>
</table>

For SI: 1 cubic foot = 0.028 m³, 1 pound = 0.454 kg, 1 gallon = 3.785 L.

NL = Not Limited; NA = Not Applicable; UD = Unclassified Detonable.

a. For use of control areas, see Section 414.2.

b. The aggregate quantity in use and storage shall not exceed the quantity listed for storage.

c. The quantities of alcoholic beverages in retail and wholesale sales occupancies shall not be limited provided the liquids are packaged in individual containers not exceeding 1.3 gallons.
In retail and wholesale sales occupancies, the quantities of medicines, foodstuffs or consumer products, and cosmetics containing not more than 50 percent by volume of water-miscible liquids with the remainder of the solutions not being flammable, shall not be limited, provided that such materials are packaged in individual containers not exceeding 1.3 gallons.

d. Maximum allowable quantities shall be increased 100 percent in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1. Where Note e also applies, the increase for both notes shall be applied accumulatively.

e. Maximum allowable quantities shall be increased 100 percent when stored in approved storage cabinets, day boxes, gas cabinets, gas rooms or exhausted enclosures or in listed safety cans in accordance with Section 5003.9.10 of the fire code. Where Note d also applies, the increase for both notes shall be applied accumulatively.

f. Quantities shall not be limited in a building equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

g. Allowed only in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

h. Containing not more than the maximum allowable quantity per control area of Class IA, IB or IC flammable liquids.

i. The maximum allowable quantity shall not apply to fuel oil or diesel oil storage complying with Chapter 13 or Section 915 of the mechanical code.

j. Quantities in parenthesis indicate quantity units in parenthesis at the head of each column.

k. A maximum quantity of 200 pounds of solid or 20 gallons of liquid Class 3 oxidizers is allowed when such materials are necessary for maintenance purposes, operation or sanitation of equipment when the storage containers and the manner of storage are approved.

l. Deleted.

m. For gallons of liquids, divide the amount in pounds by 10 in accordance with Section 5003.1.2 of the fire code.

n. For storage and display quantities in Group M and storage quantities in Group S occupancies complying with Section 414.2.5, see Tables 414.2.5(1) and 414.2.5(2).

o. Densely packed baled cotton that complies with the packing requirements of ISO 8115 shall not be included in this material class.

p. The following shall not be included in determining the maximum allowable quantities:

1. Liquid or gaseous fuel in fuel tanks on vehicles.
2. Liquid or gaseous fuel in fuel tanks on motorized equipment operated in accordance with the fire code.
4. Liquid fuels in piping systems and fixed appliances regulated by the mechanical code.
5. Alcohol-based hand rubs classified as Class I or II liquids in dispensers that are installed in accordance with Sections 5705.5 and 5705.5.1 of the fire code. The location of the alcohol-based hand rub (ABHR) dispensers shall be provided in the construction documents.

q. Where manufactured, generated or used in such a manner that the concentration and conditions create a fire or explosion hazard based on information prepared in accordance with Section 414.1.3.

TABLE 307.1(2)
MAXIMUM ALLOWABLE QUANTITY PER CONTROL AREA OF HAZARDOUS MATERIAL POSING A HEALTH HAZARD

<table>
<thead>
<tr>
<th>STORAGE</th>
<th>USE-CLOSED SYSTEMS</th>
<th>USE-OPEN SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
307.3.1 Occupancies containing explosives not classified as H-1.
The following occupancies containing explosive materials shall be classified as follows:

1. Division 1.3 explosive materials that are used and maintained in a form where either confinement or configuration will not elevate the hazard from a mass fire to mass explosion hazard shall be allowed in H-2 occupancies.

2. Articles, including articles packaged for shipment, that are not regulated as a Division 1.4 explosive under Bureau of Alcohol, Tobacco, Firearms and Explosives regulations, or unpackaged articles used in process operations that do not propagate a detonation or deflagration between articles shall be allowed in H-3 occupancies.

307.4 High-hazard Group H-2.
Buildings and structures containing materials that pose a deflagration hazard or a hazard from accelerated burning shall be classified as Group H-2. Such materials shall include, but not be limited to, the following:

Class I, II or IIIA flammable or combustible liquids that are used or stored in
normally open containers or systems, or in closed containers or systems pressurized at more than 15 pounds per square inch gauge (103.4 kPa).

Combustible dusts where manufactured, generated or used in such a manner that the concentration and conditions create a fire or explosion hazard based on information prepared in accordance with Section 414.1.3.

Cryogenic fluids, flammable. Flammable gases.

Organic peroxides, Class I.

Oxidizers, Class 3, that are used or stored in normally open containers or systems, or in closed containers or systems pressurized at more than 15 pounds per square inch gauge (103 kPa).

307.5 High-hazard Group H-3. Buildings and structures containing materials that readily support combustion or that pose a physical hazard shall be classified as Group H-3. Such materials shall include, but not be limited to, the following:

- Class I, II or IIIA flammable or combustible liquids that are used or stored in normally closed containers or systems pressurized at 15 pounds per square inch gauge (103.4 kPa) or less.
- Combustible fibers, other than densely packed baled cotton, where manufactured, generated or used in such a manner that the concentration and conditions create a fire or explosion hazard based on information prepared in accordance with Section 414.1.3.
- Consumer fireworks, 1.4G (Class C, Common)
- Cryogenic fluids, oxidizing
- Flammable solids
- Organic peroxides, Class II and III
- Oxidizers, Class 2
- Oxidizers, Class 3, that are used or stored in normally closed containers or systems pressurized at 15 pounds per square inch gauge (103 kPa) or less
- Oxidizing gases
- Unstable (reactive) materials, Class 2
- Water-reactive materials, Class 2
307.6 High-hazard Group H-4. Buildings and structures containing materials that are health hazards shall be classified as Group H-4. Such materials shall include, but not be limited to, the following:
 - Corrosives
 - Highly toxic materials
 - Toxic materials

307.7 High-hazard Group H-5. Semiconductor fabrication facilities and comparable research and development areas in which hazardous production materials (HPM) are used and the aggregate quantity of materials is in excess of those listed in Tables 307.1(1) and 307.1(2) shall be classified as Group H-5. Such facilities and areas shall be designed and constructed in accordance with Section 415.10 415.11.

307.8 Multiple hazards. Buildings and structures containing a material or materials representing hazards that are classified in one or more of Groups H-1, H-2, H-3 and H-4 shall conform to the code requirements for each of the occupancies so classified.

SECTION 308
INSTITUTIONAL GROUP I

308.1 Institutional Group I. Institutional Group I occupancy includes, among others, the use of a building or structure, or a portion thereof, in which care (personal, custodial, or medical) or supervision is provided to persons who are or are not capable of self-preservation without physical assistance or in which persons are detained for penal or correctional purposes or in which the liberty of the occupants is restricted. Institutional occupancies shall be classified as Group I-1, I-2, I-3 or I-4.

 Exception: Ambulatory care facilities and outpatient clinics shall be classified as Group B.

308.2 Definitions. The following terms are defined in Chapter 2:
 - CARE FACILITY.
 - CUSTODIAL CARE.
 - DETOXIFICATION FACILITIES.
 - FOSTER CARE FACILITIES.
 - HOSPITALS AND PSYCHIATRIC HOSPITALS.
 - INCAPABLE OF SELF-PRESERVATION.
 - MEDICAL CARE.
 - NURSING HOMES.
PERSONAL CARE SERVICE.

308.3 Institutional Group I-1. Except as provided in Sections 308.3.2 and 308.3.3, Institutional Group I-1 occupancy shall include buildings, structures or portions thereof for more than 16 persons, excluding staff, who reside in a supervised environment, receive care and are capable of self-preservation. This group shall include, but not be limited to, the following:
- Alcohol and drug centers
- Assisted living facilities
- Congregate care facilities
- Group homes
- Halfway houses
- Residential board and care facilities
- Social rehabilitation facilities

308.3.1 Occupancy conditions. Buildings of Group I-1 shall be classified as one of the occupancy conditions specified in Section 308.3.1.1 or 308.3.1.2.

308.3.1.1 Condition 1. This occupancy condition shall include buildings in which all persons receiving care who, without any assistance, are capable of responding to an emergency situation to complete building evacuation.

308.3.1.2 Condition 2. This occupancy condition shall include buildings in which there are any persons receiving care who require limited verbal or physical assistance while responding to an emergency situation to complete building evacuation.

308.3.2 Six to 16 persons receiving care. A care facility housing not fewer than six and not more than 16 persons receiving care shall be classified as Group R-4.

308.3.3 Five or fewer persons receiving care. A care facility with five or fewer persons receiving care shall be classified as Group R as provided in Section 310.

308.4 Institutional Group I-2. Except as provided in Section 308.4.2, Institutional Group I-2 occupancy shall include buildings and structures used for care for more than five persons who are incapable of self-preservation for more than 24 hours. This group shall include, but not be limited to, the following:
- Foster care facilities
- Detoxification facilities
Hospitals
Nursing homes
Psychiatric hospitals

308.4.1 Occupancy conditions. Buildings of Group I-2 shall be classified as one of the occupancy conditions specified in Section 308.4.1.1 or 308.4.1.2.

308.4.1.1 Condition 1. This occupancy condition shall include facilities that provide care but do not provide emergency care, surgery, obstetrics or in-patient stabilization units for psychiatric or detoxification, including but not limited to nursing homes and foster care facilities.

308.4.1.2 Condition 2. This occupancy condition shall include facilities that provide care and could provide emergency care, surgery, obstetrics or in-patient stabilization units for psychiatric or detoxification, including but not limited to hospitals.

308.4.2 Five or fewer persons receiving care. A care facility with five or fewer persons incapable of self-preservation receiving care shall be classified as Group R as provided in Section 310.

308.5 Institutional Group I-3. Except as provided in Section 308.5.2, Institutional Group I-3 occupancy shall include buildings and structures that are inhabited by more than five persons who are under restraint or security. A Group I-3 facility is occupied by persons who are generally incapable of self-preservation due to security measures not under the occupants’ control. This group shall include, but not be limited to, the following:
- Correctional centers
- Detention centers
- Jails
- Prerelease centers
- Prisons
- Reformatories

308.5.1 Occupancy conditions. Buildings of Group I-3 shall be classified as one of the occupancy conditions specified in Sections 308.5.1.1 through 308.5.1.5 (see Section 408.1).

308.5.1.1 Condition 1. This occupancy condition shall include buildings which free movement is allowed from sleeping areas, and other spaces where access or occupancy is permitted, to the exterior via means of egress without restraint. A Condition 1 facility is permitted to be constructed as
Group R.

308.5.1.2 Condition 2. This occupancy condition shall include buildings in which free movement is allowed from sleeping areas and any other occupied smoke compartment to one or more other smoke compartments. Egress to the exterior is impeded by locked exits.

308.5.1.3 Condition 3. This occupancy condition shall include buildings in which free movement is allowed within individual smoke compartments, such as within a residential unit comprised of individual sleeping units and group activity spaces, where egress is impeded by remote-controlled release of means of egress from such a smoke compartment to another smoke compartment.

308.5.1.4 Condition 4. This occupancy condition shall include buildings in which free movement is restricted from an occupied space. Remote-controlled release is provided to permit movement from sleeping units, activity spaces and other occupied areas within the smoke compartment to other smoke compartments.

308.5.1.5 Condition 5. This occupancy condition shall include buildings in which free movement is restricted from an occupied space. Staff-controlled manual release is provided to permit movement from sleeping units, activity spaces and other occupied areas within the smoke compartment to other smoke compartments.

308.5.2 Five or fewer persons secured or restrained. Buildings containing five or fewer persons who are being secured or restrained shall be classified as part of the primary occupancy.

308.6 Institutional Group I-4. Except for Type A or Type B Family Daycares facilities and except as provided in Sections 308.6.1 through 308.6.4, Institutional Group I-4 occupancy shall include buildings and structures occupied by more than five persons of any age who are capable of self-preservation with limited physical assistance or incapable of self-preservation, who receive care for fewer than 24 hours per day by persons other than parents or guardians, relatives by blood, marriage or adoption and in a place other than the home of the person cared for. This group shall include, but not be limited to, the following:
 - Adult day care
 - Child day care
308.6.1 Classification as Group E. A day care facility that provides care for more than five but no more than 100 children 2 ½ years or less of age and the day care facilities are at the level of exit discharge, and where every room where care is provided has no fewer than one exterior exit door for which the exit access and exit discharge do not require the traversing of stairs, shall be classified as Group E.

308.6.2 Within a place of religious worship. Rooms and spaces within places of religious worship providing such care during religious functions shall be classified as part of the primary occupancy.

308.6.3 Five or fewer persons receiving care. Except as provided in Section 308.6.4, a care facility having five or fewer persons receiving care shall be classified as part of the primary occupancy.

308.6.4 Five or fewer persons receiving care in a dwelling unit. Except for Type B Family Daycare facilities, a care facility within a dwelling unit and having five or fewer persons receiving care shall be classified as Group R as provided in Section 310.

SECTION 309
MERCANTILE GROUP M

309.1 Mercantile Group M. Mercantile Group M occupancy includes, among others, the use of a building or structure or a portion thereof for the display and sale of merchandise, and involves stocks of goods, wares or merchandise incidental to such purposes and accessible to the public. Mercantile occupancies shall include, but not be limited to, the following:
- Department stores
- Drug stores
- Markets
- Motor fuel-dispensing facilities
- Retail or wholesale stores
- Sales rooms

309.2 Quantity of hazardous materials. The aggregate quantity of nonflammable solid and nonflammable or non-combustible liquid hazardous materials stored or displayed in a single control area of a Group M occupancy shall not exceed the quantities in Table 414.2.5(1).

SECTION 310
RESIDENTIAL GROUP R

310.1 Residential Group R. Residential Group R includes, among others, the use of a building or structure, or a portion thereof, for sleeping purposes when not classified as an Institutional Group I or when not within the scope of the “Residential Code of Ohio for One-, Two-, or Three-Family Dwellings.”

310.1.1 Detached One-, Two-, or Three-Family Dwellings. The “Residential Code of Ohio for One-, Two-, or Three-Family Dwellings” shall apply to structures comprised exclusively of one-, two-, or three-family dwellings (having independent exits) and their accessory structures. If no residential department is certified in a jurisdiction, construction documents for structures comprised exclusively of one-, two-, or three-family dwellings are not required to be submitted for approval.

310.1.1.1 Five or fewer persons receiving care in a single family dwelling. A single family dwelling with five or fewer persons, excluding staff, who reside in a supervised environment, receive care, and are capable of self-preservation with or without limited verbal or physical assistance is not classified as Group R and is within the scope of the “Residential Code of Ohio for One-, Two-, or Three-Family Dwellings.”

310.1.2 Group R with both shared exits and independent exits. A building with both shared exits and independent exits shall be classified Group R-2, unless the shared exit is not a required exit, in which case, the building shall be classified Group R-3.

310.2 Definitions. The following terms are defined in Chapter 2:
BOARDING HOUSE.
CARE FACILITY.
CONGREGATE LIVING FACILITIES.
CUSTODIAL CARE.
DORMITORY.
GROUP HOME.
GUEST ROOM.
LODGING HOUSE.
PERSONAL CARE SERVICE.
TRANSIENT.

310.3 Residential Group R-1. Except as provided in Section 310.3.3, Residential Group R-1 occupancies containing sleeping units where the occupants are primarily
transient in nature, including:
- Boarding houses (transient) with more than 10 occupants
- Congregate living facilities (transient) with more than 10 occupants
- Hotels (transient)
- Motels (transient)
- SRO (Single room occupancy) facility (transient)

Transient lodging structures

310.3.1 Units not used primarily as permanent residences. R-1 occupancies typically will include sleeping units but may also include dwelling units when those units are not used primarily as permanent residences.

310.3.2 Vacation Rental (Cabin, Cottage, Bungalow, Chalet) (Transient)

Transient lodging structures. Except as provided in Sections 310.3.2.1 or 310.3.2.2, a Group R-1 vacation rentals shall be permitted to structure composed exclusively of a single dwelling unit with no more than twenty transient occupants may comply with the construction requirements of the “Residential Code of Ohio for One-, Two-, and Three- Family Dwellings” when in lieu of the requirements of this code under the following conditions:

1. The building is composed of a single dwelling unit.
2. The building is occupied by a family or no more than 10 unrelated adults;
3. The building has two exits directly to the exterior at the level of exit discharge; and,
4. The building is located to maintain a minimum fire separation distance of thirty feet.

1. The structure is located to maintain a minimum fire separation distance of thirty feet; and
2. There are no more than two stories above grade plane, not including mezzanines/lofts that meet the area limitations of Section 505 of this code; and
3. The maximum travel distance to an exit directly to the exterior at the level of exit discharge is 75 feet; and
4. Egress from all habitable levels is by stair, ramp or an exit directly to the exterior in compliance with the Residential Code of Ohio; and
5. For a structure with eleven to twenty occupants, at least two exits are provided from all habitable levels; and
6. Portable fire extinguishers are installed in accordance with Section 906 of this code; and
7. Artificial light is provided that is adequate to provide an average illumination of 1 foot-candle over the area of the room at a height of thirty inches above the floor level; and
8. Accessibility requirements of Chapter 11 of this code shall apply.
 Exception: If the owner provides documentation that the structure is not a place of public accommodation as defined in 28 C.F.R. 36.104:

Hotel licensure requirements of Chapter 3731 of the Revised Code may apply to the occupancy of a transient lodging structure but are outside the scope of this code.

310.3.2.1 Semi-primitive transient lodging structures no greater than 400 sq. ft. in area. A Group R-1 structure that provides permanent provisions for sleeping only or sleeping with either sanitation or kitchen facilities, but not both, may comply with the applicable construction requirements of the “Residential Code of Ohio for One-, Two-, and Three- Family Dwellings” in lieu of the requirements of this code under the following conditions:

1. The structure is located to maintain a minimum fire separation distance of thirty feet; and
2. There is no more than one story, no basement, and no habitable loft; and
3. There is no more than 400 sq. ft. in area in total; and
4. There are no more than five occupants; and
5. There is at least one means of egress complying with Section 311 of the Residential Code of Ohio; and
6. Portable fire extinguishers are installed in accordance with Section 906 of this code; and
7. Accessibility requirements of Chapter 11 of this code shall apply.
 Exception: If the owner provides documentation that the structure is not a place of public accommodation as defined in 28 C.F.R. 36.104;

Exceptions: Semi-primitive transient lodging structures shall not be required to comply with the following provisions of the Residential Code of Ohio:

1. Chapter 11 if the semi-primitive structure does not contain conditioned space or has a peak design rate of energy usage of less than 3.4 BTU/h·ft² or 1.0 watt/ft² as described in the International Energy Conservation Code.
2. Section 303.6 for exterior stairway illumination if no commercial power is available
310.3.2.2 **Primitive or semi-primitive transient lodging structures greater than 400 sq. ft. in area.** A Group R-1 structure, for not more than twenty transient occupants, that is greater than 400 sq. ft. in area, provides permanent provisions for sleeping only or sleeping with either sanitation or kitchen facilities, but not both, may comply with the applicable construction requirements of the “Residential Code of Ohio for One-, Two-, and Three-Family Dwellings” in lieu of the requirements of this code under the following conditions:

1. The structure is located to maintain a minimum fire separation distance of thirty feet; and
2. There are no more than two stories above grade plane, not including mezzanines/lofts that meet the area limitations of Section 505 of this code; and
3. The maximum travel distance to an exit directly to the exterior at the level of exit discharge is 75 feet; and
4. Egress from all habitable levels is by stair, ramp or an exit directly to the exterior in compliance with the Residential Code of Ohio; and
5. For a structure with eleven to twenty occupants, at least two exits are provided from all habitable levels; and
6. Portable fire extinguishers are installed in accordance with Section 906 of this code; and
7. Accessibility requirements of Chapter 11 of this code shall apply.

Exception: If the owner provides documentation that the structure is not a place of public accommodation as defined in 28 C.F.R. 36.104:

Exceptions: Primitive or semi-primitive transient lodging structures greater than 400 sq. ft. in area shall not be required to comply with the following provisions of the Residential Code of Ohio:

1. Chapter 11 if the semi-primitive structure does not contain conditioned space or has a peak design rate of energy usage of less than 3.4 BTU/h·ft² or 1.0 watt/ft² as described in the International Energy Conservation Code.
2. Section 303.6 for exterior stairway illumination if no commercial power is available and the structure is a single story with no basement or habitable loft.

310.3.3 **Ten or fewer persons in a boarding house or congregate living.** A boarding house or congregate living building intended for transient occupancy for ten or fewer persons, shall be classified as Group R-2 or Group R-3 occupancies depending on exiting arrangements.
310.4 Residential Group R-2. Except as provided in Sections 301.4.1 and 310.4.2 through 310.4.4, Residential Group R-2 occupancies containing sleeping units or more than three dwelling units, where the occupants are primarily permanent in nature and where the units share an exit, including:

- Apartment houses
- Boarding houses (nontransient) with more than 16 occupants where occupants share an exit
- Congregate living facilities (nontransient) with more than 16 occupants where occupants share an exit
- Convents
- Dormitories
- Fraternities and sororities
- Hotels (nontransient)
- Live/work units
- Monasteries
- Motels (nontransient)
- SRO (Single room occupancy) facility (nontransient)
- Vacation timeshare properties

310.4.1 Five or fewer persons receiving care. A care facility with shared exit for five or fewer persons receiving care shall be classified as Group R-2.

310.4.2 Dwelling units in mixed occupancy buildings. This group includes residential occupancies in buildings or structures of mixed use containing one or more dwelling units where the occupants are primarily permanent in nature in structures with shared exits.

310.4.3 Dwelling units with a shared exit. This group includes buildings or structures containing two or three dwelling units where the occupants are primarily permanent in nature and when the dwelling units share an exit.

310.4.4 Sixteen or fewer persons in a boarding house or congregate living. A boarding house or congregate living in a dwelling unit with an independent exit for sixteen or fewer persons shall be classified as Group R-3.

310.5 Residential Group R-3. Except as provided herein, residential Group R-3 occupancies where the occupants are primarily permanent in nature and not classified as Group R-1, R-2, R-4 or I, and where each dwelling unit has an independent exit including:

- Boarding houses (nontransient) with 16 or fewer occupants per dwelling unit
Boarding houses (transient) with 10 or fewer occupants
Care facilities that provide accommodations for five or fewer persons receiving care
Congregate living facilities (nontransient) with 16 or fewer occupants per dwelling unit
Congregate living facilities (transient) with 10 or fewer occupants
Lodging houses with five or fewer guest rooms
Vacation timeshare properties

310.5.1 Five or fewer persons receiving care not in a dwelling. A care facility with an independent exit for five or fewer persons receiving care shall be classified as Group R-3.

310.5.2 Five or fewer persons receiving care within a dwelling. A Group R-3 two- or three-family dwelling used exclusively as care facilities for an aggregate of five or fewer persons receiving care but are capable of self-preservation shall be permitted to comply with the construction requirements of the “Residential Code of Ohio for One-, Two-, or Three-Family Dwellings.”

A Group R-3 one-, two- or three-family dwelling used exclusively as care facilities for an aggregate of five or fewer persons receiving care and are incapable of self-preservation shall be permitted to comply with the construction requirements of the “Residential Code of Ohio for One-, Two-, or Three-Family Dwellings” provided an automatic sprinkler system is installed in all of the dwelling units in accordance with Sections 903.3.1.1, 903.3.1.2, 903.3.1.3 or Section 2904 of the “Residential Code of Ohio for One-, Two-, or Three-Family Dwellings.”

310.5.3 Dwelling units in mixed occupancy buildings. This group includes residential occupancies in buildings or structures of mixed use containing one or more dwelling units where the occupants are primarily permanent in nature and where each dwelling unit has an independent exit.

310.5.4 Lodging houses. Owner-occupied A Group R-3 owner-occupied lodging houses shall be permitted to comply with the construction requirements of the “Residential Code of Ohio for One-, Two-, or Three-Family Dwellings.”

310.5.5 Multi-family alternative compliance. A Group R-3 building may use Chapters 2 to 10 and 44 of the “Residential Code of Ohio for One-, Two-, and Three-Family Dwellings” (RCO) are permitted to be used in place of the requirements of this code for Group R-3 occupancies under the following
conditions:
1. The building is comprised exclusively of dwelling units; and
2. The building is not used as a care facility; and
3. The building is three stories or less in height; and
4. Each dwelling unit in the building has an independent exit; and
5. No more than one dwelling unit is allowed to be located above another dwelling unit; and
6. Fire separation between units within a grouping of two units, including a unit located partially or totally above another unit, shall be in accordance with the RCO section 302.2. Fire separation between any grouping of two units and other adjacent units shall be in accordance with RCO sections 302.2 through 302.6; and
7. Chapter 1 of the OBC shall be applicable for code administration purposes; and
8. The edition of NFPA 70 listed in Chapter 35 of the OBC shall be applicable for electrical components, equipment, and system requirements; and
9. The mechanical code shall apply for mechanical appliances, equipment, and system requirements, including fuel gas requirements; and
10. The plumbing code shall apply for plumbing fixtures, equipment, water supply, and sanitary systems; and
11. Chapter 13 of this code shall apply for energy conservation; and
12. Except for Items 7 through 11 above, the edition of standards listed in Chapter 35 of this code shall be used when the same standard is referenced in Chapter 44 of the “Residential Code of Ohio for One-, Two-, and Three-Family Dwellings.”

310.5.6 More than sixteen occupants in a Boarding House or Congregate Living. A boarding house or congregate living building for more than sixteen persons shall be classified as Group R-2.

310.6 Residential Group R-4. Residential Group R-4 occupancy shall include buildings, structures or portions thereof for more than five but not more than 16 persons, excluding staff, who reside in a supervised residential environment and receive care. The persons receiving care are capable of self-preservation. This group shall include, but not be limited to, the following:
 Alcohol and drug centers
 Assisted living facilities
 Congregate care facilities
 Group homes
 Halfway houses
Residential board and care facilities
Social rehabilitation facilities

Where Group R-4 design criteria is not provided in this code, the construction shall meet the requirements for Group R-3.

310.6.1 Occupancy conditions. Buildings of Group R-4 shall be classified as one of the occupancy conditions specified in Section 310.6.1.1 or 310.6.1.2.

310.6.1.1 Condition 1. This occupancy condition shall include buildings in which all persons receiving care, without any assistance, are capable of responding to an emergency situation to complete building evacuation.

310.6.1.2 Condition 2. This occupancy condition shall include buildings in which there are any persons receiving care who require limited verbal or physical assistance while responding to an emergency situation to complete building evacuation.

SECTION 311
STORAGE GROUP S

311.1 Storage Group S. Storage Group S occupancy includes, among others, the use of a building or structure, or a portion thereof, for storage that is not classified as a hazardous occupancy.

311.1.1 Accessory storage spaces. A room or space used for storage purposes that is less than 100 square feet (9.3 m²) in area and accessory to another occupancy shall be classified as part of that occupancy. The aggregate area of such rooms or spaces shall not exceed the allowable area limits of Section 508.2.

311.2 Moderate-hazard storage, Group S-1. Storage Group S-1 occupancies are buildings occupied for storage uses that are not classified as Group S-2, including, but not limited to, storage of the following:
- Aerosols, Levels 2 and 3
- Aircraft hangar (storage and repair)
- Bags: cloth, burlap and paper
- Bamboos and rattan
- Baskets
- Belting: canvas and leather
- Books and paper in rolls or packs
Boots and shoes
Buttons, including cloth covered, pearl or bone
Cardboard and cardboard boxes
Clothing, woolen wearing apparel
Cordage
Dry boat storage (indoor)
Furniture
Furs
Glues, mucilage, pastes and size
Grains
Horns and combs, other than celluloid
Leather
Linoleum
Lumber
Motor vehicle repair garages complying with the maximum allowable quantities of hazardous materials listed in Table 307.1(1) (see Section 406.8)
Photo engravings
Resilient flooring
Silks
Soaps
Sugar
Tires, bulk storage of
Tobacco, cigars, cigarettes and snuff
Upholstery and mattresses
Wax candles

311.3 Low-hazard storage, Group S-2. Storage Group S-2 occupancies include, among others, buildings used for the storage of noncombustible materials such as products on wood pallets or in paper cartons with or without single thickness divisions; or in paper wrappings. Such products are permitted to have a negligible amount of plastic trim, such as knobs, handles or film wrapping. Group S-2 storage uses shall include, but not be limited to, storage of the following:
 Asbestos
 Beverages up to and including 16-percent alcohol in metal, glass or ceramic containers
 Cement in bags
 Chalk and crayons
 Dairy products in nonwaxed coated paper containers
 Dry cell batteries
 Electrical coils
 Electrical motors
Empty cans
Food products
Foods in noncombustible containers
Fresh fruits and vegetables in nonplastic trays or containers
Frozen foods
Glass
Glass bottles, empty or filled with noncombustible liquids
Gypsum board
Inert pigments
Ivory
Meats
Metal cabinets
Metal desks with plastic tops and trim
Metal parts
Metals
Mirrors
Oil-filled and other types of distribution transformers
Parking garages, open or enclosed
Porcelain and pottery
Stoves
Talc and soapstones
Washers and dryers

SECTION 312
UTILITY AND MISCELLANEOUS GROUP U

312.1 General. Buildings and structures of an accessory character and miscellaneous structures not classified in any specific occupancy shall be constructed, equipped and maintained to conform to the requirements of this code commensurate with the fire and life hazard incidental to their occupancy. Group U shall include, but not be limited to, the following:
- Agricultural buildings*
- Barns*
- Carports
- Fences more than 6 feet (1829 mm) in height
- Grain silos*
- Greenhouses*
- Livestock shelters*
- Private garages
- Retaining walls (see exceptions in Section 101.2)
- Sheds*
- Stables*
Tanks associated with building services equipment
Towers (see exceptions in Section 101.2)
* Not used for agricultural purposes as defined in section 3781.06 of the Revised Code.
Effective: 8/1/2018
Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
4101:1-7-01 Fire and smoke protection features.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:1-35-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 701
GENERAL

701.1 Scope. The provisions of this chapter shall govern the materials, systems and assemblies used for structural fire-resistance and fire-resistance-rated construction separation of adjacent spaces to safeguard against the spread of fire and smoke within a building and the spread of fire to or from buildings.

701.2 Multiple use fire assemblies. Fire assemblies that serve multiple purposes in a building shall comply with all of the requirements that are applicable for each of the individual fire assemblies.

SECTION 702
DEFINITIONS

702.1 Definitions. The following terms are defined in Chapter 2:
ANNULAR SPACE.
BUILDING ELEMENT.
CEILING RADIATION DAMPER.
COMBINATION FIRE/SMOKE DAMPER.
COMBUSTIBLE MATERIAL.
CORRIDOR DAMPER.
DAMPER, DRAFTSTOP
F RATING.
FIRE BARRIER.
FIRE DAMPER.
FIRE DOOR.
FIRE DOOR ASSEMBLY.
FIRE PARTITION.
FIRE PROTECTION RATING.
FIRE-RATED GLAZING.
SECTION 703
FIRE-RESISTANCE RATINGS AND FIRE TESTS

703.1 Scope. Materials prescribed herein for fire-resistance shall conform to the requirements of this chapter.

703.2 Fire-resistance ratings. The fire-resistance rating of building elements, components or assemblies shall be determined in accordance with the test procedures set forth in ASTM E 119 or UL 263 or in accordance with Section 703.3. The fire-resistance rating of penetrations and fire-resistant joint systems shall be determined in accordance Sections 714 and 715, respectively.

703.2.1 Nonsymmetrical wall construction. Interior walls and partitions of
nonsymmetrical construction shall be tested with both faces exposed to the furnace, and the assigned fire-resistance rating shall be the shortest duration obtained from the two tests conducted in compliance with ASTM E 119 or UL 263. Where evidence is furnished to show that the wall was tested with the least fire-resistant side exposed to the furnace, subject to acceptance of the building official, the wall need not be subjected to tests from the opposite side (see Section 705.5 for exterior walls).

703.2.2 Combustible components. Combustible aggregates are permitted in gypsum and Portland cement concrete mixtures for fire-resistance-rated construction. Any component material or admixture is permitted in assemblies if the resulting tested assembly meets the fire-resistance test requirements of this code.

703.2.3 Restrained classification. Fire-resistance-rated assemblies tested under ASTM E 119 or UL 263 shall not be considered to be restrained unless evidence satisfactory to the building official is furnished by the registered design professional showing that the construction qualifies for a restrained classification in accordance with ASTM E 119 or UL 263. Restrained construction shall be identified on the construction documents.

703.2.4 Supplemental features. Where materials, systems or devices that have not been tested as part of a fire-resistance-rated assembly are incorporated into the building element, component or assembly, sufficient data shall be made available to the building official to show that the required fire-resistance rating is not reduced.

703.2.5 Exterior bearing walls. In determining the fire-resistance rating of exterior bearing walls, compliance with the ASTM E 119 or UL 263 criteria for unexposed surface temperature rise and ignition of cotton waste due to passage of flame or gases is required only for a period of time corresponding to the required fire-resistance rating of an exterior nonbearing wall with the same fire separation distance, and in a building of the same group. Where the fire-resistance rating determined in accordance with this exception exceeds the fire-resistance rating determined in accordance with ASTM E 119 or UL 263, the fire exposure time period, water pressure and application duration criteria for the hose stream test of ASTM E 119 or UL 263 shall be based on the fire-resistance rating determined in accordance with this section.

703.3 Methods for determining fire-resistance. The application of any of the methods listed in this section shall be based on the fire exposure and acceptance
criteria specified in ASTM E 119 or UL 263. The required fire-resistance of a building element, component or assembly shall be permitted to be established by any of the following methods or procedures:

1. Fire-resistance designs documented in approved sources.
2. Prescriptive designs of fire-resistance-rated building elements, components or assemblies as prescribed in Section 721.
3. Calculations in accordance with Section 722.
4. Engineering analysis based on a comparison of building element, component or assemblies designs having fire-resistance ratings as determined by the test procedures set forth in ASTM E 119 or UL 263.
5. Alternative protection methods as allowed by Sections 104.11_106.5 or 114.3.
6. Fire-resistance designs certified by an approved agency.

703.4 Automatic sprinklers. Deleted.

703.5 Noncombustibility tests. The tests indicated in Sections 703.5.1 and 703.5.2 shall serve as criteria for acceptance of building materials as set forth in Sections 602.2, 602.3 and 602.4 in Type I, II, III and IV construction. The term “noncombustible” does not apply to the flame spread characteristics of interior finish or trim materials. A material shall not be classified as a noncombustible building construction material if it is subject to an increase in combustibility or flame spread beyond the limitations herein established through the effects of age, moisture or other atmospheric conditions.

703.5.1 Elementary materials. Materials required to be noncombustible shall be tested in accordance with ASTM E 136.

703.5.2 Composite materials. Materials having a structural base of noncombustible material as determined in accordance with Section 703.5.1 with a surfacing not more than 0.125 inch (3.18 mm) thick that has a flame spread index not greater than 50 when tested in accordance with ASTM E 84 or UL 723 shall be acceptable as noncombustible materials.

703.6 Fire-resistance-rated glazing. Fire-resistance-rated glazing, when tested in accordance with ASTM E 119 or UL 263 and complying with the requirements of Section 707, shall be permitted. Fire-resistance-rated glazing shall bear a label marked in accordance with Table 716.3 issued by an agency and shall be permanently identified on the glazing.

703.7 Marking and identification. Deleted.
SECTION 704
FIRE-RESISTANCE RATING OF STRUCTURAL MEMBERS

704.1 Requirements. The fire-resistance ratings of structural members and assemblies shall comply with this section and the requirements for the type of construction as specified in Table 601. The fire-resistance ratings shall be not less than the ratings required for the fire-resistance-rated assemblies supported by the structural members.

Exception: Fire barriers, fire partitions, smoke barriers and horizontal assemblies as provided in Sections 707.5, 708.4, 709.4 and 711.2, respectively.

704.2 Column protection. Where columns are required to have protection to achieve a fire-resistance rating, the entire column shall be provided individual encasement protection by protecting it on all sides for the full column height, including connections to other structural members, with materials having the required fire-resistance rating. Where the column extends through a ceiling, the encasement protection shall be continuous from the top of the foundation or floor/ceiling assembly below through the ceiling space to the top of the column.

704.3 Protection of the primary structural frame other than columns. Members of the primary structural frame other than columns that are required to have protection to achieve a fire-resistance rating and support more than two floors or one floor and roof, or support a load-bearing wall or a nonload-bearing wall more than two stories high, shall be provided individual encasement protection by protecting them on all sides for the full length, including connections to other structural members, with materials having the required fire-resistance rating.

Exception: Individual encasement protection on all sides shall be permitted on all exposed sides provided the extent of protection is in accordance with the required fire-resistance rating, as determined in Section 703.

704.4 Protection of secondary members. Secondary members that are required to have protection to achieve a fire-resistance rating shall be protected by one or any combination of the following:

704.4.1 Individual encasement. Individual encasement providing the required fire resistance rating.

704.4.2 Light-frame construction. Studs and boundary elements that are integral elements in load-bearing walls of light-frame construction shall be permitted to have required fire-resistance ratings provided by the membrane
protection provided for the load-bearing wall.

704.4.3 Horizontal assemblies. Horizontal assemblies are permitted to be protected with a membrane or ceiling where the membrane or ceiling provides the required fire-resistance rating and is installed in accordance with Section 711.

704.5 Truss protection. The required thickness and construction of fire-resistance-rated assemblies enclosing trusses shall be based on the results of full-scale tests or combinations of tests on truss components or on approved calculations based on such tests that satisfactorily demonstrate that the assembly has the required fire-resistance.

704.6 Attachments to structural members. The edges of lugs, brackets, rivets and bolt heads attached to structural members shall be permitted to extend to within 1 inch (25 mm) of the surface of the fire protection.

704.7 Reinforcing. Thickness of protection for concrete or masonry reinforcement shall be measured to the outside of the reinforcement except that stirrups and spiral reinforcement ties are permitted to project not more than 0.5-inch (12.7 mm) into the protection.

704.8 Embedments and enclosures. Pipes, wires, conduits, ducts or other service facilities shall not be embedded in the required fire protective covering of a structural member that is required to be individually encased.

704.9 Impact protection. Where the fire protective covering of a structural member is subject to impact damage from moving vehicles, the handling of merchandise or other activity, the fire protective covering shall be protected by corner guards or by a substantial jacket of metal or other noncombustible material to a height adequate to provide full protection, but not less than 5 feet (1524 mm) from the finished floor.

Exception: Corner protection is not required on concrete columns in open or enclosed parking garages.

704.10 Exterior structural members. Load-bearing structural members located within the exterior walls or on the outside of a building or structure shall be provided with the highest fire-resistance rating as determined in accordance with the following:

1. As required by Table 601 for the type of building element based on the type of construction of the building;
2. As required by Table 601 for exterior bearing walls based on the type of construction; and
3. As required by Table 602 for exterior walls based on the fire separation distance.

704.11 Bottom flange protection. Fire protection is not required at the bottom flange of lintels, shelf angles and plates, spanning not more than 6 feet 4 inches (1931 mm) whether part of the primary structural frame or not, and from the bottom flange of lintels, shelf angles and plates not part of the structural frame, regardless of span.

704.12 Seismic isolation systems. Fire-resistance ratings for the isolation system shall meet the fire-resistance rating required for the columns, walls or other structural elements in which the isolation system is installed in accordance with Table 601. Isolation systems required to have a fire-resistance rating shall be protected with approved materials or construction assemblies designed to provide the same degree of fire-resistance as the structural element in which the system is installed when tested in accordance with ASTM E 119 or UL 263 (see Section 703.2). Such isolation system protection applied to isolator units shall be capable of retarding the transfer of heat to the isolator unit in such a manner that the required gravity load-carrying capacity of the isolator unit will not be impaired after exposure to the standard time-temperature curve fire test prescribed in ASTM E 119 or UL 263 for a duration not less than that required for the fire-resistance rating of the structure element in which the system is installed.

Such isolation system protection applied to isolator units shall be suitably designed and securely installed so as not to dislodge, loosen, sustain damage or otherwise impair its ability to accommodate the seismic movements for which the isolator unit is designed and to maintain its integrity for the purpose of providing the required fire-resistance protection.

704.13 Sprayed fire-resistant materials (SFRM). Sprayed fire-resistant materials (SFRM) shall comply with Sections 704.13.1 through 704.13.5.

704.13.1 Fire-resistance rating. The application of SFRM shall be consistent with the fire-resistance rating and the listing, including, but not limited to, minimum thickness and dry density of the applied SFRM, method of application, substrate surface conditions and the use of bonding adhesives, sealants, reinforcing or other materials.

704.13.2 Manufacturer’s installation instructions. The application of SFRM
shall be in accordance with the manufacturer’s installation instructions. The instructions shall include, but are not limited to, substrate temperatures and surface conditions and SFRM handling, storage, mixing, conveyance, method of application, curing and ventilation.

704.13.3 Substrate condition. The SFRM shall be applied to a substrate in compliance with Sections 704.13.3.1 through 704.13.3.2.

704.13.3.1 Surface conditions. Substrates to receive SFRM shall be free of dirt, oil, grease, release agents, loose scale and any other condition that prevents adhesion. The substrates shall be free of primers, paints and encapsulants other than those fire tested and listed by a nationally recognized testing agency. Primed, painted or encapsulated steel shall be allowed, provided that testing has demonstrated that required adhesion is maintained.

704.13.3.2 Primers, paints and encapsulants. Where the SFRM is to be applied over primers, paints or encapsulants other than those specified in the listing, the material shall be field tested in accordance with ASTM E 736. Where testing of the SFRM with primers, paints or encapsulants demonstrates that required adhesion is maintained, SFRM shall be permitted to be applied to primed, painted or encapsulated wide flange steel shapes in accordance with the following conditions:

1. The beam flange width does not exceed 12 inches (305 mm); or
2. The column flange width does not exceed 16 inches (400 mm); or
3. The beam or column web depth does not exceed 16 inches (400 mm).
4. The average and minimum bond strength values shall be determined based on a minimum of five bond tests conducted in accordance with ASTM E 736. Bond tests conducted in accordance with ASTM E 736 shall indicate an average bond strength of not less than 80 percent and an individual bond strength of not less than 50 percent, when compared to the bond strength of the SFRM as applied to clean uncoated 1/8-inch-thick (3.2 mm) steel plate.

704.13.4 Temperature. A minimum ambient and substrate temperature of 40°F (4.44°C) shall be maintained during and for not fewer than 24 hours after the application of the SFRM, unless the manufacturer’s instructions allow otherwise.

704.13.5 Finished condition. The finished condition of SFRM applied to structural members or assemblies shall not, upon complete drying or curing,
exhibit cracks, voids, spalls, delamination or any exposure of the substrate. Surface irregularities of SFRM shall be deemed acceptable.

SECTION 705
EXTERIOR WALLS

705.1 General. Exterior walls shall comply with this section.

705.2 Projections. Cornices, eave overhangs, exterior balconies and similar projections extending beyond the exterior wall shall conform to the requirements of this section and Section 1406. Exterior egress balconies and exterior exit stairways and ramps shall comply with Sections 1021 and 1027, respectively. Projections shall not extend any closer to the line used to determine the fire separation distance than shown in Table 705.2.

<table>
<thead>
<tr>
<th>FIRE SEPARATION DISTANCE (FSD)</th>
<th>MINIMUM DISTANCE FROM LINE USED TO DETERMINE FSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 feet to 2 feet</td>
<td>Projections not permitted</td>
</tr>
<tr>
<td>Greater than 2 feet to 3 feet</td>
<td>24 inches</td>
</tr>
<tr>
<td>Greater than 3 feet to less than 30 feet</td>
<td>24 inches plus 8 inches for every foot of FSD beyond 3 feet or fraction thereof</td>
</tr>
<tr>
<td>30 feet or greater</td>
<td>20 feet</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm; 1 inch = 25.4 mm.

Exception: Buildings on the same lot and considered as portions of one building in accordance with Section 705.3 are not required to comply with this section for projections between the buildings.

705.2.1 Type I and II construction. Projections from walls of Type I or II construction shall be of noncombustible materials or combustible materials as allowed by Sections 1406.3 and 1406.4.

705.2.2 Type III, IV or V construction. Projections from walls of Type III, IV or V construction shall be of any approved material.

705.2.3 Combustible projections. Combustible projections extending to within 5 feet (1524 mm) of the line used to determine the fire separation distance shall be of not less than 1-hour fire-resistance-rated construction, Type
IV construction, fire-retardant-treated wood or as required by Section 1406.3.

Exception: Type VB construction shall be allowed for combustible projections in Group R-3 and U occupancies with a fire separation distance greater than or equal to 5 feet (1524 mm).

705.3 Buildings on the same lot. For the purposes of determining the required wall and opening protection, projections and roof-covering requirements, buildings on the same lot shall be assumed to have an imaginary line between them. Where a new building is to be erected on the same lot as an existing building, the location of the assumed imaginary line with relation to the existing building shall be such that the exterior wall and opening protection of the existing building meet the criteria as set forth in Sections 705.5 and 705.8.

Exceptions:
1. Two or more buildings on the same lot shall be either regulated as separate buildings or shall be considered as portions of one building if the aggregate area of such buildings is within the limits specified in Chapter 5 for a single building. Where the buildings contain different occupancy groups or are of different types of construction, the area shall be that allowed for the most restrictive occupancy or construction.
2. Where an S-2 parking garage of Construction Type I or IIA is erected on the same lot as a Group R-2 building, and there is no fire separation distance between these buildings, then the adjoining exterior walls between the buildings are permitted to have occupant use openings in accordance with Section 706.8. However, opening protective in such openings shall only be required in the exterior wall of the S-2 parking garage, not in the exterior wall openings in the R-2 building, and these opening protective in the exterior wall of the S-2 parking garage shall be not less than 1 1/2-hour fire protection rating.

705.4 Materials. Exterior walls shall be of materials permitted by the building type of construction.

705.5 Fire-resistance ratings. Exterior walls shall be fire-resistance-rated in accordance with Tables 601 and 602 and this section. The required fire-resistance rating of exterior walls with a fire separation distance of greater than 10 feet (3048 mm) shall be rated for exposure to fire from the inside. The required fire-resistance rating of exterior walls with a fire separation distance of less than or equal to 10 feet (3048 mm) shall be rated for exposure to fire from both sides. Where referenced in Section 705, an unoccupied space on an adjoining property may be included in the required fire separation distance, provided that the adjoining property is dedicated or deeded so as to preclude, for the life of the structure, the
erection of any building or structure on such space (see Section 3781.02 of the Revised Code.)

705.6 Structural stability. Exterior walls shall extend to the height required by Section 705.11. Interior structural elements that brace the exterior wall but that are not located within the plane of the exterior wall shall have the minimum fire-resistance rating required in Table 601 for that structural element. Structural elements that brace the exterior wall but are located outside of the exterior wall or within the plane of the exterior wall shall have the minimum fire-resistance rating required in Tables 601 and 602 for the exterior wall.

705.7 Unexposed surface temperature. Where protected openings are not limited by Section 705.8, the limitation on the rise of temperature on the unexposed surface of exterior walls as required by ASTM E 119 or UL 263 shall not apply. Where protected openings are limited by Section 705.8, the limitation on the rise of temperature on the unexposed surface of exterior walls as required by ASTM E 119 or UL 263 shall not apply provided that a correction is made for radiation from the unexposed exterior wall surface in accordance with the following formula

$$A_e = A + (A_f \times F_{eo})$$ \hspace{1cm} (Equation 7-1)

where:

A_e = Equivalent area of protected openings.

A = Actual area of protected openings.

A_f = Area of exterior wall surface in the story under consideration exclusive of openings, on which the temperature limitations of ASTM E 119 or UL 263 for walls are exceeded.

F_{eo} = An “equivalent opening factor” derived from Figure 705.7 based on the average temperature of the unexposed wall surface and the fire-resistance rating of the wall.
For SI: °C = \[(°F) - 32\] / 1.8.

705.8 Openings. Openings in exterior walls shall comply with Sections 705.8.1 through 705.8.6.

705.8.1 Allowable area of openings. The maximum area of unprotected and protected openings permitted in an exterior wall in any story of a building shall not exceed the percentages specified in Table 705.8.

Exceptions:
1. In other than Group H occupancies, unlimited unprotected openings are permitted in the first story above grade plane either:
 1.1. Where the wall faces a street and has a fire separation distance of more
than 15 feet (4572 mm); or
1.2. Where the wall faces an unoccupied space. The unoccupied space shall be on the same lot or dedicated for public use, shall be not less than 30 feet (9144 mm) in width and shall have access from a street by a posted fire lane in accordance with the fire code.

2. Buildings whose exterior bearing walls, exterior nonbearing walls and exterior primary structural frame are not required to be fire-resistance rated shall be permitted to have unlimited unprotected openings.

705.8.2 Protected openings. Where openings are required to be protected, fire doors and fire shutters shall comply with Section 716.5 and fire window assemblies shall comply with Section 716.6.

Exception: Opening protectives are not required where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 and the exterior openings are protected by a water curtain using automatic sprinklers approved for that use.

705.8.3 Unprotected openings. Where unprotected openings are permitted, windows and doors shall be constructed of any approved materials. Glazing shall conform to the requirements of Chapters 24 and 26.

705.8.4 Mixed openings. Where both unprotected and protected openings are located in the exterior wall in any story of a building, the total area of openings shall be determined in accordance with the following:

\[(A_p/a_p) + (A_u/a_u) \leq 1\] \hspace{1cm} (Equation 7-2)

where:
- \(A_p\) = Actual area of protected openings, or the equivalent area of protected openings, \(A_e\) (see Section 705.7).
- \(a_p\) = Allowable area of protected openings.
- \(A_u\) = Actual area of unprotected openings. \(a_u\) = Allowable area of unprotected openings.

705.8.5 Vertical separation of openings. Openings in exterior walls in adjacent stories shall be separated vertically to protect against fire spread on the exterior of the buildings where the openings are within 5 feet (1524 mm) of each other horizontally and the opening in the lower story is not a protected opening with a fire protection rating of not less than 3/4 hour. Such openings shall be separated vertically not less than 3 feet (914 mm) by spandrel girders, exterior walls or other similar assemblies that have a fire-resistance rating of not less than 1 hour, rated for exposure to fire from both sides, or by flame
barriers that extend horizontally not less than 30 inches (762 mm) beyond the exterior wall. Flame barriers shall have a fire-resistance rating of not less than 1 hour. The unexposed surface temperature limitations specified in ASTM E 119 or UL 263 shall not apply to the flame barriers or vertical separation unless otherwise required by the provisions of this code.

Exceptions:
1. This section shall not apply to buildings that are three stories or less above grade plane.
2. This section shall not apply to buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2.
3. Open parking garages.

TABLE 705.8
MAXIMUM AREA OF EXTERIOR WALL OPENINGS BASED ON FIRE SEPARATION DISTANCE AND DEGREE OF OPENING PROTECTION

<table>
<thead>
<tr>
<th>FIRE SEPARATION DISTANCE (feet)</th>
<th>DEGREE OF OPENING PROTECTION</th>
<th>ALLOWABLE AREAa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to less than 3b, c, k</td>
<td>Protected (P)</td>
<td>Not Permittedb</td>
</tr>
<tr>
<td></td>
<td>Unprotected, Nonsprinklered (UP, NS)</td>
<td>Not Permittedb</td>
</tr>
<tr>
<td></td>
<td>Unprotected, Sprinklered (UP, S)i</td>
<td>Not Permittedb</td>
</tr>
<tr>
<td>3 to less than 5d, e</td>
<td>Unprotected, Nonsprinklered (UP, NS)</td>
<td>Not Permitted</td>
</tr>
<tr>
<td></td>
<td>Unprotected, Sprinklered (UP, S)i</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>Protected (P)</td>
<td>15%</td>
</tr>
<tr>
<td>5 to less than 10e, f, j</td>
<td>Unprotected, Nonsprinklered (UP, NS)</td>
<td>10%h</td>
</tr>
<tr>
<td></td>
<td>Unprotected, Sprinklered (UP, S)i</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Protected (P)</td>
<td>25%</td>
</tr>
<tr>
<td>10 to less than 15e, f, g, h</td>
<td>Unprotected, Nonsprinklered (UP, NS)</td>
<td>15%h</td>
</tr>
<tr>
<td></td>
<td>Unprotected, Sprinklered (UP, S)i</td>
<td>45%</td>
</tr>
<tr>
<td></td>
<td>Protected (P)</td>
<td>45%</td>
</tr>
<tr>
<td>15 to less than 20f, g, i</td>
<td>Unprotected, Nonsprinklered (UP, NS)</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Unprotected, Sprinklered (UP, S)i</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>Protected (P)</td>
<td>75%</td>
</tr>
<tr>
<td>20 to less than 25f, g, j</td>
<td>Unprotected, Nonsprinklered (UP, NS)</td>
<td>45%</td>
</tr>
<tr>
<td></td>
<td>Unprotected, Sprinklered (UP, S)i</td>
<td>No Limit</td>
</tr>
<tr>
<td></td>
<td>Protected (P)</td>
<td>No Limit</td>
</tr>
<tr>
<td>25 to less than 30f, g, j</td>
<td>Unprotected, Nonsprinklered (UP, NS)</td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td>Unprotected, Sprinklered (UP, S)i</td>
<td>No Limit</td>
</tr>
<tr>
<td></td>
<td>Protected (P)</td>
<td>No Limit</td>
</tr>
<tr>
<td>30 or greater</td>
<td>Unprotected, Nonsprinklered (UP, NS)</td>
<td>No Limit</td>
</tr>
</tbody>
</table>
705.8.6 Vertical exposure. For buildings on the same lot, opening protectives having a fire protection rating of not less than 3/4 hour shall be provided in every opening that is less than 15 feet (4572 mm) vertically above the roof of an adjacent building or structure based on assuming an imaginary line between them. The opening protectives are required where the fire separation distance between the imaginary line and the adjacent building or structure is less than 15 feet (4572 mm).

Exceptions:
1. Opening protectives are not required where the roof assembly of the adjacent building or structure has a fire-resistance rating of not less than 1 hour for a minimum distance of 10 feet (3048 mm) from the exterior wall facing the imaginary line and the entire length and span of the supporting elements for the fire-resistance-rated roof assembly has a fire-resistance rating of not less than 1 hour.
2. Buildings on the same lot and considered as portions of one building in accordance with Section 705.3 are not required to comply with Section 705.8.6.

705.9 Joints. Joints made in or between exterior walls required by this section to have a fire-resistance rating shall comply with Section 715.

Exception: Joints in exterior walls that are permitted to have unprotected openings.
705.9.1 Voids. The void created at the intersection of a floor/ceiling assembly and an exterior curtain wall assembly shall be protected in accordance with Section 715.4.

705.10 Ducts and air transfer openings. Penetrations by air ducts and air transfer openings in fire-resistance-rated exterior walls required to have protected openings shall comply with Section 717.

Exception: Foundation vents installed in accordance with this code are permitted.

705.11 Parapets. Parapets shall be provided on exterior walls of buildings.

Exceptions: A parapet need not be provided on an exterior wall where any of the following conditions exist:
1. The wall is not required to be fire-resistance rated in accordance with Table 602 because of fire separation distance.
2. The building has an area of not more than 1,000 square feet (93 m²) on any floor.
3. Walls that terminate at roofs of not less than 2-hour fire-resistance-rated construction or where the roof, including the deck or slab and supporting construction, is constructed entirely of noncombustible materials.
4. One-hour fire-resistance-rated exterior walls that terminate at the underside of the roof sheathing, deck or slab, provided:
 4.1. Where the roof/ceiling framing elements are parallel to the walls, such framing and elements supporting such framing shall not be of less than 1-hour fire-resistance-rated construction for a width of 4 feet (1220 mm) for Groups R and U and 10 feet (3048 mm) for other occupancies, measured from the interior side of the wall.
 4.2. Where roof/ceiling framing elements are not parallel to the wall, the entire span of such framing and elements supporting such framing shall not be of less than 1-hour fire-resistance-rated construction.
 4.3. Openings in the roof shall not be located within 5 feet (1524 mm) of the 1-hour fire-resistance-rated exterior wall for Groups R and U and 10 feet (3048 mm) for other occupancies, measured from the interior side of the wall.
 4.4. The entire building shall be provided with not less than a Class B roof covering.
5. In Groups R-2 and R-3 where the entire building is provided with a Class C roof covering, the exterior wall shall be permitted to terminate at the underside of the roof sheathing or deck in Type III, IV and V construction, provided one or both of the following criteria is met:
 5.1. The roof sheathing or deck is constructed of approved noncombustible materials or of fire-retardant-treated wood for a distance of 4 feet (1220 mm).
 5.2. The roof is protected with 0.625-inch (16 mm) Type X gypsum board directly
beneath the underside of the roof sheathing or deck, supported by not less than nominal 2-inch (51 mm) ledgers attached to the sides of the roof framing members for a minimum distance of 4 feet (1220 mm).

6. Where the wall is permitted to have not less than 25 percent of the exterior wall areas containing unprotected openings based on fire separation distance as determined in accordance with Section 705.8.

705.11.1 Parapet construction. Parapets shall have the same fire-resistance rating as that required for the supporting wall, and on any side adjacent to a roof surface, shall have noncombustible faces for the uppermost 18 inches (457 mm), including counterflashing and coping materials. The height of the parapet shall be not less than 30 inches (762 mm) above the point where the roof surface and the wall intersect. Where the roof slopes toward a parapet at a slope greater than two units vertical in 12 units horizontal (16.7-percent slope), the parapet shall extend to the same height as any portion of the roof within a fire separation distance where protection of wall openings is required, but in no case shall the height be less than 30 inches (762 mm).

SECTION 706
FIRE WALLS

706.1 General. Each portion of a building separated by one or more fire walls that comply with the provisions of this section shall be considered a separate building. The extent and location of such fire walls shall provide a complete separation. Where a fire wall separates occupancies that are required to be separated by a fire barrier wall, the most restrictive requirements of each separation shall apply.

706.1.1 Party walls. Any wall located on a lot line between adjacent buildings, which is used or adapted for joint service between the two buildings, shall be constructed as a fire wall in accordance with Section 706. Party walls shall be constructed without openings and shall create separate buildings.

Exception: Openings in a party wall separating an anchor building and a mall shall be in accordance with Section 402.4.2.2.1.

706.1.2 Double fire walls. A double fire wall shall consist of two back-to-back walls where there shall be no structural connections between the walls.

706.2 Structural stability. Fire walls shall be designed and constructed to allow collapse of the structure on either side without collapse of the wall under fire conditions. Double fire walls shall be supported laterally by the building frame on its respective side and shall be independent of the fire wall and framing on the
opposite side, except for the foundation and flashing. Cantilevered fire walls or tied fire walls designed and constructed in accordance with NFPA 221 shall also be deemed to comply with this section.

706.3 Materials. Fire walls shall be of any approved noncombustible materials.
Exception: Buildings of Type V construction.

706.4 Fire-resistance rating. Fire walls shall have a fire-resistance rating of not less than that required by Table 706.4. The fire resistance rating of each wall in a double fire wall and the combined rating of the wall shall be that required by Table 706.4

<table>
<thead>
<tr>
<th>GROUP</th>
<th>SINGLE WALL FIRE-RESISTANCE RATING (hours)</th>
<th>DOUBLE WALL FIRE-RESISTANCE RATING (hours for each wall)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, E, H-4, I, R-1, R-2, U</td>
<td>3a</td>
<td>2</td>
</tr>
<tr>
<td>F-1, H-3b, H-5, M, S-1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>H-1, H-2</td>
<td>4b</td>
<td>3</td>
</tr>
<tr>
<td>F-2, S-2, R-3, R-4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

a. In Type II or V construction, walls shall be permitted to have a 2-hour fire-resistance rating.
b. For Group H-1, H-2 or H-3 buildings, also see Sections 415.7 and 415.8.

706.5 Horizontal continuity. Fire walls shall be continuous from exterior wall to exterior wall and shall extend not less than 18 inches (457 mm) beyond the exterior surface of exterior walls.

Exceptions:
1. Fire walls shall be permitted to terminate at the interior surface of combustible exterior sheathing or siding provided the exterior wall has a fire-resistance rating of not less than 1 hour for a horizontal distance of not less than 4 feet (1220 mm) on both sides of the fire wall. Openings within such exterior walls shall be protected by opening protectives having a fire protection rating of not less than 3/4 hour.
2. Fire walls shall be permitted to terminate at the interior surface of noncombustible exterior sheathing, exterior siding or other noncombustible exterior finishes provided the sheathing, siding or other exterior noncombustible finish extends a horizontal distance of not less than 4 feet (1220 mm) on both sides of the fire wall.
3. Fire walls shall be permitted to terminate at the interior surface of noncombustible exterior sheathing where the building on each side of the
fire wall is protected by an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2.

706.5.1 Exterior walls. Where the fire wall intersects exterior walls, the fire-resistance rating and opening protection of the exterior walls shall comply with one of the following:

1. The exterior walls on both sides of the fire wall shall have a 1-hour fire-resistance rating with 3/4-hour protection where opening protection is required by Section 705.8. The fire-resistance rating of the exterior wall shall extend not less than 4 feet (1220 mm) on each side of the intersection of the fire wall to exterior wall. Exterior wall intersections at fire walls that form an angle equal to or greater than 180 degrees (3.14 rad) do not need exterior wall protection.

2. Buildings or spaces on both sides of the intersecting fire wall shall assume to have an imaginary lot line at the fire wall and extending beyond the exterior of the fire wall. The location of the assumed line in relation to the exterior walls and the fire wall shall be such that the exterior wall and opening protection meet the requirements set forth in Sections 705.5 and 705.8. Such protection is not required for exterior walls terminating at fire walls that form an angle equal to or greater than 180 degrees (3.14 rad).

706.5.2 Horizontal projecting elements. Fire walls shall extend to the outer edge of horizontal projecting elements such as balconies, roof overhangs, canopies, marquees and similar projections that are within 4 feet (1220 mm) of the fire wall.

Exceptions:

1. Horizontal projecting elements without concealed spaces, provided the exterior wall behind and below the projecting element has not less than 1-hour fire-resistance-rated construction for a distance not less than the depth of the projecting element on both sides of the fire wall. Openings within such exterior walls shall be protected by opening protectives having a fire protection rating of not less than 3/4 hour.

2. Noncombustible horizontal projecting elements with concealed spaces, provided a minimum 1-hour fire-resistance-rated wall extends through the concealed space. The projecting element shall be separated from the building by not less than 1-hour fire-resistance-rated construction for a distance on each side of the fire wall equal to the depth of the projecting element. The wall is not required to extend under the projecting element where the building exterior wall is not less than 1-hour fire-resistance-rated for a distance on each side of the fire wall equal to the depth of the
projecting element. Openings within such exterior walls shall be protected by opening protectives having a fire protection rating of not less than \(\frac{3}{4} \) hour.

3. For combustible horizontal projecting elements with concealed spaces, the fire wall need only extend through the concealed space to the outer edges of the projecting elements. The exterior wall behind and below the projecting element shall be of not less than 1-hour fire-resistance-rated construction for a distance not less than the depth of the projecting elements on both sides of the fire wall. Openings within such exterior walls shall be protected by opening protectives having a fire-protection rating of not less than \(\frac{3}{4} \) hour.

706.6 Vertical continuity. Fire walls shall extend from the foundation to a termination point not less than 30 inches (762 mm) above both adjacent roofs.

Exceptions:
1. Stepped buildings in accordance with Section 706.6.1.
2. Two-hour fire-resistance-rated walls shall be permitted to terminate at the underside of the roof sheathing, deck or slab, provided:
 2.1. The lower roof assembly within 4 feet (1220 mm) of the wall has not less than a 1-hour fire-resistance rating and the entire length and span of supporting elements for the rated roof assembly has a fire-resistance rating of not less than 1 hour.
 2.2. Openings in the roof shall not be located within 4 feet (1220 mm) of the fire wall.
 2.3. Each building shall be provided with not less than a Class B roof covering.
3. Walls shall be permitted to terminate at the underside of noncombustible roof sheathing, deck or slabs where both buildings are provided with not less than a Class B roof covering. Openings in the roof shall not be located within 4 feet (1220 mm) of the fire wall.
4. In buildings of Type III, IV and V construction, walls shall be permitted to terminate at the underside of combustible roof sheathing or decks, provided:
 4.1. There are no openings in the roof within 4 feet (1220 mm) of the fire wall,
 4.2. The roof is covered with a minimum Class B roof covering, and
 4.3. The roof sheathing or deck is constructed of fire-retardant-treated wood for a distance of 4 feet (1220 mm) on both sides of the wall or the roof is protected with \(\frac{5}{8} \) inch (15.9 mm) Type X gypsum board directly beneath the underside of the roof sheathing or deck, supported by not less than 2-inch (51 mm) nominal ledgers attached to the sides of the roof framing members for a distance of not less than 4 feet (1220 mm) on both sides of the fire wall.
5. In buildings designed in accordance with Section 510.2, fire walls located above the 3-hour horizontal assembly required by Section 510.2, Item 1 shall be permitted to extend from the top of this horizontal assembly.
6. Buildings with sloped roofs in accordance with Section 706.6.2.

706.6.1 Stepped buildings. Where a fire wall serves as an exterior wall for a building and separates buildings having different roof levels, such wall shall terminate at a point not less than 30 inches (762 mm) above the lower roof level, provided the exterior wall for a height of 15 feet (4572 mm) above the lower roof is not less than 1-hour fire-resistance-rated construction from both sides with openings protected by fire assemblies having a fire protection rating of not less than \(\frac{3}{4} \) hour.

 Exception: Where the fire wall terminates at the underside of the roof sheathing, deck or slab of the lower roof, provided:
 1. The lower roof assembly within 10 feet (3048 mm) of the wall has not less than a 1-hour fire-resistance rating and the entire length and span of supporting elements for the rated roof assembly has a fire-resistance rating of not less than 1 hour.
 2. Openings in the lower roof shall not be located within 10 feet (3048 mm) of the fire wall.

706.6.2 Buildings with sloped roofs. Where a fire wall serves as an interior wall for a building, and the roof on one side or both sides of the fire wall slopes toward the fire wall at a slope greater than two units vertical in 12 units horizontal (2:12), the fire wall shall extend to a height equal to the height of the roof located 4 feet (1219 mm) from the fire wall plus 30 inches (762 mm). In no case shall the extension of the fire wall be less than 30 inches (762 mm).

706.7 Combustible framing in fire walls. Adjacent combustible members entering into a concrete or masonry fire wall from opposite sides shall not have less than a 4-inch (102 mm) distance between embedded ends. Where combustible members frame into hollow walls or walls of hollow units, hollow spaces shall be solidly filled for the full thickness of the wall and for a distance not less than 4 inches (102 mm) above, below and between the structural members, with noncombustible materials approved for fireblocking.

706.8 Openings. Each opening through a fire wall shall be protected in accordance with Section 716.5 and shall not exceed 156 square feet (15 m²). The aggregate width of openings at any floor level shall not exceed 25 percent of the length of the wall.

 Exceptions:
 1. Openings are not permitted in party walls constructed in accordance with Section 706.1.1.
2. Openings shall not be limited to 156 square feet (15 m²) where both buildings are equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1.

706.8.1 Openings in double fire walls. Openings in double fire walls shall be protected using one fire door in each wall or where the opening provides for a means of egress, the doors shall be installed in a vestibule that encloses the opening on each side of the double fire wall.

706.9 Penetrations. Penetrations of fire walls shall comply with Section 714.

706.10 Joints. Joints made in or between fire walls shall comply with Section 715.

706.11 Ducts and air transfer openings. Ducts and air transfer openings shall not penetrate fire walls.

Exception: Penetrations by ducts and air transfer openings of fire walls that are not on a lot line shall be allowed provided the penetrations comply with Section 717. The size and aggregate width of all openings shall not exceed the limitations of Section 706.8.

SECTION 707

FIRE BARRIERS

707.1 General. Fire barriers installed as required elsewhere in this code or the fire code shall comply with this section.

707.2 Materials. Fire barriers shall be of materials permitted by the building type of construction.

707.3 Fire-resistance rating. The fire-resistance rating of fire barriers shall comply with this section.

707.3.1 Shaft enclosures. The fire-resistance rating of the fire barrier separating building areas from a shaft shall comply with Section 713.4.

707.3.2 Interior exit stairway and ramp construction. The fire-resistance rating of the fire barrier separating building areas from an interior exit stairway or ramp shall comply with Section 1023.1.
707.3.3 **Enclosures for exit access stairways.** The fire-resistance rating of the fire barrier separating building areas from an exit access stairway or ramp shall comply with Section 713.4.

707.3.4 **Exit passageway.** The fire-resistance rating of the fire barrier separating building areas from an exit passageway shall comply with Section 1024.3.

707.3.5 **Horizontal exit.** The fire-resistance rating of the separation between building areas connected by a horizontal exit shall comply with Section 1026.1.

707.3.6 **Atriums.** The fire-resistance rating of the fire barrier separating atriums shall comply with Section 404.6.

707.3.7 **Incidental uses.** The fire barrier separating incidental uses from other spaces in the building shall have a fire-resistance rating of not less than that indicated in Table 509.

707.3.8 **Control areas.** Fire barriers separating control areas shall have a fire-resistance rating of not less than that required in Section 414.2.4.

707.3.9 **Separated occupancies.** Where the provisions of Section 508.4 are applicable, the fire barrier separating mixed occupancies shall have a fire-resistance rating of not less than that indicated in Table 508.4 based on the occupancies being separated.

707.3.10 **Fire areas.** The fire barriers or horizontal assemblies, or both, separating a single occupancy into different fire areas shall have a fire-resistance rating of not less than that indicated in Table 707.3.10. The fire barriers or horizontal assemblies, or both, separating fire areas of mixed occupancies shall have a fire-resistance rating of not less than the highest value indicated in Table 707.3.10 for the occupancies under consideration.

TABLE 707.3.10

<table>
<thead>
<tr>
<th>OCCUPANCY GROUP</th>
<th>FIRE-RESISTANCE RATING (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1, H-2</td>
<td>4</td>
</tr>
</tbody>
</table>
707.4 Exterior walls. Where exterior walls serve as a part of a required fire-resistance-rated shaft or stairway or ramp enclosure, or separation, such walls shall comply with the requirements of Section 705 for exterior walls and the fire-resistance-rated enclosure or separation requirements shall not apply.

Exception: Exterior walls required to be fire-resistance-rated in accordance with Section 1021 for exterior egress balconies, Section 1023.7 for interior exit stairways and ramps and Section 1027.6 for exterior exit stairways and ramp.

707.5 Continuity. Fire barriers shall extend from the top of the foundation or floor/ceiling assembly below to the underside of the floor or roof sheathing, slab or deck above and shall be securely attached thereto. Such fire barriers shall be continuous through concealed space, such as the space above a suspended ceiling. Joints and voids at intersections shall comply with Sections 707.8 and 707.9.

Exceptions:
1. Shaft enclosures shall be permitted to terminate at atop enclosure complying with Section 713.12.
2. Interior exit stairway and ramp enclosures required by Section 1023 and exit access stairway and ramp enclosures required by Section 1019 shall be permitted to terminate at a top enclosure complying with Section 713.12.

707.5.1 Supporting construction. The supporting construction for a fire barrier shall be protected to afford the required fire-resistance rating of the fire barrier supported. Hollow vertical spaces within a fire barrier shall be fireblocked in accordance with Section 718.2 at every floor level.

Exceptions:
1. The maximum required fire-resistance rating for assemblies supporting fire barriers separating tank storage as provided for in Section 415.9.1.2 shall be 2 hours, but not less than required by Table 601 for the building construction type.
2. Supporting construction for 1-hour fire barriers required by Table 509 in buildings of Type IIB, IIB and VB construction is not required to be fire-resistance-rated unless required by other sections of this code.

707.6 Openings. Openings in a fire barrier shall be protected in accordance with Section 716. Openings shall be limited to a maximum aggregate width of 25 percent of the length of the wall, and the maximum area of any single opening shall not
exceed 156 square feet (15 m²). Openings in enclosures for exit access stairways and ramps, interior exit stairways and ramps and exit passageways shall also comply with Sections 1019, 1023.4 and 1024.5, respectively.

Exceptions:
1. Openings shall not be limited to 156 square feet (15 m²) where adjoining floor areas are equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.
2. Openings shall not be limited to 156 square feet (15 m²) or an aggregate width of 25 percent of the length of the wall where the opening protective is a fire door serving enclosures for exit access stairways and ramps, and interior exit stairways and ramps.
3. Openings shall not be limited to 156 square feet (15 m²) or an aggregate width of 25 percent of the length of the wall where the opening protective has been tested in accordance with ASTM E 119 or UL 263 and has a minimum fire-resistance rating not less than the fire-resistance rating of the wall.
4. Fire window assemblies permitted in atrium separation walls shall not be limited to a maximum aggregate width of 25 percent of the length of the wall.
5. Openings shall not be limited to 156 square feet (15 m²) or an aggregate width of 25 percent of the length of the wall where the opening protective is a fire door assembly in a fire barrier separating an enclosure for exit access stairways and ramps, and interior exit stairways and ramps from an exit passageway in accordance with Section 1023.3.1.

707.7 Penetrations. Penetrations of fire barriers shall comply with Section 714.

707.7.1 Prohibited penetrations. Penetrations into enclosures for exit access stairways and ramps, interior exit stairways and ramps, and exit passageways shall be allowed only where permitted by Sections 1019, 1023.5 and 1024.6, respectively.

707.8 Joints. Joints made in or between fire barriers, and joints made at the intersection of fire barriers with underside of a fire-resistance-rated floor or roof sheathing, slab or deck above, and the exterior vertical wall intersection shall comply with Section 715.

707.9 Voids at intersections. The voids created at the intersection of a fire barrier and a nonfire-resistance-rated roof assembly or a nonfire-resistance-rated exterior wall assembly shall be filled. An approved material or system shall be used to fill the void, and shall be securely installed in or on the intersection for its entire length
so as not to dislodge, loosen or otherwise impair its ability to accommodate expected building movements and to retard the passage of fire and hot gases.

707.10 Ducts and air transfer openings. Penetrations in a fire barrier by ducts and air transfer openings shall comply with Section 717.

SECTION 708
FIRE PARTITIONS

708.1 General. The following wall assemblies shall comply with this section.
1. Separation walls as required by Section 420.2 for Groups I-1, R-1, R-2 and R-3.
2. Walls separating tenant spaces in covered and open mall buildings as required by Section 402.4.2.1.
3. Corridor walls as required by Section 1020.1.
4. Elevator lobby separation as required by Section 3006.2.
5. Egress balconies as required by Section 1019.2

708.2 Materials. The walls shall be of materials permitted by the building type of construction.

708.3 Fire-resistance rating. Fire partitions shall have a fire-resistance rating of not less than 1 hour.

Exceptions:
1. Corridor walls permitted to have a 1/2-hour fire-resistance rating by Table 1020.1.
2. Dwelling unit and sleeping unit separations in buildings of Type IIB, IIIB and VB construction shall have fire-resistance ratings of not less than 1/2 hour in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

708.4 Continuity. Fire partitions shall extend from the top of the foundation or floor/ceiling assembly below to the underside of the floor or roof sheathing, slab or deck above or to the fire-resistance-rated floor/ceiling or roof/ceiling assembly above, and shall be securely attached thereto. In combustible construction where the fire partitions are not required to be continuous to the sheathing, deck or slab, the space between the ceiling and the sheathing, deck or slab above shall be fireblocked or draftstopped in accordance with Sections 718.2 and 718.3 at the partition line. The supporting construction shall be protected to afford the required fire-resistance rating of the wall supported, except for walls separating tenant spaces in covered and open mall buildings, walls separating dwelling units, walls
separating sleeping units and corridor walls, in buildings of Type IIB, IIIB and VB construction.

Exceptions:
1. The wall need not be extended into the crawl space below where the floor above the crawl space has a minimum 1-hour fire-resistance rating.
2. Where the room-side fire-resistance-rated membrane of the corridor is carried through to the underside of the floor or roof sheathing, deck or slab of a fire-resistance-rated floor or roof above, the ceiling of the corridor shall be permitted to be protected by the use of ceiling materials as required for a 1-hour fire-resistance-rated floor or roof system.
3. Where the corridor ceiling is constructed as required for the corridor walls, the walls shall be permitted to terminate at the upper membrane of such ceiling assembly.
4. The fire partitions separating tenant spaces in a covered or open mall building, complying with Section 402.4.2.1, are not required to extend beyond the underside of a ceiling that is not part of a fire-resistance-rated assembly. A wall is not required in attic or ceiling spaces above tenant separation walls.
5. Attic fireblocking or draftstopping is not required at the partition line in Group R-2 buildings that do not exceed four stories above grade plane, provided the attic space is subdivided by draftstopping into areas not exceeding 3,000 square feet (279 m²) or above every two dwelling units, whichever is smaller.
6. Fireblocking or draftstopping is not required at the partition line in buildings equipped with an automatic sprinkler system installed throughout in accordance with Section 903.3.1.1 or 903.3.1.2, provided that automatic sprinklers are installed in combustible floor/ceiling and roof/ceiling spaces.

708.5 Exterior walls. Where exterior walls serve as a part of a required fire-resistance-rated separation, such walls shall comply with the requirements of Section 705 for exterior walls, and the fire-resistance-rated separation requirements shall not apply.

Exception: Exterior walls required to be fire-resistance-rated in accordance with Section 1021.2 for exterior egress balconies, Section 1023.7 for interior exit stairways and ramps and Section 1027.6 for exterior exit stairways and ramps.

708.6 Openings. Openings in a fire partition shall be protected in accordance with Section 716.

708.7 Penetrations. Penetrations of fire partitions shall comply with Section 714.
708.8 **Joints.** Joints made in or between fire partitions shall comply with Section 715.

708.9 **Ducts and air transfer openings.** Penetrations in a fire partition by ducts and air transfer openings shall comply with Section 717.

SECTION 709

SMOKE BARRIERS

709.1 **General.** Vertical and horizontal smoke barriers shall comply with this section.

709.2 **Materials.** Smoke barriers shall be of materials permitted by the building type of construction.

709.3 **Fire-resistance rating.** A 1-hour fire-resistance rating is required for smoke barriers.

 Exception: Smoke barriers constructed of minimum 0.10inch-thick (2.5 mm) steel in Group I-3 buildings.

709.4 **Continuity.** Smoke barriers shall form an effective membrane continuous from the top of the foundation or floor/ceiling assembly below to the underside of the floor or roof sheathing, deck or slab above, including continuity through concealed spaces, such as those found above suspended ceilings, and interstitial structural and mechanical spaces. The supporting construction shall be protected to afford the required fire-resistance rating of the wall or floor supported in buildings of other than Type IIB, IIIB or VB construction. Smoke barrier walls used to separate smoke compartments shall comply with Section 709.4.1. Smoke-barrier walls used to enclose areas of refuge in accordance with Section 1009.6.4 or to enclose elevator lobbies in accordance with Section 405.4.3, 3007.6.2, or 3008.6.2 shall comply with Section 709.4.2.

 Exception: Smoke-barrier walls are not required in interstitial spaces where such spaces are designed and constructed with ceilings or exterior walls that provide resistance to the passage of fire and smoke equivalent to that provided by the smoke-barrier walls.

709.4.1 **Smoke-barrier walls separating smoke compartments.** Smoke-barrier walls used to separate smoke compartments shall form an effective membrane continuous from outside wall to outside wall.
709.4.2 Smoke-barrier walls enclosing areas of refuge or elevator lobbies. Smoke-barrier walls used to enclose areas of refuge in accordance with Section 1009.6.4, or to enclose elevator lobbies in accordance with Section 405.4.3, 3007.6.2, or 3008.6.2, shall form an effective membrane enclosure that terminates at a fire barrier wall having a level of fire protection rating not less than 1 hour, another smoke barrier wall or an outside wall. A smoke and draft control door assembly as specified in Section 716.5.3.1 shall not be required at each elevator hoistway door opening or at each exit doorway between an area of refuge and the exit enclosure.

709.5 Openings. Openings in a smoke barrier shall be protected in accordance with Section 716.

Exceptions:
1. In Group I-1 Condition 2, Group I-2 and ambulatory care facilities, where a pair of opposite-swinging doors are installed across a corridor in accordance with Section 709.5.1, the doors shall not be required to be protected in accordance with Section 716. The doors shall be close fitting within operational tolerances, and shall not have a center mullion or undercuts in excess of 3/4 inch (19.1 mm), louvers or grilles. The doors shall have head and jamb stops, and astragals or rabbets at meeting edges. Where permitted by the door manufacturer’s listing, positive-latching devices are not required.
2. In Group I-1 Condition 2, Group I-2 and ambulatory care facilities, horizontal sliding doors installed in accordance with Section 1010.1.4.3 and protected in accordance with Section 716.

709.5.1 Group I-2 and ambulatory care facilities. In Group I-2 and ambulatory care facilities, where doors are installed across a corridor, the doors shall be automatic closing by smoke detection in accordance with Section 716.5.9.3 and shall have a vision panel with fire-protection-rated glazing materials in fire-protection-rated frames, the area of which shall not exceed that tested.

709.6 Penetrations. Penetrations of smoke barriers shall comply with Section 714.

709.7 Joints. Joints made in or between smoke barriers shall comply with Section 715.

709.8 Ducts and air transfer openings. Penetrations in a smoke barrier by ducts and air transfer openings shall comply with Section 717.
SECTION 710
SMOKE PARTITIONS

710.1 General. Smoke partitions installed as required elsewhere in the code shall comply with this section.

710.2 Materials. The walls shall be of materials permitted by the building type of construction.

710.3 Fire-resistance rating. Unless required elsewhere in the code, smoke partitions are not required to have a fire-resistance rating.

710.4 Continuity. Smoke partitions shall extend from the top of the foundation or floor below to the underside of the floor or roof sheathing, deck or slab above or to the underside of the ceiling above where the ceiling membrane is constructed to limit the transfer of smoke.

710.5 Openings. Openings in smoke partitions shall comply with Sections 710.5.1 and 710.5.2.

710.5.1 Windows. Windows in smoke partitions shall be sealed to resist the free passage of smoke or be automatic closing upon detection of smoke.

710.5.2 Doors. Doors in smoke partitions shall comply with Sections 710.5.2.1 through 710.5.2.3.

710.5.2.1 Louvers. Doors in smoke partitions shall not include louvers.

710.5.2.2 Smoke and draft control doors. Where required elsewhere in the code, doors in smoke partitions shall meet the requirements for a smoke and draft control door assembly tested in accordance with UL 1784. The air leakage rate of the door assembly shall not exceed 3.0 cubic feet per minute per square foot \([0.015424 \text{ m}^3/(\text{s} \cdot \text{m}^2)]\) of door opening at 0.10 inch (24.9 Pa) of water for both the ambient temperature test and the elevated temperature exposure test. Installation of smoke doors shall be in accordance with NFPA 105.

710.5.2.2.1 Smoke and draft control door labeling. Smoke and draft control doors complying only with UL 1784 shall be permitted to
show the letter “S” on the manufacturer’s labeling.

710.5.2.3 Self- or automatic-closing doors. Where required elsewhere in the code, doors in smoke partitions shall be self- or automatic-closing by smoke detection in accordance with Section 716.5.9.3.

710.6 Penetrations. The space around penetrating items shall be filled with an approved material to limit the free passage of smoke.

710.7 Joints. Joints shall be filled with an approved material to limit the free passage of smoke.

710.8 Ducts and air transfer openings. The space around a duct penetrating a smoke partition shall be filled with an approved material to limit the free passage of smoke. Air transfer openings in smoke partitions shall be provided with a smoke damper complying with Section 717.3.2.2.

Exception: Where the installation of a smoke damper will interfere with the operation of a required smoke control system in accordance with Section 909, approved alternative protection shall be utilized.

SECTION 711 HORIZONTAL ASSEMBLIES

711.1 General. Horizontal assemblies shall comply with Section 711.2. Non fire-resistance-rated floor and roof assemblies shall comply with Section 711.3.

711.2 Horizontal assemblies. Horizontal assemblies shall comply with Sections 711.2.1 through 711.2.6.

711.2.1 Materials. Assemblies shall be of materials permitted by the building type of construction.

711.2.2 Continuity. Assemblies shall be continuous without vertical openings, except as permitted by this section and Section 712.

711.2.3 Supporting construction. The supporting construction shall be protected to afford the required fire-resistance rating of the horizontal assembly supported.

Exception: In buildings of Type IIB, IIB or VB construction, the construction supporting the horizontal assembly is not required to be fire-resistance rated at the following:
1. Horizontal assemblies at the separations of incidental uses as specified by Table 509 provided the required fire-resistance rating does not exceed 1 hour.
2. Horizontal assemblies at the separations of dwelling units and sleeping units as required by Section 420.3.
3. Horizontal assemblies at smoke barriers constructed in accordance with Section 709.

711.2.4 Fire-resistance rating. The fire-resistance rating of horizontal assemblies shall comply with Sections 711.2.4.1 through 711.2.4.6 but shall be not less than that required by the building type of construction.

711.2.4.1 Separating mixed occupancies. Where the horizontal assembly separates mixed occupancies, the assembly shall have a fire-resistance rating of not less than that required by Section 508.4 based on the occupancies being separated.

711.2.4.2 Separating fire areas. Where the horizontal assembly separates a single occupancy into different fire areas, the assembly shall have a fire-resistance rating of not less than that required by Section 707.3.10.

711.2.4.3 Dwelling units and sleeping units. Horizontal assemblies serving as dwelling or sleeping unit separations in accordance with Section 420.3 shall be not less than 1-hour fire-resistance-rated construction.
 Exception: Horizontal assemblies separating dwelling units and sleeping units shall be not less than 1/2-hour fire-resistance-rated construction in a building of Type IIB, IIIB and VB construction, where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

711.2.4.4 Separating smoke compartments. Where the horizontal assembly is required to be a smoke barrier, the assembly shall comply with Section 709.

711.2.4.5 Separating incidental uses. Where the horizontal assembly separates incidental uses from the remainder of the building, the assembly shall have a fire-resistance rating of not less than that required by Section 509.
Other separations. Where a horizontal assembly is required by other sections of this code, the assembly shall have a fire-resistance rating of not less than that required by that section.

Ceiling panels. Where the weight of lay-in ceiling panels, used as part of fire-resistance-rated floor/ceiling or roof/ceiling assemblies, is not adequate to resist an upward force of 1 pound per square foot (48 Pa), wire or other approved devices shall be installed above the panels to prevent vertical displacement under such upward force.

Unusable space. In 1-hour fire-resistance-rated floor/ceiling assemblies, the ceiling membrane is not required to be installed over unusable crawl spaces. In 1-hour fire-resistance-rated roof assemblies, the floor membrane is not required to be installed where unusable attic space occurs above.

Nonfire-resistance-rated floor and roof assemblies. Nonfire-resistance-rated floor, floor/ceiling, roof and roof/ceiling assemblies shall comply with Sections 711.3.1 and 711.3.2.

Materials. Assemblies shall be of materials permitted by the building type of construction.

Continuity. Assemblies shall be continuous without vertical openings, except as permitted by Section 712.

SECTION 712
VERTICAL OPENINGS

General. Each vertical opening shall comply in accordance with one of the protection methods in Sections 712.1.1 through 712.1.16.

Shaft enclosures. Vertical openings contained entirely within a shaft enclosure complying with Section 713 shall be permitted.

Individual dwelling unit. Unconcealed vertical openings totally within an individual residential dwelling unit and connecting four stories or less shall be permitted.

Escalator openings. Where a building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, vertical
openings for escalators shall be permitted where protected in accordance with Section 712.1.3.1 or 712.1.3.2.

712.1.3.1 Opening size. Protection by a draft curtain and closely spaced sprinklers in accordance with NFPA 13 shall be permitted where the area of the vertical opening between stories does not exceed twice the horizontal projected area of the escalator. In other than Groups B and M, this application is limited to openings that do not connect more than four stories.

712.1.3.2 Automatic shutters. Protection of the vertical opening by approved shutters at every penetrated floor shall be permitted in accordance with this section. The shutters shall be of noncombustible construction and have a fire-resistance rating of not less than 1.5 hours. The shutter shall be so constructed as to close immediately upon the actuation of a smoke detector installed in accordance with Section 907.3.1 and shall completely shut off the well opening. Escalators shall cease operation when the shutter begins to close. The shutter shall operate at a speed of not more than 30 feet per minute (152.4 mm/s) and shall be equipped with a sensitive leading edge to arrest its progress where in contact with any obstacle, and to continue its progress on release there from.

712.1.4 Penetrations. Penetrations, concealed and unconcealed, shall be permitted where protected in accordance with Section 714.

712.1.5 Joints. Joints shall be permitted where complying with Section 712.1.5.1 or 712.1.5.2, as applicable.

712.1.5.1 Joints in or between horizontal assemblies. Joints made in or between horizontal assemblies shall comply with Section 715. The void created at the intersection of a floor/ceiling assembly and an exterior curtain wall assembly shall be permitted where protected in accordance with Section 715.4.

712.1.5.2 Joints in or between nonfire-resistance-rated floor assemblies. Joints in or between floor assemblies without a required fire-resistance rating shall be permitted where they comply with one of the following:

1. The joint shall be concealed within the cavity of a wall.
2. The joint shall be located above a ceiling.
3. The joint shall be sealed, treated or covered with an approved material or system to resist the free passage of flame and the products of combustion.

Exception: Joints meeting one of the exceptions listed in Section 715.1.

712.1.6 Ducts and air transfer openings

Penetrations by ducts and air transfer openings shall be protected in accordance with Section 717. Grease ducts shall be protected in accordance with the *mechanical code*.

712.1.7 Atriums

In other than Group H occupancies, atriums complying with Section 404 shall be permitted.

712.1.8 Masonry chimney

Approved vertical openings for masonry chimneys shall be permitted where the annular space is fireblocked at each floor level in accordance with Section 718.2.5.

712.1.9 Two-story openings

In other than Groups I-2 and I-3, a vertical opening that is not used as one of the applications listed in this section shall be permitted if the opening complies with all of the items below:

1. Does not connect more than two stories.
2. Does not penetrate a horizontal assembly that separates fire areas or smoke barriers that separate smoke compartments.
3. Is not concealed within the construction of a wall or a floor/ceiling assembly.
4. Is not open to a corridor in Group I and R occupancies.
5. Is not open to a corridor on nonsprinklered floors.
6. Is separated from floor openings and air transfer openings serving other floors by construction conforming to required shaft enclosures.

712.1.10 Parking garages

Vertical openings in parking garages for automobile ramps, elevators and duct systems shall comply with Section 712.1.10.1, 712.1.10.2 or 712.1.10.3, as applicable.

712.1.10.1 Automobile ramps

Vertical openings for automobile ramps in open and enclosed parking garages shall be permitted where constructed in accordance with Sections 406.5 and 406.6, respectively.

712.1.10.2 Elevators

Vertical openings for elevator hoistways in open or enclosed parking garages that serve only the parking garage, and complying with Sections 406.5 and 406.6, respectively, shall be permitted.
712.1.10.3 **Duct systems.** Vertical openings for mechanical exhaust or supply duct systems in open or enclosed parking garages complying with Sections 406.5 and 406.6, respectively, shall be permitted to be unenclosed where such duct system is contained within and serves only the parking garage.

712.1.11 **Mezzanine.** Vertical openings between a mezzanine complying with Section 505 and the floor below shall be permitted.

712.1.12 **Exit access stairways and ramps.** Vertical openings containing exit access stairways or ramps in accordance with Section 1019 shall be permitted.

712.1.13 **Openings.** Vertical openings for floor fire doors and access doors shall be permitted where protected by Section 712.1.13.1 or 712.1.13.2.

712.1.13.1 **Horizontal fire door assemblies.** Horizontal fire door assemblies used to protect openings in fire-resistance-rated horizontal assemblies shall be tested in accordance with NFPA 288, and shall achieve a fire-resistance rating not less than the assembly being penetrated. Horizontal fire door assemblies shall be labeled by an approved agency. The label shall be permanently affixed and shall specify the manufacturer, the test standard and the fire-resistance rating.

712.1.13.2 **Access doors.** Access doors shall be permitted in ceilings of fire-resistance-rated floor/ceiling and roof/ceiling assemblies, provided such doors are tested in accordance with ASTM E 119 or UL 263 as horizontal assemblies and labeled by an approved agency for such purpose.

712.1.14 **Group I-3.** In Group I-3 occupancies, vertical openings shall be permitted in accordance with Section 408.5.

712.1.15 **Skylights.** Skylights and other penetrations through a fire-resistance-rated roof deck or slab are permitted to be unprotected, provided that the structural integrity of the fire-resistance-rated roof assembly is maintained. Unprotected skylights shall not be permitted in roof assemblies required to be fire-resistance-rated in accordance with Section 705.8.6. The supporting construction shall be protected to afford the required fire-resistance rating of the horizontal assembly supported.
712.1.16 Openings otherwise permitted. Vertical openings shall be permitted where allowed by other sections of this code.

SECTION 713
SHAFT ENCLOSURES

713.1 General. The provisions of this section shall apply to shafts required to protect openings and penetrations through floor/ceiling and roof/ceiling assemblies. Interior exit stairways and ramps shall be enclosed in accordance with Section 1023.

713.2 Construction. Shaft enclosures shall be constructed as fire barriers in accordance with Section 707 or horizontal assemblies in accordance with Section 711, or both.

713.3 Materials. The shaft enclosure shall be of materials permitted by the building type of construction.

713.4 Fire-resistance rating. Shaft enclosures shall have a fire-resistance rating of not less than 2 hours where connecting four stories or more, and not less than 1 hour where connecting less than four stories. The number of stories connected by the shaft enclosure shall include any basements but not any mezzanines. Shaft enclosures shall have a fire-resistance rating not less than the floor assembly penetrated, but need not exceed 2 hours. Shaft enclosures shall meet the requirements of Section 703.2.1.

713.5 Continuity. Shaft enclosures shall be constructed as fire barriers in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both, and shall have continuity in accordance with Section 707.5 for fire barriers or Section 711.2.2 for horizontal assemblies, as applicable.

713.6 Exterior walls. Where exterior walls serve as a part of a required shaft enclosure, such walls shall comply with the requirements of Section 705 for exterior walls and the fire-resistance-rated enclosure requirements shall not apply. Exception: Exterior walls required to be fire-resistance-rated in accordance with Section 1021.2 for exterior egress balconies, Section 1023.7 for interior exit stairways and ramps and Section 1027.6 for exterior exit stairways and ramps.
713.7 **Openings.** Openings in a shaft enclosure shall be protected in accordance with Section 716 as required for fire barriers. Doors shall be self- or automatic-closing by smoke detection in accordance with Section 716.5.9.3.

713.7.1 **Prohibited openings.** Openings other than those necessary for the purpose of the shaft shall not be permitted in shaft enclosures.

713.8 **Penetrations.** Penetrations in a shaft enclosure shall be protected in accordance with Section 714 as required for fire barriers. Structural elements, such as beams or joists, where protected in accordance with Section 714 shall be permitted to penetrate a shaft enclosure.

713.8.1 **Prohibited penetrations.** Penetrations other than those necessary for the purpose of the shaft shall not be permitted in shaft enclosures.

713.9 **Joints.** Joints in a shaft enclosure shall comply with Section 715.

713.10 **Duct and air transfer openings.** Penetrations of a shaft enclosure by ducts and air transfer openings shall comply with Section 717.

713.11 **Enclosure at the bottom.** Shafts that do not extend to the bottom of the building or structure shall comply with one of the following:

1. They shall be enclosed at the lowest level with construction of the same fire-resistance rating as the lowest floor through which the shaft passes, but not less than the rating required for the shaft enclosure.
2. They shall terminate in a room having a use related to the purpose of the shaft. The room shall be separated from the remainder of the building by fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both. The fire-resistance rating and opening protectives shall be not less than the protection required for the shaft enclosure.
3. They shall be protected by approved fire dampers installed in accordance with their listing at the lowest floor level within the shaft enclosure.

Exceptions:

1. The fire-resistance-rated room separation is not required, provided there are no openings in or penetrations of the shaft enclosure to the interior of the building except at the bottom. The bottom of the shaft shall be closed off around the penetrating items with materials permitted by Section 718.3.1 for draftstopping, or the room shall be provided with an approved automatic sprinkler system.
2. A shaft enclosure containing a waste or linen chute shall not be used for any other purpose and shall discharge in a room protected in accordance with Section 713.13.4.

3. The fire-resistance-rated room separation and the protection at the bottom of the shaft are not required provided there are no combustibles in the shaft and there are no openings or other penetrations through the shaft enclosure to the interior of the building.

713.12 Enclosure at top. A shaft enclosure that does not extend to the underside of the roof sheathing, deck or slab of the building shall be enclosed at the top with construction of the same fire-resistance rating as the topmost floor penetrated by the shaft, but not less than the fire-resistance rating required for the shaft enclosure.

713.13 Waste and linen chutes and incinerator rooms. Waste and linen chutes shall comply with the provisions of NFPA 82, Chapter 5 and shall meet the requirements of Sections 713.13.1 through 713.13.6. Incinerator rooms shall meet the provisions of Sections 713.13.4 through 713.13.5.

Exception: Chutes serving and contained within a single dwelling unit.

713.13.1 Waste and linen. A shaft enclosure containing a recycling, or waste or linen chute shall not be used for any other purpose and shall be enclosed in accordance with Section 713.4. Openings into the shaft, from access rooms and discharge rooms, shall be protected in accordance with this section and Section 716. Openings into chutes shall not be located in corridors. Doors into chutes shall be self-closing. Discharge doors shall be self- or automatic-closing upon the actuation of a smoke detector in accordance with Section 716.5.9.3, except that heat-activated closing devices shall be permitted between the shaft and the discharge room.

713.13.2 Materials. A shaft enclosure containing a waste, recycling, or linen chute shall be constructed of materials as permitted by the building type of construction.

713.13.3 Chute access rooms. Access openings for waste or linen chutes shall be located in rooms or compartments enclosed by not less than 1-hour fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both. Openings into the access rooms shall be protected by opening protectives having a fire protection rating of not less than 3/4 hour. Doors shall be self- or automatic-closing upon the detection of smoke in accordance with Section 716.5.9.3.
713.13.4 **Chute discharge room.** Waste or linen chutes shall discharge into an enclosed room separated by fire barriers with a fire-resistance rating not less than the required fire rating of the shaft enclosure and constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both. Openings into the discharge room from the remainder of the building shall be protected by opening protectives having a fire protection rating equal to the protection required for the shaft enclosure. Doors shall be self- or automatic closing upon the detection of smoke in accordance with Section 716.5.9.3. Waste chutes shall not terminate in an incinerator room. Waste and linen rooms that are not provided with chutes need only comply with Table 509.

713.13.5 **Incinerator room.** Incinerator rooms shall comply with Table 509.

713.13.6 **Automatic sprinkler system.** An approved automatic sprinkler system shall be installed in accordance with Section 903.2.11.2.

713.14 **Elevator, dumbwaiter and other hoistways.** Elevator, dumbwaiter and other hoistway enclosures shall be constructed in accordance with Section 713 and Chapter 30.

SECTION 714

PENETRATIONS

714.1 **Scope.** The provisions of this section shall govern the materials and methods of construction used to protect through penetrations and membrane penetrations of horizontal assemblies and fire-resistance-rated wall assemblies.

714.1.1 **Ducts and air transfer openings.** Penetrations of fire-resistance-rated walls by ducts that are not protected with dampers shall comply with Sections 714.2 through 714.3.3. Penetrations of horizontal assemblies not protected with a shaft as permitted by Section 717.6, and not required to be protected with fire dampers by other sections of this code, shall comply with Sections 714.4 through 714.5.2. Ducts and air transfer openings that are protected with dampers shall comply with Section 717.

714.2 **Installation details.** Where sleeves are used, they shall be securely fastened to the assembly penetrated. The space between the item contained in the sleeve and the sleeve itself and any space between the sleeve and the assembly penetrated shall be protected in accordance with this section. Insulation and coverings on or in the
penetrating item shall not penetrate the assembly unless the specific material used has been tested as part of the assembly in accordance with this section.

714.3 **Fire-resistance-rated walls.** Penetrations into or through fire walls, fire barriers, smoke barrier walls and fire partitions shall comply with Sections 714.3.1 through 714.3.3. Penetrations in smoke barrier walls shall also comply with Section 714.4.4.

714.3.1 **Through penetrations.** Through penetrations of fire-resistance-rated walls shall comply with Section 714.3.1.1 or 714.3.1.2.

Exception: Where the penetrating items are steel, ferrous or copper pipes, tubes or conduits, the annular space between the penetrating item and the fire-resistance-rated wall is permitted to be protected by either of the following measures:

1. In concrete or masonry walls where the penetrating item is a maximum 6-inch (152 mm) nominal diameter and the area of the opening through the wall does not exceed 144 square inches (0.0929 m²), concrete, grout or mortar is permitted where installed the full thickness of the wall or the thickness required to maintain the fire-resistance rating.

2. The material used to fill the annular space shall prevent the passage of flame and hot gases sufficient to ignite cotton waste when subjected to ASTM E 119 or UL 263 time-temperature fire conditions under a minimum positive pressure differential of 0.01 inch (2.49 Pa) of water at the location of the penetration for the time period equivalent to the fire-resistance rating of the construction penetrated.

714.3.1.1 **Fire-resistance-rated assemblies.** Penetrations shall be installed as tested in an approved fire-resistance-rated assembly.

714.3.1.2 **Through-penetration firestop system.** Through penetrations shall be protected by an approved penetration firestop system installed as tested in accordance with ASTM E 814 or UL 1479, with a minimum positive pressure differential of 0.01 inch (2.49 Pa) of water and shall have an F rating of not less than the required fire-resistance rating of the wall penetrated.

714.3.2 **Membrane penetrations.** Membrane penetrations shall comply with Section 714.3.1. Where walls or partitions are required to have a fire-resistance rating, recessed fixtures shall be installed such that the required fire-resistance will not be reduced.

Exceptions:
1. Membrane penetrations of maximum 2-hour fire-resistance-rated walls and partitions by steel electrical boxes that do not exceed 16 square inches (0.0103 m²) in area, provided the aggregate area of the openings through the membrane does not exceed 100 square inches (0.0645 m²) in any 100 square feet (9.29 m²) of wall area. The annular space between the wall membrane and the box shall not exceed \(\frac{1}{8} \) inch (3.2 mm). Such boxes on opposite sides of the wall or partition shall be separated by one of the following:

1.1. By a horizontal distance of not less than 24 inches (610 mm) where the wall or partition is constructed with individual noncommunicating stud cavities;

1.2. By a horizontal distance of not less than the depth of the wall cavity where the wall cavity is filled with cellulose loose fill, rockwool or slag mineral wool insulation;

1.3. By solid fireblocking in accordance with Section 718.2.1;

1.4. By protecting both outlet boxes with listed putty pads; or

1.5. By other listed materials and methods.

2. Membrane penetrations by listed electrical boxes of any material, provided such boxes have been tested for use in fire-resistance-rated assemblies and are installed in accordance with the instructions included in the listing. The annular space between the wall membrane and the box shall not exceed \(\frac{1}{8} \) inch (3.2 mm) unless listed otherwise. Such boxes on opposite sides of the wall or partition shall be separated by one of the following:

2.1. By the horizontal distance specified in the listing of the electrical boxes;

2.2. By solid fireblocking in accordance with Section 718.2.1;

2.3. By protecting both boxes with listed putty pads; or

2.4. By other listed materials and methods.

3. Membrane penetrations by electrical boxes of any size or type, that have been listed as part of a wall opening protective material system for use in fire-resistance-rated assemblies and are installed in accordance with the instructions included in the listing.

4. Membrane penetrations by boxes other than electrical boxes, provided such penetrating items and the annular space between the wall membrane and the box, are protected by an approved membrane penetration firestop system installed as tested in accordance with ASTM E 814 or UL 1479, with a minimum positive pressure differential of 0.01 inch (2.49 Pa) of water, and shall have an F and T rating of not less than the required fire-resistance rating of the wall penetrated and be installed in accordance with their listing.

5. The annular space created by the penetration of an automatic sprinkler, provided it is covered by a metal escutcheon plate.
6. Membrane penetrations of maximum 2-hour fire-resistance-rated walls and partitions by steel electrical boxes that exceed 16 square inches (0.0103 m²) in area, or steel electrical boxes of any size having an aggregate area through the membrane exceeding 100 square inches (0.0645 m²) in any 100 square feet (9.29 m²) of wall area, provided such penetrating items are protected by listed putty pads or other listed materials and methods, and installed in accordance with the listing.

714.3.3 Dissimilar materials. Noncombustible penetrating items shall not connect to combustible items beyond the point of firestopping unless it can be demonstrated that the fire-resistance integrity of the wall is maintained.

714.4 Horizontal assemblies. Penetrations of a fire-resistance-rated floor, floor/ceiling assembly or the ceiling membrane of a roof/ceiling assembly not required to be enclosed in a shaft by Section 712.1 shall be protected in accordance with Sections 714.4.1 through 714.4.4.

714.4.1. Through penetrations. Through penetrations of horizontal assemblies shall comply with Section 714.4.1.1 or 714.4.1.2.

Exceptions:

1. Penetrations by steel, ferrous or copper conduits, pipes, tubes or vents or concrete or masonry items through a single fire-resistance-rated floor assembly where the annular space is protected with materials that prevent the passage of flame and hot gases sufficient to ignite cotton waste when subjected to ASTM E 119 or UL 263 time-temperature fire conditions under a minimum positive pressure differential of 0.01 inch (2.49 Pa) of water at the location of the penetration for the time period equivalent to the fire-resistance rating of the construction penetrated. Penetrating items with a maximum 6-inch (152 mm) nominal diameter shall not be limited to the penetration of a single fire-resistance-rated floor assembly, provided the aggregate area of the openings through the assembly does not exceed 144 square inches (92 900 mm²) in any 100 square feet (9.3 m²) of floor area.

2. Penetrations in a single concrete floor by steel, ferrous or copper conduits, pipes, tubes or vents with a maximum 6-inch (152 mm) nominal diameter, provided the concrete, grout or mortar is installed the full thickness of the floor or the thickness required to maintain the fire-resistance rating. The penetrating items shall not be limited to the penetration of a single concrete floor, provided the area of the opening through each floor does not exceed 144 square inches (92 900 mm²).
3. Penetrations by listed electrical boxes of any material, provided such boxes have been tested for use in fire-resistance-rated assemblies and installed in accordance with the instructions included in the listing.

714.4.1.1 Installation. Through penetrations shall be installed as tested in the approved fire-resistance-rated assembly.

714.4.1.2 Through-penetration firestop system. Through penetrations shall be protected by an approved through-penetration firestop system installed and tested in accordance with ASTM E 814 or UL 1479, with a minimum positive pressure differential of 0.01 inch of water (2.49 Pa). The system shall have an F rating/T rating of not less than 1 hour but not less than the required rating of the floor penetrated.

Exceptions:
1. Floor penetrations contained and located within the cavity of a wall above the floor or below the floor do not require a T rating.
2. Floor penetrations by floor drains, tub drains or shower drains contained and located within the concealed space of a horizontal assembly do not require a T rating.
3. Floor penetrations of maximum 4-inch (102 mm) nominal diameter penetrating directly into metal-enclosed electrical power switchgear do not require a T rating.

714.4.2. Membrane penetrations. Penetrations of membranes that are part of a horizontal assembly shall comply with Section 714.4.1.1 or 714.4.1.2. Where floor/ceiling assemblies are required to have a fire-resistance rating, recessed fixtures shall be installed such that the required fire-resistance will not be reduced.

Exceptions:
1. Membrane penetrations by steel, ferrous or copper conduits, pipes, tubes or vents, or concrete or masonry items where the annular space is protected either in accordance with Section 714.4.1 or to prevent the free passage of flame and the products of combustion. The aggregate area of the openings through the membrane shall not exceed 100 square inches (64 500 mm²) in any 100 square feet (9.3 m²) of ceiling area in assemblies tested without penetrations.
2. Ceiling membrane penetrations of maximum 2-hour horizontal assemblies by steel electrical boxes that do not exceed 16 square inches (10 323 mm²) in area, provided the aggregate area of such penetrations does not exceed 100 square inches (44 500 mm²) in any 100 square feet.
(9.29 m²) of ceiling area, and the annular space between the ceiling membrane and the box does not exceed 1/8 inch (3.2 mm).
3. Membrane penetrations by electrical boxes of any size or type that have been listed as part of an opening protective material system for use in horizontal assemblies and are installed in accordance with the instructions included in the listing.
4. Membrane penetrations by listed electrical boxes of any material, provided such boxes have been tested for use in fire-resistance-rated assemblies and are installed in accordance with the instructions included in the listing. The annular space between the ceiling membrane and the box shall not exceed 1/8 inch (3.2 mm) unless listed otherwise.
5. The annular space created by the penetration of a fire sprinkler, provided it is covered by a metal escutcheon plate.
6. Noncombustible items that are cast into concrete building elements and that do not penetrate both top and bottom surfaces of the element.
7. The ceiling membrane of 1- and 2-hour fire-resistance-rated horizontal assemblies is permitted to be interrupted with the double wood top plate of a wall assembly that is sheathed with Type X gypsum wallboard, provided that all penetrating items through the double top plates are protected in accordance with Section 714.4.1.1 or 714.4.1.2 and the ceiling membrane is tight to the top plates.

714.4.3 Dissimilar materials. Noncombustible penetrating items shall not connect to combustible materials beyond the point of firestopping unless it can be demonstrated that the fire-resistance integrity of the horizontal assembly is maintained.

714.4.4 Penetrations in smoke barriers. Penetrations in smoke barriers shall be protected by an approved through penetration firestop system installed and tested in accordance with the requirements of UL 1479 for air leakage. The L rating of the system measured at 0.30 inch (7.47 Pa) of water in both the ambient temperature and elevated temperature tests shall not exceed:
1. 5.0 cfm per square foot (0.025 m³/ s · m²) of penetration opening for each through-penetration firestop system; or
2. A total cumulative leakage of 50 cfm (0.024 m³/s) for any 100 square feet (9.3 m²) of wall area, or floor area.

714.5 Nonfire-resistance-rated assemblies. Penetrations of nonfire-resistance-rated floor or floor/ceiling assemblies or the ceiling membrane of a nonfire-resistance-rated roof/ceiling assembly shall meet the requirements of Section 713 or shall comply with Section 714.5.1 or 714.5.2.
714.5.1 Noncombustible penetrating items. Noncombustible penetrating items that connect not more than five stories are permitted, provided that the annular space is filled to resist the free passage of flame and the products of combustion with an approved noncombustible material or with a fill, void or cavity material that is tested and classified for use in through-penetration firestop systems.

714.5.2 Penetrating items. Penetrating items that connect not more than two stories are permitted, provided that the annular space is filled with an approved material to resist the free passage of flame and the products of combustion.

SECTION 715
FIRE-RESISTANT JOINT SYSTEMS

715.1 General. Joints installed in or between fire-resistance-rated walls, floor or floor/ceiling assemblies and roofs or roof/ceiling assemblies shall be protected by an approved fire-resistant joint system designed to resist the passage of fire for a time period not less than the required fire-resistance rating of the wall, floor or roof in or between which the system is installed. Fire-resistant joint systems shall be tested in accordance with Section 715.3.

Exception: Fire-resistant joint systems shall not be required for joints in all of the following locations:
1. Floors within a single dwelling unit.
2. Floors where the joint is protected by a shaft enclosure in accordance with Section 713.
3. Floors within atriums where the space adjacent to the atrium is included in the volume of the atrium for smoke control purposes.
4. Floors within malls.
5. Floors and ramps within open and enclosed parking garages or structures constructed in accordance with Sections 406.5 and 406.6, respectively.
7. Walls that are permitted to have unprotected openings.
8. Roofs where openings are permitted.
9. Control joints not exceeding a maximum width of 0.625 inch (15.9 mm) and tested in accordance with ASTM E 119 or UL 263.

715.1.1 Curtain wall assembly. The void created at the intersection of a floor/ceiling assembly and an exterior curtain wall assembly shall be protected in accordance with Section 715.4.
715.2 **Installation.** A fire-resistant joint system shall be securely installed in accordance with the listing criteria in or on the joint for its entire length so as not to dislodge, loosen or otherwise impair its ability to accommodate expected building movements and to resist the passage of fire and hot gases.

715.3 **Fire test criteria.** Fire-resistant joint systems shall be tested in accordance with the requirements of either ASTM E 1966 or UL 2079. Nonsymmetrical wall joint systems shall be tested with both faces exposed to the furnace, and the assigned fire-resistance rating shall be the shortest duration obtained from the two tests. Where evidence is furnished to show that the wall was tested with the least fire-resistant side exposed to the furnace, subject to acceptance of the building official, the wall need not be subjected to tests from the opposite side.

Exception: For exterior walls with a horizontal fire separation distance greater than 5 feet (1524 mm), the joint system shall be required to be tested for interior fire exposure only.

715.4 **Exterior curtain wall/floor intersection.** Where fire resistance-rated floor or floor/ceiling assemblies are required, voids created at the intersection of the exterior curtain wall assemblies and such floor assemblies shall be sealed with an approved system to prevent the interior spread of fire. Such systems shall be securely installed and tested in accordance with ASTM E 2307 to provide an F rating for a time period not less than the fire-resistance rating of the floor assembly. Height and fire-resistance requirements for curtain wall spandrels shall comply with Section 705.8.5.

Exception: Voids created at the intersection of the exterior curtain wall assemblies and such floor assemblies where the vision glass extends to the finished floor level shall be permitted to be sealed with an approved material to prevent the interior spread of fire. Such material shall be securely installed and capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste where subjected to ASTM E 119 time-temperature fire conditions under a minimum positive pressure differential of 0.01 inch (0.254 mm) of water column (2.5 Pa) for the time period not less than the fire-resistance rating of the floor assembly.

715.4.1 **Exterior curtain wall/nonfire-resistance-rated floor assembly intersections.** Voids created at the intersection of exterior curtain wall assemblies and non-fire-resistance-rated floor or floor/ceiling assemblies shall be sealed with an approved material or system to retard the interior spread of fire and hot gases between stories.
715.4.2 **Exterior curtain wall/vertical fire barrier intersections.** Voids created at the intersection of nonfire-resistance-rated exterior curtain wall assemblies and fire barriers shall be filled. An approved material or system shall be used to fill the void and shall be securely installed in or on the intersection for its entire length so as not to dislodge, loosen or otherwise impair its ability to accommodate expected building movements and to retard the passage of fire and hot gases.

715.5 **Spandrel wall.** Height and fire-resistance requirements for curtain wall spandrels shall comply with Section 705.8.5. Where Section 705.8.5 does not require a fire-resistance-rated spandrel wall, the requirements of Section 715.4 shall still apply to the intersection between the spandrel wall and the floor.

715.6 **Fire-resistant joint systems in smoke barriers.** Fire resistant joint systems in smoke barriers, and joints at the intersection of a horizontal smoke barrier and an exterior curtain wall, shall be tested in accordance with the requirements of UL 2079 for air leakage. The L rating of the joint system shall not exceed 5 cfm per linear foot (0.00775 m³/s m) of joint at 0.30 inch (7.47 Pa) of water for both the ambient temperature and elevated temperature tests.

SECTION 716

OPENING PROTECTIVES

716.1 **General.** Opening protective devices required by other sections of this code shall comply with the provisions of this section.

716.2 **Fire-resistance-rated glazing.** Fire-resistance-rated glazing tested as part of a fire-resistance-rated wall or floor/ceiling assembly in accordance with ASTM E 119 or UL 263 and labeled in accordance with Section 703.6 shall not otherwise be required to comply with this section where used as part of a wall or floor/ceiling assembly. Fire-resistance-rated glazing shall be permitted in fire door and fire window assemblies where tested and installed in accordance with their listings and where in compliance with the requirements of this section.

716.3 **Marking fire-rated glazing assemblies.** Fire-rated glazing assemblies shall be marked in accordance with Tables 716.3, 716.5 and 716.6.

716.3.1 **Fire-rated glazing identification.** For fire-rated glazing, the label shall bear the identification required in Tables 716.3 and 716.5. “D” indicates that the glazing is permitted to be used in fire door assemblies and that the glazing meets the fire protection requirements of NFPA 252. “H” shall indicate
that the glazing meets the hose stream requirements of NFPA 252. “T” shall indicate that the glazing meets the temperature requirements of Section 716.5.5.1. The placeholder “XXX” represents the fire-rating period, in minutes.

716.3.2 **Fire-protection-rated glazing identification.** For fire-protection-rated glazing, the label shall bear the following identification required in Tables 716.3 and 716.6: “OH – XXX.” “OH” indicates that the glazing meets both the fire protection and the hose-stream requirements of NFPA 257 or UL 9 and is permitted to be used in fire window openings. The placeholder “XXX” represents the fire-rating period, in minutes.

716.3.3 **Fire-rated glazing that exceeds the code requirements.** Fire-rated glazing assemblies marked as complying with hose stream requirements (H) shall be permitted in applications that do not require compliance with hose stream requirements. Fire-rated glazing assemblies marked as complying with temperature rise requirements (T) shall be permitted in applications that do not require compliance with temperature rise requirements. Fire-rated glazing assemblies marked with ratings (XXX) that exceed the ratings required by this code shall be permitted.

TABLE 716.3
MARKING FIRE-RATED GLAZING ASSEMBLIES

<table>
<thead>
<tr>
<th>FIRE TEST STANDARD</th>
<th>MARKING</th>
<th>DEFINITION OF MARKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM E 119 or UL 263</td>
<td>W</td>
<td>Meets wall assembly criteria.</td>
</tr>
<tr>
<td>NFPA 257 or UL 9</td>
<td>OH</td>
<td>Meets fire window assembly criteria including the hose stream test.</td>
</tr>
<tr>
<td>NFPA 252 or UL 10B or UL 10C</td>
<td>D</td>
<td>Meets fire door assembly criteria.</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>Meets fire door assembly hose stream test.</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>Meets 450°F temperature rise criteria for 30 minutes</td>
</tr>
<tr>
<td>XXX</td>
<td>XXX</td>
<td>The time in minutes of the fire-resistance or fire protection rating of the glazing assembly.</td>
</tr>
</tbody>
</table>

For SI: °C = [(°F) - 32]/1.8.

716.4 **Alternative methods for determining fire protection ratings.** The application of any of the alternative methods listed in this section shall be based on the fire exposure and acceptance criteria specified in NFPA 252, NFPA 257 or UL 9. The required fire-resistance of an opening protective shall be permitted to be established by any of the following methods or procedures:

1. Designs documented in *referenced publications* approved in accordance with this code.
2. Calculations performed in accordance with Section 106.5.
3. Engineering analysis based on a comparison of opening protective designs having fire protection ratings as determined by the test procedures set forth in NFPA 252, NFPA 257 or UL 9.

4. Alternative protection methods as allowed by Section 104.11.

716.5 Fire door and shutter assemblies. Approved fire door and fire shutter assemblies shall be constructed of any material or assembly of component materials that conforms to the test requirements of Section 716.5.1, 716.5.2 or 716.5.3 and the fire protection rating indicated in Table 716.5. Fire door frames with transom lights, sidelights or both shall be permitted in accordance with Section 716.5.6. Fire door assemblies and shutters shall be installed in accordance with the provisions of this section and NFPA 80.

Exceptions:
1. Labeled protective assemblies that conform to the requirements of this section or UL 10A, UL 14B and UL 14C for tin-clad fire door assemblies.
2. Floor fire door assemblies in accordance with Section 712.1.13.1.

<table>
<thead>
<tr>
<th>TYPE OF ASSEMBLY</th>
<th>REQUIRED WALL ASSEMBLY RATING (hours)</th>
<th>MINIMUM FIRE DOOR AND FIRE SHUTTER ASSEMBLY RATING (hours)</th>
<th>DOOR VISION PANEL SIZE²</th>
<th>FIRE-RATED GLAZING MARKING DOOR VISION PANEL ²¹</th>
<th>MINIMUM SIDELIGHT/TRANSOM ASSEMBLY RATING (hours)</th>
<th>FIRE-RATED GLAZING MARKING SIDELIGHT/TRANSOM PANEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire walls and fire barriers having a required fire-resistance rating greater than 1 hour</td>
<td>4</td>
<td>3</td>
<td>See Note b</td>
<td>D-H-W-240</td>
<td>Not Permitted</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3a</td>
<td>See Note b</td>
<td>D-H-W-180</td>
<td>Not Permitted</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1 ½</td>
<td>100 sq. in.</td>
<td><100 sq. in. = D-H-90</td>
<td>Not Permitted</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>100 sq. in. = D-H-W-90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enclosures for shafts, interior exit stairways and interior exit ramps.</td>
<td>1 ½</td>
<td>1 ½</td>
<td>100 sq. in.</td>
<td><100 sq. in. = D-H-W-90</td>
<td>Not Permitted</td>
<td>1 ½</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>100 sq. in. = D-H-T-W-90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal exits in fire walls²</td>
<td>4</td>
<td>3</td>
<td>100 sq. in.</td>
<td><100 sq. in. = D-H-180</td>
<td>Not Permitted</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>100 sq. in. = D-H-W-240</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3a</td>
<td>100 sq. in.</td>
<td><100 sq. in. = D-H-180</td>
<td>Not Permitted</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>100 sq. in. = D-H-W-180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fire barriers having a required fire-resistance rating of 1 hour: Enclosures for shafts, exit access stairways, exit access ramps, interior exit stairways and interior exit ramps; and exit passageway walls

<table>
<thead>
<tr>
<th>Fire protection</th>
<th>Fire partition walls</th>
<th>Smoke barriers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire protection</td>
<td>Fire barriers</td>
<td>Smoke barriers</td>
</tr>
<tr>
<td>Other fire barriers</td>
<td>Fire partitions: Corridor walls</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3/4</td>
<td>Maximum size tested</td>
</tr>
<tr>
<td>0.5</td>
<td>1/3</td>
<td>Maximum size tested</td>
</tr>
<tr>
<td>0.5</td>
<td>1/3</td>
<td>Maximum size tested</td>
</tr>
<tr>
<td>0.5</td>
<td>1/3</td>
<td>Maximum size tested</td>
</tr>
<tr>
<td>3</td>
<td>1 1/2</td>
<td>100 sq. in.</td>
</tr>
<tr>
<td>2</td>
<td>1 1/2</td>
<td>100 sq. in.</td>
</tr>
</tbody>
</table>

Fire protection

For SI: 1 square inch = 645.2 mm.

a. Two doors, each with a fire protection rating of 1 1/2 hours, installed on opposite sides of the same opening in a fire wall, shall be deemed equivalent in fire protection rating to one 3-hour fire door.
b. Fire-resistance-rated glazing tested to ASTM E 119 in accordance with Section 716.2 shall be permitted, in the maximum size tested.
c. Except where the building is equipped throughout with an automatic sprinkler and the fire-rated glazing meets the criteria established in Section 716.5.5.
d. Under the column heading “Fire-rated glazing marking door vision panel,” W refers to the fire-resistance rating of the glazing, not the frame.
e. See Section 716.5.8.1.2.1.
716.5.1 Side-hinged or pivoted swinging doors. Fire door assemblies with side-hinged and pivoted swinging doors shall be tested in accordance with NFPA 252 or UL 10C. After 5 minutes into the NFPA 252 test, the neutral pressure level in the furnace shall be established at 40 inches (1016 mm) or less above the sill.

716.5.2 Other types of assemblies. Fire door assemblies with other types of doors, including swinging elevator doors, horizontal sliding fire door assemblies, and fire shutter assemblies, bottom and side-hinged chute intake doors, and top-hinged chute discharge doors, shall be tested in accordance with NFPA 252 or UL 10B. The pressure in the furnace shall be maintained as nearly equal to the atmospheric pressure as possible. Once established, the pressure shall be maintained during the entire test period.

716.5.3 Door assemblies in corridors and smoke barriers. Fire door assemblies required to have a minimum fire protection rating of 20 minutes where located in corridor walls or smoke barrier walls having a fire-resistance rating in accordance with Table 716.5 shall be tested in accordance with NFPA 252 or UL 10C without the hose stream test.

Exceptions:
1. Viewports that require a hole not larger than 1 inch (25 mm) in diameter through the door, have not less than a 0.25-inch-thick (6.4 mm) glass disc and the holder is of metal that will not melt out where subject to temperatures of 1,700°F (927°C).
2. Corridor door assemblies in occupancies of Group I-2 shall be in accordance with Section 407.3.1.
3. Unprotected openings shall be permitted for corridors in multi theater complexes where each motion picture auditorium has not fewer than one-half of its required exit or exit access doorways opening directly to the exterior or into an exit passageway.
4. Horizontal sliding doors in smoke barriers that comply with Sections 408.6 and 408.8.4 in occupancies in Group I-3.

716.5.3.1 Smoke and draft control. Fire door assemblies shall meet the requirements for a smoke and draft control door assembly tested in accordance with UL 1784. The air leakage rate of the door assembly shall not exceed 3.0 cubic feet per minute per square foot (0.01524 m³/s m²) of door opening at 0.10 inch (24.9 Pa) of water for both the ambient temperature and elevated temperature tests. Louvers shall be prohibited. Installation of smoke doors shall be in accordance with NFPA 105.
716.5.3.2 Glazing in door assemblies. In a 20-minute fire door assembly, the glazing material in the door itself shall have a minimum fire-protection-rated glazing of 20 minutes and shall be exempt from the hose stream test. Glazing material in any other part of the door assembly, including transom lights and sidelights, shall be tested in accordance with NFPA 257 or UL 9, including the hose stream test, in accordance with Section 716.6.

716.5.4 Door assemblies in other fire partitions. Fire door assemblies required to have a minimum fire protection rating of 20 minutes where located in other fire partitions having a fire-resistance rating of 0.5 hour in accordance with Table 716.5 shall be tested in accordance with NFPA 252, UL 10B or UL 10C with the hose stream test.

716.5.5 Doors in interior exit stairways and ramps and exit passageways. Fire door assemblies in interior exit stairways and ramps and exit passageways shall have a maximum transmitted temperature rise of not more than 450 °F (250 °C) above ambient at the end of 30 minutes of standard fire test exposure.

Exception: The maximum transmitted temperature rise is not required in buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2.

716.5.5.1 Glazing in doors. Fire-protection-rated glazing in excess of 100 square inches (0.065 m²) is not permitted. Fire-resistance-rated glazing in excess of 100 square inches (0.065 m²) shall be permitted in door fire doors. Listed fire-resistance-rated glazing in a fire door shall have a maximum transmitted temperature rise in accordance with Section 716.5.5 when the fire door is tested in accordance with NFPA 252, UL 10B or UL 10C.

716.5.6 Fire door frames with transom lights and sidelights. Door frames with transom lights, sidelights or both, shall be permitted where a 3/4-hour fire protection rating or less is required in accordance with Table 716.5. Fire door frames with transom lights, sidelights, or both, installed with fire-resistance-rated glazing tested as an assembly in accordance with ASTM E 119 or UL 263 shall be permitted where a fire protection rating exceeding 3/4 hour is required in accordance with Table 716.5.

716.5.7 Labeled protective assemblies. Fire door assemblies shall be labeled by an approved agency. The labels shall comply with NFPA 80, and shall be permanently affixed to the door or frame.
716.5.7.1 Fire door labeling requirements. Fire doors shall be labeled showing the name of the manufacturer or other identification readily traceable back to the manufacturer, the name or trademark of the third party inspection agency, the fire protection rating and, where required for fire doors in interior exit stairways and ramps and exit passageways by Section 716.5.5, the maximum transmitted temperature end point. Smoke and draft control doors complying with UL 1784 shall be labeled as such and shall comply with Section 716.5.7.3. Labels shall be approved and permanently affixed. The label shall be applied at the factory or location where fabrication and assembly are performed.

716.5.7.1.1 Light kits, louvers and components. Listed light kits and louvers and their required preparations shall be considered as part of the labeled door where such installations are done under the listing program of the third-party agency. Fire doors and door assemblies shall be permitted to consist of components, including glazing, vision light kits and hardware that are listed or classified and labeled for such use by different third-party agencies.

716.5.7.2 Oversized doors. Oversized fire doors shall bear an oversized fire door label by an approved agency or shall be provided with a certificate of inspection furnished by an approved testing agency. Where a certificate of inspection is furnished by an approved testing agency, the certificate shall state that the door conforms to the requirements of design, materials and construction, but has not been subjected to the fire test.

716.5.7.3 Smoke and draft control door labeling requirements. Smoke and draft control doors complying with UL 1784 shall be labeled in accordance with Section 716.5.7.1 and shall show the letter “S” on the fire-rating label of the door. This marking shall indicate that the door and frame assembly are in compliance where listed or labeled gasketing is installed.

716.5.7.4 Fire door frame labeling requirements. Fire door frames shall be labeled showing the names of the manufacturer and the third-party inspection agency.

716.5.7.5 Fire door operator labeling requirements. Fire door operators for horizontal sliding doors shall be labeled and listed for use with the assembly.

716.5.8 Glazing material. Fire-rated glazing and fire-resistance-rated glazing
conforming to the opening protection requirements in Section 716.5 shall be permitted in fire door assemblies.

716.5.8.1 Size limitations. Fire-resistance-rated glazing shall comply with the size limitations in Section 716.5.8.1.1. Fire-protection-rated glazing shall comply with the size limitations of NFPA 80, and as provided in Section 716.5.8.1.2.

716.5.8.1.1 Fire-resistance-rated glazing in door assemblies in fire walls and fire barriers rated greater than 1 hour. Fire-resistance-rated glazing tested to ASTM E 119 or UL 263 and NFPA 252, UL 10B or UL 10C shall be permitted in fire door assemblies located in fire walls and in fire barriers in accordance with Table 716.5 to the maximum size tested and in accordance with their listings.

716.5.8.1.2 Fire-protection-rated glazing in door assemblies in fire walls and fire barriers rated greater than 1 hour. Fire-protection-rated glazing shall be prohibited in fire walls and fire barriers except as provided in Sections 716.5.8.1.2.1 and 716.5.8.1.2.2.

716.5.8.1.2.1 Horizontal exits. Fire-protection rated glazing shall be permitted as vision panels in self-closing swinging fire door assemblies serving as horizontal exits in fire walls where limited to 100 square inches (0.065 m²) with no dimension exceeding 10 inches (0.3 mm).

716.5.8.1.2.2 Fire barriers. Fire-protection-rated glazing shall be permitted in fire doors having a 11/2-hour fire protection rating intended for installation in fire barriers, where limited to 100 square inches (0.065 m²).

716.5.8.2 Elevator, stairway and ramp protectives. Approved fire-protection-rated glazing used in fire door assemblies in elevator, stairway and ramp enclosures shall be so located as to furnish clear vision of the passageway or approach to the elevator, stairway or ramp.

716.5.8.3 Labeling. Fire-rated glazing shall bear a label or other identification showing the name of the manufacturer, the test standard and information required in Table 716.3 that shall be issued by an approved agency and shall be permanently identified on the glazing.
716.5.8.4 Safety glazing. Fire-protection-rated glazing and fire-resistance-rated glazing installed in fire door assemblies shall comply with the safety glazing requirements of Chapter 24 where applicable.

716.5.9 Door closing. Fire doors shall be latching and self- or automatic-closing in accordance with this section.

Exceptions:
1. Fire doors located in common walls separating sleeping units in Group R-1 shall be permitted without automatic- or self-closing devices.
2. The elevator car doors and the associated hoistway enclosure doors at the floor level designated for recall in accordance with Section 3003.2 shall be permitted to remain open during Phase I emergency recall operation.

716.5.9.1 Latch required. Unless otherwise specifically permitted, single fire doors and both leaves of pairs of side-hinged swinging fire doors shall be provided with an active latch bolt that will secure the door when it is closed.

716.5.9.1.1 Chute intake door latching. Chute intake doors shall be positive latching, remaining latched and closed in the event of latch spring failure during a fire emergency.

716.5.9.2 Automatic-closing fire door assemblies. Automatic-closing fire door assemblies shall be self-closing in accordance with NFPA 80.

716.5.9.3 Smoke-activated doors. Automatic-closing doors installed in the following locations shall be automatic-closing by the actuation of smoke detectors installed in accordance with Section 907.3 or by loss of power to the smoke detector or hold-open device. Doors that are automatic-closing by smoke detection shall not have more than a 10-second delay before the door starts to close after the smoke detector is actuated:
1. Doors installed across a corridor.
2. Doors installed in the enclosures of exit access stairways and ramps in accordance with Sections 1019 and 1023, respectively.
3. Doors that protect openings in exits or corridors required to be of fire-resistance-rated construction.
4. Doors that protect openings in walls that are capable of resisting the passage of smoke in accordance with Section 509.4.
5. Doors installed in smoke barriers in accordance with Section 709.5.
6. Doors installed in fire partitions in accordance with Section 708.6.
7. Doors installed in a fire wall in accordance with Section 706.8.
8. Doors installed in shaft enclosures in accordance with Section 713.7.
9. Doors installed in waste and linen chutes, discharge openings and access and discharge rooms in accordance with Section 713.13. Loading doors installed in waste and linen chutes shall meet the requirements of Sections 716.5.9 and 716.5.9.1.1.
10. Doors installed in the walls for compartmentation of underground buildings in accordance with Section 405.4.2.
11. Doors installed in the elevator lobby walls of underground buildings in accordance with Section 405.4.3.
12. Doors installed in smoke partitions in accordance with Section 710.5.2.3.

716.5.9.4 Doors in pedestrian ways. Vertical sliding or vertical rolling steel fire doors in openings through which pedestrians travel shall be heat activated or activated by smoke detectors with alarm verification.

716.5.10 Swinging fire shutters. Where fire shutters of the swinging type are installed in exterior openings, not less than one row in every three vertical rows shall be arranged to be readily opened from the outside, and shall be identified by distinguishing marks or letters not less than 6 inches (152 mm) high.

716.5.11 Rolling fire shutters. Where fire shutters of the rolling type are installed, such shutters shall include approved automatic-closing devices.

TABLE 716.6

<table>
<thead>
<tr>
<th>TYPE OF WALL ASSEMBLY</th>
<th>REQUIRED WALL ASSEMBLY RATING (hours)</th>
<th>MINIMUM FIRE WINDOW ASSEMBLY RATING (hours)</th>
<th>FIRE-RATED GLAZING MARKING</th>
</tr>
</thead>
</table>

716.6 Fire-protection-rated glazing. Glazing in fire window assemblies shall be fire protection rated in accordance with this section and Table 716.6. Glazing in fire door assemblies shall comply with Section 716.5.8. Fire-protection-rated glazing in fire window assemblies shall be tested in accordance with and shall meet the acceptance criteria of NFPA 257 or UL 9. Fire-protection-rated glazing shall comply with NFPA 80. Openings in nonfire-resistance-rated exterior wall assemblies that require protection in accordance with Section 705.3, 705.8, 705.8.5 or 705.8.6 shall have a fire protection rating of not less than 3/4 hour. Fire-protection-rated glazing in 0.5-hour fire-resistance-rated partitions is permitted to have an 0.33-hour fire protection rating.

NP = Not Permitted.

a. Not permitted except fire-resistance-rated glazing assemblies tested to ASTM E 119 or UL 263, as specified in Section 716.2.

b. XXX = The fire rating duration period in minutes, which shall be equal to the fire-resistance rating required for the wall assembly.

716.6.1 Testing under positive pressure. NFPA 257 or UL 9 shall evaluate fire-protection-rated glazing under positive pressure. Within the first 10 minutes of a test, the pressure in the furnace shall be adjusted so not less than two-thirds of the test specimen is above the neutral pressure plane, and the neutral pressure plane shall be maintained at that height for the balance of the test.
716.6.2 Nonsymmetrical glazing systems. Nonsymmetrical fire-protection-rated glazing systems in fire partitions, fire barriers or in exterior walls with a fire separation distance of 5 feet (1524 mm) or less pursuant to Section 705 shall be tested with both faces exposed to the furnace, and the assigned fire protection rating shall be the shortest duration obtained from the two tests conducted in compliance with NFPA 257 or UL 9.

716.6.3 Safety glazing. Fire-protection-rated glazing and fire-resistance-rated glazing installed in fire window assemblies shall comply with the safety glazing requirements of Chapter 24 where applicable.

716.6.4 Glass and glazing. Glazing in fire window assemblies shall be fire-protection-rated glazing installed in accordance with and complying with the size limitations set forth in NFPA 80.

716.6.5 Installation. Fire-protection-rated glazing shall be in the fixed position or be automatic-closing and shall be installed in approved frames.

716.6.6 Window mullions. Metal mullions that exceed a nominal height of 12 feet (3658 mm) shall be protected with materials to afford the same fire-resistance rating as required for the wall construction in which the protective is located.

716.6.7 Interior fire window assemblies. Fire-protection-rated glazing used in fire window assemblies located in fire partitions and fire barriers shall be limited to use in assemblies with a maximum fire-resistance rating of 1 hour in accordance with this section.

716.6.7.1 Where 3/4-hour fire protection window assemblies permitted. Fire-protection-rated glazing requiring 45-minute opening protection in accordance with Table 716.6 shall be limited to fire partitions designed in accordance with Section 708 and fire barriers utilized in the applications set forth in Sections 707.3.6, 707.3.7 and 707.3.8 707.3.9 where the fire-resistance rating does not exceed 1 hour. Fire-resistance-rated glazing assemblies tested in accordance with ASTM E 119 or UL 263 shall not be subject to the limitations of this section.
716.6.7.2 **Area limitations.** The total area of the glazing in fire-protection-rated window assemblies shall not exceed 25 percent of the area of a common wall with any room.

716.6.7.3 **Where 1/3-hour fire-protection window assemblies permitted.** Fire-protection-rated glazing shall be permitted in window assemblies tested to NFPA 257 or UL 9 in smoke barriers and fire partitions requiring 1/3-hour opening protection in accordance with Table 716.6.

716.6.8 **Labeling requirements.** Fire-protection-rated glazing shall bear a label or other identification showing the name of the manufacturer, the test standard and information required in Section 716.3.2 and Table 716.6 that shall be issued by an approved agency and permanently identified on the glazing.

SECTION 717

DUCTS AND AIR TRANSFER OPENINGS

717.1 **General.** The provisions of this section shall govern the protection of duct penetrations and air transfer openings in assemblies required to be protected and duct penetrations in nonfire-resistance-rated floor assemblies.

717.1.1 **Ducts and air transfer openings.** Ducts transitioning horizontally between shafts shall not require a shaft enclosure provided that the duct penetration into each associated shaft is protected with dampers complying with this section.

717.1.2 **Ducts that penetrate fire-resistance-rated assemblies without dampers.** Ducts that penetrate fireresistance-rated assemblies and are not required by this section to have dampers shall comply with the requirements of Sections 714.2 through 714.3.3. Ducts that penetrate horizontal assemblies not required to be contained within a shaft and not required by this section to have dampers shall comply with the requirements of Sections 714.4 through 714.5.2.

717.1.2.1 **Ducts that penetrate nonfire-resistance-rated assemblies.** The space around a duct penetrating a nonfire-resistance-rated floor assembly shall comply with Section 717.6.3.

717.2 **Installation.** Fire dampers, smoke dampers, combination fire/smoke
dampers and ceiling radiation dampers located within air distribution and smoke control systems shall be installed in accordance with the requirements of this section, the manufacturer's instructions and the dampers’ listing.

717.2.1 **Smoke control system.** Where the installation of a fire damper will interfere with the operation of a required smoke control system in accordance with Section 909, approved alternative protection shall be utilized. Where mechanical systems including ducts and dampers utilized for normal building ventilation serve as part of the smoke control system, the expected performance of these systems in smoke control mode shall be addressed in the rational analysis required by Section 909.4.

717.2.2 **Hazardous exhaust ducts.** Fire dampers for hazardous exhaust duct systems shall comply with the *mechanical code.*

717.3 **Damper testing, ratings and actuation.** Damper testing, ratings and actuation shall be in accordance with Sections 717.3.1 through 717.3.3.

717.3.1 **Damper testing.** Dampers shall be listed and labeled in accordance with the standards in this section.

1. Fire dampers shall comply with the requirements of UL 555. Only fire dampers and ceiling radiation dampers labeled for use in dynamic systems shall be installed in heating, ventilation and air-conditioning systems designed to operate with fans on during a fire.
2. Smoke dampers shall comply with the requirements of UL 555S.
3. Combination fire/smoke dampers shall comply with the requirements of both UL 555 and UL 555S.
4. Ceiling radiation dampers shall comply with the requirements of UL 555C or shall be tested as part of a fire-resistance-rated floor/ceiling or roof/ceiling assembly in accordance with ASTM E119 or UL 263.
5. Corridor dampers shall comply with requirements of both UL 555 and UL 555S. Corridor dampers shall demonstrate acceptable closure performance when subjected to 150 feet per minute (0.76 mps) velocity across the face of the damper during the UL 555 fire exposure test.

717.3.2 **Damper rating.** Damper ratings shall be in accordance with Sections 717.3.2.1 through 717.3.2.4.

717.3.2.1 **Fire damper ratings.** Fire dampers shall have the minimum fire protection rating specified in Table 717.3.2.1 for the type of penetration.
717.3.2.1 Table 717.3.2.1

<table>
<thead>
<tr>
<th>TYPE OF PENETRATION</th>
<th>MINIMUM DAMPER RATING (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 3-hour fire-resistance-rated assemblies</td>
<td>1.5</td>
</tr>
<tr>
<td>3-hour or greater fire-resistance-rated assemblies</td>
<td>3</td>
</tr>
</tbody>
</table>

717.3.2.2 Smoke damper ratings. Smoke damper leakage ratings shall be Class I or II. Elevated temperature ratings shall be not less than 250°F (121°C).

717.3.2.3 Combination fire/smoke damper ratings. Combination fire/smoke dampers shall have the minimum fire protection rating specified for fire dampers in Table 717.3.2.1 for the type of penetration and shall have a minimum smoke damper rating as specified in Section 717.3.2.2.

717.3.2.4 Corridor damper ratings. Corridor dampers shall have the following minimum ratings:
 1. One hour fire-resistance rating.
 2. Class I or II leakage rating as specified in Section 717.3.2.2.

717.3.3 Damper actuation. Damper actuation shall be in accordance with Sections 717.3.3.1 through 717.3.3.5 as applicable.

717.3.3.1 Fire damper actuation device. The fire damper actuation device shall meet one of the following requirements:
 1. The operating temperature shall be approximately 50°F (10°C) above the normal temperature within the duct system, but not less than 160°F (71°C).
 2. The operating temperature shall be not more than 350°F (177°C) where located in a smoke control system complying with Section 909.

717.3.3.2 Smoke damper actuation. The smoke damper shall close upon actuation of a listed smoke detector or detectors installed in accordance with Section 907.3 and one of the following methods, as applicable:
 1. Where a smoke damper is installed within a duct, a smoke detector shall be installed inside the duct or outside the duct with sampling tubes protruding into the duct. The detector or tubes within the duct...
shall be within 5 feet (1524 mm) of the damper. Air outlets and inlets shall not be located between the detector or tubes and the damper. The detector shall be listed for the air velocity, temperature and humidity anticipated at the point where it is installed. Other than in mechanical smoke control systems, dampers shall be closed upon fan shutdown where local smoke detectors require a minimum velocity to operate.

2. Where a smoke damper is installed above smoke barrier doors in a smoke barrier, a spot-type detector shall be installed on either side of the smoke barrier door opening. The detector shall be listed for releasing service if used for direct interface with the damper.

3. Where a smoke damper is installed within an air transfer opening in a wall, a spot-type detector shall be installed within 5 feet (1524 mm) horizontally of the damper. The detector shall be listed for releasing service if used for direct interface with the damper.

4. Where a smoke damper is installed in a corridor wall or ceiling, the damper shall be permitted to be controlled by a smoke detection system installed in the corridor.

5. Where a smoke detection system is installed in all areas served by the duct in which the damper will be located, the smoke dampers shall be permitted to be controlled by the smoke detection system.

717.3.3.3 Combination fire/smoke damper actuation. Combination fire/smoke damper actuation shall be in accordance with Sections 717.3.3.1 and 717.3.3.2. Combination fire/smoke dampers installed in smoke control system shaft penetrations shall not be activated by local area smoke detection unless it is secondary to the smoke management system controls.

717.3.3.4 Ceiling radiation damper actuation. The operating temperature of a ceiling radiation damper actuation device shall be 50°F (27.8°C) above the normal temperature within the duct system, but not less than 160°F (71°C).

717.3.3.5 Corridor damper actuation. Corridor damper actuation shall be in accordance with Sections 717.3.3.1 and 717.3.3.2.

717.4 Access and identification. Fire and smoke dampers shall be provided with an approved means of access that is large enough to permit inspection and maintenance of the damper and its operating parts. Dampers equipped with fusible links, internal operators, or both shall be provided with an access door that is not less than 12 in. (305 mm) square or provided with a removable duct section in
accordance with NFPA 80. The access shall not affect the integrity of fire-resistance-rated assemblies. The access openings shall not reduce the fire-resistance rating of the assembly. Access points shall be permanently identified on the exterior by a label having letters not less than 1/2 inch (12.7 mm) in height reading: FIRE/SMOKE DAMPER, SMOKE DAMPER or FIRE DAMPER. Access doors in ducts shall be tight fitting and suitable for the required duct construction.

717.5 Where required. Fire, dampers, smoke dampers, combination fire/smoke dampers, ceiling radiation dampers and corridor dampers shall be provided at the locations prescribed in Sections 717.5.1 through 717.5.7 and 717.6. Where an assembly is required to have both fire dampers and smoke dampers, combination fire/smoke dampers or a fire damper and a smoke damper shall be provided.

717.5.1 Fire walls. Ducts and air transfer openings permitted in fire walls in accordance with Section 706.11 shall be protected with listed fire dampers installed in accordance with their listing.

717.5.1.1 Horizontal exits. A listed smoke damper designed to resist the passage of smoke shall be provided at each point a duct or air transfer opening penetrates a fire wall that serves as a horizontal exit.

717.5.2 Fire barriers. Ducts and air transfer openings of fire barriers shall be protected with approved fire dampers installed in accordance with their listing. Ducts and air transfer openings shall not penetrate enclosures for interior exit stairways and ramps and exit passageways, except as permitted by Sections 1023.5 and 1024.6, respectively.

Exception: Fire dampers are not required at penetrations of fire barriers where any of the following apply:
1. Penetrations are tested in accordance with ASTME 119 or UL 263 as part of the fire-resistance-rated assembly.
2. Ducts are used as part of an approved smoke control system in accordance with Section 909 and where the use of a fire damper would interfere with the operation of a smoke control system.
3. Such walls are penetrated by ducted HVAC systems, have a required fire-resistance rating of 1 hour or less, are in areas of other than Group H and are in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2. For the purposes of this exception, a ducted HVAC system shall be a duct system for the structure’s HVAC system shall be constructed of sheet steel not less than No. 26 gage thickness and shall be continuous from
the air-handling appliance or equipment to the air outlet and inlet terminals. *Flexible air connectors shall not be prohibited in fully ducted sheet steel duct systems where the installation meets either of the following:*

3.1. *Flexible air connectors are installed to connect ducts to air handling equipment and such connectors are located entirely within the mechanical room that contains the air handling equipment.*

3.2. *Flexible air connectors are installed to connect an overhead metal duct to a ceiling diffuser and such connector is located entirely within the same room as the ceiling diffuser. The flexible air connectors shall not pass through any walls, floors or ceilings.*

717.5.2.1 **Horizontal exits.** A listed smoke damper designed to resist the passage of smoke shall be provided at each point a duct or air transfer opening penetrates a fire barrier that serves as a horizontal exit.

717.5.3 **Shaft enclosures.** Shaft enclosures that are permitted to be penetrated by ducts and air transfer openings shall be protected with approved fire and smoke dampers installed in accordance with their listing.

Exceptions:

1. Fire dampers are not required at penetrations of shafts where any of the following criteria are met:

 1.1. Steel exhaust subducts are extended not less than 22 inches (559 mm) vertically in exhaust shafts, provided there is a continuous airflow upward to the outside.

 1.2. Penetrations are tested in accordance with ASTM E 119 or UL 263 as part of the fire-resistance-rated assembly.

 1.3. Ducts are used as part of an approved smoke control system designed and installed in accordance with Section 909 and where the fire damper will interfere with the operation of the smoke control system.

 1.4. The penetrations are in parking garage exhaust or supply shafts that are separated from other building shafts by not less than 2-hour fire-resistance-rated construction.

2. In Group B and R occupancies equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, smoke dampers are not required at penetrations of shafts where all of the following criteria are met:

 2.1. Kitchen, clothes dryer, bathroom and toilet room exhaust openings are installed with steel exhaust subducts, having a minimum wall thickness of 0.0187 inch (0.4712 mm) (No. 26 gage).

 2.2. The subducts extend not less than 22 inches (559 mm) vertically.
2.3. An exhaust fan is installed at the upper terminus of the shaft that is powered continuously so as to maintain a continuous upward airflow to the outside. *Deleted.*

3. Smoke dampers are not required at penetration of exhaust or supply shafts in parking garages that are separated from other building shafts by not less than 2-hour fire-resistance-rated construction.

4. Smoke dampers are not required at penetrations of shafts where ducts are used as part of an approved mechanical smoke control system designed in accordance with Section 909 and where the smoke damper will interfere with the operation of the smoke control system.

5. Fire dampers and combination fire/smoke dampers are not required in kitchen and clothes dryer exhaust systems where installed in accordance with the *mechanical code.*

6. *Smoke dampers are not required where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.*

717.5.4 Fire partitions. Ducts and air transfer openings that penetrate fire partitions shall be protected with listed fire dampers installed in accordance with their listing.

Exceptions: In occupancies other than Group H, fire dampers are not required where any of the following apply:

1. Corridor walls in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2 and the duct is protected as a through penetration in accordance with Section 714.

2. Tenant partitions in covered and open mall buildings where the walls are not required by provisions elsewhere in the code to extend to the underside of the floor or roof sheathing, slab or deck above.

3. The duct system is constructed of approved materials in accordance with the *mechanical code* and the duct penetrating the wall complies with all of the following requirements:
 3.1. The duct shall not exceed 100 square inches (0.06 m²).
 3.2. The duct shall be constructed of steel not less than 0.0217 inch (0.55 mm) in thickness.
 3.3. The duct shall not have openings that communicate the corridor with adjacent spaces or rooms.
 3.4. The duct shall be installed above a ceiling.
 3.5. The duct shall not terminate at a wall register in the fire-resistance-rated wall.
 3.6. A minimum 12-inch-long (305 mm) by 0.060-inch-thick (1.52 mm) steel sleeve shall be centered in each duct opening. The sleeve shall be
secured to both sides of the wall and all four sides of the sleeve with minimum 1 1/2-inch by 1 1/2-inch by 0.060-inch (38 mm by 38 mm by 1.52 mm) steel retaining angles. The retaining angles shall be secured to the sleeve and the wall with No. 10 (M5) screws. The annular space between the steel sleeve and the wall opening shall be filled with mineral wool batting on all sides.

4. Such walls are penetrated by ducted HVAC systems, have a required fire-resistance rating of 1 hour or less, and are in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2. For the purposes of this exception, a ducted HVAC system shall be a duct system for the structure’s HVAC system shall be constructed of sheet steel not less than No. 26 gage thickness and shall be continuous from the air-handling appliance or equipment to the air outlet and inlet terminals. Flexible air connectors shall not be prohibited in fully ducted sheet steel duct systems where the installation meets either of the following:

4.1. Flexible air connectors are installed to connect ducts to air handling equipment and such connectors are located entirely within the mechanical room that contains the air handling equipment.

4.2. Flexible air connectors are installed to connect an overhead metal duct to a ceiling diffuser and such connector is located entirely within the same room as the ceiling diffuser. The flexible air connectors shall not pass through any walls, floors or ceilings.

717.5.4.1 Corridors. Duct and air transfer openings that penetrate corridors shall be protected with dampers as follows:

1. A corridor damper shall be provided where corridor ceilings, constructed as required for the corridor walls as permitted in Section 708.4, Exception 3, are penetrated.

2. A ceiling radiation damper shall be provided where the ceiling membrane of a fire-resistance-rated floor-ceiling or roof-ceiling assembly, constructed as permitted in Section 708.4, Exception 2, is penetrated.

3. A listed smoke damper designed to resist the passage of smoke shall be provided at each point a duct or air transfer opening penetrates a corridor enclosure required to have smoke and draft control doors in accordance with Section 716.5.3.

Exceptions:

1. Smoke dampers are not required where the building is equipped throughout with an approved smoke control system in accordance with Section 909, and smoke dampers are not necessary for the operation and control of the system.
2. Smoke dampers are not required in corridor penetrations where the duct is constructed of steel not less than 0.019 inch (0.48 mm) in thickness and there are no openings serving the corridor.

717.5.5 Smoke barriers. A listed smoke damper designed to resist the passage of smoke shall be provided at each point a duct or air transfer opening penetrates a smoke barrier. Smoke dampers and smoke damper actuation methods shall comply with Section 717.3.3.2.

Exceptions:
1. Smoke dampers are not required where the openings in ducts are limited to a single smoke compartment and the ducts are constructed of steel.
2. Smoke dampers are not required in smoke barriers required by Section 407.5 for Group I-2, Condition 2—where the HVAC system is fully ducted in accordance with Section 603 of the *mechanical code* and where buildings are equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 and equipped with quick-response sprinklers in accordance with Section 903.3.2.

717.5.6 Exterior walls. Ducts and air transfer openings in fire-resistance-rated exterior walls required to have protected openings in accordance with Section 705.10 shall be protected with listed fire dampers installed in accordance with their listing.

717.5.7 Smoke partitions. A listed smoke damper designed to resist the passage of smoke shall be provided at each point that an air transfer opening penetrates a smoke partition. Smoke dampers and smoke damper actuation methods shall comply with Section 717.3.3.2.

Exception: Where the installation of a smoke damper will interfere with the operation of a required smoke control system in accordance with Section 909, approved alternative protection shall be utilized.

717.6 Horizontal assemblies. Penetrations by ducts and air transfer openings of a floor, floor/ceiling assembly or the ceiling membrane of a roof/ceiling assembly shall be protected by a shaft enclosure that complies with Section 713 or shall comply with Sections 717.6.1 through 717.6.3.

717.6.1 Through penetrations. In occupancies other than Groups I-2 and I-3, a duct constructed of approved materials in accordance with the *mechanical code* that penetrates a fire-resistance-rated floor/ceiling assembly that connects not more than two stories is permitted without shaft enclosure protection, provided a listed fire damper is installed at the floor line or the duct is protected...
in accordance with Section 714.4. For air transfer openings, see Section 712.1.9.

Exception: A duct is permitted to penetrate three floors or less without a fire damper at each floor, provided such duct meets all of the following requirements:

1. The duct shall be contained and located within the cavity of a wall and shall be constructed of steel having a minimum wall thickness of 0.0187 inches (0.4712 mm) (No. 26 gage).
2. The duct shall open into only one dwelling or sleeping unit and the duct system shall be continuous from the unit to the exterior of the building.
3. The duct shall not exceed 4-inch (102 mm) nominal diameter and the total area of such ducts shall not exceed 100 square inches (0.065 m²) in any 100 square feet (9.3 m²) of floor area.
4. The annular space around the duct is protected with materials that prevent the passage of flame and hot gases sufficient to ignite cotton waste where subjected to ASTM E 119 or UL 263 time temperature conditions under a minimum positive pressure differential of 0.01 inch (2.49 Pa) of water at the location of the penetration for the time period equivalent to the fire-resistance rating of the construction penetrated.
5. Grille openings located in a ceiling of a fire-resistance-rated floor/ceiling or roof/ceiling assembly shall be protected with a listed ceiling radiation damper installed in accordance with Section 717.6.2.1.

717.6.2 Membrane penetrations. Ducts and air transfer openings constructed of approved materials in accordance with the mechanical code that penetrate the ceiling membrane of a fire-resistance-rated floor/ceiling or roof/ceiling assembly shall be protected with one of the following:

1. A shaft enclosure in accordance with Section 713.
2. A listed ceiling radiation damper installed at the ceiling line where a duct penetrates the ceiling of a fire-resistance-rated floor/ceiling or roof/ceiling assembly.
3. A listed ceiling radiation damper installed at the ceiling line where a diffuser with no duct attached penetrates the ceiling of a fire-resistance-rated floor/ceiling or roof/ceiling assembly.

717.6.2.1 Ceiling radiation dampers. Ceiling radiation dampers shall be tested in accordance with Section 717.3.1. Ceiling radiation dampers shall be installed in accordance with the details listed in the fire-resistance-rated assembly and the manufacturer’s instructions and the listing. Ceiling radiation dampers are not required where one of the following applies:
Tests in accordance with ASTM E 119 or UL 263 have shown that ceiling radiation dampers are not necessary in order to maintain the fire-resistance rating of the assembly.

2 Where exhaust duct penetrations are protected in accordance with Section 714.4.2, are located within the cavity of a wall and do not pass through another dwelling unit or tenant space.

3 Where duct and air transfer openings are protected with a duct outlet protection system tested as part of a fire-resistance-rated assembly in accordance with ASTM E 119 or UL 263.

717.6.3 Nonfire-resistance-rated floor assemblies. Duct systems constructed of approved materials in accordance with the mechanical code that penetrate nonfire-resistance-rated floor assemblies shall be protected by any of the following methods:

1. A shaft enclosure in accordance with Section 713.
2. The duct connects not more than two stories, and the annular space around the penetrating duct is protected with an approved noncombustible material that resists the free passage of flame and the products of combustion.
3. In floor assemblies composed of noncombustible materials, a shaft shall not be required where the duct connects not more than three stories, the annular space around the penetrating duct is protected with an approved noncombustible material that resists the free passage of flame and the products of combustion and a fire damper is installed at each floor line.

Exception: Fire dampers are not required in ducts within individual residential dwelling units.

717.7 Flexible ducts and air connectors. Flexible ducts and air connectors shall not pass through any fire-resistance-rated assembly. Flexible air connectors shall not pass through any wall, floor or ceiling.

SECTION 718 CONCEALED SPACES

718.1 General. Fireblocking and draftstopping shall be installed in combustible concealed locations in accordance with this section. Fireblocking shall comply with Section 718.2. Draftstopping in floor/ceiling spaces and attic spaces shall comply with Sections 718.3 and 718.4, respectively. The permitted use of combustible materials in concealed spaces of buildings of Type I or II construction shall be limited to the applications indicated in Section 718.5.
718.2 **Fireblocking.** In combustible construction, fireblocking shall be installed to cut off concealed draft openings (both vertical and horizontal) and shall form an effective barrier between floors, between a top story and a roof or attic space. Fireblocking shall be installed in the locations specified in Sections 718.2.2 through 718.2.7.

718.2.1. **Fireblocking materials.** Fireblocking shall consist of the following materials:
1. Two-inch (51 mm) nominal lumber.
2. Two thicknesses of 1-inch (25 mm) nominal lumber with broken lap joints.
3. One thickness of 0.719-inch (18.3 mm) wood structural panels with joints backed by 0.719-inch (18.3 mm) wood structural panels.
4. One thickness of 0.75-inch (19.1 mm) particleboard with joints backed by 0.75-inch (19 mm) particleboard.
5. One-half-inch (12.7 mm) gypsum board.
6. One-fourth-inch (6.4 mm) cement-based millboard.
7. Batt or blankets of mineral wool, mineral fiber or other approved materials installed in such a manner as to be securely retained in place.
8. Cellulose insulation installed as tested for the specific application.

718.2.1.1. **Batts or blankets of mineral wool or mineral fiber.** Batt or blankets of mineral wool or mineral fiber or other approved non-rigid materials shall be permitted for compliance with the 10-foot (3048 mm) horizontal fireblocking in walls constructed using parallel rows of studs or staggered studs.

718.2.1.2. **Unfaced fiberglass.** Unfaced fiberglass batt insulation used as fireblocking shall fill the entire cross section of the wall cavity to a minimum height of 16 inches (406 mm) measured vertically. Where piping, conduit or similar obstructions are encountered, the insulation shall be packed tightly around the obstruction.

718.2.1.3. **Loose-fill insulation material.** Loose-fill insulation material, insulating foam sealants and caulk materials shall not be used as a fireblock unless specifically tested in the form and manner intended for use to demonstrate its ability to remain in place and to retard the spread of fire and hot gases.

718.2.1.4. **Fireblocking integrity.** The integrity of fireblocks shall be maintained.
718.2.1.5. **Double stud walls.** Batts or blankets of mineral or glass fiber or other approved non-rigid materials shall be allowed as fireblocking in walls constructed using parallel rows of studs or staggered studs.

718.2.2. **Concealed wall spaces.** Fireblocking shall be provided in concealed spaces of stud walls and partitions, including furred spaces, and parallel rows of studs or staggered studs, as follows:

1. Vertically at the ceiling and floor levels.
2. Horizontally at intervals not exceeding 10 feet (3048 mm).

718.2.3. **Connections between horizontal and vertical spaces.** Fireblocking shall be provided at interconnections between concealed vertical stud wall or partition spaces and concealed horizontal spaces created by an assembly of floor joists or trusses, and between concealed vertical and horizontal spaces such as occur at soffits, drop ceilings, cove ceilings and similar locations.

718.2.4. **Stairways.** Fireblocking shall be provided in concealed spaces between stair stringers at the top and bottom of the run. Enclosed spaces under stairways shall comply with Section 1011.7.3.

718.2.5. **Ceiling and floor openings.** Where required by Section 712.1.8, Exception 1 of Section 714.4.1.2 or Section 714.5, fireblocking of the annular space around vents, pipes, ducts, chimneys and fireplaces at ceilings and floor levels shall be installed with a material specifically tested in the form and manner intended for use to demonstrate its ability to remain in place and resist the free passage of flame and the products of combustion.

718.2.5.1 **Factory-built chimneys and fireplaces.** Factory-built chimneys and fireplaces shall be fireblocked in accordance with UL 103 and UL 127.

718.2.6. **Exterior wall coverings.** Fireblocking shall be installed within concealed spaces of exterior wall coverings and other exterior architectural elements where permitted to be of combustible construction as specified in Section 1406 or where erected with combustible frames. Fireblocking shall be installed at maximum intervals of 20 feet (6096 mm) in either dimension so that there will be no concealed space exceeding 100 square feet (9.3 m²) between fireblocking. Where wood furring strips are used, they shall be of approved wood of natural decay resistance or preservative-treated wood. If noncontinuous, such elements shall have closed ends, with not less than 4
inches (102 mm) of separation between sections.

Exceptions:
1. *Deleted.*
2. Fireblocking shall not be required where the exterior wall covering is installed on noncombustible framing and the face of the exterior wall covering exposed to the concealed space is covered by one of the following materials:
 2.1. Aluminum having a minimum thickness of 0.019 inch (0.5 mm).
 2.2. Corrosion-resistant steel having a base metal thickness not less than 0.016 inch (0.4 mm) at any point.
 2.3. Other approved noncombustible materials.
3. Fireblocking shall not be required where the exterior wall covering has been tested in accordance with, and complies with the acceptance criteria of, NFPA 285. The exterior wall covering shall be installed as tested in accordance with NFPA 285.

718.2.7. Concealed sleeper spaces. Where wood sleepers are used for laying wood flooring on masonry or concrete fire-resistance-rated floors, the space between the floor slab and the underside of the wood flooring shall be filled with an approved material to resist the free passage of flame and products of combustion or fireblocked in such a manner that there will be no open spaces under the flooring that will exceed 100 square feet (9.3 m²) in area and such space shall be filled solidly under permanent partitions so that there is no communication under the flooring between adjoining rooms.

Exceptions:
1. Fireblocking is not required for slab-on-grade floors in gymnasiums.
2. Fireblocking is required only at the juncture of each alternate lane and at the ends of each lane in a bowling facility.

718.3 Draftstopping in floors. In combustible construction, draftstopping shall be installed to subdivide floor/ceiling assemblies in the locations prescribed in Sections 718.3.2 through 718.3.3.

718.3.1. Draftstopping materials. Draftstopping materials shall be not less than 1/2-inch (12.7 mm) gypsum board, 3/8-inch (9.5 mm) wood structural panel, 3/8-inch (9.5 mm) particleboard, 1-inch (25-mm) nominal lumber, cement fiberboard, batts or blankets of mineral wool or glass fiber, or other approved materials adequately supported. The integrity of draftstops shall be maintained.
718.3.2. Groups R-1, R-2, R-3 and R-4. Draftstopping shall be provided in floor/ceiling spaces in Group R-1 buildings, in Group R-2 buildings with three or more dwelling units, in Group R-3 buildings with two dwelling units and in Group R-4 buildings. Draftstopping shall be located above and in line with the dwelling unit and sleeping unit separations.

Exceptions:
1. Draftstopping is not required in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.
2. Draftstopping is not required in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.2, provided that automatic sprinklers are installed in the combustible concealed spaces where the draftstopping is being omitted.

718.3.3. Other groups. In other groups, draftstopping shall be installed so that horizontal floor areas do not exceed 1,000 square feet (93 m²).

Exception: Draftstopping is not required in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

718.4 Draftstopping in attics. In combustible construction, draftstopping shall be installed to subdivide attic spaces and concealed roof spaces in the locations prescribed in Sections 718.4.2 and 718.4.3. Ventilation of concealed roof spaces shall be maintained in accordance with Section 1203.2.

718.4.1 Draftstopping materials. Materials utilized for draftstopping of attic spaces shall comply with Section 718.3.1.

718.4.1.1 Openings. Openings in the partitions shall be protected by self-closing doors with automatic latches constructed as required for the partitions.

718.4.2 Groups R-1 and R-2. Draftstopping shall be provided in attics, mansards, overhangs or other concealed roof spaces of Group R-2 buildings with three or more dwelling units and in all Group R-1 buildings. Draftstopping shall be installed above, and in line with, sleeping unit and dwelling unit separation walls that do not extend to the underside of the roof sheathing above.

Exceptions:
1. Where corridor walls provide a sleeping unit or dwelling unit separation, draftstopping shall only be required above one of the corridor walls.
2. Draftstopping is not required in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.
3. In occupancies in Group R-2 that do not exceed four stories above grade plane, the attic space shall be subdivided by draftstops into areas not exceeding 3,000 square feet (279 m²) or above every two dwelling units, whichever is smaller.

4. Draftstopping is not required in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.2, provided that automatic sprinklers are installed in the combustible concealed space where the draftstopping is being omitted.

718.4.3 Other groups. Draftstopping shall be installed in attics and concealed roof spaces, such that any horizontal area does not exceed 3,000 square feet (279 m²).

Exception: Draftstopping is not required in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

718.5 Combustible materials in concealed spaces in Type I or II construction. Combustible materials shall not be permitted in concealed spaces of buildings of Type I or II construction.

Exceptions:
1. Combustible materials in accordance with Section 603.
2. Combustible materials exposed within plenums complying with Section 602 of the mechanical code.
3. Class A interior finish materials classified in accordance with Section 803.
4. Combustible piping within partitions or shaft enclosures installed in accordance with the provisions of this code.
5. Combustible piping within concealed ceiling spaces installed in accordance with the mechanical code and the plumbing code.
6. Combustible insulation and covering on pipe and tubing, installed in concealed spaces other than plenums, complying with Section 720.7.

SECTION 719

FIRE-RESISTANCE REQUIREMENTS FOR PLASTER

719.1 Thickness of plaster. The minimum thickness of gypsum plaster or Portland cement plaster used in a fire-resistance-rated system shall be determined by the prescribed fire tests. The plaster thickness shall be measured from the face of the lath where applied to gypsum lath or metal lath.

719.2 Plaster equivalents. For fire-resistance purposes, \(\frac{1}{2} \) inch (12.7 mm) of unsanded gypsum plaster shall be deemed equivalent to \(\frac{3}{4} \) inch (19.1 mm) of one-to-three gypsum sand plaster or 1 inch (25 mm) of Portland cement sand plaster.
719.3 **Noncombustible furring.** In buildings of Type I and II construction, plaster shall be applied directly on concrete or masonry or on approved noncombustible plastering base and furring.

719.4 **Double reinforcement.** Plaster protection more than 1 inch (25 mm) in thickness shall be reinforced with an additional layer of approved lath embedded not less than 3/4 inch (19.1 mm) from the outer surface and fixed securely in place.

 Exception: Solid plaster partitions or where otherwise determined by fire tests.

719.5 **Plaster alternatives for concrete.** In reinforced concrete construction, gypsum plaster or Portland cement plaster is permitted to be substituted for 1/2 inch (12.7 mm) of the required poured concrete protection, except that a minimum thickness of 3/8 inch (9.5 mm) of poured concrete shall be provided in reinforced concrete floors and 1 inch (25 mm) in reinforced concrete columns in addition to the plaster finish. The concrete base shall be prepared in accordance with Section 2510.7.

SECTION 720

THERMAL- AND SOUND-INSULATING MATERIALS

720.1 **General.** Insulating materials, including facings such as vapor retarders and vapor-permeable membranes, similar coverings and all layers of single and multilayer reflective foil insulations, shall comply with the requirements of this section. Where a flame spread index or a smoke-developed index is specified in this section, such index shall be determined in accordance with ASTM E 84 or UL 723. Any material that is subject to an increase in flame spread index or smoke-developed index beyond the limits herein established through the effects of age, moisture or other atmospheric conditions shall not be permitted.

 Exceptions:
 1. Fiberboard insulation shall comply with Chapter 23.
 2. Foam plastic insulation shall comply with Chapter 26.
 3. Duct and pipe insulation and duct and pipe coverings and linings in plenums shall comply with Sections 603 and 604 of the mechanical code.
 4. All layers of single and multilayer reflective plastic core insulation shall comply with Section 2613.

720.2 **Concealed installation.** Insulating materials, where concealed as installed in buildings of any type of construction, shall have a flame spread index of not more than 25 and a smoke-developed index of not more than 450.

 Exception: Cellulosic fiber loose-fill insulation complying with the
requirements of Section 720.6 shall not be required to meet a flame spread
index requirement but shall be required to meet a smoke-developed index of
not more than 450 when tested in accordance with CAN/ULC S102.2.

720.2.1 Facings. Where such materials are installed in concealed spaces in
buildings of Type III, IV or V construction, the flame spread and smoke-
developed limitations do not apply to facings, coverings, and layers of
reflective foil insulation that are installed behind and in substantial contact with
the unexposed surface of the ceiling, wall or floor finish.

Exception: All layers of single and multilayer reflective plastic core
insulation shall comply with Section 2613.

720.3 Exposed installation. Insulating materials, where exposed as installed in
buildings of any type of construction, shall have a flame spread index of not more
than 25 and a smoke-developed index of not more than 450.

Exception: Cellulosic fiber loose-fill insulation complying with the
requirements of Section 720.6 shall not be required to meet a flame spread
index requirement but shall be required to meet a smoke-developed index of
not more than 450 when tested in accordance with CAN/ULC S102.2.

720.3.1 Attic floors. Exposed insulation materials installed on attic floors shall
have a critical radiant flux of not less than 0.12 watt per square centimeter when
tested in accordance with ASTM E 970.

720.4 Loose-fill insulation. Loose-fill insulation materials that cannot be
mounted in the ASTM E 84 or UL 723 apparatus without a screen or artificial
supports shall comply with the flame spread and smoke-developed limits of
Sections 720.2 and 720.3 when tested in accordance with CAN/ULC S102.2.

Exception: Cellulosic fiber loose-fill insulation shall not be required to meet a
flame spread index requirement when tested in accordance with CAN/ULC
S102.2, provided such insulation has a smoke-developed index of not more than
450 and complies with the requirements of Section 720.6.

720.5 Roof insulation. The use of combustible roof insulation not complying
with Sections 720.2 and 720.3 shall be permitted in any type of construction
provided that insulation is covered with approved roof coverings directly applied
thereto.

720.6 Cellulosic fiber loose-fill insulation and self-supported spray-applied
cellulosic insulation. Cellulosic fiber loose-fill insulation and self-supported
spray-applied cellulosic insulation shall comply with CPSC 16 CFR Parts 1209 and
1404. Each package of such insulating material shall be clearly labeled in accordance with CPSC 16 CFR Parts 1209 and 1404.

720.7 Insulation and covering on pipe and tubing. Insulation and covering on pipe and tubing shall have a flame spread index of not more than 25 and a smoke-developed index of not more than 450.

Exception:

1. Insulation and covering on pipe and tubing installed in plenums shall comply with Sections 603 and 604 of the mechanical code.
2. Materials installed for protection against heat and sharp edges to comply with the accessibility provisions.

SECTION 721

PRESCRIPTIVE FIRE-RESISTANCE

721.1 General. The provisions of this section contain prescriptive details of fire-resistance-rated building elements, components or assemblies. The materials of construction listed in Tables 721.1(1), 721.1(2), and 721.1(3) shall be assumed to have the fire-resistance ratings prescribed therein. Where materials that change the capacity for heat dissipation are incorporated into a fire-resistance-rated assembly, fire test results or other substantiating data shall be made available to the building official to show that the required fire-resistance-rating time period is not reduced.

<table>
<thead>
<tr>
<th>TABLE 721.1(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINIMUM PROTECTION OF STRUCTURAL PARTS BASED ON TIME PERIODS FOR VARIOUS NONCOMBUSTIBLE INSULATING MATERIALS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STRUCTURAL PARTS TO BE PROTECTED</th>
<th>ITEM NUMBER</th>
<th>INSULATING MATERIAL USED</th>
<th>MINIMUM THICKNESS OF INSULATING MATERIAL FOR THE FOLLOWING FIRE-RESISTANCE PERIODS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>1. Steel columns and all of primary trusses (continued)</td>
<td>1-1.1</td>
<td>Carbonate, lightweight and sand-lightweight aggregate concrete, members 6" × 6" or greater (not including sandstone, granite and siliceous gravel).</td>
<td>2 1/2</td>
</tr>
<tr>
<td></td>
<td>1-1.2</td>
<td>Carbonate, lightweight and sand-lightweight aggregate concrete, members 8" × 8" or greater (not including sandstone, granite and siliceous gravel).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1-1.3</td>
<td>Carbonate, lightweight and sand-lightweight aggregate concrete, members 12" × 12" or greater (not including sandstone, granite and siliceous gravel).</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td>1-1.4</td>
<td>Siliceous aggregate concrete and concrete excluded in Item 1-1.1, members 6" × 6" or greater.</td>
<td>3</td>
</tr>
<tr>
<td>STRUCTURAL PARTS TO BE PROTECTED</td>
<td>ITEM NUMBER</td>
<td>INSULATING MATERIAL USED</td>
<td>MINIMUM THICKNESS OF INSULATING MATERIAL FOR THE FOLLOWING FIRE- RESISTANCE PERIODS (inches)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>1-1.5 Siliceous aggregate concrete and concrete excluded in Item 1-1.1, members 8" × 8" or greater,</td>
<td>1-1.5</td>
<td>2 1/2</td>
<td>2</td>
</tr>
<tr>
<td>1-1.6 Siliceous aggregate concrete and concrete excluded in Item 1-1.1, members 12" × 12" or greater,</td>
<td>1-1.6</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1-2.1 Clay or shale brick with brick and mortar fill,</td>
<td>1-2.1</td>
<td>3 3/4</td>
<td>—</td>
</tr>
<tr>
<td>1-3.1 4" hollow clay tile in two 2" layers; 1/16" mortar between tile and column; 1/8" metal mesh 0.046" wire diameter in horizontal joints; tile fill,</td>
<td>1-3.1</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>1-3.2 2" hollow clay tile; 1/4" mortar between tile and column; 1/8" metal mesh 0.046" wire diameter in horizontal joints; limestone concrete fill, plastered with 1/4" gypsum plaster,</td>
<td>1-3.2</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>1-3.3 2" hollow clay tile with outside wire ties 0.08" diameter at each course of tile or 1/8" metal mesh 0.046" diameter wire in horizontal joints; limestone or trap-rock concrete fill extending 1" outside column on all sides,</td>
<td>1-3.3</td>
<td>—</td>
<td>3</td>
</tr>
<tr>
<td>1-3.4 2" hollow clay tile with outside wire ties 0.08" diameter at each course of tile with or without concrete fill, 1/8" mortar between tile and column,</td>
<td>1-3.4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1-4.1 Cement plaster over metal lath wire tied to 1/4" cold-rolled vertical channels with 0.049" (No. 18 B.W. gage) wire ties spaced 3" to 6" on center. Plaster mixed 1:2 1/2 by volume, cement to sand,</td>
<td>1-4.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1-5.1 Vermiculite concrete, 1:4 mix by volume over paper-backed wire fabric lath wrapped directly around column with additional 2" × 2" 0.065" /0.065" (No. 16/16 B.W. gage) wire fabric placed 3/4" from outer concrete surface. Wire fabric tied with 0.049" (No. 18 B.W. gage) wire spaced 6" on center for inner layer and 2" on center for outer layer,</td>
<td>1-5.1</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>1-6.1 Perlite or vermiculite gypsum plaster over metal lath wrapped around column and furred 1 1/4" from column flanges. Sheets lapped at ends and tied at 6" intervals with 0.049" (No. 18 B.W. gage) tie wire. Plaster pushed through to flanges,</td>
<td>1-6.1</td>
<td>1 1/2</td>
<td>1</td>
</tr>
<tr>
<td>1-6.2 Perlite or vermiculite gypsum plaster over self-furring metal lath wrapped directly around column, lapped 1" and tied at 6" intervals with 0.049" (No. 18 B.W. gage) wire,</td>
<td>1-6.2</td>
<td>1 3/4</td>
<td>1 3/8</td>
</tr>
<tr>
<td>1-6.3 Perlite or vermiculite gypsum plaster on metal lath applied to 1/4" cold-rolled channels spaced 24" apart vertically and wrapped flatwise around column,</td>
<td>1-6.3</td>
<td>1/2</td>
<td>—</td>
</tr>
<tr>
<td>1-6.4 Perlite or vermiculite gypsum plaster over two layers of 1/2" plain</td>
<td>1-6.4</td>
<td>2 1/2</td>
<td>2</td>
</tr>
<tr>
<td>STRUCTURAL PARTS TO BE PROTECTED</td>
<td>ITEM NUMBER</td>
<td>INSULATING MATERIAL USED</td>
<td>MINIMUM THICKNESS OF INSULATING MATERIAL FOR THE FOLLOWING FIRE-RESISTANCE PERIODS (inches)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>1. Steel columns and all of primary trusses</td>
<td>1-6.5</td>
<td>full-length gypsum lath applied tight to column flanges. Lath wrapped with 1" hexagonal mesh of No. 20 gage wire and tied with doubled 0.035" diameter (No. 18 B.W. gage) wire ties spaced 23" on center. For three-coat work, the plaster mix for the second coat shall not exceed 100 pounds of gypsum to 2½ cubic feet of aggregate.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-7.1</td>
<td>Perlite or vermiculite gypsum plaster over one layer of ½" plain full-length gypsum lath applied tight to column flanges. Lath tied with doubled 0.049" (No. 18 B.W. gage) wire ties spaced 23" on center and scratch coat wrapped with 1" hexagonal mesh 0.035" (No. 20 B.W. gage) wire fabric. For three-coat work, the plaster mix for the second coat shall not exceed 100 pounds of gypsum to 2½ cubic feet of aggregate.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-7.2</td>
<td>Multiple layers of ½" gypsum wallboard adhesively secured to column flanges and successive layers. Wallboard applied without horizontal joints. Corner edges of each layer staggered. Wallboard layer below outer layer secured to column with doubled 0.049" (No. 18 B.W. gage) steel wire ties spaced 15" on center. Exposed corners taped and treated.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-7.3</td>
<td>Three layers of 3/8" Type X gypsum wallboard; first and second layer held in place by 13(\frac{5}{8})" diameter by 1 /8" long ring shank nails with /16" diameter heads spaced 24" on center at corners. Middle layer also secured with metal straps at mid-height and 18" from each end, and by metal corner bead at each corner held by the metal straps. Third layer attached to corner bead with 1" long gypsum wallboard screws spaced 12" on center.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-8.1</td>
<td>Three layers of 3/8" Type X gypsum wallboard, each layer screws attached to 1½" steel studs 0.018" thick (No. 25 carbon sheet steel gage) at each corner of column. Middle layer also secured with 0.049" (No. 18 B.W. gage) double-strand steel wire ties, 24" on center. Screws are No. 6 by 1" spaced 24" on center for inner layer, No. 6 by 1½" spaced 12" on center for middle layer and No. 8 by 2½" spaced 12" on center for outer layer.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wood-fibered gypsum plaster mixed 1:1 by weight gypsum-to-sand aggregate applied over metal lath. Lath lapped 1" and tied 6" on center at all end, edges and spacers with 0.049" (No. 18 B.W. gage) steel tie wires. Lath applied over ½" spacers made of ½" furring channel with 2" legs bent around each corner. Spacers located 1" from top and bottom of member and a maximum of 40" on center and wire tied with a single strand of 0.049" (No. 18 B.W. gage) steel tie wires. Corner bead tied to the lath at 6" on center along each corner to provide plaster thickness.</td>
<td>—</td>
</tr>
<tr>
<td>STRUCTURAL PARTS TO BE PROTECTED</td>
<td>ITEM NUMBER</td>
<td>INSULATING MATERIAL USED</td>
<td>MINIMUM THICKNESS OF INSULATING MATERIAL FOR THE FOLLOWING FIRE-RESISTANCE PERIODS (inches)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 hours</td>
<td>3 hours</td>
</tr>
<tr>
<td>1-9.1</td>
<td></td>
<td>Minimum W8x35 wide flange steel column (w/d 0.75) with each web cavity filled even with the flange tip with normal weight carbonate or siliceous aggregate concrete (3,000 psi minimum compressive strength with 145pcf ± 3 pcf unit weight). Reinforce the concrete in each web cavity with a minimum No. 4 deformed reinforcing bar installed vertically and centered in the cavity, and secured to the column web with a minimum No. 2 horizontal deformed reinforcing bar welded to the web every 18" on center vertically. As an alternative to the No. 4 rebar, 3/4" diameter by 3" long headed studs, spaced at 12" on center vertically, shall be welded on each side of the web midway between the column flanges.</td>
<td>—</td>
</tr>
<tr>
<td>2-1.1</td>
<td></td>
<td>Carbonate, lightweight and sand-lightweight aggregate concrete (not including sandstone, granite and siliceous gravel) with 3" or finer metal mesh placed 1" from the finished surface anchored to the top flange and providing not less than 0.025 square inch of steel area per foot in each direction.</td>
<td>2</td>
</tr>
<tr>
<td>2-1.2</td>
<td></td>
<td>Siliceous aggregate concrete and concrete excluded in Item 2-1.1 with 3" or finer metal mesh placed 1" from the finished surface anchored to the top flange and providing not less than 0.025 square inch of steel area per foot in each direction.</td>
<td>2 1/2</td>
</tr>
<tr>
<td>2-2.1</td>
<td></td>
<td>Cement plaster on metal lath attached to 3/4" cold-rolled channels with 0.04" (No. 18 B.W. gage) wire ties spaced 3" to 6" on center. Plaster mixed 1:2 1/2 by volume, cement to sand.</td>
<td>—</td>
</tr>
<tr>
<td>2-3.1</td>
<td></td>
<td>Vermiculite gypsum plaster on a metal lath cage, wire tied to 0.165" diameter (No. 8 B.W. gage) steel wire hangers wrapped around beam and spaced 16" on center. Metal lath ties spaced approximately 5" on center at cage sides and bottom.</td>
<td>—</td>
</tr>
<tr>
<td>2-4.1</td>
<td></td>
<td>Two layers of 7/8" Type X gypsum wallboard are attached to U-shaped brackets spaced 24" on center. 0.018" thick (No. 25 carbon sheet steel gage) 1 1/8" deep by 1" galvanized steel runner channels are first installed parallel to and on each side of the top beam flange to provide a 1/2" clearance to the flange. The channel runners are attached to steel deck or concrete floor construction with approved fasteners spaced 12" on center. U-shaped brackets are formed from members identical to the channel runners. At the bent portion of the U-shaped bracket, the flanges of the channel are cut out so that 1 5/8" deep corner channels can be inserted without attachment parallel to each side of the lower flange. As an alternative, 0.021" thick (No. 24 carbon sheet steel gage) 1" × 2" runner and corner angles shall be used in lieu of channels, and the web cutouts in the U-shaped brackets shall not be</td>
<td>—</td>
</tr>
</tbody>
</table>
TABLE 721.1(1)
MINIMUM PROTECTION OF STRUCTURAL PARTS BASED ON TIME PERIODS FOR VARIOUS NONCOMBUSTIBLE INSULATING MATERIALS

<table>
<thead>
<tr>
<th>STRUCTURAL PARTS TO BE PROTECTED</th>
<th>ITEM NUMBER</th>
<th>INSULATING MATERIAL USED</th>
<th>MINIMUM THICKNESS OF INSULATING MATERIAL FOR THE FOLLOWING FIRE-RESISTANCE PERIODS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>required. Each angle is attached to the bracket with 1/2"-long No. 8 self-drilling screws. The vertical legs of the U-shaped bracket are attached to the runners with one 1/2" long No. 8 self-drilling screw. The completed steel framing provides a 2 1/4" and 1 1/2" space between the inner layer of wallboard and the sides and bottom of the steel beam, respectively. The inner layer of wallboard is attached to the top runners and bottom corner channels or corner angles with 1 1/2"-long No. 6 self-drilling screws spaced 16" on center. The outer layer of wallboard is applied with 1 1/4"-long No. 6 self-drilling screws spaced 8" on center. The bottom corners are reinforced with metal corner beads.</td>
<td>2-4.2</td>
<td>Three layers of 5/8" Type X gypsum wallboard attached to a steel suspension system as described immediately above utilizing the 0.018" thick (No. 25 carbon steel gage) 1" × 2" lower corner angles. The framing is located so that a 2 1/4" and 2" space is provided between the inner layer of wallboard and the sides and bottom of the beam, respectively. The first two layers of wallboard are attached as described immediately above. A layer of 0.035" thick (No. 20 B.W. gage) 1" hexagonal galvanized wire mesh is applied under the soffit of the middle layer and up the sides approximately 2". The mesh is held in position with the No. 6 1 1/4"-long screws installed in the vertical leg of the bottom corner angles. The outer layer of wallboard is attached with No. 6 2 1/4"-long screws spaced 8" on center. One screw is also installed at the mid-depth of the bracket in each layer. Bottom corners are finished as described above.</td>
<td>—</td>
</tr>
</tbody>
</table>
| 3. Bonded pretensioned reinforcement in prestressed concrete | 3-1.1 | Carbonate, lightweight, sand-lightweight and siliceous aggregate concrete
Beams or girders
Solid | 4" | 3 1/4 | 2 1/2 | 1 1/2 |
| 4. Bonded or unbonded posttensioned tendons in prestressed concrete | 4-1.1 | Carbonate, lightweight, sand-lightweight and siliceous aggregate concrete Unrestrained members:
Solid slabs
Beams and girders
8" wide
greater than 12" wide | 4 1/2 | 2 1/2 | 3 1/4 |
| 4-1.2 | Carbonate, lightweight, sand-lightweight and siliceous aggregate | 3 | 2 1/2 | 2 | 1 1/2 |

3. Bonded pretensioned reinforcement in prestressed concrete:

- Carbonate, lightweight, sand-lightweight and siliceous aggregate concrete
- Beams or girders
- Solid

4. Bonded or unbonded posttensioned tendons in prestressed concrete:

- Carbonate, lightweight, sand-lightweight and siliceous aggregate concrete Unrestrained members:
 - Solid slabs
 - Beams and girders
 - 8" wide
 - greater than 12" wide
TABLE 721.1(1)
MINIMUM PROTECTION OF STRUCTURAL PARTS BASED ON TIME PERIODS
FOR VARIOUS NONCOMBUSTIBLE INSULATING MATERIALS

<table>
<thead>
<tr>
<th>STRUCTURAL PARTS TO BE PROTECTED</th>
<th>ITEM NUMBER</th>
<th>INSULATING MATERIAL USED</th>
<th>MINIMUM THICKNESS OF INSULATING MATERIAL FOR THE FOLLOWING FIRE-RESISTANCE PERIODS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>5. Reinforcing steel in reinforced concrete columns, beams girders and trusses</td>
<td>5-1.1</td>
<td>Carbonate, lightweight and sand-lightweight aggregate concrete, members 12" or larger, square or round. (Size limit does not apply to beams and girders monolithic with floors.)</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siliceous aggregate concrete, members 12" or larger, square or round. (Size limit does not apply to beams and girders monolithic with floors.)</td>
<td>2</td>
</tr>
<tr>
<td>6. Reinforcing steel in reinforced concrete joists</td>
<td>6-1.1</td>
<td>Carbonate, lightweight and sand-lightweight aggregate concrete</td>
<td>1 1/4</td>
</tr>
<tr>
<td></td>
<td>6-1.2</td>
<td>Siliceous aggregate concrete</td>
<td>1 3/4</td>
</tr>
<tr>
<td>7. Reinforcing and tie rods in floor and roof slabs</td>
<td>7-1.1</td>
<td>Carbonate, lightweight and sand-lightweight aggregate concrete</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7-1.2</td>
<td>Siliceous aggregate concrete</td>
<td>1 1/4</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.2 mm², 1 cubic foot = 0.0283 m³, 1 pound per cubic foot = 16.02 kg/m³.

a. Reentrant parts of protected members to be filled solidly.
b. Two layers of equal thickness with a 3/4-inch airspace between.
c. For all of the construction with gypsum wallboard described in Table 721.1(1), gypsum base for veneer plaster of the same size, thickness and core type shall be permitted to be substituted for gypsum wallboard, provided attachment is identical to that specified for the wallboard and the joints on the face layer are reinforced, and the entire surface is covered with not less than 1/16-inch gypsum veneer plaster.
d. An approved adhesive qualified under ASTM E 119 or UL 263.
e. Where lightweight or sand-lightweight concrete having an oven-dry weight of 110 pounds per cubic foot or less is used, the tabulated minimum cover shall be permitted to be reduced 25 percent, except that in no case shall the cover be less than 3/4 inch in slabs or 1 1/2 inches in beams or girders.
f. For solid slabs of siliceous aggregate concrete, increase tendon cover 20 percent.
g. Adequate provisions against spalling shall be provided by U-shaped or hooped stirrups spaced not to exceed the depth of the member with a clear cover of 1 inch.
h. Prestressed slabs shall have a thickness not less than that required in Table 721.1(3) for the respective fire-resistance time period.
i. Fire coverage and end anchorages shall be as follows: Cover to the prestressing steel at the anchor shall be 1/2 inch greater than that required away from the anchor. Minimum cover to steel-bearing plate shall be 1 inch in beams and 3/4 inch in slabs.
j. For beam widths between 8 inches and 12 inches, cover thickness shall be permitted to be determined by interpolation.
k. Interior spans of continuous slabs, beams and girders shall be permitted to be considered restrained.
l. For use with concrete slabs having a comparable fire endurance where members are framed into the structure in such a manner as to provide equivalent performance to that of monolithic concrete construction.
m. Generic fire-resistance ratings (those not designated as PROPRIETARY* in the listing) in GA 600 shall be accepted as if herein listed.
n. No additional insulating material is required on the exposed outside face of the column flange to achieve a 1-hour fire-resistance rating.
<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ITEM NUMBER</th>
<th>CONSTRUCTION</th>
<th>MINIMUM FINISHED THICKNESS FACE-TO-FACEb (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>Brick of clay or shale</td>
<td>1-1.1</td>
<td>Solid brick of clay or shalec.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1-1.2</td>
<td>Hollow brick, not filled.</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>1-1.3</td>
<td>Hollow brick unit wall, grout or filled with perlite vermiculite or expanded shale aggregate.</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td>1-2.1</td>
<td>4" nominal thick units not less than 75 percent solid backed with a hat-shaped metal furring channel 3/4" thick formed from 0.021" sheet metal attached to the brick wall on 24" centers with approved fasteners, and 1/2" Type X gypsum wallboard attached to the metal furring strips with 1"-long Type S screws spaced 8" on center.</td>
<td>—</td>
</tr>
<tr>
<td>Combination of clay brick and load-bearing hollow clay tile</td>
<td>2-1.1</td>
<td>4" solid brick and 4" tile (not less than 40 percent solid).</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2-1.2</td>
<td>4" solid brick and 8" tile (not less than 40 percent solid).</td>
<td>12</td>
</tr>
<tr>
<td>Concrete masonry units</td>
<td>3-1.1f, g</td>
<td>Expanded slag or pumice.</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>3-1.2f, g</td>
<td>Expanded clay, shale or slate.</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>3-1.3f</td>
<td>Limestone, cinders or air-cooled slag.</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>3-1.4f, g</td>
<td>Calcareous or siliceous gravel.</td>
<td>6.2</td>
</tr>
<tr>
<td>Solid concreteh, i</td>
<td>4-1.1</td>
<td>Siliceous aggregate concrete.</td>
<td>7.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbonate aggregate concrete.</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sand-lightweight concrete.</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lightweight concrete.</td>
<td>5.1</td>
</tr>
<tr>
<td>Glazed or unglazed facing tile, nonloadbearing</td>
<td>5-1.1</td>
<td>One 2" unit cored 15 percent maximum and one 4" unit cored 25 percent maximum with 3/4" mortar-filled collar joint. Unit positions reversed in alternate courses.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5-1.2</td>
<td>One 2" unit cored 15 percent maximum and one 4" unit cored 40 percent maximum with 3/4" mortar-filled collar joint. Unit positions side with 1/4" gypsum plaster. Two wythes tied together every fourth course with No. 22 gage corrugated metal ties.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5-1.3</td>
<td>One unit with three cells in wall thickness, cored 29 percent maximum.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5-1.4</td>
<td>One 2" unit cored 22 percent maximum and one 4" unit cored 41 percent maximum with 1/4" mortar-filled collar joint. Two wythes tied together every third course with 0.030" (No. 22 galvanized sheet steel gage) corrugated metal ties.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5-1.5</td>
<td>One 4" unit cored 25 percent maximum with 3/4" gypsum</td>
<td>—</td>
</tr>
</tbody>
</table>
TABLE 721.1(2)
RATED FIRE-RESISTANCE PERIODS FOR VARIOUS WALLS AND PARTITIONS *a, o, p*

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ITEM NUMBER</th>
<th>CONSTRUCTION</th>
<th>MINIMUM FINISHED THICKNESS FACE-TO-FACE⁹ (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>6. Solid gypsum plaster</td>
<td>6-1.1</td>
<td>3/4" by 0.055" (No. 16 carbon sheet steel gage) vertical cold-rolled channels, 16" on center with 2.6-pound flat metal lath applied to one face and tied with 0.049" (No. 18 B.W. gage) wire at 6" spacing. Gypsum plaster each side mixed 1:2 by weight, gypsum to sand aggregate.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6-1.2</td>
<td>3/4" by 0.055" (No. 16 carbon sheet steel gage) cold-rolled channels 16" on center with metal lath applied to one face and tied with 0.049" (No. 18 B.W. gage) wire at 6" spacing. Perlite or vermiculite gypsum plaster each side. For three-coat work, the plaster mix for the second coat shall not exceed 100 pounds of gypsum to 2 1/2 cubic feet of aggregate for the 1-hour system.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6-1.3</td>
<td>3/4" by 0.055" (No. 16 carbon sheet steel gage) vertical cold-rolled channels, 16" on center with 3/8" gypsum lath applied to one face and attached with sheet metal clips. Gypsum plaster each side mixed 1:2 by weight, gypsum to sand aggregate.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6-2.1</td>
<td>Studless with 1/2" full-length plain gypsum lath and gypsum plaster each side. Plaster mixed 1:1 for scratch coat and 1:2 for brown coat, by weight, gypsum to sand aggregate.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6-2.2</td>
<td>Studless with 1/2" full-length plain gypsum lath and perlite or vermiculite gypsum plaster each side.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>6-2.3</td>
<td>Studless partition with 3/8" rib metal lath installed vertically adjacent edges tied 6" on center with No. 18 gage wire ties, gypsum plaster each side mixed 1:2 by weight, gypsum to sand aggregate.</td>
<td>—</td>
</tr>
<tr>
<td>7. Solid perlite and Portland cement</td>
<td>7-1.1</td>
<td>Perlite mixed in the ratio of 3 cubic feet to 100 pounds of Portland cement and machine applied to stud side of 1 1/8" mesh by 0.058-inch (No. 17 B.W. gage) paper-backed woven wire fabric lath wire-tied to 4"-deep steel trussed wire/studs 16" on center. Wire ties of 0.049" (No. 18 B.W. gage) galvanized steel wire 6" on center vertically.</td>
<td>—</td>
</tr>
<tr>
<td>8. Solid neat wood fibered gypsum plaster</td>
<td>8-1.1</td>
<td>3/4" by 0.055-inch (No. 16 carbon sheet steel gage) cold-rolled channels, 12" on center with 2.5-pound flat metal lath applied to one face and tied with 0.049" (No. 18 B.W. gage) wire at 6" spacing.</td>
<td>—</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ITEM NUMBER</td>
<td>CONSTRUCTION</td>
<td>MINIMUM FINISHED THICKNESS FACE-TO-FACE<sup>b</sup> (inches)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours 3 hours 2 hours 1 hour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-1.1</td>
<td>One full-length layer 1/2" Type X gypsum wallboard<sup>c</sup> laminated to each side of 1" fulllength V-edge gypsum coreboard with approved laminating compound. Vertical joints of face layer and coreboard staggered not less than 3".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-1.1</td>
<td>One full-length layer of 5/8" Type X gypsum wallboard<sup>c</sup> attached to both sides of wood or metal top and bottom runners laminated to each side of 1"× 6" full-length gypsum coreboard ribs spaced 2" on center with approved laminating compound. Ribs centered at vertical joints of face plies and joints staggered 24" in opposing faces. Ribs may be recessed 6" from the top and bottom.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-1.2</td>
<td>1" regular gypsum V-edge full-length backing board attached to both sides of wood or metal top and bottom runners with nails or 1 1/8" drywall screws at 24" on center. Minimum width of rumors 1 1/8". Face layer of 1/2" regular full-length gypsum wallboard laminated to outer faces of backing board with approved laminating compound.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11-1.1</td>
<td>3 1/4" × 0.044" (No. 18 carbon sheet steel gage) steel studs spaced 24" on center. 5/8" gypsum plaster on metal lath each side mixed 1:2 by weight, gypsum to sand aggregate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11-1.2</td>
<td>3 3/8" × 0.055" (No. 16 carbon sheet steel gage) approved nailable studs spaced 24" on center. 5/8" neat gypsum wood-fibered plaster each side over 1/4" rib metal lath nailed to studs with 6d common nails, 8" on center. Nails driven 1 1/4" and bent over.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11-1.3</td>
<td>4" × 0.044" (No. 18 carbon sheet steel gage) channel-shaped steel studs at 16" on center. On each side approved resilient clips pressed onto stud flange at 16" vertical spacing; 1/2" pencil rods snapped into or wire tied onto outer loop of clips, metal lath wire-tied to pencil rods at 6" intervals. 1" perlite gypsum plaster, each side.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11-1.4</td>
<td>2 1/2" × 0.044" (No. 18 carbon sheet steel gage) steel studs spaced 16" on center. Wood fibered gypsum plaster mixed 1:1 by weight gypsum to sand aggregate applied on 1/4pound metal lath wire tied to studs, each side. 3/4" plaster applied over each face, including finish coat.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-1.1<sup>m</sup></td>
<td>2" × 4" wood studs 16" on center with 3/8" gypsum plaster on metal lath. Lath attached by 4d common nails bent over or No. 14 gage by 1 1/2" by 3/4" crown width staples spaced 6" on center. Plaster mixed 1:1 1/2 for scratch coat and 1:3 for brown coat, by weight, gypsum to sand aggregate.</td>
</tr>
</tbody>
</table>
TABLE 721.1(2)
RATED FIRE-RESISTANCE PERIODS FOR VARIOUS WALLS AND PARTITIONS

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ITEM NUMBER</th>
<th>CONSTRUCTION</th>
<th>MINIMUM FINISHED THICKNESS FACE-TO-FACE(b) (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>12-1.2(1)</td>
<td></td>
<td>2(" \times 4) wood studs 16" on center with metal lath and 7/8" neat wood-fibered gypsum plaster each side. Lath attached by 6d common nails, 7" on center. Nails driven 1/4" and bent over.</td>
<td>—</td>
</tr>
<tr>
<td>12-1.3(1)</td>
<td></td>
<td>2(" \times 4) wood studs 16" on center with 3/4" perforated or plain gypsum lath and 1/2" gypsum plaster each side. Lath nailed with 1/8" by No. 13 gage by 19/64" head plasterboard blued nails, 4" on center. Plaster mixed 1:2 by weight, gypsum to sand aggregate.</td>
<td>—</td>
</tr>
<tr>
<td>12-1.4(1)</td>
<td></td>
<td>2(" \times 4) wood studs 16" on center with 3/4" Type X gypsum lath and 1/2" gypsum plaster each side. Lath nailed with 1/8" by No. 13 gage by 19/64" head plasterboard blued nails, 5" on center. Plaster mixed 1:2 by weight, gypsum to sand aggregate.</td>
<td>—</td>
</tr>
<tr>
<td>13-1.1</td>
<td></td>
<td>0.018" (No. 25 carbon sheet gage) channel-shaped studs 24" on center with one full-length layer of 5/8" Type X gypsum wallboard(d) applied vertically attached with 1"-long No. 6 drywall screws to each stud. Screws are 8" on center around the perimeter and 12" on center on the intermediate stud. Where applied horizontally, the Type X gypsum wallboard shall be attached to 3(3/8)" studs and the horizontal joints shall be staggered with those on the opposite side. Screws for the horizontal application shall be 8" on center at vertical edges and 12" on center at intermediate studs.</td>
<td>—</td>
</tr>
<tr>
<td>13-1.2</td>
<td></td>
<td>0.018" (No. 25 carbon sheet steel gage) channel-shaped studs 25" on center with two full-length layers of 1(1/4" Type X gypsum wallboard(d) applied vertically each side. First layer attached with 1"-long, No. 6 drywall screws, 8" on center around the perimeter and 12" on center on the intermediate stud. Second layer applied with vertical joints offset one stud space from first layer using 1(1/8" long, No. 6 drywall screws spaced 9" on center along vertical joints, 12" on center at intermediate studs and 24" on center along top and bottom runners.</td>
<td>—</td>
</tr>
<tr>
<td>13-1.3</td>
<td></td>
<td>0.055" (No. 16 carbon sheet steel gage) approved nailable metal studs(e) 24" on center with full-length 5/8" Type X gypsum wallboard(d) applied vertically and nailed 7" on center with 6d cement-coated common nails. Approved metal fastener grips used with nails at vertical butt joints along studs.</td>
<td>—</td>
</tr>
</tbody>
</table>
TABLE 721.1(2)
RATED FIRE-RESISTANCE PERIODS FOR VARIOUS WALLS AND PARTITIONS a, o, p

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ITEM NUMBER</th>
<th>CONSTRUCTION</th>
<th>MINIMUM FINISHED THICKNESS FACE-TO-FACEb (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>14. Wood studs-interior partition with gypsum wallboard each side</td>
<td>14-1.1h,m</td>
<td>2" × 4" wood studs 16" on center with two layers of 3/8" regular gypsum wallboardd each side, 4d coolerd or wallboardd nails at 8" on center first layer, 5d coolerd or wallboardd nails at 8" on center second layer with laminating compound between layers, joints staggered. First layer applied full length vertically, second layer applied horizontally or vertically.</td>
<td>—</td>
</tr>
<tr>
<td>14-1.2l,m</td>
<td>2" × 4" wood studs 16" on center with two layers 1/2" regular gypsum wallboardd applied vertically or horizontally each sidea, joints staggered. Nail base layer with 5d coolerd or wallboardn nails at 8" on center face layer with 8d coolerd or wallboardd nails at 8" on center.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14-1.3l,m</td>
<td>2" × 4" wood studs 24" on center with 3/8" Type X gypsum wallboard applied vertically or horizontally nailed with 6d coolerd or wallboardd nails at 7" on center with end joints on nailing members. Stagger joints each side.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14-1.4l</td>
<td>2" × 4" fire-retardant-treated wood studs spaced 24" on center with one layer of 5/8" Type X gypsum wallboard applied vertically or horizontally at right angles to studs. Wallboard attached with 6d coolerd or wallboardd nails at 7" on center.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14-1.5l,m</td>
<td>2" × 4" wood studs 16" on center with two layers 3/8" Type X gypsum wallboard each side. Base layers applied vertically and nailed with 6d coolerd or wallboardd nails at 9" on center. Face layer applied vertically or horizontally and nailed with 8d coolerd or wallboardd nails at 7" on center. For nail-adhesive application, base layers are nailed 6" on center. Face layers applied with coating of approved wallboard adhesive and nailed 12" on center.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14-1.6l</td>
<td>2" × 3" fire-retardant-treated wood studs spaced 24" on center with one layer of 5/8" Type X gypsum wallboard applied with face paper grain (long dimension) at right angles to studs. Wallboard attached with 6d cement-coated box nails spaced 7" on center.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15. Exterior or interior walls (continued)</td>
<td>15-1.1l,m</td>
<td>Exterior surface with 3/4" drop siding over 1/2" gypsum sheathing on 2" × 4" wood studs at 16" on center, interior surface treatment as required for 1-hour-rated exterior or interior 2" × 4" wood stud partitions. Gypsum sheathing nailed with 1 1/4" by No. 11 gage by 7/16" head galvanized nails at 8" on center. Siding nailed with 7d galvanized smooth box nails.</td>
<td>—</td>
</tr>
</tbody>
</table>
TABLE 721.1(2)
RATED FIRE-RESISTANCE PERIODS FOR VARIOUS WALLS AND PARTITIONS

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ITEM NUMBER</th>
<th>CONSTRUCTION</th>
<th>MINIMUM FINISHED THICKNESS FACE-TO-FACEb (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>15-1.2lm</td>
<td>2" × 4" wood studs 16" on center with metal lath and 3/4" cement plaster on each side. Lath attached with 6d common nails 7" on center driven to 1" minimum penetration and bent over. Plaster mix 1:4 for scratch coat and 1:5 for brown coat, by volume, cement to sand.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15-1.3lm</td>
<td>2" × 4" wood studs 16" on center with 7/8" cement plaster (measured from the face of studs) on the exterior surface with interior surface treatment as required for interior wood stud partitions in this table. Plaster mix 1:4 for scratch coat and 1:5 for brown coat, by volume, cement to sand.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15-1.4</td>
<td>35/8" No. 16 gage noncombustible studs 16" on center with 7/8" cement plaster (measured from the face of the studs) on the exterior surface with interior surface treatment as required for interior, nonbearing, noncombustible stud partitions in this table. Plaster mix 1:4 for scratch coat and 1:5 for brown coat, by volume, cement to sand.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15-1.5m</td>
<td>2 3/4" × 3 3/4" clay face brick with cored holes over 1/2" gypsum sheathing on exterior surface of 2" × 4" wood studs at 16" on center and two layers 5/16" Type X gypsum wallboard on interior surface. Sheathing placed horizontally or vertically with vertical joints over studs nailed 6" on center with 13/4" × No. 11 gage by 7/16" head galvanized nails. Inner layer of wallboard placed horizontally or vertically and nailed 8" on center with 6d cooler or wallboardn nails. Outer layer of wallboard placed horizontally or vertically and nailed 8" on center with 8d cooler or wallboardn nails. Joints staggered with vertical joints over studs. Outer layer joints taped and finished with compound. Nail heads covered with joint compound. 0.035 inch (No. 20 galvanized sheet gage) corrugated galvanized steel wall ties 3/4" by 6 1/8" attached to each stud with two 8d cooler or wallboardn nails every sixth course of bricks.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ITEM NUMBER</td>
<td>CONSTRUCTION</td>
<td>MINIMUM FINISHED THICKNESS FACE-TO-FACEb (inches)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>15-1.6l,m</td>
<td></td>
<td>2" × 6" fire-retardant-treated wood studs 16" on center. Interior face has two layers of 5/8" Type X gypsum with the base layer placed vertically and attached with 6d box nails 12" on center. The face layer is placed horizontally and attached with 8d box nails 8" on center at joints and 12" on center elsewhere. The exterior face has a base layer of 5/8" Type X gypsum sheathing placed vertically with 6d box nails 8" on center at joints and 12" on center elsewhere. An approved building paper is next applied, followed by self-furred exterior lath attached with 2½" No. 12 gage galvanized roofing nails with a ½" diameter head and spaced 6" on center along each stud. Cement plaster consisting of a ½" brown coat is then applied. The scratch coat is mixed in the proportion of 1:3 by weight, cement to sand with 10 pounds of hydrated lime and 3 pounds of approved additives or admixtures per sack of cement. The brown coat is mixed in the proportion of 1:4 by weight, cement to sand with the same amounts of hydrated lime and approved additives or admixtures used in the scratch coat.</td>
<td>—</td>
</tr>
<tr>
<td>15-1.7l,m</td>
<td></td>
<td>2" × 6" wood studs 16" on center. The exterior face has a layer of 5/8" Type X gypsum sheathing placed vertically with 6d box nails 8" on center at joints and 12" on center elsewhere. An approved building paper is next applied, followed by 1" by No. 18 gage selffurred exterior lath attached with 8d by 2½" long galvanized roofing nails spaced 6" on center along each stud. Cement plaster consisting of a ½" scratch coat, a bonding agent and a ½" brown coat and a finish coat is then applied. The scratch coat is mixed in the proportion of 1:3 by weight, cement to sand with 10 pounds of hydrated lime and 3 pounds of approved additives or admixtures per sack of cement. The brown coat is mixed in the proportion of 1:4 by weight, cement to sand with the same amounts of hydrated lime and approved additives or admixtures used in the scratch coat.</td>
<td>—</td>
</tr>
</tbody>
</table>
TABLE 721.1(2)
RATED FIRE-RESISTANCE PERIODS FOR VARIOUS WALLS AND PARTITIONS \(a, o, p\)

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ITEM NUMBER</th>
<th>CONSTRUCTION</th>
<th>MINIMUM FINISHED THICKNESS FACE-TO-FACE(^b) (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>15-1.8(^m)</td>
<td></td>
<td>2" × 6" wood studs 16" on center. The exterior face has a layer of (\frac{3}{8})" Type X gypsum sheathing placed vertically with 6d box nails 8" on center at joints and 12" on center elsewhere. An approved building paper is next applied, followed by (\frac{1}{2})" by No. 17 gage self-furred exterior lath attached with 8d by 2(\frac{1}{2})" long galvanized roofing nails spaced 6" on center along each stud. Cement plaster consisting of a (\frac{1}{2})" scratch coat, and a (\frac{1}{2})" brown coat is then applied. The plaster may be placed by machine. The scratch coat is mixed in the proportion of 1:4 by weight, plastic cement to sand. The brown coat is mixed in the proportion of 1:5 by weight, plastic cement to sand. The interior is covered with (\frac{3}{8})" gypsum lath with 1" hexagonal mesh of No. 20 gage woven wire lath furred out 51 (\frac{1}{16})" and 1" perlite or vermiculite gypsum plaster. Lath nailed with 1 (\frac{1}{8})" by No. 13 gage by (\frac{5}{16})" head plasterboard glued nails spaced 5" on center. Mesh attached by 1(\frac{1}{4})" by No. 12 gage by (\frac{3}{8})" head nails with (\frac{5}{16})" furrings, spaced 8" on center. The plaster mix shall not exceed 100 pounds of gypsum to 2(\frac{1}{2}) cubic feet of aggregate.</td>
<td>—</td>
</tr>
<tr>
<td>15-1.9</td>
<td></td>
<td>4" No. 18 gage, nonload-bearing metal studs, 16" on center, with 1" Portland cement lime plaster (measured from the back side of the (\frac{3}{4})-pound expanded metal lath) on the exterior surface. Interior surface to be covered with 1" of gypsum plaster on (\frac{1}{2})-pound expanded metal lath proportioned by weight-1:2 for scratch coat, 1:3 for brown, gypsum to sand. Lath on one side of the partition fastened to (\frac{1}{4})" diameter pencil rods supported by No. 20 gage metal clips, located 16" on center vertically, on each stud. 3" thick mineral fiber insulating batts friction fitted between the studs.</td>
<td>—</td>
</tr>
<tr>
<td>15-1.10</td>
<td></td>
<td>Steel studs 0.060" thick, 4" deep or 6" at 16" or 24" centers, with (\frac{1}{16})" Glass Fiber Reinforced Concrete (GFRC) on the exterior surface. GFRC is attached with flex anchors at 24" on center, with 5" leg welded to studs with two (\frac{1}{2})-long flare-bevel welds, and 4" foot attached to the GFRC skin with (\frac{1}{2})" thick GFRC bonding pads that extend 2(\frac{1}{2})" beyond the flex anchor foot on both sides. Interior surface to have two layers of (\frac{1}{16})" Type X gypsum wallboard. The first layer of wallboard to be attached with 1"-long Type S buglehead screws spaced 24" on center and the second layer is attached with (\frac{5}{8})-long Type S screws spaced at 12" on center. Cavity is to be filled with 5" of 4pcf (nominal) mineral fiber batts. GFRC has 1(\frac{1}{4})" returns packed with mineral fiber and caulked on the exterior.</td>
<td>—</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ITEM NUMBER</td>
<td>CONSTRUCTION</td>
<td>MINIMUM FINISHED THICKNESS FACE-TO-FACE<sup>b</sup> (inches)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
<tr>
<td>15-1.11</td>
<td></td>
<td>Steel studs 0.060" thick, 4" deep or 6" at 16" or 24" centers, respectively, with 1/2" Glass Fiber Reinforced Concrete (GFRC) on the exterior surface. GFRC is attached with flex anchors at 24" on center, with 5" leg welded to studs with two 1/2"-long flare-bevel welds, and 4" foot attached to the GFRC skin with 5/8"-thick GFRC bonding pads that extend 2 1/2" beyond the flex anchor foot on both sides. Interior surface to have one layer of 5/8" Type X gypsum wallboard, attached with 1 1/2"-long Type S buglehead screws spaced 12" on center. Cavity is to be filled with 5" of 4 pcf (nominal) mineral fiber batts. GFRC has 1 1/2" returns packed with mineral fiber and caulked on the exterior.</td>
<td>—</td>
</tr>
<tr>
<td>15-1.12q</td>
<td></td>
<td>2" × 6" wood studs at 16" with double top plates, single bottom plate; interior and exterior sides covered with 5/8" Type X gypsum wallboard, 4' wide, applied horizontally or vertically with vertical joints over studs, and fastened with 2 1/4" Type S drywall screws, spaced 12" on center. Cavity to be filled with 5 1/2" mineral wool insulation.</td>
<td>—</td>
</tr>
<tr>
<td>15-1.13q</td>
<td></td>
<td>2" × 6" wood studs at 16" with double top plates, single bottom plate; interior and exterior sides covered with 5/8" Type X gypsum wallboard, 4' wide, applied vertically with all joints over framing or blocking and fastened with 2 1/4" Type S drywall screws, spaced 12" on center. R-19 mineral fiber insulation installed in stud cavity.</td>
<td>—</td>
</tr>
<tr>
<td>15-1.14q</td>
<td></td>
<td>2" × 6" wood studs at 16" with double top plates, single bottom plate; interior and exterior sides covered with 5/8" Type X gypsum wallboard, 4' wide, applied horizontally or vertically with vertical joints over studs, and fastened with 2 1/4" Type S drywall screws, spaced 7" on center.</td>
<td>—</td>
</tr>
<tr>
<td>15-1.15q</td>
<td></td>
<td>2" × 4" wood studs at 16" with double top plates, single bottom plate; interior and exterior sides covered with 5/8" Type X gypsum wallboard and sheathing, respectively, 4' wide, applied horizontally or vertically with vertical joints over studs, and fastened with 2 1/4" Type S drywall screws, spaced 12" on center. Cavity to be filled with 3 1/2" mineral wool insulation.</td>
<td>—</td>
</tr>
<tr>
<td>15-1.16q</td>
<td></td>
<td>2" × 6" wood studs at 24" centers with double top plates, single bottom plate; interior and exterior side covered with two layers of 5/8" Type X gypsum wallboard, 4' wide, applied horizontally with vertical joints over studs. Base layer fastened with 2 1/4" Type S drywall screws, spaced 24" on center and face layer fastened with Type S drywall screws, spaced 8" on center, wallboard joints covered with paper tape and joint compound, fastener heads covered with</td>
<td>—</td>
</tr>
<tr>
<td>MATERIAL</td>
<td>ITEM NUMBER</td>
<td>CONSTRUCTION</td>
<td>MINIMUM FINISHED THICKNESS FACE-TO-FACE (^b) (inches)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>joint compound. Cavity to be filled with 5(\frac{1}{2})" mineral wool insulation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-2.1(^d)</td>
<td>3(\frac{3}{8})" No. 16 gage steel studs at 24(^\circ) on center or 2" × 4" wood studs at 24(^\circ) on center. Metal lath attached to the exterior side of studs with minimum 1" long No. 6 drywall screws at 6" on center and covered with minimum 3(\frac{1}{4})" thick Portland cement plaster. Thin veneer brick units of clay or shale complying with ASTM C 1088, Grade TBS or better, installed in running bond in accordance with Section 1405.10. Combined total thickness of the Portland cement plaster, mortar and thin veneer brick units shall be not less than 1(\frac{1}{2})". Interior side covered with one layer of 3(\frac{3}{8})" thick Type X gypsum wallboard attached to studs with 1" long No. 6 drywall screws at 12" on center.</td>
<td>— — — 6</td>
</tr>
<tr>
<td></td>
<td>15-2.2(^d)</td>
<td>3(\frac{3}{8})" No. 16 gage steel studs at 24(^\circ) on center or 2" × 4" wood studs at 24(^\circ) on center. Where metal lath is used, attach to the exterior side of studs with minimum 1" long No. 6 drywall screws at 6" on center. Brick units of clay or shale not less than 2(\frac{3}{8})" thick complying with ASTM C 216 installed in accordance with Section 1405.6 with a minimum 1" airspace. Interior side covered with one layer of 3(\frac{3}{8})" thick Type X gypsum wallboard attached to studs with 1" long No. 6 drywall screws at 12" on center.</td>
<td>— — 6(\frac{7}{8}) —</td>
</tr>
<tr>
<td></td>
<td>15-2.3(^d)</td>
<td>3(\frac{3}{4})" No. 16 gage steel studs at 16(^\circ) on center or 2" × 4" wood studs at 16(^\circ) on center. Where metal lath is used, attach to the exterior side of studs with minimum 1" long No. 6 drywall screws at 6" on center.</td>
<td>— — — 7(\frac{7}{8})</td>
</tr>
</tbody>
</table>
TABLE 721.1(2)
RATED FIRE-RESISTANCE PERIODS FOR VARIOUS WALLS AND PARTITIONS a, o, p

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ITEM NUMBER</th>
<th>CONSTRUCTION</th>
<th>MINIMUM FINISHED THICKNESS FACE-TO-FACEb (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>15-2.4d</td>
<td>3(\frac{3}{8})" No. 16 gage steel studs at 16" on center or 2" × 4" wood studs at 16" on center. Where metal lath is used, attach to the exterior side of studs with minimum 1" long No. 6 drywall screws at 6" on center. Brick units of clay or shale not less than 2(\frac{3}{8})" thick complying with ASTM C 216 installed in accordance with Section 1405.6 with a minimum 1" airspace. Interior side covered with two layers of 3/4" thick Type X gypsum wallboard. Bottom layer attached to studs with 1" long No. 6 drywall screws at 24" on center. Top layer attached to studs with 1(\frac{3}{8})" long No. 6 drywall screws at 12" on center.</td>
<td>8 (\frac{1}{2})</td>
</tr>
<tr>
<td>15. Exterior or interior walls</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>16-1.1a</td>
<td>2" × 4" wood studs at 16" centers with double top plates, single bottom plate; interior side covered with 3/4" Type X gypsum wallboard, 4" wide, applied horizontally unblocked, and fastened with 2(\frac{1}{4})" Type S drywall screws, spaced 12" on center, wallboard joints covered with paper tape and joint compound, fastener heads covered with joint compound. Exterior covered with 3/8" wood structural panels, applied vertically, horizontal joints blocked and fastened with 6d common nails (bright) — 12" on center in the field, and 6" on center panel edges. Cavity to be filled with 3(\frac{1}{2})" mineral wool insulation. Rating established for exposure from interior side only.</td>
<td>4 (\frac{1}{2})</td>
</tr>
<tr>
<td>16. Exterior walls rated for</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>16-1.2a</td>
<td>2" × 6" wood studs at 16" centers with double top plates, single bottom plate; interior side covered with 3/4" Type X gypsum wallboard, 4" wide, applied horizontally or vertically with vertical joints over studs and fastened with 2(\frac{1}{4})" Type S drywall screws, spaced 12" on center, wallboard joints covered with paper tape and joint compound, fastener heads covered with joint compound, exterior side covered with 3/8" wood structural panels fastened with 6d common nails (bright) spaced 12" on center in the field and 6" on center along the panel edges. Cavity to be filled with 5(\frac{1}{2})" mineral wool insulation. Rating established from the gypsum-covered side only.</td>
<td>6 (\frac{9}{16})</td>
</tr>
<tr>
<td>-</td>
<td>16-1.3a</td>
<td>2" × 6" wood studs at 16" centers with double top plates, single bottom plates; interior side covered with 3/4" Type X gypsum wallboard, 4" wide, applied vertically with all joints over framing or blocking and fastened with 2(\frac{1}{4})" Type S drywall screws spaced 7" on center. Joints to be covered with tape and joint compound. Exterior covered with 3/8" wood structural panels, applied vertically with edges over framing or blocking and fastened with 6d common nails (bright) at 12" on center in the field and 6" on center on panel edges. R-19 mineral fiber insulation</td>
<td>6 (\frac{1}{2})</td>
</tr>
</tbody>
</table>
TABLE 721.1(2)
RATED FIRE-RESISTANCE PERIODS FOR VARIOUS WALLS AND PARTITIONS a, o, p

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ITEM NUMBER</th>
<th>CONSTRUCTION</th>
<th>MINIMUM FINISHED THICKNESS FACE-TO-FACEb (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
</tr>
</tbody>
</table>

Installed in stud cavity. Rating established from the gypsum-covered side only.

For SI: 1 inch = 25.4 mm, 1 square inch = 645.2 mm², 1 cubic foot = 0.0283 m³.

a. Staples with equivalent holding power and penetration shall be permitted to be used as alternate fasteners to nails for attachment to wood framing.

b. Thickness shown for brick and clay tile is nominal thicknesses unless plastered, in which case thicknesses are net. Thickness shown for concrete masonry and clay masonry is equivalent thickness defined in Section 722.3.1 for concrete masonry and Section 722.4.1.1 for clay masonry. Where all cells are solid grouted or filled with silicone-treated perlite loose-fill insulation; vermiculite loose-fill insulation; or expanded clay, shale or slate lightweight aggregate, the equivalent thickness shall be the thickness of the block or brick using specified dimensions as defined in Chapter 21. Equivalent thickness shall include the thickness of applied plaster and lath or gypsum wallboard, where specified.

c. For units in which the net cross-sectional area of cored brick in any plane parallel to the surface containing the cores is not less than 75 percent of the gross cross-sectional area measured in the same plane.

d. Shall be used for nonbearing purposes only.

e. For all of the construction with gypsum wallboard described in this table, gypsum base for veneer plaster of the same size, thickness and core type shall be permitted to be substituted for gypsum wallboard, provided attachment is identical to that specified for the wallboard, and the joints on the face layer are reinforced and the entire surface is covered with not less than 1/16-inch gypsum veneer plaster.

f. The fire-resistance time period for concrete masonry units meeting the equivalent thicknesses required for a 2-hour fire-resistance rating in Item 3, and having a thickness of not less than 7/8 inches is 4 hours where cores that are not grouted are filled with silicone-treated perlite loose-fill insulation; vermiculite loose-fill insulation; or expanded clay, shale or slate lightweight aggregate, sand or slag having a maximum particle size of 3/8 inch.

g. The fire-resistance rating of concrete masonry units composed of a combination of aggregate types or where plaster is applied directly to the concrete masonry shall be determined in accordance with ACI 216.1/TMS 0216. Lightweight aggregates shall have a maximum combined density of 65 pounds per cubic foot.

h. See Note b. The equivalent thickness shall be permitted to include the thickness of cement plaster or 1.5 times the thickness of gypsum plaster applied in accordance with the requirements of Chapter 25.

i. Concrete walls shall be reinforced with horizontal and vertical temperature reinforcement as required by Chapter 19.

j. Studs are welded truss wire studs with 0.18 inch (No. 7 B.W. gage) flange wire and 0.18 inch (No. 7 B.W. gage) truss wires.

k. Nailable metal studs consist of two channel studs spot welded back to back with a crimped web forming a nailing groove.

l. Wood structural panels shall be permitted to be installed between the fire protection and the wood studs on either the interior or exterior side of the wood frame assemblies in this table, provided the length of
the fasteners used to attach the fire protection is increased by an amount not less than the thickness of the wood structural panel.

m. For studs with a slenderness ratio, \(\frac{l_e}{d} \), greater than 33, the design stress shall be reduced to 78 percent of allowable \(F'c \). For studs with a slenderness ratio, \(\frac{l_e}{d} \), not exceeding 33, the design stress shall be reduced to 78 percent of the adjusted stress \(F'c \) calculated for studs having a slenderness ratio \(\frac{l_e}{d} \) of 33.

n. For properties of cooler or wallboard nails, see ASTM C 514, ASTM C 547 or ASTM F 1667.

o. Generic fire-resistance ratings (those not designated as PROPRIETARY* in the listing) in the GA 600 shall be accepted as if herein listed.

p. NCMA TEK 5-8A shall be permitted for the design of fire walls.

q. The design stress of studs shall be equal to a maximum of 100 percent of the allowable \(F'c \) calculated in accordance with Section 2306.
TABLE 721.1(3)
MINIMUM PROTECTION FOR FLOOR AND ROOF SYSTEMS^{a, q}

<table>
<thead>
<tr>
<th>FLOOR OR ROOF CONSTRUCTION</th>
<th>ITEM NUMBER</th>
<th>CEILING CONSTRUCTION</th>
<th>THICKNESS OF FLOOR OR ROOF SLAB (inches)</th>
<th>MINIMUM THICKNESS OF CEILING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td>3 hours</td>
</tr>
<tr>
<td>1. Siliceous aggregate concrete</td>
<td>1-1.1</td>
<td>Slab (no ceiling required). Minimum cover over nonprestressed reinforcement shall be not less than ¾” b.</td>
<td>7.0</td>
<td>6.2</td>
</tr>
<tr>
<td>2. Carbonate aggregate concrete</td>
<td>2-1.1</td>
<td></td>
<td>6.6</td>
<td>5.7</td>
</tr>
<tr>
<td>3. Sand-lightweight concrete</td>
<td>3-1.1</td>
<td></td>
<td>5.4</td>
<td>4.6</td>
</tr>
<tr>
<td>4. Lightweight concrete</td>
<td>4-1.1</td>
<td>Slab with suspended ceiling of vermiculite gypsum plaster over metal lath attached to ⅛” cold-rolled channels spaced 12” on center. Ceiling located 6” minimum below joists.</td>
<td>5.1</td>
<td>4.4</td>
</tr>
<tr>
<td>5. Reinforced concrete</td>
<td>5-1.1</td>
<td>⅜” Type X gypsum wallboard attached to 0.018 inch (No. 25 carbon sheet steel gage) by ⅜” deep by 2⅛” hat-shaped galvanized steel channels with 1”-long No. 6 screws. The channels are spaced 24” on center, span 35” and are supported along their length at 35” intervals by 0.033” (No. 21 galvanized sheet gage) galvanized steel flat strap hangers having formed edges that engage the lips of the channel. The strap hangers are attached to the side of the concrete joists with ⅜” by 1⅛” long power-driven fasteners. The wallboard is installed with the long dimension perpendicular to the channels. End joints occur on channels and supplementary channels are installed parallel to the main channels, 12” each side, at end joint occurrences. The finished ceiling is located approximately 12” below the soffit of the floor slab.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6. Steel joists constructed with a poured reinforced concrete slab on metal lath forms or steel form units<sup>a, k</sup></td>
<td>6-1.1</td>
<td>Gypsum plaster on metal lath attached to the bottom cord with single No. 16 gage or doubled No. 18 gage wire ties spaced 6” on center. Plaster mixed 1:2 for scratch coat, 1:3 for brown coat, by weight, gypsum-to-sand aggregate for 2 hour system. For 3-hour system plaster is neat.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>FLOOR OR ROOF CONSTRUCTION</td>
<td>ITEM NUMBER</td>
<td>CEILING CONSTRUCTION</td>
<td>THICKNESS OF FLOOR OR ROOF SLAB (inches)</td>
<td>MINIMUM THICKNESS OF CEILING (inches)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td>3 hours</td>
</tr>
<tr>
<td>6-2.1</td>
<td>6-2.1</td>
<td>Vermiculite gypsum plaster on metal lath attached to the bottom chord with single No. 16 gage or doubled 0.049 inch (No. 18 B.W. gage) wire ties 6" on center.</td>
<td>—</td>
<td>2</td>
</tr>
<tr>
<td>6-3.1</td>
<td>6-3.1</td>
<td>Cement plaster over metal lath attached to the bottom chord of joists with single No. 16 gage or doubled 0.049" (No. 18 B.W. gage) wire ties spaced 6" on center. Plaster mixed 1:2 for scratch coat, 1:3 for brown coat for 1-hour system and 1:1 for scratch coat, 1:1 1/2 for brown coat for 2-hour system, by weight, cement to sand.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6-4.1</td>
<td>6-4.1</td>
<td>Ceiling of 5/8" Type X wallboard attached to 3/16" deep by 2/5" by 0.021 inch (No. 25 carbon sheet steel gage) hatshaped furring channels 12" on center with 1" long No. 6 wallboard screws at 8" on center. Channels wire tied to bottom chord of joists with doubled 0.049 inch (No. 18 B.W. gage) wire or suspended below joists on wire hangers.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>6-5.1</td>
<td>6-5.1</td>
<td>Wood-fibered gypsum plaster mixed 1:1 by weight gypsum to sand aggregate applied over metal lath. Lath tied 6" on center to 3/8" channels spaced 13 1/2" on center. Channels secured to joists at each intersection with two strands of 0.049 inch (No. 18 B.W. gage) wire or suspended below joists on wire hangers.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>7. Reinforced concrete slabs and joists with hollow clay tile fillers laid end to end in rows 2 1/2" or more apart; reinforcement placed between rows and concrete cast around and over tile.</td>
<td>7-1.1</td>
<td>5/8" gypsum plaster on bottom of floor or roof construction.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>7-1.2</td>
<td>None</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8. Steel joists constructed with a reinforced concrete slab on top poured on a 1/2" deep steel deck.</td>
<td>8-1.1</td>
<td>Vermiculite gypsum plaster on metal lath attached to 3/4" cold-rolled channels with 0.049" (No. 18 B.W. gage) wire ties spaced 6" on center.</td>
<td>2 1/2</td>
<td>—</td>
</tr>
<tr>
<td>FLOOR OR ROOF CONSTRUCTION</td>
<td>ITEM NUMBER</td>
<td>CEILING CONSTRUCTION</td>
<td>THICKNESS OF FLOOR OR ROOF SLAB (inches)</td>
<td>MINIMUM THICKNESS OF CEILING (inches)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>---</td>
<td>--</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suspended ceiling of vermiculite gypsum plaster base coat and vermiculite acoustical plaster on metal lath attached at 6" intervals to 1/4" cold-rolled channels spaced 12" on center and secured to 1/2" cold-rolled channels spaced 36" on center with 0.065" (No. 16 B.W. gage) wire. 1 1/2" channels supported by No. 8 gage wire hangers at 36" on center. Beams within envelope and with a 2 1/2" airspace between beam soffit and lath have a 4-hour rating.</td>
<td>2 1/2</td>
<td>1 1/8</td>
</tr>
<tr>
<td>9. 3" deep cellular steel deck with concrete slab on top. Slab thickness measured to top.</td>
<td>9-1.1</td>
<td>Ceiling of gypsum plaster on metal lath. Lath attached to 3/4" furring channels with 0.049" (No. 18 B.W. gage) wire ties spaced 6" on center. 1/4" channel saddle tied to 2" channels with doubled 0.065" (No. 16 B.W. gage) wire ties. 2" channels spaced 36" on center suspended 2" below steel framing and saddle-tied with 0.165" (No. 8 B.W. gage) wire. Plaster mixed 1:2 by weight, gypsum-to-sand aggregate.</td>
<td>--</td>
<td>1 7/8</td>
</tr>
<tr>
<td>10. 1 1/2"-deep steel roof deck on steel framing. Insulation board, 30 pcf density, composed of wood fibers with cement binders of thickness shown bonded to deck with unified asphalt adhesive. Covered with a Class A or B roof covering.</td>
<td>10-1.1</td>
<td>Ceiling of gypsum plaster on metal lath. Lath attached to 3/4" furring channels with 0.049" (No. 18 B.W. gage) wire ties spaced 6" on center. 1/4" channels saddle tied to 2" channels with doubled 0.065" (No. 16 B.W. gage) wire ties. 2" channels spaced 36" on center suspended 2" below steel framing and saddle-tied with 0.165" (No. 8 B.W. gage) wire. Plaster mixed 1:2 for scratch coat and 1:3 for brown coat, by weight, gypsum-to-sand aggregate.</td>
<td>--</td>
<td>1 1/2</td>
</tr>
<tr>
<td>11. 1 1/2"-deep steel roof deck on steel framing wood fiber insulation board, 17.5 pcf density on top applied over a 15-lb asphalt-saturated felt. Class A or B roof covering.</td>
<td>11-1.1</td>
<td>Ceiling of gypsum plaster on metal lath. Lath attached to 3/4" furring channels with 0.049" (No. 18 B.W. gage) wire ties spaced 6" on center. 1/4" channels saddle tied to 2" channels with doubled 0.065" (No. 16 B.W. gage) wire ties. 2" channels spaced 36" on center suspended 2" below steel framing and saddle-tied with 0.165" (No. 8 B.W. gage) wire. Plaster mixed 1:2 for scratch coat and 1:3 for brown coat, by weight, gypsum-to-sand aggregate for 1-hour system. For 2-hour system, plaster mix is 1:2 by weight, gypsum-to-sand aggregate.</td>
<td>--</td>
<td>1 1/2</td>
</tr>
<tr>
<td>FLOOR OR ROOF CONSTRUCTION</td>
<td>ITEM NUMBER</td>
<td>CEILING CONSTRUCTION</td>
<td>THICKNESS OF FLOOR OR ROOF SLAB (inches)</td>
<td>MINIMUM THICKNESS OF CEILING (inches)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td>3 hours</td>
</tr>
<tr>
<td>12. 1½" deep steel roof deck on steel framing insulation of rigid board consisting of expanded perlite and fibers impregnated with integral asphalt waterproofing; density 9 to 12pcf secured to metal roof deck by ½" wide ribbons of waterproof, cold process liquid adhesive spaced 6" apart. Steel joist or light steel construction with metal roof deck, insulation, and Class A or B built-up roof covering.</td>
<td>12-1.1</td>
<td>Gypsum-vermiculite plaster on metal lath wire tied at 6" intervals to ¼" furring channels spaced 12" on center and wire tied to 2" runner channels spaced 32" on center. Runners wire tied to bottom chord of steel joists.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>13. Double wood floor over wood joists spaced 16" on center.</td>
<td>13-1.1</td>
<td>Gypsum plaster over 3/8" Type X gypsum lath. Lath initially applied with not less than four 1½" by No. 13 gage by 10½ head plasterboard blued nails per bearing. Continuous stripping over lath along all joist lines. Stripping consists of 3" wide strips of metal lath attached by 1½" by No. 11 gage by ½" head roofing nails spaced 6" on center. Alternate stripping consists of 3" wide 0.049" diameter wire stripping weighing 1 pound per square yard and attached by No.16 gage by ½" by 7/16" crown width staples, spaced 4" on center. Where alternate stripping is used, the lath nailing shall consist of two nails at each end and one nail at each intermediate bearing. Plaster mixed 1:2 by weight, gypsum-to-sand aggregate.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

TABLE 721.1(3) MINIMUM PROTECTION FOR FLOOR AND ROOF SYSTEMS

a, q
<table>
<thead>
<tr>
<th>FLOOR OR ROOF CONSTRUCTION</th>
<th>ITEM NUMBER</th>
<th>CEILING CONSTRUCTION</th>
<th>THICKNESS OF FLOOR OR ROOF SLAB (inches)</th>
<th>MINIMUM THICKNESS OF CEILING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td>3 hours</td>
</tr>
<tr>
<td>13-1.3</td>
<td>Perlite or vermiculite gypsum plaster on metal lath secured to joists with 1(\frac{1}{2})" by No. 11 gage by (\frac{3}{16})" head barbed shank roofing nails spaced 5" on center.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>13-1.4</td>
<td>1/2" Type X gypsum wallboard nailed to joists with 5d cooler or wallboard nails at 6" on center. End joints of wallboard centered on joists.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14. Plywood stressed skin panels consisting of 3/8" thick interior C-D (exterior glue) top stressed skin on 2" x 6" nominal (minimum) stringers. Adjacent panel edges joined with 8d common wire nails spaced 6" on center. Stringers spaced 12" maximum on center.</td>
<td>1/2" -thick wood fiberboard weighing 15 to 18 pounds per cubic foot installed with long dimension parallel to stringers or 3/8" C-D (exterior glue) plywood glued and/or nailed to stringers. Nailing to be with 5d cooler or wallboard nails at 12" on center. Second layer of 1/2" Type X gypsum wallboard applied with long dimension perpendicular to joists and attached with 8d cooler or wallboard nails at 6" on center at end joints and 8" on center elsewhere. Wallboard joints staggered with respect to fiberboard joints.</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15-1.1</td>
<td>None</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>FLOOR OR ROOF CONSTRUCTION</td>
<td>ITEM NUMBER</td>
<td>CEILING CONSTRUCTION</td>
<td>THICKNESS OF FLOOR OR ROOF SLAB (inches)</td>
<td>MINIMUM THICKNESS OF CEILING (inches)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td>3 hours</td>
</tr>
<tr>
<td>16. Perlite concrete slab proportioned 1:6 (Portland cement to perlite aggregate) on a 1(\frac{1}{4})"-deep steel deck supported on individually protected steel framing. Slab reinforced with 4" × 8" 0.109/0.083" (No. 12/14 B.W. gage) welded wire mesh.</td>
<td>16-1.1</td>
<td>None</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>17. Perlite concrete slab proportioned 1:6 (Portland cement to perlite aggregate) on a 7(1/16)"deep steel deck supported by steel joists 4 on center. Class A or B roof covering on top.</td>
<td>17-1.1</td>
<td>Perlite gypsum plaster on metal lath wire tied to 3/4" furring channels attached with 0.065" (No. 16 B.W. gage) wire ties to lower chord of joists.</td>
<td>—</td>
<td>2"</td>
</tr>
<tr>
<td>18. Perlite concrete slab proportioned 1:6 (Portland cement to perlite aggregate) on 1(\frac{1}{4})" -deep steel deck supported on individually protected steel framing. Maximum span of deck 6 -10" where deck is less than 0.019" (No. 26 carbon sheet steel gage) and 8 -0" where deck is 0.019" (No. 26 carbon sheet steel gage) or greater. Slab reinforced with 0.042" (No. 19 B.W. gage) hexagonal wire mesh. Class A or B roof covering on top.</td>
<td>18-1.1</td>
<td>None</td>
<td>—</td>
<td>2 1/4"</td>
</tr>
<tr>
<td>FLOOR OR ROOF CONSTRUCTION</td>
<td>ITEM NUMBER</td>
<td>CEILING CONSTRUCTION</td>
<td>THICKNESS OF FLOOR OR ROOF SLAB (inches)</td>
<td>MINIMUM THICKNESS OF CEILING (inches)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>19. Floor and beam construction consisting of 3"-deep cellular steel floor unit mounted on steel members with 1:4 (proportion of Portland cement to perlite aggregate) perlite-concrete floor slab on top.</td>
<td>19-1.1</td>
<td>Suspended envelope ceiling of perlite gypsum plaster on metal lath attached to 1/2" cold-rolled channels, secured to 1 1/2" cold-rolled channels spaced 42" on center supported by 0.203 inch (No. 6 B.W. gage) wire 36" on center. Beams in envelope with 3" minimum airspace between beam soffit and lath have a 4-hour rating.</td>
<td>2⁹</td>
<td>¹</td>
</tr>
<tr>
<td>20. Perlite concrete proportioned 1:6 (Portland cement to perlite aggregate) poured to 1/8" thickness above top of corrugations of 1 5/16"-deep galvanized steel deck maximum span 8 0" for 0.024" (No. 24 galvanized sheet gage) or 6 0" for 0.019" (No. 26 galvanized sheet gage) with deck supported by individually protected steel framing. Approved polystyrene foam plastic insulation board having a flame spread not exceeding 75 (1" to 4" thickness) with vent holes that approximate 3 percent of the board surface area placed on top of perlite slurry. A 2 by 4 insulation board contains six 2 3/4" diameter holes. Board covered with 2 1/4" minimum perlite concrete slab. Slab</td>
<td>20-1.1</td>
<td>None</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
TABLE 721.1(3)
MINIMUM PROTECTION FOR FLOOR AND ROOF SYSTEMS

<table>
<thead>
<tr>
<th>FLOOR OR ROOF CONSTRUCTION</th>
<th>ITEM NUMBER</th>
<th>CEILING CONSTRUCTION</th>
<th>THICKNESS OF FLOOR OR ROOF SLAB (inches)</th>
<th>MINIMUM THICKNESS OF CEILING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours 3 hours 2 hours 1 hour</td>
<td>4 hours 3 hours 2 hours 1 hour</td>
</tr>
</tbody>
</table>

1. **reinforced with mesh consisting of 0.042” (No. 19 B.W. gage) galvanized steel wire twisted together to form 2” hexagons with straight 0.065” (No. 16 B.W. gage) galvanized steel wire woven into mesh and spaced 3”. Alternate slab reinforcement shall be permitted to consist of 4” × 8”, 0.109/0.238” (No. 12/4 B.W. gage), or 2” × 2”, 0.083/0.083” (No. 14/14 B.W. gage) welded wire fabric. Class A or B roof covering on top.**

2. **Wood joists, wood I-joists, floor trusses and flat or pitched roof trusses spaced a maximum 24” o.c. with 1/2” wood structural panels with exterior glue applied at right angles to top of joist or top chord of trusses with 8d nails. The wood structural panel thickness shall be not less than nominal 1/2” nor less than required by Chapter 23.**

21-1.1 **Base layer 5/8” Type X gypsum wallboard applied at right angles to joist or truss 24” o.c. with 1 1/4” Type S or Type W drywall screws 24” o.c. Face layer 5/6” Type X gypsum wallboard or veneer base applied at right angles to joist or truss through base layer with 17/8” Type S or Type W drywall screws 12” o.c. at joints and intermediate joist or truss. Face layer Type G drywall screws placed 2” back on either side of face layer end joints, 12” o.c.**
<table>
<thead>
<tr>
<th>FLOOR OR ROOF CONSTRUCTION</th>
<th>ITEM NUMBER</th>
<th>CEILING CONSTRUCTION</th>
<th>THICKNESS OF FLOOR OR ROOF SLAB (inches)</th>
<th>MINIMUM THICKNESS OF CEILING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Steel joists, floor trusses and flat or pitched roof trusses spaced a maximum 24" o.c. with $\frac{1}{2}$" wood structural panels with exterior glue applied at right angles to top of joist or top chord of trusses with No. 8 screws. The wood structural panel thickness shall be not less than nominal $\frac{1}{2}$" nor less than required by Chapter 23.</td>
<td>22-1.1</td>
<td>Base layer $\frac{5}{8}$" Type X gypsum board applied at right angles to steel framing 24" on center with 1" Type S drywall screws spaced 24" on center. Face layer $\frac{5}{8}$" Type X gypsum board applied at right angles to steel framing attached through base layer with $\frac{1}{2}$" Type S drywall screws 12" on center at end joints and intermediate joints and $\frac{1}{2}$" Type G drywall screws 12 inches on center placed 2" back on either side of face layer end joints. Joints of the face layer are offset 24" from the joints of the base layer.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>23. Wood I-joist (minimum joist depth 9 1/4" with a minimum flange depth of $\frac{1}{4}$" and a minimum flange cross-sectional area of 2.25 square inches) at 24" o.c. spacing with a minimum 1×4 ($\frac{1}{4}$" x 3.5" actual) ledger strip applied parallel to and covering the bottom of the bottom flange of each member, tacked in place. 2" mineral wool insulation, 3.5 pcf (nominal) installed adjacent to the bottom flange of the I-joist and supported by the 1 x 4 ledger strip.</td>
<td>23-1.1</td>
<td>1 1/2" deep single leg resilient channel 16" on center (channels doubled at wallboard end joints), placed perpendicular to the furring strip and joist and attached to each joist by $\frac{1}{4}$" Type S drywall screws. $\frac{5}{8}$" Type C gypsum wallboard applied perpendicular to the channel with end joints staggered not less than 4 and fastened with $\frac{1}{2}$" Type S drywall screws spaced 7" on center. Wallboard joints to be taped and covered with joint compound.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>24. Wood I-joist (minimum I-joist depth 9 1/4" with a minimum flange depth of $\frac{1}{4}$" and a minimum flange cross-sectional area of 5.25 square inches;</td>
<td>24-1.1</td>
<td>Minimum 0.026" thick hat-shaped channel 16" o.c. (channels doubled at wallboard end joints), placed perpendicular to the joist and attached to each joist by $\frac{1}{4}$" Type S drywall screws. $\frac{5}{8}$" Type C gypsum wallboard applied perpendicular to the channel with end joints staggered and fastened with $\frac{1}{2}$" Type S drywall screws</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>FLOOR OR ROOF CONSTRUCTION</td>
<td>ITEM NUMBER</td>
<td>CEILING CONSTRUCTION</td>
<td>THICKNESS OF FLOOR OR ROOF SLAB (inches)</td>
<td>MINIMUM THICKNESS OF CEILING (inches)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>---</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td>3 hours</td>
</tr>
<tr>
<td>minimum web thickness of 3 1/8" @ 24" o.c., 1/2" mineral wool insulation (2.5 pcf-nominal) resting on hat-shaped furring channels.</td>
<td>25. Wood I-joist (minimum I-joist depth 9 1/2" with a minimum flange depth of 1 1/2" and a minimum flange cross-sectional area of 5.25 square inches; minimum web thickness of 7 1/16") @ 24" o.c., 1/2" mineral wool insulation (2.5 pcf-nominal) resting on resilient channels.</td>
<td>25-1.1</td>
<td>Minimum 0.019" thick resilient channel 16" o.c. (channels doubled at wallboard end joints), placed perpendicular to the joist and attached to each joist by 1 1/8" Type S drywall screws. 1/8" Type C gypsum wallboard applied perpendicular to the channel with end joints staggered and fastened with 1" Type S drywall screws spaced 12" o.c. in the field and 8" o.c. at the wallboard ends. Wallboard joints to be taped and covered with joint compound.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25-1.1</td>
<td>——</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26-1.1</td>
<td>——</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27-1.1</td>
<td>——</td>
</tr>
<tr>
<td>FLOOR OR ROOF CONSTRUCTION</td>
<td>ITEM NUMBER</td>
<td>CEILING CONSTRUCTION</td>
<td>THICKNESS OF FLOOR OR ROOF SLAB (inches)</td>
<td>MINIMUM THICKNESS OF CEILING (inches)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>--</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1.95 square inches; minimum web thickness of 3/8") @ 24" o.c.</td>
<td>28-1.1</td>
<td>Base layer of 1/2" Type C gypsum wallboard attached directly to I-joists with 1/2" Type S drywall screws spaced 12" o.c. with ends staggered. Minimum 0.0179" thick hat-shaped 1/8-inch furring channel 16" o.c. (channels doubled at wallboard end joints), placed perpendicular to the joist and attached to each joist by 1/2" Type S drywall screws after the base layer of gypsum wallboard has been applied. The middle and face layers of 1/2" Type C gypsum wallboard applied perpendicular to the channel with end joints staggered. The middle layer is fastened with 1" Type S drywall screws spaced 12" o.c. The face layer is applied parallel to the middle layer but with the edge joints offset 24" from those of the middle layer and fastened with 1/2" Type S drywall screws 8" o.c. The joints shall be taped and covered with joint compound.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>FLOOR OR ROOF CONSTRUCTION</td>
<td>ITEM NUMBER</td>
<td>CEILING CONSTRUCTION</td>
<td>THICKNESS OF FLOOR OR ROOF SLAB (inches)</td>
<td>MINIMUM THICKNESS OF CEILING (inches)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>---------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 hours</td>
<td>3 hours</td>
</tr>
<tr>
<td>29. Channel-shaped 18 gage steel joists (minimum depth 8”) spaced a maximum 24” o.c. supporting tongue-and-groove wood structural panels (nominal minimum 5/4” thick) applied perpendicular to framing members. Structural panels attached with 1/8” Type S-12 screws spaced 12” o.c.</td>
<td>29-1.1</td>
<td>Base layer 5/8” Type X gypsum board applied perpendicular to bottom of framing members with 11/4” Type S-12 screws spaced 12” o.c. Second layer 5/8” Type X gypsum board attached perpendicular to framing members with 11/4” Type S-12 screws spaced 12” o.c. Second layer joints offset 24” from base layer. Third layer 5/8” Type X gypsum board attached perpendicular to framing members with 21/8” Type S-12 screws spaced 12” o.c. Third layer joints offset 12” from second layer joints. Hatshaped 1/8-inch rigid furring channels applied at right angles to framing members over third layer with two 21/8” Type S-12 Type S-12 screws at each framing member. Face layer 5/8” Type X gypsum board applied at right angles to furring channels with 11/4” Type S screws spaced 12” o.c.</td>
<td>— —</td>
<td>Varies</td>
</tr>
<tr>
<td>30. Wood I-joist (minimum I-joist depth 91/2” with a minimum flange depth of 11/2” and a minimum flange cross-sectional area of 2.25 square inches; minimum web thickness of 3/8”) @ 24” o.c. Fiberglass insulation placed between I-joists supported by the resilient channels.</td>
<td>30-1.1</td>
<td>Minimum 0.019” thick resilient channel 16” o.c. (channels doubled at wallboard end joints), placed perpendicular to the joists and attached to each joist by 11/4” Type S drywall screws. Two layers of 1/2” Type X gypsum wallboard applied with the long dimension perpendicular to the I-joists with end joints staggered. The base layer is fastened with 11/4” Type S drywall screws spaced 12” o.c. and the face layer is fastened with 11/4” Type S drywall screws spaced 12” o.c. Face layer end joints shall not occur on the same I-joist as base layer end joints and edge joints shall be offset 24” from base layer joints. Face layer to be attached to base layer with 11/2” Type G drywall screws spaced 8” o.c. placed 6” from face layer end joints. Face layer wallboard joints to be taped and covered with joint compound.</td>
<td>— —</td>
<td>Varies</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound = 0.454 kg, 1 cubic foot = 0.0283 m³, 1 pound per square inch = 6.895 kPa, 1 pound per linear foot = 1.4882 kg/m.
a. Staples with equivalent holding power and penetration shall be permitted to be used as alternate fasteners to nails for attachment to wood framing.
b. Where the slab is in an unrestrained condition, minimum reinforcement cover shall be not less than 1 1/8 inches for 4 hours (siliceous aggregate only); 1 1/4 inches for 4 and 3 hours; 1 inch for 2 hours (siliceous aggregate only); and 3/4 inch for all other restrained and unrestrained conditions.

c. For all of the construction with gypsum wallboard described in this table, gypsum base for veneer plaster of the same size, thickness and core type shall be permitted to be substituted for gypsum wallboard, provided attachment is identical to that specified for the wallboard, and the joints on the face layer are reinforced and the entire surface is covered with not less than 1/16-inch gypsum veneer plaster.

d. Slab thickness over steel joists measured at the joists for metal lath form and at the top of the form for steel form units.

e. (a) The maximum allowable stress level for H-Series joists shall not exceed 22,000 psi.
 (b) The allowable stress for K-Series joists shall not exceed 26,000 psi, the nominal depth of such joist shall be not less than 10 inches and the nominal joist weight shall be not less than 5 pounds per linear foot.

f. Cement plaster with 15 pounds of hydrated lime and 3 pounds of approved additives or admixtures per bag of cement.

g. Gypsum wallboard ceilings attached to steel framing shall be permitted to be suspended with 1 1/2-inch cold-formed carrying channels spaced 48 inches on center, that are suspended with No. 8 SWG galvanized wire hangers spaced 48 inches on center. Cross-furring channels are tied to the carrying channels with No. 18 SWG galvanized wire hangers spaced 48 inches on center. Cross-furring channels are tied to the carrying channels with No. 18 SWG galvanized wire (double strand) and spaced as required for direct attachment to the framing. This alternative is applicable to those steel framing assemblies recognized under Note q.

h. Six-inch hollow clay tile with 2-inch concrete slab above.

i. Four-inch hollow clay tile with 1 1/2-inch concrete slab above.

j. Thickness measured to bottom of steel form units.

k. Five-eighths inch of vermiculite gypsum plaster plus 1/2 inch of approved vermiculite acoustical plastic.

l. Furring channels spaced 12 inches on center.

m. Double wood floor shall be permitted to be either of the following:
 (a) Subfloor of 1-inch nominal boarding, a layer of asbestos paper weighing not less than 14 pounds per 100 square feet and a layer of 1-inch nominal tongue-and-groove finished flooring; or
 (b) Subfloor of 1-inch nominal tongue-and-groove boarding or 1 1/32-inch wood structural panels with exterior glue and a layer of 1-inch nominal tongue-and-groove finished flooring or 19/32-inch wood structural panel finish flooring or a layer of Type I Grade M-1 particleboard not less than 5/8-inch thick.

n. The ceiling shall be permitted to be omitted over unusable space, and flooring shall be permitted to be omitted where unusable space occurs above.

o. For properties of cooler or wallboard nails, see ASTM C 514, ASTM C 547 or ASTM F 1667.

p. Thickness measured on top of steel deck unit.

q. Generic fire-resistance ratings (those not designated as PROPRIETARY* in the listing) in the GA 600 shall be accepted as if herein listed.

721.1.1 Thickness of protective coverings. The thickness of fire-resistant materials required for protection of structural members shall be not less than set forth in Table 721.1(1), except as modified in this section. The figures shown shall be the net thickness of the protecting materials and shall not include any hollow space in back of the protection.

721.1.2 Unit masonry protection. Where required, metal ties shall be embedded in bed joints of unit masonry for protection of steel columns. Such ties shall be as set forth in Table 721.1(1) or be equivalent thereto.
721.1.3 **Reinforcement for cast-in-place concrete column protection.** Cast-in-place concrete protection for steel columns shall be reinforced at the edges of such members with wire ties of not less than 0.18 inch (4.6 mm) in diameter wound spirally around the columns on a pitch of not more than 8 inches (203 mm) or by equivalent reinforcement.

721.1.4 **Plaster application.** The finish coat is not required for plaster protective coatings where those coatings comply with the design mix and thickness requirements of Tables 721.1(1), 721.1(2) and 721.1(3).

721.1.5 **Bonded prestressed concrete tendons.** For members having a single tendon or more than one tendon installed with equal concrete cover measured from the nearest surface, the cover shall be not less than that set forth in Table 721.1(1). For members having multiple tendons installed with variable concrete cover, the average tendon cover shall be not less than that set forth in Table 721.1(1), provided:
1. The clearance from each tendon to the nearest exposed surface is used to determine the average cover.
2. In no case can the clear cover for individual tendons be less than one-half of that set forth in Table 721.1(1). A minimum cover of \(\frac{3}{4} \) inch (19.1 mm) for slabs and 1 inch (25 mm) for beams is required for any aggregate concrete.
3. For the purpose of establishing a fire-resistance rating, tendons having a clear covering less than that set forth in Table 721.1(1) shall not contribute more than 50 percent of the required ultimate moment capacity for members less than 350 square inches (0.226 m\(^2\)) in cross-sectional area and 65 percent for larger members. For structural design purposes, however, tendons having a reduced cover are assumed to be fully effective.

SECTION 722

CALCULATED FIRE-RESISTANCE

722.1 **General.** The provisions of this section contain procedures by which the fire-resistance of specific materials or combinations of materials is established by calculations. These procedures apply only to the information contained in this section and shall not be otherwise used. The calculated fire-resistance of concrete, concrete masonry and clay masonry assemblies shall be permitted in accordance with ACI 216.1/TMS 0216. The calculated fire-resistance of steel assemblies shall be permitted in accordance with Chapter 5 of ASCE 29. The calculated fire-
722.1 Definitions. The following terms are defined in Chapter 2:
CERAMIC FIBER BLANKET.
CONCRETE, CARBONATE AGGREGATE.
CONCRETE, CELLULAR.
CONCRETE, LIGHTWEIGHT AGGREGATE.
CONCRETE, Perlite.
CONCRETE, SAND-LIGHTWEIGHT.
CONCRETE, Siliceous Aggregates.
CONCRETE, Vermiculite.
GLASS FIBERBOARD.
MINERAL BOARD.

722.2 Concrete assemblies. The provisions of this section contain procedures by which the fire-resistance ratings of concrete assemblies are established by calculations.

722.2.1 Concrete walls. Cast-in-place and precast concrete walls shall comply with Section 722.2.1.1. Multiwythe concrete walls shall comply with Section 722.2.1.2. Joints between precast panels shall comply with Section 722.2.1.3. Concrete walls with gypsum wallboard or plaster finish shall comply with Section 722.2.1.4.

722.2.1.1 Cast-in-place or precast walls. The minimum equivalent thicknesses of cast-in-place or precast concrete walls for fire-resistance ratings of 1 hour to 4 hours are shown in Table 722.2.1.1. For solid walls with flat vertical surfaces, the equivalent thickness is the same as the actual thickness. The values in Table 722.2.1.1 apply to plain, reinforced or prestressed concrete walls.

TABLE 722.2.1.1
MINIMUM EQUIVALENT THICKNESS OF CAST-IN-PLACE OR PRECAST CONCRETE WALLS, LOAD-BEARING OR NONLOAD-BEARING

<table>
<thead>
<tr>
<th>CONCRETE TYPE</th>
<th>MINIMUM SLAB THICKNESS (inches) FOR FIRE-RESISTANCE RATING OF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 hour</td>
</tr>
</tbody>
</table>

resistance of exposed wood members and wood decking shall be permitted in accordance with Chapter 16 of ANSI/AF&PA ANSI/AWC National Design Specification for Wood Construction (NDS).
722.2.1.1 Hollow-core precast wall panels. For hollow-core precast concrete wall panels in which the cores are of constant cross section throughout the length, calculation of the equivalent thickness by dividing the net cross-sectional area (the gross cross section minus the area of the cores) of the panel by its width shall be permitted.

722.2.1.2 Core spaces filled. Where all of the core spaces of hollow-core wall panels are filled with loose-fill material, such as expanded shale, clay or slag, or vermiculite or perlite, the fire-resistance rating of the wall is the same as that of a solid wall of the same concrete type and of the same overall thickness.

722.2.1.3 Tapered cross sections. The thickness of panels with tapered cross sections shall be that determined at a distance 2t or 6 inches (152 mm), whichever is less, from the point of minimum thickness, where t is the minimum thickness.

722.2.1.4. Ribbed or undulating surfaces. The equivalent thickness of panels with ribbed or undulating surfaces shall be determined by one of the following expressions:

For \(s \geq 4t \), the thickness to be used shall be \(t \)
For \(s \leq 2t \), the thickness to be used shall be \(t_e \)
For \(4t > s > 2t \), the thickness to be used shall be

\[
t + \left(\frac{4t}{s} - 1 \right) (t_e - t)
\]

(Equation 7-3)

where:
- \(s \) = Spacing of ribs or undulations.
- \(t \) = Minimum thickness.
- \(t_e \) = Equivalent thickness of the panel calculated as the net cross-sectional area of the panel divided by the width, in which the maximum thickness used in the calculation shall not exceed 2t.
722.2.1.2. **Multiwythe walls.** For walls that consist of two wythes of different types of concrete, the fire-resistance ratings shall be permitted to be determined from Figure 722.2.1.2.

For SI: 1 inch = 25.4 mm.

FIGURE 722.2.1.2
FIRE-RESISTANCE RATINGS OF TWO-WYTHE CONCRETE WALLS

722.2.1.2.1 **Two or more wythes.** The fire-resistance rating for wall panels consisting of two or more wythes shall be permitted to be determined by the formula:

\[R = (R_1^{0.59} + R_2^{0.59} + \ldots + R_n^{0.59})^{1.7} \]
(Equation 7-4)
where:
R = the fire endurance of the assembly, minutes.
R₁, R₂, and Rₙ = the fire endurances of the individual wythes, minutes.
Values of Rₙ⁰.₅⁹ for use in Equation 7-4 are given in Table 722.2.1.2(1).
Calculated fire-resistance ratings are shown in Table 722.2.1.2(2).

722.2.1.2.2 Foam plastic insulation. The fire-resistance ratings of precast concrete wall panels consisting of a layer of foam plastic insulation sandwiched between two wythes of concrete shall be permitted to be determined by use of Equation 74. Foam plastic insulation with a total thickness of less than 1 inch (25 mm) shall be disregarded. The Rₙ value for thickness of foam plastic insulation of 1 inch (25 mm) or greater, for use in the calculation, is 5 minutes; therefore Rₙ⁰.₅⁹ = 2.5.

TABLE 722.2.1.2(1)
VALUES OF Rₙ⁰.₅⁹ FOR USE IN EQUATION 7-4

<table>
<thead>
<tr>
<th>TYPE OF MATERIAL</th>
<th>THICKNESS OF MATERIAL (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1⅛</td>
</tr>
<tr>
<td>Siliceous aggregate concrete</td>
<td>5.3</td>
</tr>
<tr>
<td>Carbonate aggregate concrete</td>
<td>5.5</td>
</tr>
<tr>
<td>Sand-lightweight concrete</td>
<td>6.5</td>
</tr>
<tr>
<td>Lightweight concrete</td>
<td>6.6</td>
</tr>
<tr>
<td>Insulating concretea</td>
<td>9.3</td>
</tr>
<tr>
<td>Airspaceb</td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per cubic foot = 16.02 kg/m³.

a. Dry unit weight of 35 pcf or less and consisting of cellular, perlite or vermiculite concrete.
b. The Rₙ⁰.₅⁹ value for one 1/2" to 3 1/2" airspace is 3.3. The Rₙ⁰.₅⁹ value for two 1/2" to 3 1/2" airspaces is 6.7.
c. The fire-resistance rating for this thickness exceeds 4 hours.

TABLE 722.2.1.2(2)
FIRE-RESISTANCE RATINGS BASED ON Rₙ⁰.₅⁹

<table>
<thead>
<tr>
<th>Rₙ, MINUTES</th>
<th>Rₙ⁰.₅⁹</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>11.20</td>
</tr>
<tr>
<td>120</td>
<td>16.85</td>
</tr>
<tr>
<td>180</td>
<td>21.41</td>
</tr>
<tr>
<td>240</td>
<td>25.37</td>
</tr>
</tbody>
</table>
a. Based on Equation 7-4.

722.2.1.3. Joints between precast wall panels. Joints between precast concrete wall panels that are not insulated as required by this section shall be considered as openings in walls. Uninsulated joints shall be included in determining the percentage of openings permitted by Table 705.8. Where openings are not permitted or are required by this code to be protected, the provisions of this section shall be used to determine the amount of joint insulation required. Insulated joints shall not be considered openings for purposes of determining compliance with the allowable percentage of openings in Table 705.8.

722.2.1.3.1 Ceramic fiber joint protection. Figure 722.2.1.3.1 shows thicknesses of ceramic fiber blankets to be used to insulate joints between precast concrete wall panels for various panel thicknesses and for joint widths of 3/8 inch (9.5 mm) and 1 inch (25 mm) for fire-resistance ratings of 1 hour to 4 hours. For joint widths between 3/8 inch (9.5 mm) and 1 inch (25 mm), the thickness of ceramic fiber blanket is allowed to be determined by direct interpolation. Other tested and labeled materials are acceptable in place of ceramic fiber blankets.

For SI: 1 inch = 25.4 mm.

FIGURE 722.2.1.3.1
CERAMIC FIBER JOINT PROTECTION

722.2.1.4. Walls with gypsum wallboard or plaster finishes. The fire-resistance rating of cast-in-place or precast concrete walls with finishes
of gypsum wallboard or plaster applied to one or both sides shall be permitted to be calculated in accordance with the provisions of this section.

722.2.1.4.1 **Nonfire-exposed side.** Where the finish of gypsum wallboard or plaster is applied to the side of the wall not exposed to fire, the contribution of the finish to the total fire-resistance rating shall be determined as follows: The thickness of the finish shall first be corrected by multiplying the actual thickness of the finish by the applicable factor determined from Table 722.2.1.4(1) based on the type of aggregate in the concrete. The corrected thickness of finish shall then be added to the actual or equivalent thickness of concrete and fire-resistance rating of the concrete and finish determined from Tables 722.2.1.1 and 722.2.1.2(1) and Figure 722.2.1.2.

722.2.1.4.2 **Fire-exposed side.** Where gypsum wallboard or plaster is applied to the fire-exposed side of the wall, the contribution of the finish to the total fire-resistance rating shall be determined as follows: The time assigned to the finish as established by Table 722.2.1.4(2) shall be added to the fire-resistance rating determined from Tables 722.2.1.1 and 722.2.1.2(1) and Figure 722.2.1.2 for the concrete alone, or to the rating determined in Section 722.2.1.4.1 for the concrete and finish on the nonfire-exposed side.

722.2.1.4.3 **Nonsymmetrical assemblies.** For a wall having no finish on one side or different types or thicknesses of finish on each side, the calculation procedures of Sections 722.2.1.4.1 and 722.2.1.4.2 shall be performed twice, assuming either side of the wall to be the fire-exposed side. The fire-resistance rating of the wall shall not exceed the lower of the two values.

Exception: For an exterior wall with a fire separation distance greater than 5 feet (1524 mm) the fire shall be assumed to occur on the interior side only.

722.2.1.4.4 **Minimum concrete fire-resistance rating.** Where finishes applied to one or both sides of a concrete wall contribute to the fire-resistance rating, the concrete alone shall provide not less than one half of the total required fire-resistance rating. Additionally, the contribution to the fire-resistance of the finish on the nonfire-exposed side of a loadbearing wall shall not exceed one-half the contribution of the concrete alone.
722.2.1.4.5 Concrete finishes. Finishes on concrete walls that are assumed to contribute to the total fire-resistance rating of the wall shall comply with the installation requirements of Section 722.3.2.5.

TABLE 722.2.1.4(1)
MULTIPLYING FACTOR FOR FINISHES ON NONFIRE-EXPOSED SIDE OF WALL

<table>
<thead>
<tr>
<th>TYPE OF FINISH APPLIED TO CONCRETE OR CONCRETE MASONRY WALL</th>
<th>TYPE OF AGGREGATE USED IN CONCRETE OR CONCRETE MASONRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland cement-sand plaster</td>
<td>1.00</td>
</tr>
<tr>
<td>Gypsum-sand plaster</td>
<td>1.25</td>
</tr>
<tr>
<td>Gypsum-vermiculite or perlite plaster</td>
<td>1.75</td>
</tr>
<tr>
<td>Gypsum wallboard</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Type of Aggregate Used in Concrete or Concrete Masonry	Concrete: siliceous or carbonate
	Concrete Masonry: siliceous or carbonate: solid clay brick
	Concrete: sand-lightweight
	Concrete Masonry: clay tile: hollow clay brick: concrete masonry units of expanded shale and < 20% sand
	Concrete: lightweight
	Concrete Masonry: concrete masonry units of expanded shale, expanded clay, expanded slag, or pumice < 20% sand
	Concrete Masonry: concret masonry units of expanded slag, expanded clay, or pumice

Portland cement-sand plaster	0.75
Gypsum-sand plaster	1.00
Gypsum-vermiculite or perlite plaster	1.50
Gypsum wallboard	2.25

For SI: 1 inch = 25.4 mm

a. For Portland cement-sand plaster 5/8 inch or less in thickness and applied directly to the concrete or concrete masonry on the nonfire-exposed side of the wall, the multiplying factor shall be 1.00.

TABLE 722.2.1.4(2)
TIME ASSIGNED TO FINISH MATERIALS ON FIRE EXPOSED SIDE OF WALL

<table>
<thead>
<tr>
<th>FINISH DESCRIPTION</th>
<th>TIME (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gypsum wallboard</td>
<td></td>
</tr>
<tr>
<td>3/8 inch</td>
<td>10</td>
</tr>
<tr>
<td>½ inch</td>
<td>15</td>
</tr>
<tr>
<td>5/8 inch</td>
<td>20</td>
</tr>
<tr>
<td>2 layers of 3/8 inch</td>
<td>25</td>
</tr>
<tr>
<td>1 layer of 3/8 inch, 1 layer of ½ inch</td>
<td>35</td>
</tr>
<tr>
<td>2 layers of ½ inch</td>
<td>40</td>
</tr>
</tbody>
</table>

Type X gypsum wallboard	
½ inch	25
5/8 inch	40

| Portland cement-sand plaster applied directly to concrete masonry | See Note a |

Portland cement-sand plaster on metal lath	
¼ inch	20
7/8 inch	25
1 inch	30

Gypsum-sand plaster on 3/8 inch gypsum lath	
½ inch	35
5/8 inch	40
¾ inch	50

Gypsum-sand plaster on metal lath	
¼ inch	50
7/8 inch	60
1 inch	80

For SI: 1 inch = 25.4 mm

a. The actual thickness of Portland cement-sand plaster, provided it is 5/8 inch or less in thickness, shall be permitted to be included in determining the equivalent thickness of the masonry for use in Table 722.3.2.
722.2.2 **Concrete floor and roof slabs.** Reinforced and prestressed floors and roofs shall comply with Section 722.2.2.1. Multicourse floors and roofs shall comply with Sections 722.2.2.2 and 722.2.2.3, respectively.

722.2.2.1 **Reinforced and prestressed floors and roofs.** The minimum thicknesses of reinforced and prestressed concrete floor or roof slabs for fire-resistance ratings of 1 hour to 4 hours are shown in Table 722.2.2.1.

Exception: Minimum thickness shall not be required for floors and ramps within open and enclosed parking garages constructed in accordance with Sections 406.5 and 406.6, respectively.

<table>
<thead>
<tr>
<th>TABLE 722.2.2.1</th>
<th>MINIMUM SLAB THICKNESS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONCRETE TYPE</td>
<td>FIRE-RESISTANCE RATING (hours)</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Siliceous</td>
<td>3.5</td>
</tr>
<tr>
<td>Carbonate</td>
<td>3.2</td>
</tr>
<tr>
<td>Sand-lightweight</td>
<td>2.7</td>
</tr>
<tr>
<td>Lightweight</td>
<td>2.5</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

722.2.2.1.1 **Hollow-core prestressed slabs.** For hollow-core prestressed concrete slabs in which the cores are of constant cross section throughout the length, the equivalent thickness shall be permitted to be obtained by dividing the net cross-sectional area of the slab including grout in the joints, by its width.

722.2.2.1.2 **Slabs with sloping soffits.** The thickness of slabs with sloping soffits (see Figure 722.2.2.1.2) shall be determined at a distance 2t or 6 inches (152 mm), whichever is less, from the point of minimum thickness, where t is the minimum thickness.
722.2.2.1.3 Slabs with ribbed soffits. The thickness of slabs with ribbed or undulating soffits (see Figure 722.2.2.1.3) shall be determined by one of the following expressions, whichever is applicable:
For \(s > 4t \), the thickness to be used shall be \(t \)
For \(s \leq 2t \), the thickness to be used shall be \(t_e \)
For \(4t > s > 2t \), the thickness to be used shall be

\[
t + (4t/s - 1) (t_e - t)
\]

(Equation 7-5)

where:
\(s \) = Spacing of ribs or undulations.
\(t \) = Minimum thickness.
\(t_e \) = Equivalent thickness of the slab calculated as the net area of the slab divided by the width, in which the maximum thickness used in the calculation shall not exceed \(2t \).

722.2.2.2 Multicourse floors. The fire-resistance ratings of floors that consist of a base slab of concrete with a topping (overlay) of a different type of concrete shall comply with Figure 722.2.2.2.
722.2.2.3 Multicourse roofs. The fire-resistance ratings of roofs that consist of a base slab of concrete with a topping (overlay) of an insulating concrete or with an insulating board and built-up roofing shall comply with Figures 722.2.2.3(1) and 722.2.2.3(2).

722.2.2.3.1 Heat transfer. For the transfer of heat, three-ply built-up roofing contributes 10 minutes to the fire-resistance rating. The fire-resistance rating for concrete assemblies such as those shown in Figure 722.2.2.3(1) shall be increased by 10 minutes. This increase is not applicable to those shown in Figure 722.2.2.3(2).
FIGURE 722.2.2.3(1)
FIRE-RESISTANCE RATINGS FOR
CONCRETE ROOF ASSEMBLIES

For SI: 1 inch = 25 mm.
722.2.4 Joints in precast slabs. Joints between adjacent precast concrete slabs need not be considered in calculating the slab thickness provided that a concrete topping not less than 1 inch (25 mm) thick is used. Where no concrete topping is used, joints must be grouted to a depth of not less than one-third the slab thickness at the joint, but not less than 1 inch (25 mm), or the joints must be made fire resistant by other approved methods.

722.2.3 Concrete cover over reinforcement. The minimum thickness of concrete cover over reinforcement in concrete slabs, reinforced beams and prestressed beams shall comply with this section.

722.2.3.1 Slab cover. The minimum thickness of concrete cover to the positive moment reinforcement shall comply with Table 722.2.3(1) for reinforced concrete and Table 722.2.3(2) for prestressed concrete. These tables are applicable for solid or hollow-core one-way or two-way slabs with flat undersurfaces. These tables are applicable to slabs that are either cast in place or precast. For precast prestressed concrete not covered elsewhere, the procedures contained in PCI MNL 124 shall be acceptable.
TABLE 722.2.3(1)
COVER THICKNESS FOR REINFORCED CONCRETE FLOOR OR ROOF SLABS (inches)

<table>
<thead>
<tr>
<th>CONCRETE AGGREGATE TYPE</th>
<th>FIRE-RESISTANCE RATING (hours)</th>
<th>1</th>
<th>1 1/2</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>1 1/2</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Restrained</td>
<td>1</td>
<td>1 1/2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1 1/2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

TABLE 722.2.3(2)
COVER THICKNESS FOR PRESTRESSED CONCRETE FLOOR OR ROOF SLABS (inches)

<table>
<thead>
<tr>
<th>CONCRETE AGGREGATE TYPE</th>
<th>FIRE-RESISTANCE RATING (hours)</th>
<th>1</th>
<th>1 1/2</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>1 1/2</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Restrained</td>
<td>1</td>
<td>1 1/2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1 1/2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Sand-lightweight or lightweight</td>
<td></td>
<td>3/4</td>
<td>3/4</td>
<td>3/4</td>
<td>3/4</td>
<td>3/4</td>
<td>1</td>
<td>1 3/8</td>
<td>1 1/2</td>
<td>2 1/4</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

722.2.3.2 Reinforced beam cover
The minimum thickness of concrete cover to the positive moment reinforcement (bottom steel) for reinforced concrete beams is shown in Table 722.2.3(3) for fire-resistance ratings of 1 hour to 4 hours.

TABLE 722.2.3(3)
MINIMUM COVER FOR MAIN REINFORCING BARS OF REINFORCED CONCRETE BEAMS (APPLICABLE TO ALL TYPES OF STRUCTURAL CONCRETE)

<table>
<thead>
<tr>
<th>RESTRAINED OR UNRESTRAINED</th>
<th>BEAM WIDTHb (inches)</th>
<th>FIRE-RESISTANCE RATING (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Restrained</td>
<td>5</td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3/4</td>
</tr>
<tr>
<td></td>
<td>>10</td>
<td>3/4</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
Unrestrained

<table>
<thead>
<tr>
<th>5</th>
<th>3/4</th>
<th>1</th>
<th>1(\frac{1}{4})</th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3/4</td>
<td>3/4</td>
<td>3/4</td>
<td>3/4</td>
<td>1</td>
</tr>
<tr>
<td>>10</td>
<td>3/4</td>
<td>3/4</td>
<td>3/4</td>
<td>1</td>
<td>1(\frac{3}{4})</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

Tabulated values for restrained assemblies apply to beams spaced more than 4 feet on center. For restrained beams spaced 4 feet or less on center, minimum cover of 3/4 inch is adequate for ratings of 4 hours or less.

For beam widths between the tabulated values, the minimum cover thickness can be determined by direct interpolation.

The cover for an individual reinforcing bar is the minimum thickness of concrete between the surface of the bar and the fire-exposed surface of the beam. For bars in which several bars are used, the cover for corner bars used in the calculation shall be reduced to one-half of the actual value. The cover for an individual bar must be not less than one-half of the value given in Table 722.2.3(3) nor less than 3/4 inch.

722.2.3.3 Prestressed beam cover. The minimum thickness of concrete cover to the positive moment prestressing tendons (bottom steel) for restrained and unrestrained prestressed concrete beams and stemmed units shall comply with the values shown in Tables 722.2.3(4) and 722.2.3(5) for fire-resistance ratings of 1 hour to 4 hours. Values in Table 722.2.3(4) apply to beams 8 inches (203 mm) or greater in width. Values in Table 722.2.3(5) apply to beams or stems of any width, provided the cross-section area is not less than 40 square inches (25806 mm\(^2\)). In case of differences between the values determined from Table 722.2.3(4) or 722.2.3(5), it is permitted to use the smaller value. The concrete cover shall be calculated in accordance with Section 722.2.3.3.1. The minimum concrete cover for nonprestressed reinforcement in prestressed concrete beams shall comply with Section 722.2.3.2.

722.2.3.3.1 Calculating concrete cover. The concrete cover for an individual tendon is the minimum thickness of concrete between the surface of the tendon and the fire-exposed surface of the beam, except that for ungrouted ducts, the assumed cover thickness is the minimum thickness of concrete between the surface of the duct and the fire-exposed surface of the beam. For beams in which two or more tendons are used, the cover is assumed to be the average of the minimum cover of the individual tendons. For corner tendons (tendons equal distance from the bottom and side), the minimum cover used in the calculation shall be one-half the actual value. For stemmed members with two or more prestressing tendons located along the vertical centerline of the stem, the average cover shall be the distance from the bottom of the member to the centroid of the tendons. The actual cover for any
individual tendon shall be not less than one-half the smaller value shown in Tables 722.2.3(4) and 722.2.3(5), or 1 inch (25 mm), whichever is greater.

TABLE 722.2.3(4)
MINIMUM COVER FOR PRESTRESSED CONCRETE BEAMS
8 INCHES OR GREATER IN WIDTH

<table>
<thead>
<tr>
<th>RESTRAINED OR UNRESTRAINED</th>
<th>CONCRETE AGGREGATE TYPE</th>
<th>BEAM WIDTH (inches)</th>
<th>FIRE-RESISTANCE RATING (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Restrained</td>
<td>Carbonate or siliceous</td>
<td>8</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td>Carbonate or siliceous</td>
<td>>12</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td>Sand lightweight</td>
<td>8</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td>Sand lightweight</td>
<td>>12</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Unrestrained</td>
<td>Carbonate or siliceous</td>
<td>8</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td>Carbonate or siliceous</td>
<td>>12</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td>Sand lightweight</td>
<td>8</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td>Sand lightweight</td>
<td>>12</td>
<td>1 1/2</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

a. Tabulated values for restrained assemblies apply to beams spaced more than 4 feet on center. For restrained beams spaced 4 feet or less on center, minimum cover of 3/4 inch is adequate for 4-hour ratings or less.

b. For beam widths between 8 inches and 12 inches, minimum cover thickness can be determined by direct interpolation.

c. Not practical for 8-inch-wide beam but shown for purposes of interpolation.

TABLE 722.2.3(5)
MINIMUM COVER FOR PRESTRESSED CONCRETE BEAMS OF ALL WIDTHS

<table>
<thead>
<tr>
<th>RESTRAINED OR UNRESTRAINED</th>
<th>CONCRETE AGGREGATE TYPE</th>
<th>BEAM AREA A (square inches)</th>
<th>FIRE-RESISTANCE RATING (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 1/2</td>
<td>2 1/2</td>
</tr>
<tr>
<td>Restrained</td>
<td>All</td>
<td>40 < A < 150</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td>Carbonate or siliceous</td>
<td>150 < A < 300</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td>Carbonate or siliceous</td>
<td>400 < A</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td>Sand lightweight</td>
<td>150 < A</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Unrestrained</td>
<td>All</td>
<td>40 < A < 150</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Carbonate or siliceous</td>
<td>400 < A</td>
<td>1 1/2</td>
</tr>
<tr>
<td></td>
<td>Sand lightweight</td>
<td>150 < A</td>
<td>1 1/2</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.
Tabulated values for restrained assemblies apply to beams spaced more than 4 feet on center. For restrained beams spaced 4 feet or less on center, minimum cover of \(\frac{3}{4} \) inch is adequate for 4-hour ratings or less.

The cross-sectional area of a stem is permitted to include a portion of the area in the flange, provided the width of the flange used in the calculation does not exceed three times the average width of the stem.

U-shaped or hooped stirrups spaced not to exceed the depth of the member and having a minimum cover of 1 inch shall be provided.

722.2.4 Concrete columns

Concrete columns shall comply with this section.

722.2.4.1 Minimum size

The minimum overall dimensions of reinforced concrete columns for fire-resistance ratings of 1 hour to 4 hours for exposure to fire on all sides shall comply with this section.

1. **Concrete strength less than or equal to 12,000 psi.** For columns made with concrete having a specified compressive strength, \(f'_{c} \), of less than or equal to 12,000 psi (82.7 MPa), the minimum dimension shall comply with Table 722.2.4.

TABLE 722.2.4

Minimum dimension of concrete columns (inches)

<table>
<thead>
<tr>
<th>TYPES OF CONCRETE</th>
<th>FIRE-RESISTANCE RATING (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Siliceous</td>
<td>8</td>
</tr>
<tr>
<td>Carbonate</td>
<td>8</td>
</tr>
<tr>
<td>Sand-lightweight</td>
<td>8</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

- The minimum dimension is permitted to be reduced to 8 inches for rectangular columns with two parallel sides not less than 36 inches in length.
- The minimum dimension is permitted to be reduced to 10 inches for rectangular columns with two parallel sides not less than 36 inches in length.

2. **Concrete strength greater than 12,000 psi.** For columns made with concrete having a specified compressive strength, \(f'_{c} \), greater than 12,000 psi (82.7 MPa), for fire-resistance ratings of 1 hour to 4 hours the minimum dimension shall be 24 inches (610 mm).

722.2.4.2 Minimum cover for R/C columns

The minimum thickness of concrete cover to the main longitudinal reinforcement in columns, regardless of the type of aggregate used in the concrete and the specified compressive strength of concrete, \(f'_{c} \), shall be not less than 1 inch (25 mm) times the number of hours of required fire-resistance or 2 inches (51 mm), whichever is less.
722.2.4.3 Tie and spiral reinforcement. For concrete columns made with concrete having a specified compressive strength, \(f'_c \), greater than 12,000 psi (82.7 MPa), tie and spiral reinforcement shall comply with the following:

1. The free ends of rectangular ties shall terminate with a 135-degree (2.4 rad) standard tie hook.
2. The free ends of circular ties shall terminate with a 90-degree (1.6 rad) standard tie hook.
3. The free ends of spirals, including at lap splices, shall terminate with a 90-degree (1.6 rad) standard tie hook.

The hook extension at the free end of ties and spirals shall be the larger of six bar diameters and the extension required by Section 7.1.3 of ACI 318. Hooks shall project into the core of the column.

722.2.4.4 Columns built into walls. The minimum dimensions of Table 722.2.4 do not apply to a reinforced concrete column that is built into a concrete or masonry wall provided all of the following are met:

1. The fire-resistance rating for the wall is equal to or greater than the required rating of the column;
2. The main longitudinal reinforcing in the column has cover not less than that required by Section 722.2.4.2; and
3. Openings in the wall are protected in accordance with Table 716.5.

Where openings in the wall are not protected as required by Section 716.5, the minimum dimension of columns required to have a fire-resistance rating of 3 hours or less shall be 8 inches (203 mm), and 10 inches (254 mm) for columns required to have a fire-resistance rating of 4 hours, regardless of the type of aggregate used in the concrete.

722.2.4.5 Precast cover units for steel columns. See Section 722.5.1.4.

722.3 Concrete masonry. The provisions of this section contain procedures by which the fire-resistance ratings of concrete masonry are established by calculations.

722.3.1 Equivalent thickness. The equivalent thickness of concrete masonry construction shall be determined in accordance with the provisions of this section.

722.3.1.1 Concrete masonry unit plus finishes. The equivalent thickness of concrete masonry assemblies, \(T_{ea} \), shall be computed as the sum of the equivalent thickness of the concrete masonry unit, \(T_e \), as
determined by Section 722.3.1.2, 722.3.1.3 or 722.3.1.4, plus the equivalent thickness of finishes, T_{ef}, determined in accordance with Section 722.3.2:

$$T_{ea} = T_e + T_{ef}$$ \hspace{1cm} \text{(Equation 7-6)}

722.3.1.2 **Ungrouted or partially grouted construction.** T_e shall be the value obtained for the concrete masonry unit determined in accordance with ASTM C 140.

722.3.1.3 **Solid grouted construction.** The equivalent thickness, T_e, of solid grouted concrete masonry units is the actual thickness of the unit.

722.3.1.4 **Airspaces and cells filled with loose-fill material.** The equivalent thickness of completely filled hollow concrete masonry is the actual thickness of the unit where loose-fill materials are: sand, pea gravel, crushed stone, or slag that meet ASTM C 33 requirements; pumice, scoria, expanded shale, expanded clay, expanded slate, expanded slag, expanded fly ash, or cinders that comply with ASTM C 331; or perlite or vermiculite meeting the requirements of ASTM C 549 and ASTM C 516, respectively.

722.3.2 **Concrete masonry walls.** The fire-resistance rating of walls and partitions constructed of concrete masonry units shall be determined from Table 722.3.2. The rating shall be based on the equivalent thickness of the masonry and type of aggregate used.

<table>
<thead>
<tr>
<th>TABLE 722.3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINIMUM EQUIVALENT THICKNESS (inches) OF BEARING OR NONBEARING CONCRETE MASONRY WALLSa,b,c,d</td>
</tr>
<tr>
<td>TYPE OF AGGREGATE</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pumice or expanded slag</td>
</tr>
<tr>
<td>Expanded shale, clay or slate</td>
</tr>
<tr>
<td>Limestone, cinders or unexpanded slag</td>
</tr>
<tr>
<td>Calcareous or siliceous gravel</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a Values between those shown in the table can be determined by direct interpolation.

b Where combustible members are framed into the wall, the thickness of solid material between the end of each member and the opposite face of the wall, or between members set in from opposite sides, shall be not less than 93 percent of the thickness shown in the table.

c Requirements of ASTM C 55, ASTM C 73, ASTM C 90 or ASTM C 744 shall apply.

d Minimum required equivalent thickness corresponding to the hourly fire-resistance rating for units with a combination of aggregate shall be determined by linear interpolation based on the percent by volume of each aggregate used in manufacture.
722.3.2.1 Finish on nonfire-exposed side. Where plaster or gypsum wallboard is applied to the side of the wall not exposed to fire, the contribution of the finish to the total fire-resistance rating shall be determined as follows: The thickness of gypsum wallboard or plaster shall be corrected by multiplying the actual thickness of the finish by applicable factor determined from Table 722.2.1.4(1). This corrected thickness of finish shall be added to the equivalent thickness of masonry and the fire-resistance rating of the masonry and finish determined from Table 722.3.2.

722.3.1.1 Finish on fire-exposed side. Where plaster or gypsum wallboard is applied to the fire-exposed side of the wall, the contribution of the finish to the total fire-resistance rating shall be determined as follows: The time assigned to the finish as established by Table 722.2.1.4(2) shall be added to the fire-resistance rating determined in Section 722.3.2 for the masonry alone, or in Section 722.3.2.1 for the masonry and finish on the nonfire-exposed side.

722.3.1.2 Nonsymmetrical assemblies. For a wall having no finish on one side or having different types or thicknesses of finish on each side, the calculation procedures of this section shall be performed twice, assuming either side of the wall to be the fire-exposed side. The fire-resistance rating of the wall shall not exceed the lower of the two values calculated.

 Exception: For exterior walls with a fire separation distance greater than 5 feet (1524 mm), the fire shall be assumed to occur on the interior side only.

722.3.1.3 Minimum concrete masonry fire-resistance rating. Where the finish applied to a concrete masonry wall contributes to its fire-resistance rating, the masonry alone shall provide not less than one-half the total required fire-resistance rating.

722.3.1.4 Attachment of finishes. Installation of finishes shall be as follows:
1. Gypsum wallboard and gypsum lath applied to concrete masonry or concrete walls shall be secured to wood or steel furring members spaced not more than 16 inches (406 mm) on center (o.c.).
2. Gypsum wallboard shall be installed with the long dimension parallel to the furring members and shall have all joints finished.
3. Other aspects of the installation of finishes shall comply with the applicable provisions of Chapters 7 and 25.
722.3.3 **Multiwythe masonry walls.** The fire-resistance rating of wall assemblies constructed of multiple wythes of masonry materials shall be permitted to be based on the fire-resistance rating period of each wythe and the continuous airspace between each wythe in accordance with the following formula:

\[R_A = (R_1^{0.59} + R_2^{0.59} + ... + R_n^{0.59} + A_1 + A_2 + ... + A_n)^{1.7} \]

(Equation 7-7)

where:

- \(R_A \) = Fire-resistance rating of the assembly (hours).
- \(R_1, R_2, ..., R_n \) = Fire-resistance rating of wythes for 1, 2, n (hours), respectively.
- \(A_1, A_2, ..., A_n \) = 0.30, factor for each continuous airspace for 1, 2, ...n, respectively, having a depth of \(\frac{1}{2} \) inch (12.7 mm) or more between wythes.

722.3.4 **Concrete masonry lintels.** Fire-resistance ratings for concrete masonry lintels shall be determined based upon the nominal thickness of the lintel and the minimum thickness of concrete masonry or concrete, or any combination thereof, covering the main reinforcing bars, as determined in accordance with Table 722.3.4, or by approved alternate methods.

<p>| TABLE 722.3.4 |
| MINIMUM COVER OF LONGITUDINAL REINFORCEMENT IN FIRE-RESISTANCE-RATED REINFORCED CONCRETE MASONRY LINTELS (inches) |</p>
<table>
<thead>
<tr>
<th>NOMINAL WIDTH OF LINTEL (inches)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1 1/2</td>
<td>2</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 3/4</td>
<td>3</td>
</tr>
<tr>
<td>10 or greater</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 1/2</td>
<td>1 3/4</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

722.3.5 **Concrete masonry columns.** The fire-resistance rating of concrete masonry columns shall be determined based upon the least plan dimension of the column in accordance with Table 722.3.5 or by approved alternate methods.

| TABLE 722.3.5 |
| MINIMUM DIMENSION OF CONCRETE MASONRY COLUMNS (inches) |
| FIRE-RESISTANCE RATING (hours) |
|---|---|---|---|---|
| 1 | 2 | 3 | 4 |
Clay brick and tile masonry. The provisions of this section contain procedures by which the fire-resistance ratings of clay brick and tile masonry are established by calculations.

Masonry walls. The fire-resistance rating of masonry walls shall be based upon the equivalent thickness as calculated in accordance with this section. The calculation shall take into account finishes applied to the wall and airspaces between wythes in multi wythe construction.

Equivalent thickness. The fire-resistance ratings of walls or partitions constructed of solid or hollow clay masonry units shall be determined from Table 722.4.1(1) or 722.4.1(2). The equivalent thickness of the clay masonry unit shall be determined by Equation 7-8 where using Table 722.4.1(1). The fire-resistance rating determined from Table 722.4.1(1) shall be permitted to be used in the calculated fire-resistance rating procedure in Section 722.4.2.

\[T_e = \frac{V_n}{LH} \]

(Equation 7-8)

where:

- \(T_e \) = The equivalent thickness of the clay masonry unit (inches).
- \(V_n \) = The net volume of the clay masonry unit (inch\(^3\)).
- \(L \) = The specified length of the clay masonry unit (inches).
- \(H \) = The specified height of the clay masonry unit (inches).

Hollow clay units. The equivalent thickness, \(T_e \), shall be the value obtained for hollow clay units as determined in accordance with Equation 7-8. The net volume, \(V_n \), of the units shall be determined using the gross volume and percentage of void area determined in accordance with ASTM C 67.

Solid grouted clay units. The equivalent thickness of solid grouted clay masonry units shall be taken as the actual thickness of the units.

Units with filled cores. The equivalent thickness of the hollow clay masonry units is the actual thickness of the unit where completely filled with loose-fill materials of: sand, pea gravel, crushed...
stone, or slag that meet ASTM C 33 requirements; pumice, scoria, expanded shale, expanded clay, expanded slate, expanded slag, expanded fly ash, or cinders in compliance with ASTM C 331; or perlite or vermiculite meeting the requirements of ASTM C 549 and ASTM C 516, respectively.

TABLE 722.4.1(1)

FIRE-RESISTANCE PERIODS OF CLAY MASONRY WALLS

<table>
<thead>
<tr>
<th>MATERIAL TYPE</th>
<th>MINIMUM REQUIRED EQUIVALENT THICKNESS FOR FIRE-RESISTANCEa,b,c (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 hour</td>
</tr>
<tr>
<td>Solid brick of clay or shale</td>
<td>2.7</td>
</tr>
<tr>
<td>Hollow brick or tile of clay or shale, unfilled</td>
<td>2.3</td>
</tr>
<tr>
<td>Hollow brick or tile of clay or shale, grouted or filled with materials specified in Section 722.4.1.1.3</td>
<td>3.0</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Equivalent thickness as determined from Section 722.4.1.1.
b. Calculated fire-resistance between the hourly increments listed shall be determined by linear interpolation.
c. Where combustible members are framed in the wall, the thickness of solid material between the end of each member and the opposite face of the wall, or between members set in from opposite sides, shall be not less than 93 percent of the thickness shown.
d. For units in which the net cross-sectional area of cored brick in any plane parallel to the surface containing the cores is not less than 75 percent of the gross cross-sectional area measured in the same plane.

TABLE 722.4.1(2)

FIRE-RESISTANCE RATINGS FOR BEARING STEEL FRAME BRICK VENEER WALLS OR PARTITIONS

<table>
<thead>
<tr>
<th>WALL OR PARTITION ASSEMBLY</th>
<th>PLASTER SIDE EXPOSED (hours)</th>
<th>BRICK FACED SIDE EXPOSED (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside facing of steel studs: 1/16" wood fiberboard sheathing next to studs, 3/16" airspace formed with 3/16" × 1 5/16" wood strips placed over the fiberboard and secured to the studs; metal or wire lath nailed to such strips, 5/16" brick veneer held in place by filling 3/16" airspace between the brick and lath with mortar. Inside facing of studs: 1/16" unsanded gypsum plaster on metal or wire lath attached to 5/16" wood strips secured to edges of the studs.</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>Outside facing of steel studs: 1" insulation board sheathing attached to studs, 1" airspace, and 3/16" brick veneer attached to steel frame with metal ties every 5th course. Inside facing of studs: 7/8" sanded gypsum plaster (1:2 mix) applied on metal or wire lath attached directly to the studs.</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>Same as above except use 7/8" vermiculite-gypsum plaster or 1" sanded gypsum plaster (1:2 mix) applied to metal or wire.</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Outside facing of steel studs: 1/2" gypsum sheathing board, attached to studs, and 3/4" brick veneer attached to steel frame with metal ties every 5th course. Inside facing of studs: 1/2" sanded gypsum plaster (1:2 mix) applied to 1/2" perforated gypsum lath securely attached to studs and having strips of metal lath 3 inches wide applied to all horizontal joints of gypsum lath.

For SI: 1 inch = 25.4 mm.

722.4.1.2 Plaster finishes

Where plaster is applied to the wall, the total fire-resistance rating shall be determined by the formula

\[R = (R_n^{0.59} + pl)^{1.7} \]

(Equation 7-9)

where:
- \(R \) = The fire-resistance rating of the assembly (hours).
- \(R_n \) = The fire-resistance rating of the individual wall (hours).
- \(pl \) = Coefficient for thickness of plaster.

Values for \(R_n^{0.59} \) for use in Equation 7-9 are given in Table 722.4.1(3). Coefficients for thickness of plaster shall be selected from Table 722.4.1(4) based on the actual thickness of plaster applied to the wall or partition and whether one or two sides of the wall are plastered.

<table>
<thead>
<tr>
<th>TABLE 722.4.1(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUES OF (R_n^{0.59})</td>
</tr>
<tr>
<td>Rn 0.59</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 722.4.1(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COEFFICIENTS FOR PLASTER, (pl) *</td>
</tr>
<tr>
<td>THICKNESS OF PLASTER (inch)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1/2</td>
</tr>
<tr>
<td>5/8</td>
</tr>
</tbody>
</table>
TABLE 722.4.1(5)
REINFORCED MASONRY LINTELS

<table>
<thead>
<tr>
<th>NOMINAL LINTEL WIDTH (inches)</th>
<th>MINIMUM LONGITUDINAL REINFORCEMENT COVER FOR FIRE-RESISTANCE (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 hour</td>
</tr>
<tr>
<td>6</td>
<td>1-1/2</td>
</tr>
<tr>
<td>8</td>
<td>1-1/2</td>
</tr>
<tr>
<td>10 or more</td>
<td>1-1/2</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
NP = Not permitted.

TABLE 722.4.1(6)
REINFORCED CLAY MASONRY COLUMNS

<table>
<thead>
<tr>
<th>COLUMN SIZE</th>
<th>FIRE-RESISTANCE RATING (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Minimum column dimension (inches)</td>
<td>8</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

722.4.1.3 Multiwythe walls with airspace. Where a continuous airspace separates multiple wythes of the wall or partition, the total fire-resistance rating shall be determined by the formula:

\[
R = (R_1^{0.59} + R_2^{0.59} + \ldots + R_n^{0.59} + as)^{1.7}
\]

(Equation 7-10)

where:

R = The fire-resistance rating of the assembly (hours).
R1, R2 and Rn = The fire-resistance rating of the individual wythes (hours).
as = Coefficient for continuous airspace.
Values for $R_n^{0.59}$ for use in Equation 7-10 are given in Table 722.4.1(3). The coefficient for each continuous airspace of $\frac{1}{2}$ inch to $3\frac{1}{2}$ inches (12.7 to 89 mm) separating two individual wythes shall be 0.3.

722.4.1.4 Nonsymmetrical assemblies. For a wall having no finish on one side or having different types or thicknesses of finish on each side, the calculation procedures of this section shall be performed twice, assuming either side to be the fire-exposed side of the wall. The fire-resistance of the wall shall not exceed the lower of the two values determined.

Exception: For exterior walls with a fire separation distance greater than 5 feet (1524 mm), the fire shall be assumed to occur on the interior side only.

722.4.2 Multiwythe walls. The fire-resistance rating for walls or partitions consisting of two or more dissimilar wythes shall be permitted to be determined by the formula:

$$R = (R_1^{0.59} + R_2^{0.59} + ... + R_n^{0.59})^{1.7} \quad \text{(Equation 7-11)}$$

where:

R = The fire-resistance rating of the assembly (hours).

R_1, R_2 and R_n = The fire-resistance rating of the individual wythes (hours).

Values for $R_n^{0.59}$ for use in Equation 7-11 are given in Table 722.4.1(3).

722.4.2.1 Multiwythe walls of different material. For walls that consist of two or more wythes of different materials (concrete or concrete masonry units) in combination with clay masonry units, the fire-resistance rating of the different materials shall be permitted to be determined from Table 722.2.1.1 for concrete; Table 722.3.2 for concrete masonry units or Table 722.4.1(1) or 722.4.1(2) for clay and tile masonry units.

722.4.3 Reinforced clay masonry lintels. Fire-resistance ratings for clay masonry lintels shall be determined based on the nominal width of the lintel and the minimum covering for the longitudinal reinforcement in accordance with Table 722.4.1(5).

722.4.4 Reinforced clay masonry columns. The fire-resistance ratings shall be determined based on the last plan dimension of the column in accordance with Table 722.4.1(6). The minimum cover for longitudinal reinforcement shall be 2 inches (51 mm).
722.5 Steel assemblies. The provisions of this section contain procedures by which the fire-resistance ratings of steel assemblies are established by calculations.

722.5.1 Structural steel columns. The fire-resistance ratings of structural steel columns shall be based on the size of the element and the type of protection provided in accordance with this section.

722.5.1.1 General. These procedures establish a basis for determining the fire-resistance of column assemblies as a function of the thickness of fire-resistant material and, the weight, W, and heated perimeter, D, of structural steel columns. As used in these sections, W is the average weight of a structural steel column in pounds per linear foot. The heated perimeter, D, is the inside perimeter of the fire-resistant material in inches as illustrated in Figure 722.5.1(1).

FIGURE 722.5.1(1)
DETERMINATION OF THE HEATED PERIMETER OF STRUCTURAL STEEL COLUMNS

722.5.1.1.1 Nonload-bearing protection. The application of these procedures shall be limited to column assemblies in which the fire-resistant material is not designed to carry any of the load acting on the column.

722.5.1.1.2 Embedments. In the absence of substantiating fire-endurance test results, ducts, conduit, piping, and similar mechanical, electrical, and plumbing installations shall not be embedded in any
required fire-resistant materials.

722.5.1.3 Weight-to-perimeter ratio. Table 722.5.1(1) contains weight-to-heated-perimeter ratios (W/D) for both contour and box fire-resistant profiles, for the wide flange shapes most often used as columns. For different fire-resistant protection profiles or column cross sections, the weight-to heated-perimeter ratios (W/D) shall be determined in accordance with the definitions given in this section.

722.5.1.2 Gypsum wallboard protection. The fire-resistance of structural steel columns with weight-to heated-perimeter ratios (W/D) less than or equal to 3.65 and that are protected with Type X gypsum wallboard shall be permitted to be determined from the following expression:

\[
R = 130 \left[\frac{h (W'/D)}{2} \right]^{0.75} \quad \text{(Equation 7-12)}
\]

where:
- \(R \) = Fire-resistance (minutes).
- \(h \) = Total thickness of gypsum wallboard (inches).
- \(D \) = Heated perimeter of the structural steel column (inches).
- \(W' \) = Total weight of the structural steel column and gypsum wallboard protection (pounds per linear foot).
- \(W' = W + 50hD/144. \)

722.5.1.2.1 Attachment. The gypsum board or gypsum panel products shall be supported as illustrated in either Figure 722.5.1(2) for fire-resistance ratings of 4 hours or less, or Figure 722.5.1(3) for fire-resistance ratings of 3 hours or less.
1. Structural steel column, either wide flange or tubular shapes.

2. Type X gypsum board or gypsum panel products in accordance with ASTM C 1177, C 1178, C 1278, C 1396 or C 1658. The total thickness of gypsum board or gypsum panel products calculated as h in Section 722.5.1.2 shall be applied vertically to an individual column using one of the following methods:
 2.3 As a single layer with no horizontal joints.
 2.4 As multiple layers with no horizontal joints permitted in any layer.
 2.5 As multiple layers with horizontal joints staggered not less than 12 inches vertically between layers and not less than 8 feet vertically in any single layer. The total required thickness of gypsum board or gypsum panel products shall be determined on the basis of the specified fire-resistance rating and the weight-to-heated-perimeter ratio (W/D) of the column. For fire-resistance ratings of 2 hours or less, one of the required layers of gypsum board or gypsum panel product may be applied to the exterior of the sheet steel column covers with 1-inch long Type S screws spaced 1 inch from the wallboard edge and 8 inches on center. For such installations, 0.0149-inch minimum thickness galvanized steel corner beads with 1 1/2-inch legs shall be attached to the wallboard with Type S screws spaced 12 inches on center.

3. For fire-resistance ratings of 3 hours or less, the column covers shall be fabricated from 0.0239-inch minimum thickness galvanized or stainless steel. For 4-hour fire-resistance ratings, the column covers shall be fabricated from 0.0239-inch minimum thickness stainless steel. The column covers shall be erected with the Snap Lock or Pittsburgh joint details.

For fire-resistance ratings of 2 hours or less, column covers fabricated from 0.0269-inch minimum thickness galvanized or stainless steel shall be permitted to be erected with lap joints. The lap joints shall...
be permitted to be located anywhere around the perimeter of the column cover. The lap joints shall be secured with 1/2-inch-long No. 8 sheet metal screws spaced 12 inches on center. The column covers shall be provided with a minimum expansion clearance of 1/8 inch per linear foot between the ends of the cover and any restraining construction.

For SI: 1 inch = 25.4 mm, 1 foot = 305 mm.

1. Structural steel column, either wide flange or tubular shapes.

2. 1 5/8-inch deep studs fabricated from 0.0179-inch minimum thickness galvanized steel with 1 7/16 or 1 11/16-inch legs. The length of the steel studs shall be 1/2 inch less than the height of the assembly.

3. Type X gypsum board or gypsum panel products in accordance with ASTM C177, C1178, C1278, C1396 or C1658. The total thickness of gypsum board or gypsum panel products calculated as h in Section 722.5.1.2 shall be applied vertically to an individual column using one of the following methods:

 3.1. As a single layer with no horizontal joints.

 3.2. As multiple layers with no horizontal joints permitted in any layer.

FIGURE 722.5.1(3)

GYPSUM-PROTECTED STRUCTURAL STEEL COLUMNS WITH STEEL STUD/SCREW ATTACHMENT SYSTEM
3.3. As multiple layers with horizontal joints staggered not less than 12 inches vertically between layers and not less than 8 feet vertically in any single layer. The total required thickness of gypsum board or gypsum panel products shall be determined on the basis of the specified fire-resistance rating and the weight-to-heated-perimeter ratio (W/D) of the column.

4. Galvanized 0.0149-inch minimum thickness steel corner beads with 1½-inch legs attached to the gypsum board or gypsum panel products with 1-inch-long Type S screws spaced 12 inches on center.

5. No. 18 SWG steel tie wires spaced 24 inches on center. Sheet metal angles with 2-inch legs fabricated from 0.0221-inch minimum thickness galvanized steel.

6. Type S screws, 1 inch long, shall be used for attaching the first layer of gypsum board or gypsum panel product to the steel studs and the third layer to the sheet metal angles at 24 inches on center.

7. Type S screws 1⅛-inch long shall be used for attaching the second layer of gypsum board or gypsum panel product to the steel studs and the fourth layer to the sheet metal angles at 12 inches on center. Type S screws 2⅛ inches long shall be used for attaching the third layer of gypsum board or gypsum panel product to the steel studs at 12 inches on center.

722.5.1.2.2 Gypsum wallboard equivalent to concrete. The determination of the fire-resistance of structural steel columns from Figure 722.5.1(4) is permitted for various thicknesses of gypsum wallboard as a function of the weight-to-heated-perimeter ratio (W/D) of the column. For structural steel columns with weight-to-heated-perimeter ratios (W/D) greater than 3.65, the thickness of gypsum wallboard required for specified fire-resistance ratings shall be the same as the thickness determined for a W14 × 233 wide flange shape.

![Graph](image-url)
FIGURE 722.5.1(4)
FIRE-RESISTANCE OF STRUCTURAL STEEL COLUMNS PROTECTED WITH VARIOUS THICKNESSES OF TYPE X GYPSUM WALLBOARD

a. The W/D ratios for typical wide flange columns are listed in Table 722.5.1(1). For other column shapes, the W/D ratios shall be determined in accordance with Section 722.5.1.1.

722.5.1.3 Sprayed fire-resistant materials. The fire-resistance of wide-flange structural steel columns protected with sprayed fire-resistant materials, as illustrated in Figure 722.5.1(5), shall be permitted to be determined from the following expression:

\[R = [C_1(W/D) + C_2]h \]

(Equation 7-13)

where:
- \(R \) = Fire-resistance (minutes).
- \(H \) = Thickness of sprayed fire-resistant material (inches).
- \(D \) = Heated perimeter of the structural steel column (inches).
- \(C_1 \) and \(C_2 \) = Material-dependent constants.
- \(W \) = Weight of structural steel columns (pounds per linear foot).

The fire-resistance of structural steel columns protected with intumescent or mastic fire-resistant coatings shall be determined on the basis of fire-resistance tests in accordance with Section 703.2.

722.5.1.3.1 Material-dependent constants. The material-dependent constants, \(C_1 \) and \(C_2 \), shall be determined for specific fire-resistant materials on the basis of standard fire endurance tests in accordance with Section 703.2. Unless evidence is submitted to the building official substantiating a broader application, this expression shall be limited to determining the fire-resistance of structural steel columns with weight-to-heated-perimeter ratios (W/ D) between the largest and smallest columns for which standard fire-resistance test results are available.

722.5.1.3.2 Identification. Sprayed fire-resistant materials shall be identified by density and thickness required for a given fire-resistance rating.
FIGURE 722.5.1(5)
WIDE FLANGE STRUCTURAL STEEL COLUMNS WITH SPRAYED FIRE-RESISTANT MATERIALS

722.5.1.4 Concrete-protected columns. The fire-resistance of structural steel columns protected with concrete, as illustrated in Figure 722.5.1(6)(a) and (b), shall be permitted to be determined from the following expression:

\[R = R_o(1 + 0.03m) \]

(Equation 7-14)

where:

- \(R \) = Fire endurance at equilibrium moisture conditions (minutes).
- \(R_o \) = Fire endurance at zero moisture content (minutes).
- \(m \) = Equilibrium moisture content of the concrete by volume percent.
- \(W \) = Average weight of the structural steel column (pounds per linear foot).
- \(D \) = Heated perimeter of the structural steel column (inches).
- \(h \) = Thickness of the concrete cover (inches).
- \(k_c \) = Ambient temperature thermal conductivity of the concrete (Btu/hr ft °F).
- \(H \) = Ambient temperature thermal capacity of the steel column = 0.11\(W \) (Btu/ft °F).
- \(p_c \) = Concrete density (pounds per cubic foot).
- \(c_c \) = Ambient temperature specific heat of concrete (Btu/lb °F).
- \(L \) = Interior dimension of one side of a square concrete box.
protection (inches).

722.5.1.4.1 Reentrant space filled. For wide-flange structural steel columns completely encased in concrete with all reentrant spaces filled [Figure 722.5.1(6)(c)], the thermal capacity of the concrete within the reentrant spaces shall be permitted to be added to the thermal capacity of the steel column, as follows:

\[H = 0.11 \ W + \left(\frac{p_{cc}}{144} \right) (b_d - A_s) \]

(Equation 7-15)

where:
- \(b_f \) = Flange width of the structural steel column (inches).
- \(D \) = Depth of the structural steel column (inches).
- \(A_s \) = Cross-sectional area of the steel column (square inches).

722.5.1.4.2 Concrete properties unknown. If specific data on the properties of concrete are not available, the values given in Table 722.5.1(2) are permitted.

722.5.1.4.3 Minimum concrete cover. For structural steel column encased in concrete with all reentrant spaces filled, Figure 722.5.1(6)(c) and Tables 722.5.1(7) and 722.5.1(8) indicate the thickness of concrete cover required for various fire-resistance ratings for typical wide-flange sections. The thicknesses of concrete indicated in these tables apply to structural steel columns larger than those listed.

722.5.1.4.4 Minimum precast concrete cover. For structural steel columns protected with precast concrete column covers as shown in Figure 722.5.1(6)(a), Tables 722.5.1(9) and 722.5.1(10) indicate the thickness of the column covers required for various fire-resistance ratings for typical wide flange shapes. The thicknesses of concrete given in these tables apply to structural steel columns larger than those listed.

722.5.1.4.5 Masonry protection. The fire-resistance of structural steel columns protected with concrete masonry units or clay masonry units as illustrated in Figure 722.5.1(7) shall be permitted to be determined from the following expression:

\[R = 0.17 \ (W/D)^{0.7} + \left[0.285 \left(T_e^{1.6}/K^{0.2} \right) \right] [1.0 + 42.7 \ (A_s/d_m] \]
\[\frac{T_c}{(0.25p + T_c)^{0.8}} \]

(Equation 7-16)

where:
- \(R \) = Fire-resistance rating of column assembly (hours).
- \(W \) = Average weight of structural steel column (pounds per foot).
- \(D \) = Heated perimeter of structural steel column (inches) [see Figure 722.5.1(7)].
- \(T_c \) = Equivalent thickness of concrete or clay masonry unit (inches) (see Table 722.3.2 Note a or Section 722.4.1).
- \(K \) = Thermal conductivity of concrete or clay masonry unit (Btu/hr \(\cdot \) ft \(\cdot \) °F) [see Table 722.5.1(3)].
- \(A_s \) = Cross-sectional area of structural steel column (square inches).
- \(d_m \) = Density of the concrete or clay masonry unit (pounds per cubic foot).
- \(p \) = Inner perimeter of concrete or clay masonry protection (inches) [see Figure 722.5.1(7)].

722.5.1.4.6 Equivalent concrete masonry thickness. For structural steel columns protected with concrete masonry, Table 722.5.1(5) gives the equivalent thickness of concrete masonry required for various fire-resistance ratings for typical column shapes. For structural steel columns protected with clay masonry, Table 722.5.1(6) gives the equivalent thickness of concrete masonry required for various fire-resistance ratings for typical column shapes.
FIGURE 722.5.1 (6)

CONCRETE PROTECTED STRUCTURAL STEEL COLUMNS

a. When the inside perimeter of the concrete protection is not square, \(L \) shall be taken as the average of \(L_1 \) and \(L_2 \). When the thickness of concrete cover is not constant, \(h \) shall be taken as the average of \(h_1 \) and \(h_2 \).

b. Joints shall be protected with a minimum 1 inch thickness of ceramic fiber blanket but in no case less than one-half the thickness of the column cover (see Section 722.2.1.3).

\[
D = 2(w+d) + 2(w-t_{web})
\]
\[
D = d
\]
\[
D = 2w + 2d
\]

FIGURE 722.5.1(7)

CONCRETE OR CLAY MASONRY PROTECTED STRUCTURAL STEEL COLUMNS

For SI: 1 inch = 25.4 mm.
d = Depth of a wide flange column, outside diameter of pipe column, or outside dimension of structural tubing column (inches).

t_{web} = Thickness of web of wide flange column (inches).

w = Width of flange of wide flange column (inches).

TABLE 722.5.1(1)

W/D RATIOS FOR STEEL COLUMNS

<table>
<thead>
<tr>
<th>STRUCTURAL SHAPE</th>
<th>CONTOUR PROFILE</th>
<th>BOX PROFILE</th>
<th>STRUCTURAL SHAPE</th>
<th>CONTOUR PROFILE</th>
<th>BOX PROFILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>W14 × 233</td>
<td>2.55</td>
<td>3.65</td>
<td>W10 × 112</td>
<td>1.81</td>
<td>2.57</td>
</tr>
<tr>
<td>× 211</td>
<td>2.32</td>
<td>3.35</td>
<td>× 100</td>
<td>1.64</td>
<td>2.33</td>
</tr>
<tr>
<td>× 193</td>
<td>2.14</td>
<td>3.09</td>
<td>× 88</td>
<td>1.45</td>
<td>2.08</td>
</tr>
<tr>
<td>× 176</td>
<td>1.96</td>
<td>2.85</td>
<td>× 77</td>
<td>1.28</td>
<td>1.85</td>
</tr>
<tr>
<td>× 159</td>
<td>1.78</td>
<td>2.60</td>
<td>× 68</td>
<td>1.15</td>
<td>1.66</td>
</tr>
<tr>
<td>× 145</td>
<td>1.64</td>
<td>2.39</td>
<td>× 60</td>
<td>1.01</td>
<td>1.48</td>
</tr>
<tr>
<td>× 132</td>
<td>1.56</td>
<td>2.25</td>
<td>× 54</td>
<td>0.922</td>
<td>1.34</td>
</tr>
<tr>
<td>× 120</td>
<td>1.42</td>
<td>2.06</td>
<td>× 49</td>
<td>0.84</td>
<td>1.23</td>
</tr>
<tr>
<td>× 109</td>
<td>1.29</td>
<td>1.88</td>
<td>× 45</td>
<td>0.888</td>
<td>1.24</td>
</tr>
<tr>
<td>× 99</td>
<td>1.18</td>
<td>1.72</td>
<td>× 39</td>
<td>0.78</td>
<td>1.09</td>
</tr>
<tr>
<td>× 90</td>
<td>1.08</td>
<td>1.58</td>
<td>× 33</td>
<td>0.661</td>
<td>0.93</td>
</tr>
<tr>
<td>× 82</td>
<td>1.23</td>
<td>1.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× 74</td>
<td>1.12</td>
<td>1.53</td>
<td>W8 × 67</td>
<td>1.37</td>
<td>1.94</td>
</tr>
<tr>
<td>× 68</td>
<td>1.04</td>
<td>1.41</td>
<td>× 58</td>
<td>1.20</td>
<td>1.71</td>
</tr>
<tr>
<td>× 61</td>
<td>0.928</td>
<td>1.28</td>
<td>× 48</td>
<td>1.00</td>
<td>1.44</td>
</tr>
<tr>
<td>× 53</td>
<td>0.915</td>
<td>1.21</td>
<td>× 40</td>
<td>0.849</td>
<td>1.23</td>
</tr>
<tr>
<td>× 48</td>
<td>0.835</td>
<td>1.10</td>
<td>× 35</td>
<td>0.749</td>
<td>1.08</td>
</tr>
<tr>
<td>× 43</td>
<td>0.752</td>
<td>0.99</td>
<td>× 31</td>
<td>0.665</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>× 28</td>
<td>0.688</td>
<td>0.96</td>
</tr>
<tr>
<td>W12 × 190</td>
<td>2.50</td>
<td>3.51</td>
<td>× 24</td>
<td>0.591</td>
<td>0.83</td>
</tr>
<tr>
<td>× 170</td>
<td>2.26</td>
<td>3.20</td>
<td>× 21</td>
<td>0.577</td>
<td>0.77</td>
</tr>
<tr>
<td>× 152</td>
<td>2.04</td>
<td>2.90</td>
<td>× 18</td>
<td>0.499</td>
<td>0.67</td>
</tr>
<tr>
<td>× 136</td>
<td>1.86</td>
<td>2.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× 120</td>
<td>1.65</td>
<td>2.36</td>
<td>W6 × 25</td>
<td>0.696</td>
<td>1.00</td>
</tr>
<tr>
<td>× 106</td>
<td>1.47</td>
<td>2.11</td>
<td>× 20</td>
<td>0.563</td>
<td>0.82</td>
</tr>
<tr>
<td>× 96</td>
<td>1.34</td>
<td>1.93</td>
<td>× 16</td>
<td>0.584</td>
<td>0.78</td>
</tr>
<tr>
<td>× 87</td>
<td>1.22</td>
<td>1.76</td>
<td>× 15</td>
<td>0.431</td>
<td>0.63</td>
</tr>
<tr>
<td>× 79</td>
<td>1.11</td>
<td>1.61</td>
<td>× 12</td>
<td>0.448</td>
<td>0.60</td>
</tr>
<tr>
<td>× 72</td>
<td>1.02</td>
<td>1.48</td>
<td>× 9</td>
<td>0.338</td>
<td>0.46</td>
</tr>
<tr>
<td>× 65</td>
<td>0.925</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>× 58</td>
<td>0.925</td>
<td>1.31</td>
<td>W5 × 19</td>
<td>0.644</td>
<td>0.93</td>
</tr>
<tr>
<td>Property</td>
<td>Normal-Weight Concrete</td>
<td>Structural Lightweight Concrete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity (k_c)</td>
<td>0.95 Btu/hr · ft · °F</td>
<td>0.35 Btu/hr · ft · °F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific heat (c_c)</td>
<td>0.20 Btu/lb °F</td>
<td>0.20 Btu/lb °F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density (P_c)</td>
<td>145 lb/ft³</td>
<td>110 lb/ft³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equilibrium (free) moisture content (m) by volume</td>
<td>4%</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 lb/ft³ = 16.0185 kg/m³, Btu/hr · ft · °F = 1.731 W/(m · K).

TABLE 722.5.1(3)

THERMAL CONDUCTIVITY OF CONCRETE OR CLAY MASONRY UNITS

<table>
<thead>
<tr>
<th>Density (dm) of Units (lb/ft³)</th>
<th>Thermal Conductivity (K) of Units (Btu/hr · ft · °F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete Masonry Units</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.207</td>
</tr>
<tr>
<td>85</td>
<td>0.228</td>
</tr>
<tr>
<td>90</td>
<td>0.252</td>
</tr>
<tr>
<td>95</td>
<td>0.278</td>
</tr>
<tr>
<td>100</td>
<td>0.308</td>
</tr>
<tr>
<td>105</td>
<td>0.340</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
</tr>
<tr>
<td>130</td>
</tr>
</tbody>
</table>

Clay Masonry Units

For SI: 1 pound per cubic foot = 16.0185 kg/m³, Btu/hr · ft · °F = 1.731 W/(m · K).
TABLE 722.5.1(4)
WEIGHT-TO-HEATED-PERIMETER RATIOS (W/D) FOR TYPICAL WIDE FLANGE BEAM AND GIRDER SHAPES

<table>
<thead>
<tr>
<th>STRUCTURAL SHAPE</th>
<th>CONTOUR PROFILE</th>
<th>BOX PROFILE</th>
<th>STRUCTURAL SHAPE</th>
<th>CONTOUR PROFILE</th>
<th>BOX PROFILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>W36 x 300</td>
<td>2.50</td>
<td>3.33</td>
<td>W24 x 68</td>
<td>0.942</td>
<td>1.21</td>
</tr>
<tr>
<td>x 280</td>
<td>2.35</td>
<td>3.12</td>
<td>x 62</td>
<td>0.934</td>
<td>1.14</td>
</tr>
<tr>
<td>x 260</td>
<td>2.18</td>
<td>2.92</td>
<td>x 55</td>
<td>0.828</td>
<td>1.02</td>
</tr>
<tr>
<td>x 245</td>
<td>2.08</td>
<td>2.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 230</td>
<td>1.95</td>
<td>2.61</td>
<td>W21 x 147</td>
<td>1.87</td>
<td>2.60</td>
</tr>
<tr>
<td>x 210</td>
<td>1.96</td>
<td>2.45</td>
<td>x 132</td>
<td>1.68</td>
<td>2.35</td>
</tr>
<tr>
<td>x 194</td>
<td>1.81</td>
<td>2.28</td>
<td>x 122</td>
<td>1.57</td>
<td>2.19</td>
</tr>
<tr>
<td>x 182</td>
<td>1.72</td>
<td>2.15</td>
<td>x 111</td>
<td>1.43</td>
<td>2.01</td>
</tr>
<tr>
<td>x 170</td>
<td>1.60</td>
<td>2.01</td>
<td>x 101</td>
<td>1.30</td>
<td>1.84</td>
</tr>
<tr>
<td>x 160</td>
<td>1.51</td>
<td>1.90</td>
<td>x 93</td>
<td>1.40</td>
<td>1.80</td>
</tr>
<tr>
<td>x 150</td>
<td>1.43</td>
<td>1.79</td>
<td>x 83</td>
<td>1.26</td>
<td>1.62</td>
</tr>
<tr>
<td>x 135</td>
<td>1.29</td>
<td>1.63</td>
<td>x 73</td>
<td>1.11</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x 68</td>
<td>1.04</td>
<td>1.35</td>
</tr>
<tr>
<td>W33 x 241</td>
<td>2.13</td>
<td>2.86</td>
<td>W21 x 62</td>
<td>0.952</td>
<td>1.23</td>
</tr>
<tr>
<td>x 221</td>
<td>1.97</td>
<td>2.64</td>
<td>x 57</td>
<td>0.952</td>
<td>1.17</td>
</tr>
<tr>
<td>x 201</td>
<td>1.79</td>
<td>2.42</td>
<td>x 50</td>
<td>0.838</td>
<td>1.04</td>
</tr>
<tr>
<td>x 152</td>
<td>1.53</td>
<td>1.94</td>
<td>x 44</td>
<td>0.746</td>
<td>0.92</td>
</tr>
<tr>
<td>x 141</td>
<td>1.43</td>
<td>1.80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 130</td>
<td>1.32</td>
<td>1.67</td>
<td>W18 x 119</td>
<td>1.72</td>
<td>2.42</td>
</tr>
<tr>
<td>x 118</td>
<td>1.21</td>
<td>1.53</td>
<td>x 106</td>
<td>1.55</td>
<td>2.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x 97</td>
<td>1.42</td>
<td>2.01</td>
</tr>
<tr>
<td>W30 x 211</td>
<td>2.01</td>
<td>2.74</td>
<td>x 86</td>
<td>1.27</td>
<td>1.80</td>
</tr>
<tr>
<td>x 191</td>
<td>1.85</td>
<td>2.50</td>
<td>x 76</td>
<td>1.13</td>
<td>1.60</td>
</tr>
<tr>
<td>x 173</td>
<td>1.66</td>
<td>2.28</td>
<td>x 71</td>
<td>1.22</td>
<td>1.59</td>
</tr>
<tr>
<td>x 132</td>
<td>1.47</td>
<td>1.85</td>
<td>x 65</td>
<td>1.13</td>
<td>1.47</td>
</tr>
<tr>
<td>x 124</td>
<td>1.39</td>
<td>1.75</td>
<td>x 60</td>
<td>1.04</td>
<td>1.36</td>
</tr>
<tr>
<td>x 116</td>
<td>1.30</td>
<td>1.65</td>
<td>x 55</td>
<td>0.963</td>
<td>1.26</td>
</tr>
<tr>
<td>x 108</td>
<td>1.21</td>
<td>1.54</td>
<td>x 50</td>
<td>0.88</td>
<td>1.15</td>
</tr>
<tr>
<td>x 99</td>
<td>1.12</td>
<td>1.42</td>
<td>x 46</td>
<td>0.878</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>x 40</td>
<td>0.768</td>
<td>0.96</td>
</tr>
<tr>
<td>W27 x 178</td>
<td>1.87</td>
<td>2.55</td>
<td>x 35</td>
<td>0.672</td>
<td>0.85</td>
</tr>
<tr>
<td>x 161</td>
<td>1.70</td>
<td>2.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 146</td>
<td>1.55</td>
<td>2.12</td>
<td>W16 x 100</td>
<td>1.59</td>
<td>2.25</td>
</tr>
</tbody>
</table>
TABLE 722.5.1(4)
WEIGHT-TO-HEATED-PERIMETER RATIOS (W/D) FOR TYPICAL WIDE FLANGE BEAM AND GIRDER SHAPES

<table>
<thead>
<tr>
<th>STRUCTURAL SHAPE</th>
<th>CONTOUR PROFILE</th>
<th>BOX PROFILE</th>
<th>STRUCTURAL SHAPE</th>
<th>CONTOUR PROFILE</th>
<th>BOX PROFILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 114</td>
<td>1.39</td>
<td>1.76</td>
<td>x 89</td>
<td>1.43</td>
<td>2.03</td>
</tr>
<tr>
<td>x 102</td>
<td>1.24</td>
<td>1.59</td>
<td>x 77</td>
<td>1.25</td>
<td>1.78</td>
</tr>
<tr>
<td>x 94</td>
<td>1.15</td>
<td>1.47</td>
<td>x 67</td>
<td>1.09</td>
<td>1.56</td>
</tr>
<tr>
<td>x 84</td>
<td>1.03</td>
<td>1.33</td>
<td>x 57</td>
<td>1.09</td>
<td>1.43</td>
</tr>
<tr>
<td>x 50</td>
<td></td>
<td></td>
<td>x 45</td>
<td>0.870</td>
<td>1.15</td>
</tr>
<tr>
<td>W24 x 162</td>
<td>1.88</td>
<td>2.57</td>
<td>x 40</td>
<td>0.780</td>
<td>1.03</td>
</tr>
<tr>
<td>x 146</td>
<td>1.70</td>
<td>2.34</td>
<td>x 36</td>
<td>0.702</td>
<td>0.93</td>
</tr>
<tr>
<td>x 131</td>
<td>1.54</td>
<td>2.12</td>
<td>x 31</td>
<td>0.661</td>
<td>0.83</td>
</tr>
<tr>
<td>x 117</td>
<td>1.38</td>
<td>1.91</td>
<td>x 26</td>
<td>0.558</td>
<td>0.70</td>
</tr>
<tr>
<td>x 104</td>
<td>1.24</td>
<td>1.71</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 94</td>
<td>1.28</td>
<td>1.63</td>
<td>W14 x 132</td>
<td>1.89</td>
<td>3.00</td>
</tr>
<tr>
<td>x 84</td>
<td>1.15</td>
<td>1.47</td>
<td>x 120</td>
<td>1.71</td>
<td>2.75</td>
</tr>
<tr>
<td>x 76</td>
<td>1.05</td>
<td>1.34</td>
<td>x 109</td>
<td>1.57</td>
<td>2.52</td>
</tr>
<tr>
<td>W14 x 99</td>
<td>1.43</td>
<td>2.31</td>
<td>W10 x 30</td>
<td>0.806</td>
<td>1.12</td>
</tr>
<tr>
<td>x 90</td>
<td>1.31</td>
<td>2.11</td>
<td>x 26</td>
<td>0.708</td>
<td>0.98</td>
</tr>
<tr>
<td>x 82</td>
<td>1.45</td>
<td>2.12</td>
<td>x 22</td>
<td>0.606</td>
<td>0.84</td>
</tr>
<tr>
<td>x 74</td>
<td>1.32</td>
<td>1.93</td>
<td>x 19</td>
<td>0.607</td>
<td>0.78</td>
</tr>
<tr>
<td>x 68</td>
<td>1.22</td>
<td>1.78</td>
<td>x 17</td>
<td>0.543</td>
<td>0.70</td>
</tr>
<tr>
<td>x 61</td>
<td>1.10</td>
<td>1.61</td>
<td>x 15</td>
<td>0.484</td>
<td>0.63</td>
</tr>
<tr>
<td>x 53</td>
<td>1.06</td>
<td>1.48</td>
<td>x 12</td>
<td>0.392</td>
<td>0.51</td>
</tr>
<tr>
<td>x 48</td>
<td>0.970</td>
<td>1.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W14 x 43</td>
<td>0.874</td>
<td>1.22</td>
<td>W8 x 67</td>
<td>1.65</td>
<td>2.55</td>
</tr>
<tr>
<td>x 38</td>
<td>0.809</td>
<td>1.09</td>
<td>x 58</td>
<td>1.44</td>
<td>2.26</td>
</tr>
<tr>
<td>x 34</td>
<td>0.725</td>
<td>0.98</td>
<td>x 48</td>
<td>1.21</td>
<td>1.91</td>
</tr>
<tr>
<td>x 30</td>
<td>0.644</td>
<td>0.87</td>
<td>x 40</td>
<td>1.03</td>
<td>1.63</td>
</tr>
<tr>
<td>x 26</td>
<td>0.628</td>
<td>0.79</td>
<td>x 35</td>
<td>0.907</td>
<td>1.44</td>
</tr>
<tr>
<td>x 22</td>
<td>0.534</td>
<td>0.68</td>
<td>x 31</td>
<td>0.803</td>
<td>1.29</td>
</tr>
<tr>
<td>x 28</td>
<td></td>
<td></td>
<td>x 28</td>
<td>0.819</td>
<td>1.24</td>
</tr>
<tr>
<td>W12 x 87</td>
<td>1.47</td>
<td>2.34</td>
<td>x 24</td>
<td>0.704</td>
<td>1.07</td>
</tr>
</tbody>
</table>
TABLE 722.5.1(4)
WEIGHT-TO-HEATED-PERIMETER RATIOS (W/D) FOR TYPICAL WIDE FLANGE BEAM AND GIRDER SHAPES

<table>
<thead>
<tr>
<th>STRUCTURAL SHAPE</th>
<th>CONTOUR PROFILE</th>
<th>BOX PROFILE</th>
<th>STRUCTURAL SHAPE</th>
<th>CONTOUR PROFILE</th>
<th>BOX PROFILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 79</td>
<td>1.34</td>
<td>2.14</td>
<td>x 21</td>
<td>0.675</td>
<td>0.96</td>
</tr>
<tr>
<td>x 72</td>
<td>1.23</td>
<td>1.97</td>
<td>x 18</td>
<td>0.583</td>
<td>0.84</td>
</tr>
<tr>
<td>x 65</td>
<td>1.11</td>
<td>1.79</td>
<td>x 15</td>
<td>0.551</td>
<td>0.74</td>
</tr>
<tr>
<td>x 58</td>
<td>1.10</td>
<td>1.69</td>
<td>x 13</td>
<td>0.483</td>
<td>0.65</td>
</tr>
<tr>
<td>x 53</td>
<td>1.02</td>
<td>1.55</td>
<td>x 10</td>
<td>0.375</td>
<td>0.51</td>
</tr>
<tr>
<td>x 50</td>
<td>1.06</td>
<td>1.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 45</td>
<td>0.974</td>
<td>1.40</td>
<td>W6 x 25</td>
<td>0.839</td>
<td>1.33</td>
</tr>
<tr>
<td>x 40</td>
<td>0.860</td>
<td>1.25</td>
<td>x 20</td>
<td>0.678</td>
<td>1.09</td>
</tr>
<tr>
<td>x 35</td>
<td>0.810</td>
<td>1.11</td>
<td>x 16</td>
<td>0.684</td>
<td>0.96</td>
</tr>
<tr>
<td>x 30</td>
<td>0.699</td>
<td>0.96</td>
<td>x 15</td>
<td>0.521</td>
<td>0.83</td>
</tr>
<tr>
<td>x 26</td>
<td>0.612</td>
<td>0.84</td>
<td>x 12</td>
<td>0.526</td>
<td>0.75</td>
</tr>
<tr>
<td>x 22</td>
<td>0.623</td>
<td>0.77</td>
<td>x 9</td>
<td>0.398</td>
<td>0.57</td>
</tr>
<tr>
<td>x 19</td>
<td>0.540</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 16</td>
<td>0.457</td>
<td>0.57</td>
<td>W5 x 19</td>
<td>0.776</td>
<td>1.24</td>
</tr>
<tr>
<td>x 14</td>
<td>0.405</td>
<td>0.50</td>
<td>x 16</td>
<td>0.664</td>
<td>1.07</td>
</tr>
<tr>
<td>W10 x 112</td>
<td>2.17</td>
<td>3.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 100</td>
<td>1.97</td>
<td>3.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 88</td>
<td>1.74</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 77</td>
<td>1.54</td>
<td>2.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 68</td>
<td>1.38</td>
<td>2.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 60</td>
<td>1.22</td>
<td>1.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 54</td>
<td>1.11</td>
<td>1.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 49</td>
<td>1.01</td>
<td>1.64</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 45</td>
<td>1.06</td>
<td>1.59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 39</td>
<td>0.94</td>
<td>1.40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x 33</td>
<td>0.77</td>
<td>1.20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 pound per linear foot per inch = 0.059 kg/m/mm.
TABLE 722.5.1(5)
FIRE-RESISTANCE OF CONCRETE MASONRY PROTECTED STEEL COLUMNS

<table>
<thead>
<tr>
<th>COLUMN SIZE</th>
<th>CONCRETE MASONRY DENSITY (POUNDS PER CUBIC FOOT)</th>
<th>MINIMUM REQUIRED EQUIVALENT THICKNESS FOR FIRE-RESISTANCE RATING OF CONCRETE MASONRY PROTECTION ASSEMBLY, T_e (INCHES)</th>
<th>COLUMN SIZE</th>
<th>CONCRETE MASONRY DENSITY (POUNDS PER CUBIC FOOT)</th>
<th>MINIMUM REQUIRED EQUIVALENT THICKNESS FOR FIRE-RESISTANCE RATING OF CONCRETE MASONRY PROTECTION ASSEMBLY, T_e (INCHES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W14 × 82</td>
<td></td>
<td></td>
<td>W10 × 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.74, 1.61, 2.36, 3.04</td>
<td></td>
<td>80</td>
<td>0.72, 1.58, 2.33, 3.01</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.89, 1.85, 2.67, 3.40</td>
<td></td>
<td>100</td>
<td>0.87, 1.83, 2.65, 3.38</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>0.96, 1.97, 2.81, 3.57</td>
<td></td>
<td>110</td>
<td>0.94, 1.95, 2.79, 3.55</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1.03, 2.08, 2.95, 3.73</td>
<td></td>
<td>120</td>
<td>1.01, 2.06, 2.94, 3.72</td>
<td></td>
</tr>
<tr>
<td>W14 × 68</td>
<td></td>
<td></td>
<td>W10 × 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.83, 1.70, 2.45, 3.13</td>
<td></td>
<td>80</td>
<td>0.88, 1.76, 2.53, 3.21</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.99, 1.95, 2.76, 3.49</td>
<td></td>
<td>100</td>
<td>1.04, 2.01, 2.83, 3.57</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>1.06, 2.06, 2.91, 3.66</td>
<td></td>
<td>110</td>
<td>1.11, 2.12, 2.98, 3.73</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1.14, 2.18, 3.05, 3.82</td>
<td></td>
<td>120</td>
<td>1.19, 2.24, 3.12, 3.90</td>
<td></td>
</tr>
<tr>
<td>W14 × 53</td>
<td></td>
<td></td>
<td>W10 × 45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.91, 1.81, 2.58, 3.27</td>
<td></td>
<td>80</td>
<td>0.92, 1.83, 2.60, 3.30</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.07, 2.05, 2.88, 3.62</td>
<td></td>
<td>100</td>
<td>1.08, 2.07, 2.90, 3.64</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>1.15, 2.17, 3.02, 3.78</td>
<td></td>
<td>110</td>
<td>1.16, 2.18, 3.04, 3.80</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1.22, 2.28, 3.16, 3.94</td>
<td></td>
<td>120</td>
<td>1.23, 2.29, 3.18, 3.96</td>
<td></td>
</tr>
<tr>
<td>W14 × 43</td>
<td></td>
<td></td>
<td>W10 × 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1.01, 1.93, 2.71, 3.41</td>
<td></td>
<td>80</td>
<td>1.06, 2.00, 2.79, 3.49</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.17, 2.17, 3.00, 3.74</td>
<td></td>
<td>100</td>
<td>1.22, 2.23, 3.07, 3.81</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>1.25, 2.28, 3.14, 3.90</td>
<td></td>
<td>110</td>
<td>1.30, 2.34, 3.20, 3.96</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1.32, 2.38, 3.27, 4.05</td>
<td></td>
<td>120</td>
<td>1.37, 2.44, 3.33, 4.12</td>
<td></td>
</tr>
<tr>
<td>W12 × 72</td>
<td></td>
<td></td>
<td>W8 × 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.81, 1.66, 2.41, 3.09</td>
<td></td>
<td>80</td>
<td>0.94, 1.85, 2.63, 3.33</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.91, 1.88, 2.70, 3.43</td>
<td></td>
<td>100</td>
<td>1.10, 2.10, 2.93, 3.67</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>0.99, 1.99, 2.84, 3.60</td>
<td></td>
<td>110</td>
<td>1.18, 2.21, 3.07, 3.83</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1.06, 2.10, 2.98, 3.76</td>
<td></td>
<td>120</td>
<td>1.25, 2.32, 3.20, 3.99</td>
<td></td>
</tr>
<tr>
<td>W12 × 58</td>
<td></td>
<td></td>
<td>W8 × 31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.88, 1.76, 2.52, 3.21</td>
<td></td>
<td>80</td>
<td>1.06, 2.00, 2.78, 3.49</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.04, 2.01, 2.83, 3.56</td>
<td></td>
<td>100</td>
<td>1.22, 2.23, 3.07, 3.81</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>1.11, 2.12, 2.97, 3.73</td>
<td></td>
<td>110</td>
<td>1.29, 2.33, 3.20, 3.97</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1.19, 2.23, 3.11, 3.89</td>
<td></td>
<td>120</td>
<td>1.36, 2.44, 3.33, 4.12</td>
<td></td>
</tr>
<tr>
<td>W12 × 50</td>
<td></td>
<td></td>
<td>W8 × 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.91, 1.81, 2.58, 3.27</td>
<td></td>
<td>80</td>
<td>1.14, 2.09, 2.89, 3.59</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.07, 2.05, 2.88, 3.62</td>
<td></td>
<td>100</td>
<td>1.29, 2.31, 3.16, 3.90</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>1.15, 2.17, 3.02, 3.78</td>
<td></td>
<td>110</td>
<td>1.36, 2.42, 3.28, 4.05</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>1.22, 2.28, 3.16, 3.94</td>
<td></td>
<td>120</td>
<td>1.43, 2.52, 3.41, 4.20</td>
<td></td>
</tr>
<tr>
<td>W12 × 40</td>
<td></td>
<td></td>
<td>W8 × 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1.01, 1.94, 2.72, 3.41</td>
<td></td>
<td>80</td>
<td>1.22, 2.20, 3.01, 3.72</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.17, 2.17, 3.01, 3.75</td>
<td></td>
<td>100</td>
<td>1.36, 2.40, 3.25, 4.01</td>
<td></td>
</tr>
<tr>
<td>COLUMN SIZE</td>
<td>CONCRETE MASONRY DENSITY POUNDS PER CUBIC FOOT</td>
<td>MINIMUM REQUIRED EQUIVALENT THICKNESS FOR FIRE-RESISTANCE RATING OF CONCRETE MASONRY PROTECTION ASSEMBLY, T_e (inches) 1 hour 2 hours 3 hours 4 hours</td>
<td>COLUMN SIZE</td>
<td>CONCRETE MASONRY DENSITY POUNDS PER CUBIC FOOT</td>
<td>MINIMUM REQUIRED EQUIVALENT THICKNESS FOR FIRE-RESISTANCE RATING OF CONCRETE MASONRY PROTECTION ASSEMBLY, T_e (inches) 1 hour 2 hours 3 hours 4 hours</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>4 × 4 × 1/2 wall thickness</td>
<td>80 0.93 1.09 2.28 3.14 4.06</td>
<td>110 1.42 2.50 3.37 4.14</td>
<td>80 0.80 1.75 2.56 3.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 × 4 × 3/8 wall thickness</td>
<td>80 0.93 1.09 2.28 3.14 4.06</td>
<td>110 1.42 2.50 3.37 4.14</td>
<td>80 0.80 1.75 2.56 3.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 × 4 × 1/4 wall thickness</td>
<td>80 0.93 1.09 2.28 3.14 4.06</td>
<td>110 1.42 2.50 3.37 4.14</td>
<td>80 0.80 1.75 2.56 3.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 × 6 × 1/2 wall thickness</td>
<td>80 0.93 1.09 2.28 3.14 4.06</td>
<td>110 1.42 2.50 3.37 4.14</td>
<td>80 0.80 1.75 2.56 3.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 × 6 × 3/8 wall thickness</td>
<td>80 0.93 1.09 2.28 3.14 4.06</td>
<td>110 1.42 2.50 3.37 4.14</td>
<td>80 0.80 1.75 2.56 3.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 × 6 × 1/4 wall thickness</td>
<td>80 0.93 1.09 2.28 3.14 4.06</td>
<td>110 1.42 2.50 3.37 4.14</td>
<td>80 0.80 1.75 2.56 3.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 × 8 × 1/2 wall thickness</td>
<td>80 0.93 1.09 2.28 3.14 4.06</td>
<td>110 1.42 2.50 3.37 4.14</td>
<td>80 0.80 1.75 2.56 3.28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 722.5.1(5)
FIRE-RESISTANCE OF CONCRETE MASONRY PROTECTED STEEL COLUMNS

<table>
<thead>
<tr>
<th>COLUMN SIZE</th>
<th>CONCRETE MASONRY DENSITY POUNDS PER CUBIC FOOT</th>
<th>MINIMUM REQUIRED EQUIVALENT THICKNESS FOR FIRE-RESISTANCE RATING OF CONCRETE MASONRY PROTECTION ASSEMBLY, T_e (inches)</th>
<th>COLUMN SIZE</th>
<th>CONCRETE MASONRY DENSITY POUNDS PER CUBIC FOOT</th>
<th>MINIMUM REQUIRED EQUIVALENT THICKNESS FOR FIRE-RESISTANCE RATING OF CONCRETE MASONRY PROTECTION ASSEMBLY, T_e (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 hour</td>
<td>2 hours</td>
<td>3 hours</td>
<td>4 hours</td>
</tr>
<tr>
<td>8 x 8 x 3/8 wall thickness</td>
<td>80</td>
<td>0.91</td>
<td>1.84</td>
<td>2.63</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.07</td>
<td>2.08</td>
<td>2.92</td>
<td>3.67</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>1.14</td>
<td>2.19</td>
<td>3.06</td>
<td>3.83</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>1.21</td>
<td>2.29</td>
<td>3.19</td>
<td>3.98</td>
</tr>
<tr>
<td>8 x 8 x 1/4 wall thickness</td>
<td>80</td>
<td>1.10</td>
<td>2.06</td>
<td>2.86</td>
<td>3.57</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.25</td>
<td>2.28</td>
<td>3.13</td>
<td>3.87</td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>1.32</td>
<td>2.38</td>
<td>3.25</td>
<td>4.02</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>1.39</td>
<td>2.48</td>
<td>3.38</td>
<td>4.17</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per cubic feet = 16.02 kg/m³.

Note: Tabulated values assume 1-inch air gap between masonry and steel section.
TABLE 722.5.1(6)
FIRE-RESISTANCE OF CLAY MASONRY PROTECTED STEEL COLUMNS

<table>
<thead>
<tr>
<th>COLUMN SIZE</th>
<th>CLAY MASONRY DENSITY, POUNDS PER CUBIC FOOT</th>
<th>MINIMUM REQUIRED EQUIVALENT THICKNESS FOR FIRE-RESISTANCE RATING OF CLAY MASONRY PROTECTION ASSEMBLY, T_e (inches)</th>
<th>COLUMN SIZE</th>
<th>CLAY MASONRY DENSITY, POUNDS PER CUBIC FOOT</th>
<th>MINIMUM REQUIRED EQUIVALENT THICKNESS FOR FIRE-RESISTANCE RATING OF CLAY MASONRY PROTECTION ASSEMBLY, T_e (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 hour</td>
<td>2 hours</td>
<td>3 hours</td>
<td>4 hours</td>
</tr>
<tr>
<td>W14 × 82</td>
<td>120 1.23</td>
<td>2.42</td>
<td>3.41</td>
<td>4.29</td>
<td>W10 × 68</td>
</tr>
<tr>
<td></td>
<td>130 1.40</td>
<td>2.70</td>
<td>3.78</td>
<td>4.74</td>
<td></td>
</tr>
<tr>
<td>W14 × 68</td>
<td>120 1.34</td>
<td>2.54</td>
<td>3.54</td>
<td>4.43</td>
<td>W10 × 54</td>
</tr>
<tr>
<td></td>
<td>130 1.51</td>
<td>2.82</td>
<td>3.91</td>
<td>4.87</td>
<td></td>
</tr>
<tr>
<td>W14 × 53</td>
<td>120 1.43</td>
<td>2.65</td>
<td>3.65</td>
<td>4.54</td>
<td>W10 × 45</td>
</tr>
<tr>
<td></td>
<td>130 1.61</td>
<td>2.93</td>
<td>4.02</td>
<td>4.98</td>
<td></td>
</tr>
<tr>
<td>W14 × 43</td>
<td>120 1.54</td>
<td>2.76</td>
<td>3.77</td>
<td>4.66</td>
<td>W10 × 33</td>
</tr>
<tr>
<td></td>
<td>130 1.72</td>
<td>3.04</td>
<td>4.13</td>
<td>5.09</td>
<td></td>
</tr>
<tr>
<td>W12 × 72</td>
<td>120 1.32</td>
<td>2.52</td>
<td>3.51</td>
<td>4.40</td>
<td>W8 × 40</td>
</tr>
<tr>
<td></td>
<td>130 1.50</td>
<td>2.80</td>
<td>3.88</td>
<td>4.84</td>
<td></td>
</tr>
<tr>
<td>W12 × 58</td>
<td>120 1.40</td>
<td>2.61</td>
<td>3.61</td>
<td>4.50</td>
<td>W8 × 31</td>
</tr>
<tr>
<td></td>
<td>130 1.57</td>
<td>2.89</td>
<td>3.98</td>
<td>4.94</td>
<td></td>
</tr>
<tr>
<td>W12 × 50</td>
<td>120 1.43</td>
<td>2.65</td>
<td>3.66</td>
<td>4.55</td>
<td>W8 × 24</td>
</tr>
<tr>
<td></td>
<td>130 1.61</td>
<td>2.93</td>
<td>4.02</td>
<td>4.99</td>
<td></td>
</tr>
<tr>
<td>W12 × 40</td>
<td>120 1.54</td>
<td>2.77</td>
<td>3.78</td>
<td>4.67</td>
<td>W8 × 18</td>
</tr>
<tr>
<td></td>
<td>130 1.72</td>
<td>3.05</td>
<td>4.14</td>
<td>5.10</td>
<td></td>
</tr>
</tbody>
</table>

STEEL TUBING

<table>
<thead>
<tr>
<th>NOMINAL TUBE SIZE (inches)</th>
<th>CLAY MASONRY DENSITY, POUNDS PER CUBIC FOOT</th>
<th>MINIMUM REQUIRED EQUIVALENT THICKNESS FOR FIRE-RESISTANCE RATING OF CLAY MASONRY PROTECTION ASSEMBLY, T_e (inches)</th>
<th>NOMINAL PIPE SIZE (inches)</th>
<th>CLAY MASONRY DENSITY, POUNDS PER CUBIC FOOT</th>
<th>MINIMUM REQUIRED EQUIVALENT THICKNESS FOR FIRE-RESISTANCE RATING OF CLAY MASONRY PROTECTION ASSEMBLY, T_e (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 × 4 × 1/2 wall thickness</td>
<td>120 1.44</td>
<td>2.72</td>
<td>3.76</td>
<td>4.68</td>
<td>4 double extra strong 0.674 wall thickness</td>
</tr>
<tr>
<td></td>
<td>130 1.62</td>
<td>3.00</td>
<td>4.12</td>
<td>5.11</td>
<td></td>
</tr>
<tr>
<td>4 × 4 × 3/8 wall thickness</td>
<td>120 1.56</td>
<td>2.84</td>
<td>3.88</td>
<td>4.78</td>
<td>4 extra strong 0.337 wall thickness</td>
</tr>
<tr>
<td></td>
<td>130 1.74</td>
<td>3.12</td>
<td>4.23</td>
<td>5.21</td>
<td></td>
</tr>
<tr>
<td>4 × 4 × 1/4 wall thickness</td>
<td>120 1.72</td>
<td>2.99</td>
<td>4.02</td>
<td>4.92</td>
<td>4 standard 0.237 wall thickness</td>
</tr>
<tr>
<td></td>
<td>130 1.89</td>
<td>3.26</td>
<td>4.37</td>
<td>5.34</td>
<td></td>
</tr>
<tr>
<td>Wall Thickness</td>
<td>Density (lbs/ft³)</td>
<td>Density (kg/m³)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 x 6 x 1/2 in</td>
<td>120</td>
<td>1.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 x 6 x 3/8 in</td>
<td>120</td>
<td>1.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 x 6 x 1/4 in</td>
<td>120</td>
<td>1.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>1.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 x 8 x 1/2 in</td>
<td>120</td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>1.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 x 8 x 3/8 in</td>
<td>120</td>
<td>1.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>1.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 x 8 x 1/4 in</td>
<td>120</td>
<td>1.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>1.79</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per cubic foot = 16.02 kg/m³.
TABLE 722.5.1(7)
MINIMUM COVER (inch) FOR STEEL COLUMNS ENCASED IN NORMAL-WEIGHT CONCRETE\(^a\) [FIGURE 722.5.1(6)(c)]

<table>
<thead>
<tr>
<th>STRUCTURAL SHAPE</th>
<th>FIRE-RESISTANCE RATING (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>W14 × 233</td>
<td>1</td>
</tr>
<tr>
<td>× 176</td>
<td></td>
</tr>
<tr>
<td>× 132</td>
<td></td>
</tr>
<tr>
<td>× 90</td>
<td></td>
</tr>
<tr>
<td>× 61</td>
<td></td>
</tr>
<tr>
<td>× 48</td>
<td></td>
</tr>
<tr>
<td>× 43</td>
<td></td>
</tr>
<tr>
<td>W12 × 152</td>
<td>1</td>
</tr>
<tr>
<td>× 96</td>
<td></td>
</tr>
<tr>
<td>× 65</td>
<td></td>
</tr>
<tr>
<td>× 50</td>
<td></td>
</tr>
<tr>
<td>× 40</td>
<td></td>
</tr>
<tr>
<td>W10 × 88</td>
<td>1</td>
</tr>
<tr>
<td>× 49</td>
<td></td>
</tr>
<tr>
<td>× 45</td>
<td></td>
</tr>
<tr>
<td>× 39</td>
<td></td>
</tr>
<tr>
<td>× 33</td>
<td></td>
</tr>
<tr>
<td>W8 × 67</td>
<td>1</td>
</tr>
<tr>
<td>× 58</td>
<td></td>
</tr>
<tr>
<td>× 48</td>
<td></td>
</tr>
<tr>
<td>× 31</td>
<td></td>
</tr>
<tr>
<td>× 21</td>
<td></td>
</tr>
<tr>
<td>× 18</td>
<td></td>
</tr>
<tr>
<td>W6 × 25</td>
<td>1</td>
</tr>
<tr>
<td>× 20</td>
<td></td>
</tr>
<tr>
<td>× 16</td>
<td></td>
</tr>
<tr>
<td>× 15</td>
<td></td>
</tr>
<tr>
<td>× 9</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

\(a\). The tabulated thicknesses are based upon the assumed properties of normal-weight concrete given in Table 722.5.1(2).
TABLE 722.5.1(8)
MINIMUM COVER (inch) FOR STEEL COLUMNS ENCASED IN STRUCTURAL LIGHTWEIGHT CONCRETE

[FIGURE 722.5.1(6)(c)]

<table>
<thead>
<tr>
<th>STRUCTURAL SHAPE</th>
<th>FIRE-RESISTANCE RATING (HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>W14 × 233</td>
<td>1</td>
</tr>
<tr>
<td>× 193</td>
<td></td>
</tr>
<tr>
<td>× 74</td>
<td></td>
</tr>
<tr>
<td>× 61</td>
<td></td>
</tr>
<tr>
<td>× 43</td>
<td></td>
</tr>
<tr>
<td>W12 × 65</td>
<td>1</td>
</tr>
<tr>
<td>× 53</td>
<td></td>
</tr>
<tr>
<td>× 40</td>
<td></td>
</tr>
<tr>
<td>W10 × 112</td>
<td>1</td>
</tr>
<tr>
<td>× 88</td>
<td></td>
</tr>
<tr>
<td>× 60</td>
<td></td>
</tr>
<tr>
<td>× 33</td>
<td></td>
</tr>
<tr>
<td>W8 × 35</td>
<td>1</td>
</tr>
<tr>
<td>× 28</td>
<td></td>
</tr>
<tr>
<td>× 24</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. The tabulated thicknesses are based upon the assumed properties of structural lightweight concrete given in Table 722.5.1(2).
<table>
<thead>
<tr>
<th>STRUCTURAL SHAPE</th>
<th>FIRE-RESISTANCE RATING (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>W14 × 233</td>
<td></td>
</tr>
<tr>
<td>× 211</td>
<td>1</td>
</tr>
<tr>
<td>× 176</td>
<td></td>
</tr>
<tr>
<td>× 145</td>
<td></td>
</tr>
<tr>
<td>× 109</td>
<td></td>
</tr>
<tr>
<td>× 99</td>
<td></td>
</tr>
<tr>
<td>× 61</td>
<td></td>
</tr>
<tr>
<td>× 43</td>
<td></td>
</tr>
<tr>
<td>W12 × 190</td>
<td></td>
</tr>
<tr>
<td>× 152</td>
<td></td>
</tr>
<tr>
<td>× 120</td>
<td></td>
</tr>
<tr>
<td>× 96</td>
<td></td>
</tr>
<tr>
<td>× 87</td>
<td></td>
</tr>
<tr>
<td>× 58</td>
<td></td>
</tr>
<tr>
<td>× 40</td>
<td></td>
</tr>
<tr>
<td>W10 × 112</td>
<td></td>
</tr>
<tr>
<td>× 88</td>
<td></td>
</tr>
<tr>
<td>× 77</td>
<td></td>
</tr>
<tr>
<td>× 54</td>
<td></td>
</tr>
<tr>
<td>× 33</td>
<td></td>
</tr>
<tr>
<td>W8 × 67</td>
<td></td>
</tr>
<tr>
<td>× 58</td>
<td></td>
</tr>
<tr>
<td>× 48</td>
<td></td>
</tr>
<tr>
<td>× 28</td>
<td></td>
</tr>
<tr>
<td>× 21</td>
<td></td>
</tr>
<tr>
<td>× 18</td>
<td></td>
</tr>
<tr>
<td>W6 × 25</td>
<td></td>
</tr>
<tr>
<td>× 20</td>
<td></td>
</tr>
<tr>
<td>× 16</td>
<td></td>
</tr>
<tr>
<td>× 12</td>
<td></td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm.

a. The tabulated thicknesses are based upon the assumed properties of normal-weight concrete given in Table 722.5.1(2).
<table>
<thead>
<tr>
<th>STRUCTURAL SHAPE</th>
<th>FIRE-RESISTANCE RATING (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>W14 × 233</td>
<td></td>
</tr>
<tr>
<td>× 176</td>
<td></td>
</tr>
<tr>
<td>× 145</td>
<td></td>
</tr>
<tr>
<td>× 132</td>
<td></td>
</tr>
<tr>
<td>× 109</td>
<td></td>
</tr>
<tr>
<td>× 99</td>
<td></td>
</tr>
<tr>
<td>× 68</td>
<td></td>
</tr>
<tr>
<td>× 43</td>
<td></td>
</tr>
<tr>
<td>W12 × 190</td>
<td></td>
</tr>
<tr>
<td>× 152</td>
<td></td>
</tr>
<tr>
<td>× 136</td>
<td></td>
</tr>
<tr>
<td>× 106</td>
<td></td>
</tr>
<tr>
<td>× 96</td>
<td></td>
</tr>
<tr>
<td>× 87</td>
<td></td>
</tr>
<tr>
<td>× 65</td>
<td></td>
</tr>
<tr>
<td>× 40</td>
<td></td>
</tr>
<tr>
<td>W10 × 112</td>
<td></td>
</tr>
<tr>
<td>× 100</td>
<td></td>
</tr>
<tr>
<td>× 88</td>
<td></td>
</tr>
<tr>
<td>× 77</td>
<td></td>
</tr>
<tr>
<td>× 60</td>
<td></td>
</tr>
<tr>
<td>× 39</td>
<td></td>
</tr>
<tr>
<td>× 33</td>
<td></td>
</tr>
<tr>
<td>W8 × 67</td>
<td></td>
</tr>
<tr>
<td>× 48</td>
<td></td>
</tr>
<tr>
<td>× 35</td>
<td></td>
</tr>
<tr>
<td>× 28</td>
<td></td>
</tr>
<tr>
<td>× 18</td>
<td></td>
</tr>
<tr>
<td>W6 × 25</td>
<td></td>
</tr>
<tr>
<td>× 15</td>
<td></td>
</tr>
</tbody>
</table>
722.5.2 Structural steel beams and girders. The fire-resistance ratings of structural steel beams and girders shall be based upon the size of the element and the type of protection provided in accordance with this section.

722.5.2.1 Determination of fire-resistance. These procedures establish a basis for determining resistance of structural steel beams and girders that differ in size from that specified in approved fire-resistance-rated assemblies as a function of the thickness of fire-resistant material and the weight (W) and heated perimeter (D) of the beam or girder. As used in these sections, W is the average weight of a structural steel element in pounds per linear foot (plf). The heated perimeter, D, is the inside perimeter of the fire-resistant material in inches as illustrated in Figure 722.5.2.

FIGURE 722.5.2
DETERMINATION OF THE HEATED PERIMETER OF STRUCTURAL STEEL BEAMS AND GIRDERS

722.5.2.1.1 Weight-to-heated perimeter. The weight-to-heated-perimeter ratios (W/D), for both contour and box fire-resistant protection profiles, for the wide flange shapes most often used as beams or girders are given in Table 722.5.1(4). For different shapes, the weight-to-heated-perimeter ratios (W/D) shall be determined in accordance with the definitions given in this section.

722.5.2.1.2 Beam and girder substitutions. Except as provided for in Section 722.5.2.2, structural steel beams in approved fire-resistance-rated assemblies shall be considered the minimum permissible size.
Other beam or girder shapes shall be permitted to be substituted provided that the weight-to-heated perimeter ratio (W/D) of the substitute beam is equal to or greater than that of the beam specified in the approved assembly.

722.5.2.2 Sprayed fire-resistant materials. The provisions in this section apply to structural steel beams and girders protected with sprayed fire-resistant materials. Larger or smaller beam and girder shapes shall be permitted to be substituted for beams specified in approved unrestrained or restrained fire-resistance-rated assemblies, provided that the thickness of the fire-resistant material is adjusted in accordance with the following expression:

\[h_2 = h_1 \left[\frac{(W_1 / D_1) + 0.60}{(W_2 / D_2) + 0.60} \right] \]

(Equation 7-17)

where:
- \(h \) = Thickness of sprayed fire-resistant material in inches.
- \(W \) = Weight of the structural steel beam or girder in pounds per linear foot.
- \(D \) = Heated perimeter of the structural steel beam in inches.

Subscript 1 refers to the beam and fire-resistant material thickness in the approved assembly.
Subscript 2 refers to the substitute beam or girder and the required thickness of fire-resistant material.
The fire-resistance of structural steel beams and girders protected with intumescent or mastic fire-resistant coatings shall be determined on the basis of fire-resistance tests in accordance with Section 703.2.

722.5.2.2.1 Minimum thickness. The use of Equation 7-17 is subject to the following conditions:
1. The weight-to-heated-perimeter ratio for the substitute beam or girder \((W_2/D_2) \) shall be not less than 0.37.
2. The thickness of fire protection materials calculated for the substitute beam or girder \((T_1) \) shall be not less than \(\frac{3}{8} \) inch (9.5 mm).
3. The unrestrained or restrained beam rating shall be not less than 1 hour.
4. Where used to adjust the material thickness for a restrained beam, the use of this procedure is limited to structural steel sections classified as compact in accordance with AISC 360.

722.5.2.3 Structural steel trusses. The fire-resistance of structural steel
trusses protected with fire-resistant materials sprayed to each of the individual truss elements shall be permitted to be determined in accordance with this section. The thickness of the fire resistant material shall be determined in accordance with Section 722.5.1.3. The weight-to-heated-perimeter ratio (W/D) of truss elements that can be simultaneously exposed to fire on all sides shall be determined on the same basis as columns, as specified in Section 722.5.1.1. The weight-to-heated-perimeter ratio (W/D) of truss elements that directly support floor or roof assembly shall be determined on the same basis as beams and girders, as specified in Section 722.5.2.1.

The fire-resistance of structural steel trusses protected with intumescent or mastic fire-resistant coatings shall be determined on the basis of fire-resistance tests in accordance with Section 703.2.

722.6 Wood assemblies. The provisions of this section contain procedures by which the fire-resistance ratings of wood assemblies are established by calculations.

722.6.1 General. This section contains procedures for calculating the fire-resistance ratings of walls, floor/ceiling and roof/ceiling assemblies based in part on the standard method of testing referenced in Section 703.2.

722.6.1.1 Maximum fire-resistance rating. Fire-resistance ratings calculated for assemblies using the methods in Section 722.6 shall be limited to a maximum of 1 hour.

722.6.1.2 Dissimilar membranes. Where dissimilar membranes are used on a wall assembly that requires consideration of fire exposure from both sides, the calculation shall be made from the least fire-resistant (weaker) side.

722.6.2 Walls, floors and roofs. These procedures apply to both load-bearing and nonload-bearing assemblies.

722.6.2.1 Fire-resistance rating of wood frame assemblies. The fire-resistance rating of a wood frame assembly is equal to the sum of the time assigned to the membrane on the fire-exposed side, the time assigned to the framing members and the time assigned for additional contribution by other protective measures such as insulation. The membrane on the unexposed side shall not be included in determining the fire-resistance of the assembly.
722.6.2.2 **Time assigned to membranes.** Table 722.6.2(1) indicates the time assigned to membranes on the fire-exposed side.

722.6.2.3 **Exterior walls.** For an exterior wall with a fire separation distance greater than 10 feet (3048 mm), the wall is assigned a rating dependent on the interior membrane and the framing as described in Tables 722.6.2(1) and 722.6.2(2). The membrane on the outside of the nonfire-exposed side of exterior walls with a fire separation distance greater than 10 feet (3048 mm) shall consist of sheathing, sheathing paper and siding as described in Table 722.6.2(3).

722.6.2.4 **Floors and roofs.** In the case of a floor or roof, the standard test provides only for testing for fire exposure from below. Except as noted in Section 703.3, Item 5, floor or roof assemblies of wood framing shall have an upper membrane consisting of a subfloor and finished floor conforming to Table 722.6.2(4) or any other membrane that has a contribution to fire-resistance of not less than 15 minutes in Table 722.6.2(1).

722.6.2.5 **Additional protection.** Table 722.6.2(5) indicates the time increments to be added to the fire-resistance where glass fiber, rockwool, slag mineral wool or cellulose insulation is incorporated in the assembly.

722.6.2.6 **Fastening.** Fastening of wood frame assemblies and the fastening of membranes to the wood framing members shall be done in accordance with Chapter 23.

<table>
<thead>
<tr>
<th>TABLE 722.6.2(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME ASSIGNED TO WALLBOARD MEMBRANES<sup>a, b, c, d</sup></td>
</tr>
<tr>
<td>DESCRIPTION OF FINISH</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>3/8-inch wood structural panel bonded with exterior glue</td>
</tr>
<tr>
<td>1 5/32-inch wood structural panel bonded with exterior glue</td>
</tr>
<tr>
<td>1 9/32-inch wood structural panel bonded with exterior glue</td>
</tr>
<tr>
<td>3 /8-inch gypsum wallboard</td>
</tr>
<tr>
<td>1/2-inch gypsum wallboard</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm.

a. These values apply only where membranes are installed on framing members that are spaced 16 inches o.c. or less.

b. Gypsum wallboard installed over framing or furring shall be installed so that all edges are supported, except 5/8-inch Type X gypsum wallboard shall be permitted to be installed horizontally with the horizontal joints staggered 24 inches each side and unsupported but finished.

c. On wood frame floor/ceiling or roof/ceiling assemblies, gypsum board shall be installed with the long dimension perpendicular to framing members and shall have all joints finished.

d. The membrane on the unexposed side shall not be included in determining the fire-resistance of the assembly. Where dissimilar membranes are used on a wall assembly, the calculation shall be made from the least fire-resistant (weaker) side.

e. The time assigned is not a finished rating.

TABLE 722.6.2(2)

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>TIME ASSIGNED TO FRAME (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood studs 16 inches o.c.</td>
<td>20</td>
</tr>
<tr>
<td>Wood floor and roof joists 16 inches o.c.</td>
<td>10</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. This table does not apply to studs or joists spaced more than 16 inches o.c.

b. All studs shall be nominal 2 × 4 and all joists shall have a nominal thickness of not less than 2 inches.

c. Allowable spans for joists shall be determined in accordance with Sections 2308.4.2.1, 2308.7.1 and 2308.7.2.

TABLE 722.6.2(3)

<table>
<thead>
<tr>
<th>SHEATHING</th>
<th>PAPER</th>
<th>EXTERIOR FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8-inch T & G lumber</td>
<td>Sheathing paper</td>
<td>Lumber siding</td>
</tr>
<tr>
<td>5 5/16-inch exterior glue wood structural panel</td>
<td></td>
<td>Wood shingles and shakes</td>
</tr>
<tr>
<td>1/2-inch gypsum wallboard</td>
<td></td>
<td>1/4-inch fiber-cement lap, panel or shingle siding</td>
</tr>
<tr>
<td>5/8-inch gypsum wallboard</td>
<td></td>
<td>1/4-inch wood structural panels-exterior type</td>
</tr>
<tr>
<td>inch fiberboard</td>
<td></td>
<td>1/4-inch hardboard</td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>Metal siding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stucco on metal lath</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Masonry veneer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinyl siding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/8-inch exterior-grade wood structural panels</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm.
a. Any combination of sheathing, paper and exterior finish is permitted.

TABLE 722.6.2(4)
FLOORING OR ROOFING OVER WOOD FRAMING

<table>
<thead>
<tr>
<th>ASSEMBLY</th>
<th>STRUCTURAL MEMBERS</th>
<th>SUBFLOOR OR ROOF DECK</th>
<th>FINISHED FLOORING OR ROOFING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor</td>
<td>Wood</td>
<td>15/32-inch wood structural panels or 11/16-inch T & G softwood</td>
<td>Hardwood or softwood flooring on building paper resilient flooring, parquet floor felted-synthetic fiber floor coverings, carpeting, or ceramic tile on 1/8-inch-thick fiber-cement underlayment or 3/16-inch thick panel-type underlay. Ceramic tile on 1/4-inch mortar bed.</td>
</tr>
<tr>
<td>Roof</td>
<td>Wood</td>
<td>15/32-inch wood structural panels or 11/16-inch T & G softwood</td>
<td>Finished roofing material with or without insulation</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
a. This table applies only to wood joist construction. It is not applicable to wood truss construction.

TABLE 722.6.2(5)
TIME ASSIGNED FOR ADDITIONAL PROTECTION

<table>
<thead>
<tr>
<th>DESCRIPTION OF ADDITIONAL PROTECTION</th>
<th>FIRE-RESISTANCE (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add to the fire-resistance rating of wood stud walls if the spaces between the studs are completely filled with glass fiber mineral wool batts weighing not less than 2 pounds per cubic foot (0.6 pound per square foot of wall surface) or rockwool or slag material wool batts weighing not less than 3.3 pounds per cubic foot (1 pound per square foot of wall surface), or cellulose insulation having a nominal density not less than 2.6 pounds per cubic foot.</td>
<td>15</td>
</tr>
</tbody>
</table>

For SI: 1 pound/cubic foot = 16.0185 kg/m³.
Effective: 8/1/2018

Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
4101:1-9-01 Fire protection systems.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:1-35-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 901
GENERAL

901.1 Scope. The provisions of this chapter shall specify where fire protection systems are required and shall apply to the design, installation and operation of fire protection systems.

901.2 Fire protection systems. Fire protection systems shall be installed, repaired, operated and maintained in accordance with this code and the fire code. Any fire protection system for which an exception or reduction to the provisions of this code has been granted shall be considered to be a required system.

Exception: Any fire protection system or portion thereof not required by this code shall be permitted to be installed for partial or complete protection provided that such system meets the requirements of this code.

901.2.1 Approval of fire protection systems. Prior to the start of fire protection system installation, alteration, repair, or removal, the owner or the owner’s representative shall make application and obtain plan approval from the building official for the proposed work in accordance with Section 106 of the building code.

901.2.1.1 Input from the fire official. In jurisdictions where the local fire official has requested the opportunity to provide input into the fire protection system approval process conducted by the building official, the owner or the owner’s representative is required to submit a copy of construction documents related the fire protection to the local fire official for review in accordance with Section 106.1.2(5). The building official shall evaluate the local fire official’s comments and incorporate items of noncompliance with this code into the building department plan review process as outlined in Section 107.6. In the absence of timely input from the fire official during the plan review process, the building official shall proceed as outlined in Section 107.5.1.
901.2.1.2 Coordination. When the building official or the fire official has indicated an intention to have personnel witness acceptance testing conducted in accordance with Section 901.5 or during the final inspection process, it is the responsibility of the owner or the owner’s representative to provide advance notice of when the tests are scheduled to both the building official and the fire official.

901.3 Modifications. Persons shall not remove or modify any fire protection system installed or maintained under the provisions of this code or the fire code without approval by the building official with input from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1. Termination of fire alarm monitoring services shall be in accordance with Section 901.9 of the fire code.

901.4 Threads. Threads provided for fire department connections to sprinkler systems, standpipes, yard hydrants or any other fire hose connection shall be compatible with the connections used by the local fire department. Prior to issuance of the certificate of plan approval, the building official shall communicate with the local fire official to verify that the proposed threads are compatible with those currently used by the fire department.

901.5 Acceptance tests. Fire protection systems shall be tested in accordance with the requirements of this code, the fire code, and the applicable standards referenced in this code. Required acceptance tests shall be conducted at the expense of the owner or the owner’s representative. The building official may require that the acceptance tests be conducted in the presence of a certified building inspector or certified fire protection system inspector. Test results shall be documented and certificates shall be submitted to the building official and the fire official upon completion. Copies of test records and certificates shall also be maintained at the jobsite and made available to the inspector conducting the fire protection systems final inspections. It shall be unlawful to occupy portions of a structure until the required fire protection systems within that portion of the structure have been tested, inspected, and approved.

901.6 Supervisory service. Where required, fire protection systems shall be monitored by an approved supervising station in accordance with NFPA 72.

901.6.1 Automatic sprinkler systems. Automatic sprinkler systems shall be monitored by an approved supervising station in accordance with Section 903.4.1.

Exceptions:
1. Deleted.
2. Limited area systems serving fewer than 20 sprinklers.

901.6.2 Fire alarm systems. Fire alarm systems required by the provisions of Section 907.2 of this code shall be monitored by an approved supervising station in accordance with Section 907.6.6.

Exceptions:
1. Single- and multiple-station smoke alarms required by Section 907.2.11.
2. Smoke detectors in Group I-3 occupancies.
3. Deleted.

901.6.3 Group H. Supervision and monitoring of emergency alarm, detection and automatic fire-extinguishing systems in Group H occupancies shall be in accordance with the Section 908.

901.7 Fire areas. Where buildings, or portions thereof, are divided into fire areas so as not to exceed the limits established for requiring a fire protection system in accordance with this chapter, such fire areas shall be separated by fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both, having a fire-resistance rating of not less than that determined in accordance with Section 707.3.10.

901.8 Pump and riser room size. Where provided, fire pump rooms and automatic sprinkler system riser rooms shall be designed with adequate space for all equipment necessary for the installation, as defined by the manufacturer, with sufficient working room around the stationary equipment. Clearances around equipment to elements of permanent construction, including other installed equipment and appliances, shall be sufficient to allow inspection, service, repair or replacement without removing such elements of permanent construction or disabling the function of a required fire-resistance-rated assembly. Fire pump and automatic sprinkler system riser rooms shall be provided with a door(s) and unobstructed passageway large enough to allow removal of the largest piece of equipment.

901.9 Welding and brazing. Welding and brazing of all metallic fire protection piping shall be done in accordance with Section 313 of the mechanical code.

SECTION 902

DEFINITIONS
902.1 Definitions. The following terms are defined in Chapter 2:

- Alarm Notification Appliance.
- Alarm Signal.
- Alarm Verification Feature.
- Annunciator.
- Audible Alarm Notification Appliance.
- Automatic.
- Automatic Fire-Extinguishing System.
- Automatic Smoke Detection System.
- Automatic Sprinkler System.
- Automatic Water Mist System.
- Average Ambient Sound Level.
- Carbon Dioxide Extinguishing Systems.
- Ceiling Limit.
- Clean Agent.
- Commercial Motor Vehicle.
- Constantly Attended Location.
- Deluge System.
- Detector, Heat.
- Dry-Chemical Extinguishing Agent.
- Electrical Circuit Protective System.
- Elevator Group.
- Emergency Alarm System.
- Emergency Voice/Alarm Communications.
- Fire Alarm Box, Manual.
- Fire Alarm Control Unit.
- Fire Alarm Signal.
- Fire Alarm System.
- Fire Area.
- Fire Command Center.
- Fire Detector, Automatic.
- Fire Protection System.
- Fire Safety Functions.
- Foam-Extinguishing System.
- Halogenated Extinguishing System.
- Initiating Device.
- Manual Fire Alarm Box.
- Multiple-Station Alarm Device.
- Multiple-Station Smoke Alarm.
- Notification Zone.
- Nuisance Alarm.
PRIVATE GARAGE.
RECORD DRAWINGS.
SINGLE-STATION SMOKE ALARM.
SMOKE ALARM.
SMOKE DETECTOR.
SMOKEPROOF ENCLOSURE.
STANDPIPE SYSTEM, CLASSES OF.
 Class I system.
 Class II system.
 Class III system.
STANDPIPE, TYPES OF.
 Automatic dry.
 Automatic wet.
 Manual dry.
 Manual wet.
 Semiautomatic dry.
SUPERVISING STATION.
SUPERVISORY SERVICE.
SUPERVISORY SIGNAL.
SUPERVISORY SIGNAL-INITIATING DEVICE.
TIRES, BULK STORAGE OF.
TROUBLE SIGNAL.
VISIBLE ALARM NOTIFICATION APPLIANCE.
WET CHEMICAL EXTINGUISHING SYSTEM.
WIRELESS PROTECTION SYSTEM.
ZONE.
ZONE, NOTIFICATION.

SECTION 903
AUTOMATIC SPRINKLER SYSTEMS

903.1 General. Automatic sprinkler systems shall comply with this section.

903.1.1 Alternative protection. Alternative automatic fire-extinguishing systems complying with Section 904 shall be permitted instead of automatic sprinkler protection where recognized by the applicable standard and approved by the building official with input from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1.

903.2 Where required. Approved automatic sprinkler systems in new buildings and structures shall be provided in the locations described in Sections 903.2.1
through 903.2.12.

Exception: Spaces or areas in telecommunications buildings used exclusively for telecommunications equipment, associated electrical power distribution equipment, batteries and standby engines, provided those spaces or areas are equipped throughout with an automatic smoke detection system in accordance with Section 907.2 and are separated from the remainder of the building by not less than 1-hour fire barriers constructed in accordance with Section 707 or not less than 2-hour horizontal assemblies constructed in accordance with Section 711, or both.

903.2.1 Group A. An automatic sprinkler system shall be provided throughout buildings and portions thereof used as Group A occupancies as provided in this section. For Group A-1, A-2, A-3 and A-4 occupancies, the automatic sprinkler system shall be provided throughout the story where the fire area containing the Group A-1, A-2, A-3 or A-4 occupancy is located, and throughout all stories from the Group A occupancy to, and including, the levels of exit discharge serving the Group A occupancy. For Group A-5 occupancies, the automatic sprinkler system shall be provided in the spaces indicated in Section 903.2.1.5.

903.2.1.1 Group A-1. An automatic sprinkler system shall be provided for fire areas containing Group A-1 occupancies and intervening floors of the building where one of the following conditions exists:

1. The fire area exceeds 12,000 square feet (1115 m²).
2. The fire area has an occupant load of 300 or more.
3. The fire area is located on a floor other than a level of exit discharge serving such occupancies.
4. The fire area contains a multi-theater complex.

903.2.1.2 Group A-2. An automatic sprinkler system shall be provided for fire areas containing Group A-2 occupancies and intervening floors of the building where one of the following conditions exists:

1. The fire area exceeds 5,000 square feet (464.5 m²).
2. The fire area has an occupant load of 100 or more.
3. The fire area is located on a floor other than a level of exit discharge serving such occupancies.

903.2.1.3 Group A-3. An automatic sprinkler system shall be provided for fire areas containing Group A-3 occupancies and intervening floors of the building where one of the following conditions exists:

1. The fire area exceeds 12,000 square feet (1115 m²).

Exception:
1.1 Fire areas used exclusively for religious worship services with fixed seating.

2. The fire area has an occupant load of 300 or more.

Exception:
2.1 Fire areas used primarily for worship with fixed seating.
2.2 Fire areas without fixed seating not used for exhibition or display; or

3. The fire area is located on a floor other than a level of exit discharge serving such occupancies.

Exception: Areas used exclusively as participant sports areas where the main floor area is located at the same level as the level of exit discharge of the main entrance and exit.

903.2.1.4 Group A-4. An automatic sprinkler system shall be provided for fire areas containing Group A-4 occupancies and intervening floors of the building where one of the following conditions exists:

1. The fire area exceeds 12,000 square feet (1115 m²).
2. The fire area has an occupant load of 300 or more.
3. The fire area is located on a floor other than a level of exit discharge serving such occupancies.

Exception: Areas used exclusively as participant sports areas where the main floor area is located at the same level as the level of exit discharge of the main entrance and exit.

903.2.1.5 Group A-5. An automatic sprinkler system shall be provided for Group A-5 occupancies in the following areas: concession stands, retail areas, press boxes and other accessory use areas in excess of 1,000 square feet (93 m²).

903.2.1.6 Assembly occupancies on roofs. Where an occupied roof has an assembly occupancy with an occupant load exceeding 100 for Group A-2 and 300 for other Group A occupancies, all floors between the occupied roof and the level of exit discharge shall be equipped with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2.

Exception: Open parking garages of Type I or Type II construction.

903.2.1.7 Multiple fire areas. An automatic sprinkler system shall be provided where multiple fire areas of Group A-1, A-2, A-3 or A-4 occupancies share exit or exit access components and the combined occupant load of these fire areas is 300 or more.

903.2.2 Ambulatory care facilities. An automatic sprinkler system shall be installed throughout the entire floor containing an ambulatory care facility
where either of the following conditions exist at any time:

1. Four or more care recipients are incapable of self-preservation, whether rendered incapable by staff or staff has accepted responsibility for care recipients already incapable.

2. One or more care recipients that are incapable of self-preservation are located at other than the level of exit discharge serving such a facility. In buildings where ambulatory care is provided on levels other than the level of exit discharge, an automatic sprinkler system shall be installed throughout the entire floor where such care is provided as well as all floors below, and all floors between the level of ambulatory care and the nearest level of exit discharge, including the level of exit discharge.

903.2.3 Group E. An automatic sprinkler system shall be provided for Group E occupancies as follows:

1. Throughout all Group E fire areas greater than 20,000 square feet (1115 m²) in area.

2. Throughout every portion of educational buildings below the lowest level of exit discharge serving that portion of the building.

 Exception: An automatic sprinkler system is not required in any area below the lowest level of exit discharge serving that area where every classroom throughout the building has no fewer than one exterior exit door at ground level.

3. Throughout every portion of Group E day care facilities - 2 ½ years or less of age.

 Exception: An automatic sprinkler system is not required in day care facilities that provide care for more than five but no more than 100 children 2 ½ years or less of age and the day care facilities are at the level of exit discharge and where every room where care is provided has no fewer than one exterior exit door for which the exit access and exit discharge do not require the traversing of stairs.

903.2.4 Group F-1. An automatic sprinkler system shall be provided throughout all buildings containing a Group F-1 occupancy where one of the following conditions exists:

1. A Group F-1 fire area exceeds 12,000 square feet (1115 m²).

2. A Group F-1 fire area is located more than three stories above grade plane.

3. The combined area of all Group F-1 fire areas on all floors, including any mezzanines, exceeds 24,000 square feet (2230 m²).

4. A Group F-1 occupancy used for the manufacture of upholstered furniture or mattresses exceeds 8000 square feet (232 m²).
903.2.4.1 Woodworking operations. An automatic sprinkler system shall be provided throughout all Group F-1 occupancy fire areas that contain woodworking operations in excess of 2,500 square feet (232 m²) in area that generate finely divided combustible waste or use finely divided combustible materials.

903.2.5 Group H. Automatic sprinkler systems shall be provided in high-hazard occupancies as required in Sections 903.2.5.1 through 903.2.5.3.

903.2.5.1 General. An automatic sprinkler system shall be installed in Group H occupancies.

903.2.5.2 Group H-5 occupancies. An automatic sprinkler system shall be installed throughout buildings containing Group H-5 occupancies. The design of the sprinkler system shall be not less than that required by this code for the occupancy hazard classifications in accordance with Table 903.2.5.2.

Where the design area of the sprinkler system consists of a corridor protected by one row of sprinklers, the maximum number of sprinklers required to be calculated is 13.

903.2.5.3 Pyroxylin plastics. An automatic sprinkler system shall be provided in buildings, or portions thereof, where cellulose nitrate film or pyroxylin plastics are manufactured, stored or handled in quantities exceeding 100 pounds (45 kg).

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>OCCUPANCY HAZARD CLASSIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrication areas</td>
<td>Ordinary Hazard Group 2</td>
</tr>
<tr>
<td>Service corridors</td>
<td>Ordinary Hazard Group 2</td>
</tr>
<tr>
<td>Storage rooms without dispensing</td>
<td>Ordinary Hazard Group 2</td>
</tr>
<tr>
<td>Storage rooms with dispensing</td>
<td>Extra Hazard Group 2</td>
</tr>
<tr>
<td>Corridors</td>
<td>Ordinary Hazard Group 2</td>
</tr>
</tbody>
</table>

903.2.6 Group I. An automatic sprinkler system shall be provided throughout buildings with a Group I fire area.

Exceptions:
1. An automatic sprinkler system installed in accordance with Section 903.3.1.2 or 903.3.1.3 shall be permitted in Group I-1 Condition 1 facilities.

2. An automatic sprinkler system is not required where Group I-4 day care facilities are at the level of exit discharge and where every room where care is provided has no fewer than one exterior exit door for which the exit access and exit discharge do not require the traversing of stairs.

3. In buildings where Group I-4 day care is provided on levels other than the level of exit discharge, an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2 shall be installed on the entire floor where care is provided, all floors between the level of care and the level of exit discharge, and all floors below the level of exit discharge other than areas classified as an open parking garage.

903.2.7 Group M. An automatic sprinkler system shall be provided throughout buildings containing a Group M occupancy where one of the following conditions exists:

1. A Group M fire area exceeds 12,000 square feet (1115 m²).
2. A Group M fire area is located more than three stories above grade plane.
3. The combined area of all Group M fire areas on all floors, including any mezzanines, exceeds 24,000 square feet (2230 m²).
4. A Group M occupancy greater than 8000 square feet (464 m²) is used for the display and sale of upholstered furniture or mattresses.

903.2.7.1 High-piled storage. An automatic sprinkler system shall be provided in accordance with the fire code in all buildings of Group M where storage of merchandise is in high-piled or rack storage arrays.

903.2.8 Group R. An automatic sprinkler system installed in accordance with Section 903.3 shall be provided throughout all buildings with a Group R fire area.

Exception: Group R-2. An automatic sprinkler system is not required in buildings of Group R-2 permitted to have a single exit per Section 1006.3.2 where:

1. The building is not used as an “SRO” occupancy as defined in Chapter 2, and
2. The exit is constructed as an exterior exit stairway per Section 1027, and
3. The dwelling units egress directly into an exit, and
4. Two hour fire barriers divide the building into fire areas with a
maximum of two dwelling units per floor and not more than six dwelling units per fire area, and

5. All dwelling units in the fire area must have separations as required by Section 708.1 for dwelling units, and

6. The building is limited to a basement and two stories above grade plane, and

7. The building contains no more than four dwelling units per floor and no more than twelve dwelling units per building.

903.2.8.1 Group R-3. An automatic sprinkler system installed in accordance with Section 903.3.1.3 shall be permitted in Group R-3 occupancies.

903.2.8.2 Group R-4 Condition 1. An automatic sprinkler system installed in accordance with Section 903.3.1.3 shall be permitted in Group R-4 Condition 1 occupancies.

903.2.8.3 Group R-4 Condition 2. An automatic sprinkler system installed in accordance with Section 903.3.1.2 shall be permitted in Group R-4 Condition 2 occupancies. Attics shall be protected in accordance with Section 903.2.8.3.1 or 903.2.8.3.2.

903.2.8.3.1 Attics used for living purposes, storage or fuel-fired equipment. Attics used for living purposes, storage or fuel-fired equipment shall be protected throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.2.

903.2.8.3.2 Attics not used for living purposes, storage or fuel-fired equipment. Attics not used for living purposes, storage or fuel-fired equipment shall be protected in accordance with one of the following:

1. Attics protected throughout by a heat detector system arranged to activate the building fire alarm system in accordance with Section 907.2.10.

2. Attics constructed of noncombustible materials.

3. Attics constructed of fire-retardant-treated wood framing complying with Section 2303.2.

4. The automatic sprinkler system shall be extended to provide protection throughout the attic space.

903.2.8.4 Care facilities. An automatic sprinkler system installed in accordance with Section 903.3.1.3 shall be permitted in care facilities with
five or fewer individuals in a single-family dwelling.

903.2.9 Group S-1. An automatic sprinkler system shall be provided throughout all buildings containing a Group S-1 occupancy where one of the following conditions exists:
1. A Group S-1 fire area exceeds 12,000 square feet (1115 m²).
2. A Group S-1 fire area is located more than three stories above grade plane.
3. The combined area of all Group S-1 fire areas on all floors, including any mezzanines, exceeds 24,000 square feet (2230 m²).
4. A Group S-1 fire area used for the storage of commercial motor vehicles where the fire area exceeds 5,000 square feet (464 m²).
5. A Group S-1 occupancy used for the storage of upholstered furniture or mattresses exceeds 8000 square feet (232 m²).

903.2.9.1 Repair garages. An automatic sprinkler system shall be provided throughout all buildings used as repair garages in accordance with Section 406, as shown:
1. Buildings having two or more stories above grade plane, including basements, with a fire area containing a repair garage exceeding 10,000 square feet (929 m²).
2. Buildings not more than one story above grade plane, with a fire area containing a repair garage exceeding 12,000 square feet (1115 m²).
4. A Group S-1 fire area used for the repair of commercial motor vehicles where the fire area exceeds 5,000 square feet (464 m²).

903.2.9.2 Bulk storage of tires. Buildings and structures where the area for the storage of tires exceeds 20,000 cubic feet (566 m³) shall be equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

903.2.10 Group S-2 enclosed parking garages. An automatic sprinkler system shall be provided throughout buildings classified as enclosed parking garages in accordance with Section 406.6 where either of the following conditions exists:
1. Where the fire area of the enclosed parking garage exceeds 12,000 square feet (1115 m²).
2. Where the enclosed parking garage is located beneath other groups.
Exception: Enclosed parking garages located beneath Group R-3 occupancies.

903.2.10.1 Commercial parking garages. An automatic sprinkler system shall be provided throughout buildings used for storage of commercial motor vehicles where the fire area exceeds 5,000 square feet (464 m²).

903.2.11 Specific building areas and hazards. In all occupancies other than Group U, an automatic sprinkler system shall be installed for building design or hazards in the locations set forth in Sections 903.2.11.1 through 903.2.11.6.

903.2.11.1 Stories without openings. An automatic sprinkler system shall be installed throughout all stories, including basements, of all buildings where the floor area exceeds 1,500 square feet (139.4 m²) and where there is not provided not fewer than one of the following types of exterior wall openings:

1. Openings below grade that lead directly to ground level by an exterior stairway complying with Section 4010 4011 or an outside ramp complying with Section 4010 4012. Openings shall be located in each 50 linear feet (15 240 mm), or fraction thereof, of exterior wall in the story on at least one side. The required openings shall be distributed such that the lineal distance between adjacent openings does not exceed 50 feet (15 240 mm).

2. Openings entirely above the adjoining ground level totaling not less than 20 square feet (1.86 m²) in each 50 linear feet (15 240 mm), or fraction thereof, of exterior wall in the story on at least one side. The required openings shall be distributed such that the lineal distance between adjacent openings does not exceed 50 feet (15 240 mm). The height of the bottom of the clear opening shall not exceed 44 inches (1118 mm) measured from the floor.

903.2.11.1.1 Opening dimensions and access. Openings shall have a minimum dimension of not less than 30 inches (762 mm). Such openings shall be accessible to the fire department from the exterior and shall not be obstructed in a manner such that firefighting or rescue cannot be accomplished from the exterior.

903.2.11.1.2 Openings on one side only. Where openings in a story are provided on only one side and the opposite wall of such story is more than 75 feet (22 860 mm) from such openings, the story shall be equipped throughout with an approved automatic sprinkler system, or
openings as specified above shall be provided on not fewer than two sides of the story.

903.2.11.3 Basements. Where any portion of a basement is located more than 75 feet (22,860 mm) from openings required by Section 903.2.11.1, the basement shall be equipped throughout with an approved automatic sprinkler system.

903.2.11.2 Rubbish and linen chutes. An automatic sprinkler system shall be installed at the top of rubbish and linen chutes and in their terminal rooms. Chutes shall have additional sprinkler heads installed at alternate floors and at the lowest intake. Where a rubbish chute extends through a building more than one floor below the lowest intake, the extension shall have sprinklers installed that are recessed from the drop area of the chute and protected from freezing in accordance with Section 903.3.1.1. Such sprinklers shall be installed at alternate floors, beginning with the second level below the last intake and ending with the floor above the discharge. Chute sprinklers shall be accessible for servicing.

903.2.11.3 Buildings 55 feet or more in height. An automatic sprinkler system shall be installed throughout buildings that have one or more stories with an occupant load of 30 or more located 55 feet (16,764 mm) or more above the lowest level of fire department vehicle access, measured to the finished floor.

 Exceptions:
 1. Open parking structures.
 2. Occupancies in Group F-2.

903.2.11.4 Ducts conveying hazardous exhausts. Where required by the mechanical code, automatic sprinklers shall be provided in ducts conveying hazardous exhaust or flammable or combustible materials.

 Exception: Ducts where the largest cross-sectional diameter of the duct is less than 10 inches (254 mm).

903.2.11.5 Commercial cooking operations. An automatic sprinkler system shall be installed in commercial kitchen exhaust hood and duct systems where an automatic sprinkler system is used to comply with Section 904.

903.2.11.6 Other required suppression systems. In addition to the requirements of Section 903.2, the provisions indicated in Table 903.2.11.6
require the installation of a fire suppression system for certain buildings and areas.

903.2.12 During construction. Automatic sprinkler systems required during construction, alteration and demolition operations shall be provided in accordance with Section 3312.

903.3 Installation requirements. Automatic sprinkler systems shall be designed and installed in accordance with Sections 903.3.1 through 903.3.8.

TABLE 903.2.11.6

<table>
<thead>
<tr>
<th>SECTION</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>402.5, 402.6.2</td>
<td>Covered and open mall buildings</td>
</tr>
<tr>
<td>403.3</td>
<td>High-rise buildings</td>
</tr>
<tr>
<td>404.3</td>
<td>Atriums</td>
</tr>
<tr>
<td>405.3</td>
<td>Underground structures</td>
</tr>
<tr>
<td>407.6</td>
<td>Group I-2</td>
</tr>
<tr>
<td>410.7</td>
<td>Stages</td>
</tr>
<tr>
<td>411.4</td>
<td>Special amusement buildings</td>
</tr>
<tr>
<td>412.3.6</td>
<td>Airport traffic control towers</td>
</tr>
<tr>
<td>412.4.6, 412.4.6.1, 412.6.5</td>
<td>Aircraft hangars</td>
</tr>
<tr>
<td>415.11.11</td>
<td>Group H-5 HPM exhaust ducts</td>
</tr>
<tr>
<td>416.5</td>
<td>Flammable finishes</td>
</tr>
<tr>
<td>417.4</td>
<td>Drying rooms</td>
</tr>
<tr>
<td>419.5</td>
<td>Live/work units</td>
</tr>
<tr>
<td>424.3</td>
<td>Children’s play structures</td>
</tr>
<tr>
<td>507</td>
<td>Unlimited area buildings</td>
</tr>
<tr>
<td>509.4</td>
<td>Incidental uses</td>
</tr>
<tr>
<td>1029.6.2.3</td>
<td>Smoke-protected assembly seating</td>
</tr>
<tr>
<td>IFC</td>
<td>Sprinkler system requirements as set forth in Section 903.2.11.6 of the fire code</td>
</tr>
</tbody>
</table>

903.3.1 Standards. Sprinkler systems shall be designed and installed in accordance with Section 903.3.1.1 unless otherwise permitted by Sections 903.3.1.2 and 903.3.1.3 and other chapters of this code, as applicable.
903.3.1.1 NFPA 13 sprinkler systems. Where the provisions of this code require that a building or portion thereof be equipped throughout with an automatic sprinkler system in accordance with this section, sprinklers shall be installed throughout in accordance with NFPA 13 except as provided in Sections 903.3.1.1.1 and 903.3.1.1.2.

903.3.1.1.1 Exempt locations. Automatic sprinklers shall not be required in the following rooms or areas where such rooms or areas are protected with an approved automatic fire detection system in accordance with Section 907.2 that will respond to visible or invisible particles of combustion. Sprinklers shall not be omitted from a room merely because it is damp, of fire-resistance-rated construction or contains electrical equipment.

1. A room where the application of water, or flame and water, constitutes a serious life or fire hazard.
2. A room or space where sprinklers are considered undesirable because of the nature of the contents, where approved by the building official with input from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1.
3. Generator and transformer rooms separated from the remainder of the building by walls and floor/ceiling or roof/ceiling assemblies having a fire-resistance rating of not less than 2 hours.
4. Rooms or areas that are of noncombustible construction with wholly noncombustible contents.
5. Fire service access elevator machine rooms and machinery spaces.
6. Machine rooms, machinery spaces, control rooms and control spaces associated with occupant evacuation elevators designed in accordance with Section 3008.

903.3.1.1.2 Bathrooms. In Group R occupancies, other than Group R-4 occupancies, sprinklers shall not be required in bathrooms that do not exceed 55 square feet (5 m²) in area and are located within individual dwelling units or sleeping units, provided that walls and ceilings, including the walls and ceilings behind a shower enclosure or tub, are of noncombustible or limited-combustible materials with a 15-minute thermal barrier rating.

903.3.1.2 NFPA 13R sprinkler systems. Automatic sprinkler systems in Groups I-1, I-4 and R occupancies up to and including four stories in height
in buildings not exceeding 60 feet (18 288 mm) in height above grade plane shall be permitted to be installed throughout in accordance with NFPA 13R. The number of stories of Group R occupancies constructed in accordance with Sections 510.2 and 510.4 shall be measured from the horizontal assembly creating separate buildings.

903.3.1.2.1 Balconies and decks. Sprinkler protection shall be provided for exterior balconies, decks and ground floor patios of dwelling units and sleeping units where the building is of Type V construction, provided there is a roof or deck above. Sidewall sprinklers that are used to protect such areas shall be permitted to be located such that their deflectors are within 1 inch (25 mm) to 6 inches (152 mm) below the structural members and a maximum distance of 14 inches (356 mm) below the deck of the exterior balconies and decks that are constructed of open wood joist construction.

903.3.1.2.2 Open-ended corridors. Sprinkler protection shall be provided in open-ended corridors and associated exterior stairways and ramps as specified in Section 1027.6, Exception 3.

903.3.1.3 NFPA 13D sprinkler systems. Automatic sprinkler systems installed in buildings of Groups I-1, R-3, Group R-4 Condition 1 and townhouses shall be permitted to be installed throughout in accordance with NFPA 13D.

903.3.2 Quick-response and residential sprinklers. Where automatic sprinkler systems are required by this code, quick-response or residential automatic sprinklers shall be installed in all of the following areas in accordance with Section 903.3.1 and their listings:
1. Throughout all spaces within a smoke compartment containing care recipient sleeping units in Group I-2 in accordance with this code.
2. Throughout all spaces within a smoke compartment containing treatment rooms in ambulatory care facilities.
3. Dwelling units and sleeping units in Group I-1 and R occupancies.
4. Light-hazard occupancies as defined in NFPA 13.

903.3.3 Obstructed locations. Automatic sprinklers shall be installed with due regard to obstructions that will delay activation or obstruct the water distribution pattern. Automatic sprinklers shall be installed in or under covered kiosks, displays, booths, concession stands, or equipment that exceeds 4 feet (1219 mm) in width. Not less than a 3foot (914 mm) clearance shall be
maintained between automatic sprinklers and the top of piles of combustible fibers.

Exception: Kitchen equipment under exhaust hoods protected with a fire-extinguishing system in accordance with Section 904.

903.3.4 Actuation. Automatic sprinkler systems shall be automatically actuated unless specifically provided for in this code.

903.3.5 Water supplies. Water supplies for automatic sprinkler systems shall comply with this section and the standards referenced in Section 903.3.1. The potable water supply shall be protected against backflow in accordance with the requirements of this section and the *plumbing code*. For connections to public waterworks systems, the water supply test used for design of fire protection systems shall be adjusted to account for seasonal and daily pressure fluctuations based on information from the water supply authority and as approved by the building official.

903.3.5.1 Domestic services. Where the domestic service provides the water supply for the automatic sprinkler system, the supply shall be in accordance with this section.

903.3.5.2 Residential combination services. A single combination water supply shall be allowed provided that the domestic demand is added to the sprinkler demand as required by NFPA 13R.

903.3.6 Hose threads. Fire hose threads and fittings used in connection with automatic sprinkler systems shall be approved and compatible with the responding fire department hose threads as prescribed by the local fire official. Prior to issuance of the certificate of plan approval, the building official shall communicate with the local fire official to verify that the proposed threads are compatible with those currently used by the fire department.

903.3.7 Fire department connections. Fire department connections for automatic sprinkler systems shall be installed in accordance with Section 912.

903.3.8 Limited area sprinkler systems. Limited area sprinkler systems shall be in accordance with the standards listed in Section 903.3.1 except as provided in Sections 903.3.8.1 through 903.3.8.5.

903.3.8.1 Number of sprinklers. Limited area sprinkler systems shall not exceed nineteen sprinklers in any single fire area.
903.3.8.2 Occupancy hazard classification. Only areas classified by NFPA 13 as Light Hazard or Ordinary Hazard Group 1 shall be permitted to be protected by limited area sprinkler systems.

903.3.8.3 Piping arrangement. Where a limited area sprinkler system is installed in a building with an automatic wet standpipe system, sprinklers shall be supplied by the standpipe system. Where a limited area sprinkler system is installed in a building without an automatic wet standpipe system, water shall be permitted to be supplied by the plumbing system provided that the plumbing system is capable of simultaneously supplying domestic and sprinkler demands.

903.3.8.4 Supervision. Control valves shall not be installed between the water supply and sprinklers unless the valves are of an approved indicating type that are supervised or secured in the open position.

903.3.8.5 Calculations. Hydraulic calculations in accordance with NFPA 13 shall be provided to demonstrate that the available water flow and pressure are adequate to supply all sprinklers installed in any single fire area with discharge densities corresponding to the hazard classification.

903.4 Sprinkler system supervision and alarms. Valves controlling the water supply for automatic sprinkler systems, pumps, tanks, water levels and temperatures, critical air pressures and waterflow switches on all sprinkler systems shall be electrically supervised by a listed fire alarm control unit.

Exceptions:
1. Deleted.
2. Limited area sprinkler systems in accordance with Section 903.3.8.
3. Automatic sprinkler systems installed in accordance with NFPA 13R where a common supply main is used to supply both domestic water and the automatic sprinkler system, and a separate shutoff valve for the automatic sprinkler system is not provided.
4. Jockey pump control valves that are sealed or locked in the open position.
5. Control valves to commercial kitchen hoods, paint spray booths or dip tanks that are sealed or locked in the open position.
6. Valves controlling the fuel supply to fire pump engines that are sealed or locked in the open position.
7. Trim valves to pressure switches in dry, preaction and deluge sprinkler systems that are sealed or locked in the open position.
903.4.1 Monitoring. Alarm, supervisory and trouble signals shall be distinctly different and shall be automatically transmitted to an approved supervising station or, where approved by the building official with input from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1, shall sound an audible signal at a constantly attended location.

Exceptions:
1. Underground key or hub valves in roadway boxes provided by the municipality or public utility are not required to be monitored.
2. Backflow prevention device test valves located in limited area sprinkler system supply piping shall be locked in the open position. In occupancies required to be equipped with a fire alarm system, the backflow preventer valves shall be electrically supervised by a tamper switch installed in accordance with NFPA 72 and separately annunciated.

903.4.2 Alarms. An approved audible device, located on the exterior of the building in an approved location, shall be connected to each automatic sprinkler system. Such sprinkler waterflow alarm devices shall be activated by water flow equivalent to the flow of a single sprinkler of the smallest orifice size installed in the system. Where a fire alarm system is installed, actuation of the automatic sprinkler system shall actuate the building fire alarm system.

Exception: Waterflow alarms are not required for limited area sprinkler system installed in accordance with Section 903.3.8.

903.4.3 Floor control valves. Approved supervised indicating control valves shall be provided at the point of connection to the riser on each floor in high-rise buildings.

903.5 Testing and maintenance. Sprinkler systems shall be tested and maintained in accordance with the fire code.

SECTION 904
ALTERNATIVE AUTOMATIC FIRE-EXTINGUISHING SYSTEMS

904.1 General. Automatic fire-extinguishing systems, other than automatic sprinkler systems, shall be designed, installed, inspected, tested and maintained in accordance with the provisions of this section and the applicable referenced standards.

904.2 Where permitted. Automatic fire-extinguishing systems installed as an alternative to the required automatic sprinkler systems of Section 903 shall be
approved by the building official with input from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.

904.2.1 Restriction on using automatic sprinkler system exceptions or reductions. Automatic fire-extinguishing systems shall not be considered alternatives for the purposes of exceptions or reductions allowed for automatic sprinkler systems or by other requirements of this code.

904.2.2 Commercial hood and duct systems. Each required commercial kitchen exhaust hood and duct system required by Chapter 5 of the mechanical code to have a Type I hood shall be protected with an approved automatic fire-extinguishing system installed in accordance with this code.

904.3 Installation. Automatic fire-extinguishing systems shall be installed in accordance with this section.

904.3.1 Electrical wiring. Electrical wiring shall be in accordance with NFPA 70.

904.3.2 Actuation. Automatic fire-extinguishing systems shall be automatically actuated and provided with a manual means of actuation in accordance with Section 904.12.1.

904.3.3 System interlocking. Automatic equipment interlocks with fuel shutoffs, ventilation controls, door closers, window shutters, conveyor openings, smoke and heat vents and other features necessary for proper operation of the fire-extinguishing system shall be provided as required by the design and installation standard utilized for the hazard.

904.3.4 Alarms and warning signs. Where alarms are required to indicate the operation of automatic fire-extinguishing systems, distinctive audible and visible alarms and warning signs shall be provided to warn of pending agent discharge. Where exposure to automatic-extinguishing agents poses a hazard to persons and a delay is required to ensure the evacuation of occupants before agent discharge, a separate warning signal shall be provided to alert occupants once agent discharge has begun. Audible signals shall be in accordance with Section 907.5.2.

904.3.5 Monitoring. Where a building fire alarm system is installed, automatic fire-extinguishing systems shall be monitored by the building fire alarm system in accordance with NFPA 72.
904.4 Inspection and testing. Automatic fire-extinguishing systems shall be inspected and tested in accordance with the provisions of this section prior to acceptance.

904.4.1 Inspection. Prior to conducting final acceptance tests, all of the following items shall be inspected:
1. Hazard specification for consistency with design hazard.
2. Type, location and spacing of automatic- and manual-initiating devices.
3. Size, placement and position of nozzles or discharge orifices.
4. Location and identification of audible and visible alarm devices.
5. Identification of devices with proper designations.
6. Operating instructions.

904.4.2 Alarm testing. Notification appliances, connections to fire alarm systems and connections to approved supervising stations shall be tested in accordance with this section and Section 907 to verify proper operation.

904.4.2.1 Audible and visible signals. The audibility and visibility of notification appliances signaling agent discharge or system operation, where required, shall be verified.

904.4.3 Monitor testing. Connections to protected premises and supervising station fire alarm systems shall be tested to verify proper identification and retransmission of alarms from automatic fire-extinguishing systems.

904.5 Wet-chemical systems. Wet-chemical extinguishing systems shall be installed, maintained, periodically inspected and tested in accordance with NFPA 17A and their listing. Records of inspections and testing shall be maintained.

904.6 Dry-chemical systems. Dry-chemical extinguishing systems shall be installed, maintained, periodically inspected and tested in accordance with NFPA 17 and their listing. Records of inspections and testing shall be maintained.

904.7 Foam systems. Foam-extinguishing systems shall be installed, maintained, periodically inspected and tested in accordance with NFPA 11 and NFPA 16 and their listing. Records of inspections and testing shall be maintained.

904.8 Carbon dioxide systems. Carbon dioxide extinguishing systems shall be installed, maintained, periodically inspected and tested in accordance with NFPA 12 and their listing. Records of inspections and testing shall be maintained.
904.9 **Halon systems.** Halogenated extinguishing systems shall be installed, maintained, periodically inspected and tested in accordance with NFPA 12A and their listing. Records of inspections and testing shall be maintained.

904.10 **Clean-agent systems.** Clean-agent fire-extinguishing systems shall be installed, maintained, periodically inspected and tested in accordance with NFPA 2001 and their listing. Records of inspections and testing shall be maintained.

904.11 **Automatic water mist systems.** Automatic water mist systems shall be permitted in applications that are consistent with the applicable listing or approvals and shall comply with Sections 904.11.1 through 904.11.3.

904.11.1 **Design and installation requirements.** Automatic water mist systems shall be designed and installed in accordance with Sections 904.11.1.1 through 904.11.1.4.

904.11.1.1 **General.** Automatic water mist systems shall be designed and installed in accordance with NFPA 750 and the manufacturer’s instructions.

904.11.1.2 **Actuation.** Automatic water mist systems shall be automatically actuated.

904.11.1.3 **Water supply protection.** Connections to a potable water supply shall be protected against backflow in accordance with the plumbing code.

904.11.1.4 **Secondary water supply.** Where a secondary water supply is required for an automatic sprinkler system, an automatic water mist system shall be provided with an approved secondary water supply.

904.11.2 **Water mist system supervision and alarms.** Supervision and alarms shall be provided as required for automatic sprinkler systems in accordance with Section 903.4.

904.11.2.1 **Monitoring.** Monitoring shall be provided as required for automatic sprinkler systems in accordance with Section 903.4.1.

904.11.2.2 **Alarms.** Alarms shall be provided as required for automatic sprinkler systems in accordance with Section 903.4.2.
904.11.2.3 Floor control valves. Floor control valves shall be provided as required for automatic sprinkler systems in accordance with Section 903.4.3.

904.11.3 Testing and maintenance. Automatic water mist systems shall be tested and maintained in accordance with the fire code.

904.12 Commercial cooking systems. The automatic fire-extinguishing system for commercial cooking systems shall be of a type recognized for protection of commercial cooking equipment and exhaust systems of the type and arrangement protected. Pre-engineered automatic dry- and wet-chemical extinguishing systems shall be tested in accordance with UL 300 and listed and labeled for the intended application. Other types of automatic fire-extinguishing systems shall be listed and labeled for specific use as protection for commercial cooking operations. The system shall be installed in accordance with this code, its listing and the manufacturer’s installation instructions. Automatic fire-extinguishing systems of the following types shall be installed in accordance with the referenced standard indicated, as follows:

1. Carbon dioxide extinguishing systems, NFPA 12.
3. Foam-water sprinkler system or foam-water spray systems, NFPA 16.
4. Dry-chemical extinguishing systems, NFPA 17.
5. Wet-chemical extinguishing systems, NFPA 17A.

Exception: Factory-built commercial cooking recirculating systems that are tested in accordance with UL 710B and listed, labeled and installed in accordance with Section 304.1 of the mechanical code.

904.12.1 Manual system operation. A manual actuation device shall be located at or near a means of egress from the cooking area not less than 10 feet (3048 mm) and not more than 20 feet (6096 mm) from the kitchen exhaust system. The manual actuation device shall be installed not more than 48 inches (1200 mm) or less than 42 inches (1067 mm) above the floor and shall clearly identify the hazard protected. The manual actuation shall require a maximum force of 40 pounds (178 N) and a maximum movement of 14 inches (356 mm) to actuate the fire suppression system.

Exception: Automatic sprinkler systems shall not be required to be equipped with manual actuation means.

904.12.2 System interconnection. The actuation of the fire suppression system shall automatically shut down the fuel or electrical power supply to the cooking equipment. The fuel and electrical supply reset shall be manual.
904.12.3 Carbon dioxide systems. Where carbon dioxide systems are used, there shall be a nozzle at the top of the ventilating duct. Additional nozzles that are symmetrically arranged to give uniform distribution shall be installed within vertical ducts exceeding 20 feet (6096 mm) and horizontal ducts exceeding 50 feet (15 240 mm). Dampers shall be installed at either the top or the bottom of the duct and shall be arranged to operate automatically upon activation of the fire-extinguishing system. Where the damper is installed at the top of the duct, the top nozzle shall be immediately below the damper. Automatic carbon dioxide fire-extinguishing systems shall be sufficiently sized to protect against all hazards venting through a common duct simultaneously.

904.12.3.1 Ventilation system. Commercial-type cooking equipment protected by an automatic carbon dioxide-extinguishing system shall be arranged to shut off the ventilation system upon activation.

904.12.4 Special provisions for automatic sprinkler systems. Automatic sprinkler systems protecting commercial-type cooking equipment shall be supplied from a separate, readily accessible, indicating-type control valve that is identified.

904.12.4.1 Listed sprinklers. Sprinklers used for the protection of fryers shall be tested in accordance with UL 199E, listed for that application and installed in accordance with their listing.

904.13 Domestic cooking systems in Group I-2 Condition 1. In Group I-2 Condition 1, occupancies where cooking facilities are installed in accordance with Section 407.2.6 of this code, the domestic cooking hood provided over the cooktop or range shall be equipped with an automatic fire-extinguishing system of a type recognized for protection of domestic cooking equipment. Pre-engineered automatic extinguishing systems shall be tested in accordance with UL 300A and listed and labeled for the intended application. The system shall be installed in accordance with this code, its listing and the manufacturer’s instructions.

904.13.1 Manual system operation and interconnection. Manual actuation and system interconnection for the hood suppression system shall be installed in accordance with Sections 904.12.1 and 904.12.2, respectively.

904.13.2 Portable fire extinguishers for domestic cooking equipment in Group I-2 Condition 1. A portable fire extinguisher complying with Section 906 shall be installed within a 30-foot (9144 mm) distance of travel from
domestic cooking appliances.

904.14 Aerosol fire-extinguishing systems. Aerosol fire-extinguishing systems shall be installed, periodically inspected, tested and maintained in accordance with Sections 901 and 904.4, NFPA 2010, and in accordance with their listing.

Such devices and appurtenances shall be listed and installed in compliance with manufacturer’s instructions.

SECTION 905
STANDPIPE SYSTEMS

905.1 General. Standpipe systems shall be provided in new buildings and structures in accordance with Sections 905.2 through 905.10. In buildings used for high-piled combustible storage, fire protection shall be in accordance with the fire code.

905.2 Installation standard. Standpipe systems shall be installed in accordance with this section and NFPA 14. Fire department connections for standpipe systems shall be in accordance with Section 912.

905.3 Required installations. Standpipe systems shall be installed when required by Sections 905.3.1 through 905.3.8. Where these systems are installed, the hose connections shall be installed in the locations indicated in Section 905.4, 905.5, and 905.6. Standpipe systems are allowed to be combined with automatic sprinkler systems.

Exception: Standpipe systems are not required in Group R-3 occupancies.

905.3.1 Height. Class III standpipe systems shall be installed throughout buildings where the floor level of the highest story is located more than 30 feet (9144 mm) above the lowest level of fire department vehicle access, or where the floor level of the lowest story is located more than 30 feet (9144 mm) below the highest level of fire department vehicle access.

Exceptions:
1. Class I standpipes are allowed in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2.
2. Class I manual standpipes are allowed in open parking garages where the highest floor is located not more than 150 feet (45 720 mm) above the lowest level of fire department vehicle access.
3. Class I manual dry standpipes are allowed in open parking garages that are subject to freezing temperatures, provided that the hose connections are located as required for Class II standpipes in accordance with Section 905.5.

4. Class I standpipes are allowed in basements equipped throughout with an automatic sprinkler system.

5. In determining the lowest level of fire department vehicle access, it shall not be required to consider either of the following:
 5.1. Recessed loading docks for four vehicles or less.
 5.2. Conditions where topography makes access from the fire department vehicle to the building impractical or impossible.

905.3.2 Group A. Class I automatic wet standpipes shall be provided in nonsprinklered Group A buildings having an occupant load exceeding 1,000 persons.

 Exceptions:
 1. Open-air-seating spaces without enclosed spaces.
 2. Class I automatic dry and semiautomatic dry standpipes or manual wet standpipes are allowed in buildings that are not high-rise buildings.

905.3.3 Covered and open mall buildings. Covered mall and open mall buildings shall be equipped throughout with a standpipe system where required by Section 905.3.1. Mall buildings not required to be equipped with a standpipe system by Section 905.3.1 shall be equipped with Class I hose connections connected to the automatic sprinkler system sized to deliver water at 250 gallons per minute (946.4 L/min) at the most hydraulically remote hose connection while concurrently supplying the automatic sprinkler system demand. The standpipe system shall be designed to not exceed a 50 pounds per square inch (psi) (345 kPa) residual pressure loss with a flow of 250 gallons per minute (946.4 L/min) from the fire department connection to the hydraulically most remote hose connection. Hose connections shall be provided at each of the following locations:
 1. Within the mall at the entrance to each exit passageway or corridor.
 2. At each floor-level landing within interior exit stairways opening directly on the mall.
 3. At exterior public entrances to the mall of a covered mall building.
 4. At public entrances at the perimeter line of an open mall building.
 5. At other locations as necessary so that the distance to reach all portions of a tenant space does not exceed 200 feet (60 960 mm) from a hose connection.

905.3.4 Stages. Stages greater than 1,000 square feet in area (93 m²) shall be
equipped with a Class III wet standpipe system with 1\(\frac{1}{2}\)-inch and 2\(\frac{1}{2}\)-inch (38 mm and 64 mm) hose connections on each side of the stage.

Exception: Where the building or area is equipped throughout with an automatic sprinkler system, a 1\(\frac{1}{2}\)-inch (38 mm) hose connection shall be installed in accordance with NFPA 13 or in accordance with NFPA 14 for Class II or III standpipes.

905.3.4.1 Hose and cabinet. The 1\(\frac{1}{2}\)-inch (38 mm) hose connections shall be equipped with sufficient lengths of 1\(\frac{1}{2}\)-inch (38 mm) hose to provide fire protection for the stage area. Hose connections shall be equipped with an approved adjustable fog nozzle and be mounted in a cabinet or on a rack.

905.3.5 Underground buildings. Underground buildings shall be equipped throughout with a Class I automatic wet or manual wet standpipe system.

905.3.6 Helistops and heliports. Buildings with a rooftop helistop or heliport shall be equipped with a Class I or III standpipe system extended to the roof level on which the helistop or heliport is located in accordance with Section 2007.5 of the fire code.

905.3.7 Marinas and boatyards. Deleted.

905.3.8 Rooftop gardens and landscaped roofs. Buildings or structures that have rooftop gardens or landscaped roofs and that are equipped with a standpipe system shall have the standpipe system extended to the roof level on which the rooftop garden or landscaped roof is located.

905.4 Location of Class I standpipe hose connections. Class I standpipe hose connections shall be provided in all of the following locations:

1. In every required interior exit stairway, a hose connection shall be provided for each story above and below grade. Hose connections shall be located at an intermediate landing between stories, unless otherwise approved by the building official with input from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1.

2. On each side of the wall adjacent to the exit opening of a horizontal exit.

Exception: Where floor areas adjacent to a horizontal exit are reachable from an interior exit stairway hose connection by a 30-foot (9144 mm) hose stream from a nozzle attached to 100 feet (30 480 mm) of hose, a hose connection shall not be required at the horizontal exit.

3. In every exit passageway, at the entrance from the exit passageway to other areas of a building.
Exception: Where floor areas adjacent to an exit passageway are reachable from an interior exit stairway hose connection by a 30-foot (9144 mm) hose stream from a nozzle attached to 100 feet (30 480 mm) of hose, a hose connection shall not be required at the entrance from the exit passageway to other areas of the building.

4. In covered mall buildings, adjacent to each exterior public entrance to the mall and adjacent to each entrance from an exit passageway or exit corridor to the mall. In open mall buildings, adjacent to each public entrance to the mall at the perimeter line and adjacent to each entrance from an exit passageway or exit corridor to the mall.

5. Where the roof has a slope less than four units vertical in 12 units horizontal (33.3-percent slope), a hose connection shall be located to serve the roof or at the highest landing of an interior exit stairway with access to the roof provided in accordance with Section 1011.12.

6. Where the most remote portion of a nonsprinklered floor or story is more than 150 feet (45 720 mm) from a hose connection or the most remote portion of a sprinklered floor or story is more than 200 feet (60 960 mm) from a hose connection, the *building official, upon request from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1* is authorized to require that additional hose connections be provided in approved locations as requested by the fire official.

905.4.1 Protection. Risers and laterals of Class I standpipe systems not located within an interior exit stairway shall be protected by a degree of fire-resistance equal to that required for vertical enclosures in the building in which they are located.

Exception: In buildings equipped throughout with an approved automatic sprinkler system, laterals that are not located within an interior exit stairway are not required to be enclosed within fire-resistance-rated construction.

905.4.2 Interconnection. In buildings where more than one standpipe is provided, the standpipes shall be interconnected in accordance with NFPA 14.

905.5 Location of Class II standpipe hose connections. Class II standpipe hose connections shall be accessible and located so that all portions of the building are within 30 feet (9144 mm) of a nozzle attached to 100 feet (30 480 mm) of hose.

905.5.1 Groups A-1 and A-2. In Group A-1 and A-2 occupancies having occupant loads exceeding 1,000 persons, hose connections shall be located on each side of any stage, on each side of the rear of the auditorium, on each side of the balcony and on each tier of dressing rooms.
905.5.2 **Protection.** Fire-resistance-rated protection of risers and laterals of Class II standpipe systems is not required.

905.5.3 **Class II system 1-inch hose.** A minimum 1 inch (25 mm) hose shall be allowed to be used for hose stations in light-hazard occupancies where investigated and listed for this service and where approved by the building official with input from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1.

905.6 **Location of Class III standpipe hose connections.** Class III standpipe systems shall have hose connections located as required for Class I standpipes in Section 905.4 and shall have Class II hose connections as required in Section 905.5.

905.6.1 **Protection.** Risers and laterals of Class III standpipe systems shall be protected as required for Class I systems in accordance with Section 905.4.1.

905.6.2 **Interconnection.** In buildings where more than one Class III standpipe is provided, the standpipes shall be interconnected in accordance with NFPA 14.

905.7 **Cabinets.** Cabinets containing fire-fighting equipment such as standpipes, fire hoses, fire extinguishers or fire department valves shall not be blocked from use or obscured from view.

905.7.1 **Cabinet equipment identification.** Cabinets shall be identified in an approved manner by a permanently attached sign with letters not less than 2 inches (51 mm) high in a color that contrasts with the background color, indicating the equipment contained therein.

Exceptions:
1. Doors not large enough to accommodate a written sign shall be marked with a permanently attached pictogram of the equipment contained therein.
2. Doors that have either an approved visual identification clear glass panel or a complete glass door panel are not required to be marked.

905.7.2 **Locking cabinet doors.** Cabinets shall be unlocked.

Exceptions:
1. Visual identification panels of glass or other approved transparent frangible material that is easily broken and allows access.
2. Approved locking arrangements.

905.8 Dry standpipes. Dry standpipes shall not be installed.
Exception: Where subject to freezing and in accordance with NFPA 14.

905.9 Valve supervision. Valves controlling water supplies shall be supervised in the open position so that a change in the normal position of the valve will generate a supervisory signal at the supervising station required by Section 903.4. Where a fire alarm system is provided, a signal shall be transmitted to the control unit.

Exceptions:
1. Valves to underground key or hub valves in roadway boxes provided by the municipality or public utility do not require supervision.
2. Valves locked in the normal position and inspected as provided in this code in buildings not equipped with a fire alarm system.

905.10 During construction. Standpipe systems required during construction and demolition operations shall be provided in accordance with Section 3311.

SECTION 906
PORTABLE FIRE EXTINGUISHERS

906.1 Where required. Portable fire extinguishers shall be installed in all of the following locations:
1. In Group A, B, E, F, H, I, M, R-1, R-2, R-4 and S occupancies.

Exceptions:
1.1 In Group A, B and E occupancies equipped throughout with quick response sprinklers, portable fire extinguishers shall be required only in locations specified in Items 2 through 6.
1.2 In Group R-2 occupancies, portable fire extinguishers shall be required only in locations specified in Items 2 through 6 where each dwelling unit is provided with a portable fire extinguisher having a minimum rating of 1-A:10-B:C.
1.1 In Group R-2 occupancies, portable fire extinguishers shall be required only in locations specified in Items 2 through 6 where each dwelling unit is provided with a portable fire extinguisher having a minimum rating of 1-A:10-B:C.
1.2 In Group E occupancies, portable fire extinguishers shall be required only in locations specified in Items 2 through 6 where each classroom is provided with a portable fire extinguisher having a minimum rating of 2-A:20-B:C.
2. Within 30 feet (9144 mm) of commercial cooking appliances and domestic cooking appliances in Group I-2 nursing homes.
3. In areas where flammable or combustible liquids are stored, used or dispensed.
4. On each floor of structures under construction, except Group R-3 occupancies, in accordance with Section 3315.1 of the fire code.
5. Where required by the fire code sections indicated in Table 906.1.
6. Special-hazard areas, including but not limited to laboratories, computer rooms and generator rooms, where required by the building official with input from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1.

906.2 General requirements. Portable fire extinguishers shall be selected and installed in accordance with this section and NFPA 10.

Exceptions:
1. The distance of travel to reach an extinguisher shall not apply to the spectator seating portions of Group A-5 occupancies.
2. In Group I-3, portable fire extinguishers shall be permitted to be located at staff locations.

906.3 Size and distribution. The size and distribution of portable fire extinguishers shall be in accordance with Sections 906.3.1 through 906.3.4.

906.3.1 Class A fire hazards. The minimum sizes and distribution of portable fire extinguishers for occupancies that involve primarily Class A fire hazards shall comply with Table 906.3(1).

906.3.2 Class B fire hazards. Portable fire extinguishers for occupancies involving flammable or combustible liquids with depths less than or equal to 0.25-inch (6.4 mm) shall be selected and placed in accordance with Table 906.3(2).

Portable fire extinguishers for occupancies involving flammable or combustible liquids with a depth of greater than 0.25-inch (6.4 mm) shall be selected and placed in accordance with NFPA 10.

906.3.3 Class C fire hazards. Portable fire extinguishers for Class C fire hazards shall be selected and placed on the basis of the anticipated Class A or B hazard.

906.3.4 Class D fire hazards. Portable fire extinguishers for occupancies involving combustible metals shall be selected and placed in accordance with NFPA 10.
906.4 Cooking grease fires. Fire extinguishers provided for the protection of cooking grease fires shall be of an approved type compatible with the automatic fire-extinguishing system agent and in accordance with Section 904.12.5 of the fire code.

906.5 Conspicuous location. Portable fire extinguishers shall be located in conspicuous locations where they will be readily accessible and immediately available for use. These locations shall be along normal paths of travel, unless the building official, with input from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1, determines that the hazard posed indicates the need for placement away from normal paths of travel.

TABLE 906.1
ADDITIONAL REQUIRED PORTABLE FIRE EXTINGUISHERS IN THE FIRE CODE

<table>
<thead>
<tr>
<th>OFC SECTION</th>
<th>SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>303.5</td>
<td>Asphalt kettles</td>
</tr>
<tr>
<td>307.5</td>
<td>Open burning</td>
</tr>
<tr>
<td>308.1.3</td>
<td>Open flames—torches</td>
</tr>
<tr>
<td>309.4</td>
<td>Powered industrial trucks</td>
</tr>
<tr>
<td>2005.2</td>
<td>Aircraft towing vehicles</td>
</tr>
<tr>
<td>2005.3</td>
<td>Aircraft welding apparatus</td>
</tr>
<tr>
<td>2005.4</td>
<td>Aircraft fuel-servicing tank vehicles</td>
</tr>
<tr>
<td>2005.5</td>
<td>Aircraft hydrant fuel-servicing vehicles</td>
</tr>
<tr>
<td>2005.6</td>
<td>Aircraft fuel-dispensing stations</td>
</tr>
<tr>
<td>2007.7</td>
<td>Heliports and helistops</td>
</tr>
<tr>
<td>2108.4</td>
<td>Dry cleaning plants</td>
</tr>
<tr>
<td>2305.5</td>
<td>Motor fuel-dispensing facilities</td>
</tr>
<tr>
<td>2310.6.4</td>
<td>Marine motor fuel-dispensing facilities</td>
</tr>
<tr>
<td>2311.6</td>
<td>Repair garages</td>
</tr>
<tr>
<td>2404.4.1</td>
<td>Spray-finishing operations</td>
</tr>
<tr>
<td>2405.4.2</td>
<td>Dip-tank operations</td>
</tr>
<tr>
<td>2406.4.2</td>
<td>Powder-coating areas</td>
</tr>
<tr>
<td>2804.3</td>
<td>Lumberyards/woodworking facilities</td>
</tr>
<tr>
<td>2808.8</td>
<td>Recycling facilities</td>
</tr>
<tr>
<td>2809.5</td>
<td>Exterior lumber storage</td>
</tr>
<tr>
<td>TABLE 906.3(1)</td>
<td>FIRE EXTINGUISHERS FOR CLASS A FIRE HAZARDS</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>LIGHT (Low) HAZARD OCCUPANCY</td>
</tr>
<tr>
<td>Minimum rated single extinguisher</td>
<td>2-A<sup>e</sup></td>
</tr>
<tr>
<td>Maximum floor area per unit of A square feet</td>
<td>3000</td>
</tr>
<tr>
<td>Maximum floor square feet</td>
<td>11,250</td>
</tr>
</tbody>
</table>
906.3(2)
FIRE EXTINGUISHERS FOR
FLAMMABLE OR COMBUSTIBLE LIQUIDS WITH
DEPTHS LESS THAN OR EQUAL TO 0.25 INCH

<table>
<thead>
<tr>
<th>TYPE OF HAZARD</th>
<th>BASIC MINIMUM EXTINGUISHER RATING</th>
<th>MAXIMUM DISTANCE OF TRAVEL TO EXTINGUISHERS (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light (Low)</td>
<td>5-B</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>10-B</td>
<td>50</td>
</tr>
<tr>
<td>Ordinary</td>
<td>10-B</td>
<td>30</td>
</tr>
<tr>
<td>(Moderate)</td>
<td>20-B</td>
<td>50</td>
</tr>
<tr>
<td>Extra (High)</td>
<td>40-B</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>80-B</td>
<td>50</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

Note: For requirements on water-soluble flammable liquids and alternative sizing criteria, see Section 5.5 of NFPA 10.

906.6 Unobstructed and unobscured. Portable fire extinguishers shall not be obstructed or obscured from view. In rooms or areas in which visual obstruction cannot be completely avoided, means shall be provided to indicate the locations of extinguishers.

906.7 Hangers and brackets. Hand-held portable fire extinguishers, not housed in cabinets, shall be installed on the hangers or brackets supplied. Hangers or brackets shall be securely anchored to the mounting surface in accordance with the manufacturer’s installation instructions.

906.8 Cabinets. Cabinets used to house portable fire extinguishers shall not be locked.

Exceptions:
1. Where portable fire extinguishers subject to malicious use or damage are provided with a means of ready access.
2. In Group I-3 occupancies and in mental health areas in Group I-2 occupancies, access to portable fire extinguishers shall be permitted to be locked or to be located in staff locations provided the staff has keys.

906.9 Extinguisher installation. The installation of portable fire extinguishers shall be in accordance with Sections 906.9.1 through 906.9.3.

906.9.1 Extinguishers weighing 40 pounds or less. Portable fire extinguishers having a gross weight not exceeding 40 pounds (18 kg) shall be installed so that their tops are not more than 5 feet (1524 mm) above the floor.

906.9.2 Extinguishers weighing more than 40 pounds. Hand-held portable fire extinguishers having a gross weight exceeding 40 pounds (18 kg) shall be installed so that their tops are not more than 3.5 feet (1067 mm) above the floor.

906.9.3 Floor clearance. The clearance between the floor and the bottom of installed hand-held portable fire extinguishers shall be not less than 4 inches (102 mm).

906.10 Wheeled units. Wheeled fire extinguishers shall be conspicuously located in a designated location.

SECTION 907
FIRE ALARM AND DETECTION SYSTEMS

907.1 General. This section covers the application, installation, performance and maintenance of fire alarm systems and their components.

907.1.1 Construction documents. Construction documents for fire alarm systems shall be of sufficient clarity to indicate the location, nature and extent of the work proposed and show in detail that it will conform to the provisions of this code, relevant laws, rules and regulations, as determined by the building official with input from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1.

907.1.2 Fire alarm shop drawings. Shop drawings for fire alarm systems shall be submitted for review and approval prior to system installation, and shall include, but not be limited to, all of the following where applicable to the system being installed:
1. A floor plan that indicates the use of all rooms.
2. Locations of alarm-initiating devices.
3. Locations of alarm notification appliances, including candela ratings for visible alarm notification appliances.
4. Design minimum audibility level for occupant notification.
5. Location of fire alarm control unit, transponders and notification power supplies.
6. Annunciators.
7. Power connection.
8. Battery calculations.
9. Conductor type and sizes.
10. Voltage drop calculations.
11. Manufacturers’ data sheets indicating model numbers and listing information for equipment, devices and materials.
12. Details of ceiling height and construction.
13. The interface of fire safety control functions.

907.1.3 Equipment. Systems and components shall be listed and approved for the purpose for which they are installed.

907.2 Where required—new buildings and structures. An approved fire alarm system installed in accordance with the provisions of this code and NFPA 72 shall be provided in new buildings and structures in accordance with Sections 907.2.1 through 907.2.23 and provide occupant notification in accordance with Section 907.5, unless other requirements are provided by another section of this code. Not fewer than one manual fire alarm box shall be provided in an approved location to initiate a fire alarm signal for fire alarm systems employing automatic fire detectors or waterfall detection devices. Where other sections of this code allow elimination of fire alarm boxes due to sprinklers, a single fire alarm box shall be installed.

Exceptions:
1. The manual fire alarm box is not required for fire alarm systems dedicated to elevator recall control and supervisory service.
2. The manual fire alarm box is not required for Group R-2 occupancies unless required by the building official, upon request from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1, to provide a means for fire watch personnel to initiate an alarm during a sprinkler system impairment event. Where provided, the manual fire alarm box shall be located as requested by the fire official, but not be located in an area that is accessible to the public.
907.2.1 Group A. A manual fire alarm system that activates the occupant notification system in accordance with Section 907.5 shall be installed in Group A occupancies where the occupant load due to the assembly occupancy is 300 or more. Group A occupancies not separated from one another in accordance with Section 707.3.10 shall be considered as a single occupancy for the purposes of applying this section. Portions of Group E occupancies occupied for assembly purposes shall be provided with a fire alarm system as required for the Group E occupancy.

Exception: Manual fire alarm boxes are not required where the building is equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 and the occupant notification appliances will activate throughout the notification zones upon sprinkler water flow.

907.2.1.1 System initiation in Group A occupancies with an occupant load of 1,000 or more. Activation of the fire alarm in Group A occupancies with an occupant load of 1,000 or more shall initiate a signal using an emergency voice/alarm communications system in accordance with Section 907.5.2.2.

Exception: Where approved, the prerecorded announcement is allowed to be manually deactivated for a period of time, not to exceed 3 minutes, for the sole purpose of allowing a live voice announcement from an approved, constantly attended location.

907.2.1.2 Emergency voice/alarm communication captions. Stadiums, arenas and grandstands required to caption audible public announcements shall be in accordance with Section 907.5.2.2.4.

907.2.2 Group B. A manual fire alarm system shall be installed in Group B occupancies where one of the following conditions exists:
1. The combined Group B occupant load of all floors is 500 or more.
2. The Group B occupant load is more than 100 persons above or below the lowest level of exit discharge.
3. The fire area contains an ambulatory care facility.

Exception: Manual fire alarm boxes are not required where the building is equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 and the occupant notification appliances will activate throughout the notification zones upon sprinkler water flow.

907.2.2.1 Ambulatory care facilities. Fire areas containing ambulatory care facilities shall be provided with an electronically supervised automatic
smoke detection system installed within the ambulatory care facility and in public use areas outside of tenant spaces, including public corridors and elevator lobbies.

Exception: Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, provided the occupant notification appliances will activate throughout the notification zones upon sprinkler waterflow.

907.2.3 Group E. A manual fire alarm system that initiates the occupant notification signal utilizing an emergency voice/alarm communication system meeting the requirements of Section 907.5.2.2 and installed in accordance with Section 907.6 shall be installed in Group E occupancies. When automatic sprinkler systems or smoke detectors are installed, such systems or detectors shall be connected to the building fire alarm system.

Exceptions:
1. A manual fire alarm system is not required in Group E occupancies with an occupant load of 50 or less.
2. Emergency voice/alarm communication systems meeting the requirements of Section 907.5.2.2 and installed in accordance with Section 907.6 shall not be required in Group E occupancies with occupant loads of 100 or less, provided that activation of the manual fire alarm system initiates an approved occupant notification signal in accordance with Section 907.5.
3. Manual fire alarm boxes are not required in Group E occupancies where all of the following apply:
 3.1. Interior corridors are protected by smoke detectors.
 3.2. Auditoriums, cafeterias, gymnasiums and similar areas are protected by heat detectors or other approved detection devices.
 3.3. Shops and laboratories involving dusts or vapors are protected by heat detectors or other approved detection devices.
4. Manual fire alarm boxes shall not be required in Group E occupancies where all of the following apply:
 4.1. The building is equipped throughout with an approved automatic sprinkler system installed in accordance with Section 903.3.1.1.
 4.2. The emergency voice/alarm communication system will activate on sprinkler waterflow.
 4.3. Manual activation is provided from a normally occupied location.

907.2.4 Group F. A manual fire alarm system that activates the occupant notification system in accordance with Section 907.5 shall be installed in Group F occupancies where both of the following conditions exist:
1. The Group F occupancy is two or more stories in height.
2. The Group F occupancy has a combined occupant load of 500 or more above or below the lowest level of exit discharge.

Exception: Manual fire alarm boxes are not required where the building is equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 and the occupant notification appliances will activate throughout the notification zones upon sprinkler water flow.

907.2.5 Group H. A manual fire alarm system that activates the occupant notification system in accordance with Section 907.5 shall be installed in Group H-5 occupancies and in occupancies used for the manufacture of organic coatings. An automatic smoke detection system shall be installed for highly toxic gases, organic peroxides and oxidizers in accordance with Chapters 60, 62 and 63, respectively, of the *fire code*.

907.2.6 Group I. A manual fire alarm system that activates the occupant notification system in accordance with Section 907.5 shall be installed in Group I occupancies. An automatic smoke detection system that activates the occupant notification system in accordance with Section 907.5 shall be provided in accordance with Sections 907.2.6.1, 907.2.6.2 and 907.2.6.3.3.

Exceptions:
1. Manual fire alarm boxes in sleeping units of Group I-1 and I-2 occupancies shall not be required at exits if located at all care providers’ control stations or other constantly attended staff locations, provided such stations are visible and continuously accessible and that the distances of travel required in Section 907.4.2.1 are not exceeded.
2. Occupant notification systems are not required to be activated where private mode signaling installed in accordance with NFPA 72 is approved by the building official with input from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1, and staff evacuation responsibilities are included in the fire safety and evacuation plan required by Section 404 of the *fire code*.

907.2.6.1 Group I-1. In Group I-1 occupancies, an automatic smoke detection system shall be installed in corridors, waiting areas open to corridors and habitable spaces other than sleeping units and kitchens. The system shall be activated in accordance with Section 907.5.

Exceptions:
1. For Group I-1 Condition 1 occupancies, smoke detection in habitable spaces is not required where the facility is equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1.
2. Smoke detection is not required for exterior balconies.

907.2.6.1 Smoke alarms. Single- and multiple-station smoke alarms shall be installed in accordance with Section 907.2.11.

907.2.6.2 Group I-2. An automatic smoke detection system shall be installed in corridors in Group I-2 Condition 1 facilities and spaces permitted to be open to the corridors by Section 407.2. The system shall be activated in accordance with Section 907.4. Group I-2 Condition 2 occupancies shall be equipped with an automatic smoke detection system as required in Section 407.

Exceptions:

1. Corridor smoke detection is not required in smoke compartments that contain sleeping units where such units are provided with smoke detectors that comply with UL 268. Such detectors shall provide a visual display on the corridor side of each sleeping unit and shall provide an audible and visual alarm at the care providers’ station attending each unit.

2. Corridor smoke detection is not required in smoke compartments that contain sleeping units where sleeping unit doors are equipped with automatic door-closing devices with integral smoke detectors on the unit sides installed in accordance with their listing, provided that the integral detectors perform the required alerting function.

907.2.6.3 Group I-3 occupancies. Group I-3 occupancies shall be equipped with a manual fire alarm system and automatic smoke detection system installed for alerting staff.

907.2.6.3.1 System initiation. Actuation of an automatic fire-extinguishing system, automatic sprinkler system, a manual fire alarm box or a fire detector shall initiate an approved fire alarm signal that automatically notifies staff.

907.2.6.3.2 Manual fire alarm boxes. Manual fire alarm boxes are not required to be located in accordance with Section 907.4.2 where the fire alarm boxes are provided at staff-attended locations having direct supervision over areas where manual fire alarm boxes have been omitted.

907.2.6.3.2.1 Manual fire alarm boxes in detainee areas. Manual fire alarm boxes are allowed to be locked in areas occupied by
detainees, provided that staff members are present within the subject area and have keys readily available to operate the manual fire alarm boxes.

907.2.6.3.3 Automatic smoke detection system. An automatic smoke detection system shall be installed throughout resident housing areas, including sleeping units and contiguous day rooms, group activity spaces and other common spaces normally accessible to residents.

Exceptions:
1. Other approved smoke detection arrangements providing equivalent protection, including, but not limited to, placing detectors in exhaust ducts from cells or behind protective guards listed for the purpose, are allowed when necessary to prevent damage or tampering.
2. Sleeping units in Use Conditions 2 and 3 as described in Section 308.
3. Smoke detectors are not required in sleeping units with four or fewer occupants in smoke compartments that are equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1.

907.2.7 Group M. A manual fire alarm system that activates the occupant notification system in accordance with Section 907.5 shall be installed in Group M occupancies where one of the following conditions exists:
1. The combined Group M occupant load of all floors is 500 or more persons.
2. The Group M occupant load is more than 100 persons above or below the lowest level of exit discharge.

Exceptions:
1. A manual fire alarm system is not required in covered or open mall buildings complying with Section 402.
2. Manual fire alarm boxes are not required where the building is equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 and the occupant notification appliances will automatically activate throughout the notification zones upon sprinkler water flow.

907.2.7.1 Occupant notification. During times that the building is occupied, the initiation of a signal from a manual fire alarm box or from a waterflow switch shall not be required to activate the alarm notification appliances when an alarm signal is activated at a constantly attended
location from which evacuation instructions shall be initiated over an emergency voice/ alarm communication system installed in accordance with Section 907.5.2.2.

907.2.8 Group R-1. Fire alarm systems and smoke alarms shall be installed in Group R-1 occupancies as required in Sections 907.2.8.1 through 907.2.8.3.

907.2.8.1 Manual fire alarm system. A manual fire alarm system that activates the occupant notification system in accordance with Section 907.5 shall be installed in Group R-1 occupancies.

Exceptions:
1. A manual fire alarm system is not required in buildings not more than two stories in height where all individual sleeping units and contiguous attic and crawl spaces to those units are separated from each other and public or common areas by not less than 1-hour fire partitions and each individual sleeping unit has an exit directly to a public way, egress court or yard.
2. Manual fire alarm boxes are not required throughout the building where all of the following conditions are met:
 2.1 The building is equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2.
 2.2 The notification appliances will activate upon sprinkler water flow.
 2.3 Not fewer than one manual fire alarm box is installed at an approved location.

907.2.8.2 Automatic smoke detection system. An automatic smoke detection system that activates the occupant notification system in accordance with Section 907.5 shall be installed throughout all interior corridors serving sleeping units.

Exception: An automatic smoke detection system is not required in buildings that do not have interior corridors serving sleeping units and where each sleeping unit has a means of egress door opening directly to an exit or to an exterior exit access that leads directly to an exit.

907.2.8.3 Smoke alarms. Single- and multiple-station smoke alarms shall be installed in accordance with Section 907.2.11.

907.2.9 Group R-2. Fire alarm systems and smoke alarms shall be installed in Group R-2 occupancies as required in Sections 907.2.9.1 through 907.2.9.3.

907.2.9.1 Manual fire alarm system. A manual fire alarm system that activates the occupant notification system in accordance with Section 907.5
shall be installed in Group R-2 occupancies where any of the following conditions apply:

1. Any dwelling unit or sleeping unit is located three or more stories above the lowest level of exit discharge.
2. Any dwelling unit or sleeping unit is located more than one story below the highest level of exit discharge of exits serving the dwelling unit or sleeping unit.
3. The building contains more than 16 dwelling units or sleeping units.

Exceptions:

1. A fire alarm system is not required in buildings not more than two stories in height where all dwelling units or sleeping units and contiguous attic and crawl spaces are separated from each other and public or common areas by not less than 1-hour fire partitions and each dwelling unit or sleeping unit has an exit directly to a public way, egress court or yard.
2. Manual fire alarm boxes are not required where the building is equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2 and the occupant notification appliances will automatically activate throughout the notification zones upon a sprinkler water flow.
3. A fire alarm system is not required in buildings that do not have interior corridors serving dwelling units and are protected by an approved automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2, provided that dwelling units either have a means of egress door opening directly to an exterior exit access that leads directly to the exits or are served by open-ended corridors designed in accordance with Section 1027.6, Exception 3.

907.2.9.2 Smoke alarms. Single- and multiple-station smoke alarms shall be installed in accordance with Section 907.2.11.

907.2.9.3 Group R-2 college and university buildings. An automatic smoke detection system that activates the occupant notification system in accordance with Section 907.5 shall be installed in Group R2 occupancies owned or operated by a college or university for student or staff housing in all of the following locations:

1. Common spaces outside of dwelling units and sleeping units.
2. Laundry rooms, mechanical equipment rooms and storage rooms.
3. All interior corridors serving sleeping units or dwelling units.

Exception: An automatic smoke detection system is not required in buildings that do not have interior corridors serving sleeping units
or dwelling units and where each sleeping unit or dwelling unit either has a means of egress door opening directly to an exterior exit access that leads directly to an exit or a means of egress door opening directly to an exit.

Required smoke alarms in dwelling units and sleeping units in Group R-2 occupancies operated by a college or university for student or staff housing shall be interconnected with the fire alarm system in accordance with NFPA 72.

907.2.10 Group R-4. Fire alarm systems and smoke alarms shall be installed in Group R-4 occupancies as required in Sections 907.2.10.1 through 907.2.10.3.

907.2.10.1 Manual fire alarm system. A manual fire alarm system that activates the occupant notification system in accordance with Section 907.5 shall be installed in Group R-4 occupancies.

Exceptions:
1. A manual fire alarm system is not required in buildings not more than two stories in height where all individual sleeping units and contiguous attic and crawl spaces to those units are separated from each other and public or common areas by not less than 1-hour fire partitions and each individual sleeping unit has an exit directly to a public way, egress court or yard.
2. Manual fire alarm boxes are not required throughout the building where all of the following conditions are met:
 2.1 The building is equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2.
 2.2 The notification appliances will activate upon sprinkler water flow.
 2.3 Not fewer than one manual fire alarm box is installed at an approved location.
3. Manual fire alarm boxes in resident or patient sleeping areas shall not be required at exits where located at all nurses’ control stations or other constantly attended staff locations, provided such stations are visible and continuously accessible and that the distances of travel required in Section 907.4.2.1 are not exceeded.

907.2.10.2 Automatic smoke detection system. An automatic smoke detection system that activates the occupant notification system in accordance with Section 907.5 shall be installed in corridors, waiting areas open to corridors and habitable spaces other than sleeping units and kitchens.

Exceptions:
1. Smoke detection in habitable spaces is not required where the facility is equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1.

2. An automatic smoke detection system is not required in buildings that do not have interior corridors serving sleeping units and where each sleeping unit has a means of egress door opening directly to an exit or to an exterior exit access that leads directly to an exit.

907.2.10.3 Smoke alarms. Single- and multiple station smoke alarms shall be installed in accordance with Section 907.2.11.

907.2.11 Single- and multiple-station smoke alarms. Listed single- and multiple-station smoke alarms complying with UL 217 shall be installed in accordance with Sections 907.2.11.1 through 907.2.11.6 and NFPA 72.

907.2.11.1 Group R-1. Single- or multiple-station smoke alarms shall be installed in all of the following locations in Group R-1:
 1. In sleeping areas.
 2. In every room in the path of the means of egress from the sleeping area to the door leading from the sleeping unit.
 3. In each story within the sleeping unit, including basements. For sleeping units with split levels and without an intervening door between the adjacent levels, a smoke alarm installed on the upper level shall suffice for the adjacent lower level provided that the lower level is less than one full story below the upper level.

907.2.11.2 Groups R-2, R-3, R-4 and I-1. Single or multiple-station smoke alarms shall be installed and maintained in Groups R-2, R-3, R-4 and I-1 regardless of occupant load at all of the following locations:
 1. On the ceiling or wall outside of each separate sleeping area in the immediate vicinity of bedrooms.
 2. In each room used for sleeping purposes.
 3. In each story within a dwelling unit, including basements but not including crawl spaces and uninhabitable attics. In dwellings or dwelling units with split levels and without an intervening door between the adjacent levels, a smoke alarm installed on the upper level shall suffice for the adjacent lower level provided that the lower level is less than one full story below the upper level.

907.2.11.3 Installation near cooking appliances. Smoke alarms shall not be installed in the following locations unless this would prevent placement
of a smoke alarm in a location required by Section 907.2.11.1 or 907.2.11.2:

1. Ionization smoke alarms shall not be installed less than 20 feet (6096 mm) horizontally from a permanently installed cooking appliance.
2. Ionization smoke alarms with an alarm-silencing switch shall not be installed less than 10 feet (3048 mm) horizontally from a permanently installed cooking appliance.
3. Photoelectric smoke alarms shall not be installed less than 6 feet (1829 mm) horizontally from a permanently installed cooking appliance.

907.2.11.4 Installation near bathrooms. Smoke alarms shall be installed not less than 3 feet (914 mm) horizontally from the door or opening of a bathroom that contains a bathtub or shower unless this would prevent placement of a smoke alarm required by Section 907.2.11.1 or 907.2.11.2.

907.2.11.5 Interconnection. Where more than one smoke alarm is required to be installed within an individual dwelling unit or sleeping unit in Group R or I-1 occupancies, the smoke alarms shall be interconnected in such a manner that the activation of one alarm will activate all of the alarms in the individual unit. Physical interconnection of smoke alarms shall not be required where listed wireless alarms are installed and all alarms sound upon activation of one alarm. The alarm shall be clearly audible in all bedrooms over background noise levels with all intervening doors closed.

907.2.11.6 Power source. In new construction, required smoke alarms shall receive their primary power from the building wiring where such wiring is served from a commercial source and shall be equipped with a battery backup. Smoke alarms with integral strobes that are not equipped with battery backup shall be connected to an emergency electrical system in accordance with Section 2702. Smoke alarms shall emit a signal when the batteries are low. Wiring shall be permanent and without a disconnecting switch other than as required for overcurrent protection.

Exception: Smoke alarms are not required to be equipped with battery backup where they are connected to an emergency electrical system that complies with Section 2702.

907.2.11.7 Smoke detection system. Smoke detectors listed in accordance with UL 268 and provided as part of the building fire alarm system shall be an acceptable alternative to single- and multiple-station smoke alarms and shall comply with the following:
1. The fire alarm system shall comply with all applicable requirements in Section 907.
2. Activation of a smoke detector in a dwelling unit or sleeping unit shall initiate alarm notification in the dwelling unit or sleeping unit in accordance with Section 907.5.2.
3. Activation of a smoke detector in a dwelling unit or sleeping unit shall not activate alarm notification appliances outside of the dwelling unit or sleeping unit, provided that a supervisory signal is generated and monitored in accordance with Section 907.6.6.

907.2.12 Special amusement buildings. An automatic smoke detection system shall be provided in special amusement buildings in accordance with Sections 907.2.12.1 through 907.2.12.3.

907.2.12.1 Alarm. Activation of any single smoke detector, the automatic sprinkler system or any other automatic fire detection device shall immediately activate an audible and visible alarm at the building at a constantly attended location from which emergency action can be initiated, including the capability of manual initiation of requirements in Section 907.2.12.

907.2.12.2 System response. The activation of two or more smoke detectors, a single smoke detector equipped with an alarm verification feature, the automatic sprinkler system or other approved fire detection device shall automatically do all of the following:
 1. Cause illumination of the means of egress with light of not less than 1 foot candle (11 lux) at the walking surface level.
 2. Stop any conflicting or confusing sounds and visual distractions.
 3. Activate an approved directional exit marking that will become apparent in an emergency.
 4. Activate a prerecorded message, audible throughout the special amusement building, instructing patrons to proceed to the nearest exit. Alarm signals used in conjunction with the prerecorded message shall produce a sound that is distinctive from other sounds used during normal operation.

907.2.12.3 Emergency voice/alarm communication system. An emergency voice/alarm communication system, which is also allowed to serve as a public address system, shall be installed in accordance with Section 907.5.2.2 and be audible throughout the entire special amusement building.
907.2.13 **High-rise buildings.** High-rise buildings shall be provided with an automatic smoke detection system in accordance with Section 907.2.13.1, a fire department communication system in accordance with Section 907.2.13.2 and an emergency voice/alarm communication system in accordance with Section 907.5.2.2.

Exceptions:
1. Airport traffic control towers in accordance with Sections 412 and 907.2.22.
2. Open parking garages in accordance with Section 406.5.
4. Low-hazard special occupancies in accordance with Section 503.1.1.
5. Buildings with an occupancy in Group H-1, H-2 or H-3 in accordance with Section 415.
6. In Group I-1 and I-2 occupancies, the alarm shall sound at a constantly attended location and occupant notification shall be broadcast by the emergency voice/alarm communication system.

907.2.13.1 **Automatic smoke detection.** Automatic smoke detection in high-rise buildings shall be in accordance with Sections 907.2.13.1.1 and 907.2.13.1.2.

907.2.13.1.1 **Area smoke detection.** Area smoke detectors shall be provided in accordance with this section. Smoke detectors shall be connected to an automatic fire alarm system. The activation of any detector required by this section shall activate the emergency voice/alarm communication system in accordance with Section 907.5.2.2. In addition to smoke detectors required by Sections 907.2.1 through 907.2.10, smoke detectors shall be located as follows:
1. In each mechanical equipment, electrical, transformer, telephone equipment or similar room that is not provided with sprinkler protection.
2. In each elevator machine room, machinery space, control room and control space and in elevator lobbies.

907.2.13.1.2 **Duct smoke detection.** Duct smoke detectors complying with Section 907.3.1 shall be located as follows:
1. In the main return air and exhaust air plenum of each air-conditioning system having a capacity greater than 2,000 cubic
feet per minute (cfm) (0.94 m³/s). Such detectors shall be located in a serviceable area downstream of the last duct inlet.

2. At each connection to a vertical duct or riser serving two or more stories from a return air duct or plenum of an air-conditioning system. In Group R-1 and R-2 occupancies, a smoke detector is allowed to be used in each return air riser carrying not more than 5,000 cfm (2.4 m³/s) and serving not more than 10 air-inlet openings.

907.2.13.2 Fire department communication system. Where a wired communication system is approved in lieu of an emergency responder radio coverage system in accordance with Section 510 of the fire code, the wired fire department communication system shall be designed and installed in accordance with NFPA 72 and shall operate between a fire command center complying with Section 911, elevators, elevator lobbies, emergency and standby power rooms, fire pump rooms, areas of refuge and inside interior exit stairways. The fire department communication device shall be provided at each floor level within the interior exit stairway.

907.2.14 Atriums connecting more than two stories. A fire alarm system shall be installed in occupancies with an atrium that connects more than two stories, with smoke detection installed in locations required by a rational analysis in Section 909.4 and in accordance with the system operation requirements in Section 909.17. The system shall be activated in accordance with Section 907.5. Such occupancies in Group A, E or M shall be provided with an emergency voice/alarm communication system complying with the requirements of Section 907.5.2.2.

907.2.15 High-piled combustible storage areas. An automatic smoke detection system shall be installed throughout high-piled combustible storage areas where required by Section 3206.5 of the fire code.

907.2.16 Aerosol storage uses. Aerosol storage rooms and general-purpose warehouses containing aerosols shall be provided with an approved manual fire alarm system where required by the fire code.

907.2.17 Lumber, wood structural panel and veneer mills. Lumber, wood structural panel and veneer mills shall be provided with a manual fire alarm system.

907.2.18 Underground buildings with smoke control systems. Where a
smoke control system is installed in an underground building in accordance with this code, automatic smoke detectors shall be provided in accordance with Section 907.2.18.1.

907.2.18.1 Smoke detectors. Not fewer than one smoke detector listed for the intended purpose shall be installed in all of the following areas:

1. Mechanical equipment, electrical, transformer, telephone equipment, elevator machine or similar rooms.
2. Elevator lobbies.
3. The main return and exhaust air plenum of each air-conditioning system serving more than one story and located in a serviceable area downstream of the last duct inlet.
4. Each connection to a vertical duct or riser serving two or more floors from return air ducts or plenums of heating, ventilating and air-conditioning systems, except that in Group R occupancies, a listed smoke detector is allowed to be used in each return air riser carrying not more than 5,000 cfm (2.4 m³/s) and serving not more than 10 air inlet openings.

907.2.18.2 Alarm required. Activation of the smoke control system shall activate an audible alarm at a constantly attended location.

907.2.19 Deep underground buildings. Where the lowest level of a structure is more than 60 feet (18 288 mm) below the finished floor of the lowest level of exit discharge, the structure shall be equipped throughout with a manual fire alarm system, including an emergency voice/alarm communication system installed in accordance with Section 907.5.2.2.

907.2.20 Covered and open mall buildings. Where the total floor area exceeds 50,000 square feet (4645 m²) within either a covered mall building or within the perimeter line of an open mall building, an emergency voice/alarm communication system shall be provided. Emergency voice/alarm communication systems serving a mall, required or otherwise, shall be accessible to the fire department. The system shall be provided in accordance with Section 907.5.2.2.

907.2.21 Residential aircraft hangars. Not fewer than one single-station smoke alarm shall be installed within a residential aircraft hangar as defined in Chapter 2 and shall be interconnected into the residential smoke alarm or other sounding device to provide an alarm that will be audible in all sleeping areas of the dwelling.
907.2.22 Airport traffic control towers. An automatic smoke detection system that activates the occupant notification system in accordance with Section 907.5 shall be provided in airport control towers in accordance with Sections 907.2.22.1 and 907.2.22.2.

Exception: Audible appliances shall not be installed within the control tower cab.

907.2.22.1 Airport traffic control towers with multiple exits and automatic sprinklers. Airport traffic control towers with multiple exits and equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 shall be provided with smoke detectors in all of the following locations:

1. Airport traffic control cab.
2. Electrical and mechanical equipment rooms.
3. Airport terminal radar and electronics rooms.
4. Outside each opening into interior exit stairways.
5. Along the single means of egress permitted from observation levels.
6. Outside each opening into the single means of egress permitted from observation levels.

907.2.22.2 Other airport traffic control towers. Airport traffic control towers with a single exit or where sprinklers are not installed throughout shall be provided with smoke detectors in all of the following locations:

1. Airport traffic control cab.
2. Electrical and mechanical equipment rooms.
3. Airport terminal radar and electronics rooms.
4. Office spaces incidental to the tower operation.
5. Lounges for employees, including sanitary facilities.
7. Accessible utility shafts.

907.2.23 Battery rooms. An automatic smoke detection system shall be installed in areas containing stationary storage battery systems with a liquid capacity of more than 50 gallons (189 L).

907.3 Fire safety functions. Automatic fire detectors utilized for the purpose of performing fire safety functions shall be connected to the building’s fire alarm control unit where a fire alarm system is required by Section 907.2. Detectors shall, upon actuation, perform the intended function and activate the alarm notification appliances or activate a visible and audible supervisory signal at a constantly
attended location. In buildings not equipped with a fire alarm system, the automatic fire detector shall be powered by normal electrical service and, upon actuation, perform the intended function. The detectors shall be located in accordance with NFPA 72.

907.3.1 Duct smoke detectors. Smoke detectors installed in ducts shall be listed for the air velocity, temperature and humidity present in the duct. Duct smoke detectors shall be connected to the building's fire alarm control unit when a fire alarm system is required by Section 907.2. Activation of a duct smoke detector shall initiate a visible and audible supervisory signal at a constantly attended location and shall perform the intended fire safety function in accordance with this code and the mechanical code. In facilities that are required to be monitored by a supervising station, duct smoke detectors shall report only as a supervisory signal and not as a fire alarm. They shall not be used as a substitute for required open area detection.

Exceptions:
1. The supervisory signal at a constantly attended location is not required where duct smoke detectors activate the building's alarm notification appliances.
2. In occupancies not required to be equipped with a fire alarm system, actuation of a smoke detector shall activate a visible and an audible signal in an approved location. Smoke detector trouble conditions shall activate a visible or audible signal in an approved location and shall be identified as air duct detector trouble.

907.3.2 Delayed egress locks. Where delayed egress locks are installed on means of egress doors in accordance with Section 1010.1.9.7, an automatic smoke or heat detection system shall be installed as required by that section.

907.3.3 Elevator emergency operation. Automatic fire detectors installed for elevator emergency operation shall be installed in accordance with the provisions of ASME A17.1 as referenced in rule 4101:5-3-01 of the Administrative Code and NFPA 72.

907.3.4 Wiring. The wiring to the auxiliary devices and equipment used to accomplish the fire safety functions shall be monitored for integrity in accordance with NFPA 72.

907.4 Initiating devices. Where manual or automatic alarm initiation is required as part of a fire alarm system, the initiating devices shall be installed in accordance with Sections 907.4.1 through 907.4.3.1.
907.4.1 Protection of fire alarm control unit. In areas that are not continuously occupied, a single smoke detector shall be provided at the location of each fire alarm control unit, notification appliance circuit power extenders, and supervising station transmitting equipment.

Exception: Where ambient conditions prohibit installation of a smoke detector, a heat detector shall be permitted.

907.4.2 Manual fire alarm boxes. Where a manual fire alarm system is required by another section of this code, it shall be activated by fire alarm boxes installed in accordance with Sections 907.4.2.1 through 907.4.2.6.

907.4.2.1 Location. Manual fire alarm boxes shall be located not more than 5 feet (1524 mm) from the entrance to each exit. In buildings not protected by an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2, additional manual fire alarm boxes shall be located so that the exit access travel distance to the nearest box does not exceed 200 feet (60 960 mm).

907.4.2.2 Height. The height of the manual fire alarm boxes shall be not less than 42 inches (1067 mm) and not more than 48 inches (1372 mm) measured vertically, from the floor level to the activating handle or lever of the box.

907.4.2.3 Color. Manual fire alarm boxes shall be red in color.

907.4.2.4 Signs. Where fire alarm systems are not monitored by a supervising station, an approved permanent sign shall be installed adjacent to each manual fire alarm box that reads: WHEN ALARM SOUNDS CALL FIRE DEPARTMENT.

Exception: Where the manufacturer has permanently provided this information on the manual fire alarm box.

907.4.2.5 Protective covers. The building official is authorized to require the installation of listed manual fire alarm box protective covers to prevent malicious false alarms or to provide the manual fire alarm box with protection from physical damage. The protective cover shall be transparent or red in color with a transparent face to permit visibility of the manual fire alarm box. Each cover shall include proper operating instructions. A protective cover that emits a local alarm signal shall not be installed unless approved. Protective covers shall not project more than that permitted by
Section 1003.3.3.

907.4.2.6 Unobstructed and unobscured. Manual fire alarm boxes shall be accessible, unobstructed, and unobscured at all times.

907.4.3 Automatic smoke detection. Where an automatic smoke detection system is required it shall utilize smoke detectors unless ambient conditions prohibit such an installation. In spaces where smoke detectors cannot be utilized due to ambient conditions, approved automatic heat detectors shall be permitted.

907.4.3.1 Automatic sprinkler system. For conditions other than specific fire safety functions noted in Section 907.3, in areas where ambient conditions prohibit the installation of smoke detectors, an automatic sprinkler system installed in such areas in accordance with Section 903.3.1.1 or 903.3.1.2 and that is connected to the fire alarm system shall be approved as automatic heat detection.

907.5 Occupant notification systems. A fire alarm system shall annunciate at the fire alarm control unit and shall initiate occupant notification upon activation, in accordance with Sections 907.5.1 through 907.5.2.3.3. Where a fire alarm system is required by another section of this code, it shall be activated by:

1. Automatic fire detectors.
2. Automatic sprinkler system waterflow devices.
4. Automatic fire-extinguishing systems.

Exception: Where notification systems are allowed elsewhere in Section 907 to annunciate at a constantly attended location.

907.5.1 Presignal feature. A presignal feature shall not be installed unless approved by the building official and the fire department with input from the fire official as outlined in Sections 106.1.2(5) and 901.2.1.1. Where a presignal feature is provided, a signal shall be annunciated at a constantly attended location approved as requested by the fire department official so that occupant notification can be activated in the event of fire or other emergency.

907.5.2 Alarm notification appliances. Alarm notification appliances shall be provided and shall be listed for their purpose. Audible and visual alarm notification appliances shall be located and installed in accordance with this section, NFPA 72, Chapter 11, and ICC A117.1.
907.5.2.1 Audible alarms. Audible alarm notification appliances shall be provided and emit a distinctive sound that is not to be used for any purpose other than that of a fire alarm.

Exceptions:
1. Audible alarm notification appliances are not required in critical care areas of Group I-2 Condition 2 occupancies that are in compliance with Section 907.2.6, Exception 2.
2. A visible alarm notification appliance installed in a nurses’ control station or other continuously attended staff location in a Group I-2 Condition 2 suite shall be an acceptable alternative to the installation of audible alarm notification appliances throughout the suite in Group I-2 Condition 2 occupancies that are in compliance with Section 907.2.6, Exception 2.
3. Where provided, audible notification appliances located in each occupant evacuation elevator lobby in accordance with Section 3008.9.1 shall be connected to a separate notification zone for manual paging only.

907.5.2.1.1 Average sound pressure. The audible alarm notification appliances shall provide a sound pressure level of 15 decibels (dBA) above the average ambient sound level or 5 dBA above the maximum sound level having a duration of not less than 60 seconds, whichever is greater, in every occupiable space within the building.

907.5.2.1.2 Maximum sound pressure. The maximum sound pressure level for audible alarm notification appliances shall be 110 dBA at the minimum hearing distance from the audible appliance. Where the average ambient noise is greater than 95 dBA, visible alarm notification appliances shall be provided in accordance with NFPA 72 and audible alarm notification appliances shall not be required.

907.5.2.2 Emergency voice/alarm communication systems. Emergency voice/alarm communication systems required by this code shall be designed and installed in accordance with NFPA 72. The operation of any automatic fire detector, sprinkler waterflow device or manual fire alarm box shall automatically sound an alert tone followed by voice instructions giving approved information and directions for a general or staged evacuation in accordance with the building’s fire safety and evacuation plans required by Section 404 of the fire code. In high-rise buildings, the system shall operate on at least the alarming floor, the floor above and the floor below. Speakers shall be provided throughout the building by paging zones. At a minimum,
paging zones shall be provided as follows:
1. Elevator groups.
2. Interior exit stairways.
3. Each floor.
4. Areas of refuge as defined in Chapter 2.

Exception: In Group I-1 and I-2 occupancies, the alarm shall sound in a constantly attended area and a general occupant notification shall be broadcast over the overhead page.

907.5.2.2.1 Manual override. A manual override for emergency voice communication shall be provided on a selective and all-call basis for all paging zones.

907.5.2.2.2 Live voice messages. The emergency voice/alarm communication system shall have the capability to broadcast live voice messages by paging zones on a selective and all-call basis.

907.5.2.2.3 Alternate uses. The emergency voice/alarm communication system shall be allowed to be used for other announcements, provided the manual fire alarm use takes precedence over any other use.

907.5.2.2.4 Emergency voice/alarm communication captions. Where stadiums, arenas and grandstands are required to caption audible public announcements in accordance with Section 1108.2.7.3, the emergency/voice alarm communication system shall be captioned. Prerecorded or live emergency captions shall be from an approved location constantly attended by personnel trained to respond to an emergency.

907.5.2.2.5 Emergency power. Emergency voice/alarm communications systems shall be provided with emergency power in accordance with Section 2702. The system shall be capable of powering the required load for a duration of not less than 24 hours, as required in NFPA 72.

907.5.2.3 Visible alarms. Visible alarm notification appliances shall be provided in accordance with Sections 907.5.2.3.1 through 907.5.2.3.3.

Exceptions:
1. Visible alarm notification appliances are not required in alterations, except where, as part of the alteration, an existing notification
An appliance is relocated, an existing fire alarm system is upgraded or replaced, or a new fire alarm system is installed.

2. Visible alarm notification appliances shall not be required in exits as defined in Chapter 2.

3. Visible alarm notification appliances shall not be required in elevator cars.

4. Visual alarm notification appliances are not required in critical care areas of Group I-2 Condition 2 occupancies that are in compliance with Section 907.2.6, Exception 2.

907.5.2.3.1 Public use areas and common use areas. Visible alarm notification appliances shall be provided in public use areas and common use areas.

Exception: Where employee work areas have audible alarm coverage, the notification appliance circuits serving the employee work areas shall be initially designed with not less than 20 percent spare capacity to account for the potential of adding visible notification appliances in the future to accommodate hearing-impaired employee(s).

907.5.2.3.2 Groups I-1 and R-1. Group I-1 and R-1 dwelling units or sleeping units in accordance with Table 907.5.2.3.2 shall be provided with a visible alarm notification appliance, activated by both the in-room smoke alarm and the building fire alarm system.

| TABLE 907.5.2.3.2
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VISIBLE ALARMS</td>
</tr>
<tr>
<td>NUMBER OF SLEEP UNITS</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>2 to 25</td>
</tr>
<tr>
<td>26 to 50</td>
</tr>
<tr>
<td>51 to 75</td>
</tr>
<tr>
<td>76 to 100</td>
</tr>
<tr>
<td>101 to 150</td>
</tr>
<tr>
<td>151 to 200</td>
</tr>
<tr>
<td>201 to 300</td>
</tr>
<tr>
<td>301 to 400</td>
</tr>
<tr>
<td>401 to 500</td>
</tr>
<tr>
<td>501 to 1,000</td>
</tr>
<tr>
<td>1,001 and over</td>
</tr>
</tbody>
</table>
907.5.2.3.3 Group R-2. In Group R-2 occupancies required by Section 907 to have a fire alarm system, all dwelling units and sleeping units shall be provided with the capability to support visible alarm notification appliances in accordance with Chapter 10 of ICC A117.1. Such capability shall be permitted to include the potential for future interconnection of the building fire alarm system with the unit smoke alarms, replacement of audible appliances with combination audible/visible appliances, or future extension of the existing wiring from the unit smoke alarm locations to required locations for visible appliances.

907.6 Installation and monitoring. A fire alarm system shall be installed and monitored in accordance with Sections 907.6.1 through 907.6.6.2 and NFPA 72.

907.6.1 Wiring. Wiring shall comply with the requirements of NFPA 70 and NFPA 72. Wireless protection systems utilizing radio-frequency transmitting devices shall comply with the special requirements for supervision of low-power wireless systems in NFPA 72.

907.6.2 Power supply. The primary and secondary power supply for the fire alarm system shall be provided in accordance with NFPA 72. Exception: Back-up power for single-station and multiple-station smoke alarms as required in Section 907.2.11.6.

907.6.3 Initiating device identification. Required fire alarm systems and initiating devices shall identify the specific initiating device address, location, device type, floor level where applicable and status including indication of normal, alarm, trouble and supervisory status, as appropriate.

Exceptions:
1. Fire alarm systems in single-story buildings less than 22,500 square feet (2090 m²) in area.
2. Fire alarm systems that only include manual fire alarm boxes, waterflow initiating devices and not more than 10 additional alarm-initiating devices.
3. Special initiating devices that do not support individual device identification.
4. Fire alarm systems or devices that are replacing existing equipment.

907.6.3.1 Annunciation. The initiating device status shall be annunciated at an approved on-site location.
907.6.4 Zones. Each floor shall be zoned separately and a zone shall not exceed 22,500 square feet (2090 m²). The length of any zone shall not exceed 300 feet (91 440 mm) in any direction.

 Exception: Automatic sprinkler system zones shall not exceed the area permitted by NFPA 13.

907.6.4.1 Zoning indicator panel. A zoning indicator panel and the associated controls shall be provided in an approved location. The visual zone indication shall lock in until the system is reset and shall not be canceled by the operation of an audible alarm silencing switch.

907.6.4.2 High-rise buildings. In high-rise buildings, a separate zone by floor shall be provided for each of the following types of alarm-initiating devices where provided:
 1. Smoke detectors.
 2. Sprinkler waterflow devices.
 4. Other approved types of automatic fire detection devices or suppression systems.

907.6.5 Access. Access shall be provided to each fire alarm device and notification appliance for periodic inspection, maintenance and testing.

907.6.6 Monitoring. Fire alarm systems required by this chapter or by the fire code shall be monitored by an approved supervising station in accordance with NFPA 72.

 Exception: Monitoring by a supervising station is not required for:
 1. Single- and multiple-station smoke alarms required by Section 907.2.11.
 2. Smoke detectors in Group I-3 occupancies.
 3. Deleted.

907.6.6.1 Automatic telephone-dialing devices. Automatic telephone-dialing devices used to transmit an emergency alarm shall not be connected to any fire department telephone number unless approved by the building official with input from the fire chief.

907.6.6.2 Termination of monitoring service. Deleted.

907.7 Acceptance tests and completion. Upon completion of the installation, the
fire alarm system and all fire alarm components shall be tested in accordance with NFPA 72 and Section 901.5.

907.7.1 Single- and multiple-station alarm devices. When the installation of the alarm devices is complete, each device and interconnecting wiring for multiple-station alarm devices shall be tested in accordance with the smoke alarm provisions of NFPA 72.

907.7.2 Record of completion. A record of completion in accordance with NFPA 72 verifying that the system has been installed and tested in accordance with the approved plans and specifications shall be provided.

907.7.3 Instructions. Operating, testing and maintenance instructions and record drawings (“as-builts”) and equipment specifications shall be provided at an approved location.

907.8 Inspection, testing and maintenance. The maintenance and testing schedules and procedures for fire alarm and fire detection systems shall be in accordance with Section 907.8 of the fire code.

SECTION 908
EMERGENCY ALARM SYSTEMS

908.1 Group H occupancies. Emergency alarms for the detection and notification of an emergency condition in Group H occupancies shall be provided in accordance with Section 415.5.

908.2 Group H-5 occupancy. Emergency alarms for notification of an emergency condition in an HPM facility shall be provided as required in Section 415.11.3.5. A continuous gas detection system shall be provided for HPM gases in accordance with Section 415.11.7.

908.3 Highly toxic and toxic materials. A gas detection system shall be provided to detect the presence of highly toxic or toxic gas at or below the permissible exposure limit (PEL) or ceiling limit of the gas for which detection is provided. The system shall be capable of monitoring the discharge from the treatment system at or below one-half the immediately dangerous to life and health (IDLH) limit.

 Exception: A gas detection system is not required for toxic gases when the physiological warning threshold level for the gas is at a level below the accepted PEL for the gas.
908.3.1 Alarms. The gas detection system shall initiate a local alarm and transmit a signal to a constantly attended control station when a short-term hazard condition is detected. The alarm shall be both visible and audible and shall provide warning both inside and outside the area where gas is detected. The audible alarm shall be distinct from all other alarms.

Exception: Signal transmission to a constantly attended control station is not required when not more than one cylinder of highly toxic or toxic gas is stored.

908.3.2 Shutoff of gas supply. The gas detection system shall automatically close the shutoff valve at the source on gas supply piping and tubing related to the system being monitored for whichever gas is detected.

Exception: Automatic shutdown is not required for reactors utilized for the production of highly toxic or toxic compressed gases where such reactors are:

1. Operated at pressures less than 15 pounds per square inch gauge (psig) (103.4 kPa).
2. Constantly attended.
3. Provided with readily accessible emergency shutoff valves.

908.3.3 Valve closure. The automatic closure of shutoff valves shall be in accordance with the following:

1. When the gas-detection sampling point initiating the gas detection system alarm is within a gas cabinet or exhausted enclosure, the shutoff valve in the gas cabinet or exhausted enclosure for the specific gas detected shall automatically close.
2. Where the gas-detection sampling point initiating the gas detection system alarm is within a gas room and compressed gas containers are not in gas cabinets or exhausted enclosures, the shutoff valves on all gas lines for the specific gas detected shall automatically close.
3. Where the gas-detection sampling point initiating the gas detection system alarm is within a piping distribution manifold enclosure, the shutoff valve for the compressed container of specific gas detected supplying the manifold shall automatically close.

Exception: When the gas-detection sampling point initiating the gas detection system alarm is at a use location or within a gas valve enclosure of a branch line downstream of a piping distribution manifold, the shutoff valve in the gas valve enclosure for the branch line located in the piping distribution manifold enclosure shall automatically close.

908.4 Ozone gas-generator rooms. Ozone gas-generator rooms shall be equipped
with a continuous gas detection system that will shut off the generator and sound a local alarm when concentrations above the PEL occur.

908.5 Repair garages. A flammable-gas detection system shall be provided in repair garages for vehicles fueled by nonodorized gases in accordance with Section 406.8.5.

908.6 Refrigerant detector. Machinery rooms shall contain a refrigerant detector with an audible and visual alarm. The detector, or a sampling tube that draws air to the detector, shall be located in an area where refrigerant from a leak will concentrate. The alarm shall be actuated at a value not greater than the corresponding TLV-TWA values for the refrigerant classification shown in the mechanical code for the refrigerant classification. Detectors and alarms shall be placed in approved locations. The detector shall transmit a signal to an approved location.

908.7 Carbon dioxide (CO₂) systems. Emergency alarm systems in accordance with Section 5307.5.2 of the fire code shall be provided where required for compliance with Section 5307.5 of the fire code.

SECTION 909
SMOKE CONTROL SYSTEMS

909.1 Scope and purpose. This section applies to mechanical or passive smoke control systems where they are required by other provisions of this code. The purpose of this section is to establish minimum requirements for the design, installation and acceptance testing of smoke control systems that are intended to provide a tenable environment for the evacuation or relocation of occupants. These provisions are not intended for the preservation of contents, the timely restoration of operations or for assistance in fire suppression or overhaul activities. Smoke control systems regulated by this section serve a different purpose than the smoke- and heat venting provisions found in Section 910. Mechanical smoke control systems shall not be considered exhaust systems under Chapter 5 of the mechanical code.

909.2 General design requirements. Buildings, structures or parts thereof required by this code to have a smoke control system or systems shall have such systems designed in accordance with the applicable requirements of Section 909 and the generally accepted and well-established principles of engineering relevant to the design. The construction documents shall include sufficient information and detail to adequately describe the elements of the design necessary for the proper
implementation of the smoke control systems. These documents shall be accompanied by sufficient information and analysis to demonstrate compliance with these provisions.

909.3 Special inspection and test requirements. In addition to the ordinary inspection and test requirements that buildings, structures and parts thereof are required to undergo, smoke control systems subject to the provisions of Section 909 shall undergo special inspections and tests sufficient to verify the proper commissioning of the smoke control design in its final installed condition. The design submission accompanying the construction documents shall clearly detail procedures and methods to be used and the items subject to such inspections and tests. Such commissioning shall be in accordance with generally accepted engineering practice and, where possible, based on published standards for the particular testing involved. The special inspections and tests required by this section shall be conducted under the same terms in Section 1704.

909.4 Analysis. A rational analysis supporting the types of smoke control systems to be employed, their methods of operation, the systems supporting them and the methods of construction to be utilized shall accompany the submitted construction documents and shall include, but not be limited to, the items indicated in Sections 909.4.1 through 909.4.7.

909.4.1 Stack effect. The system shall be designed such that the maximum probable normal or reverse stack effect will not adversely interfere with the system’s capabilities. In determining the maximum probable stack effect, altitude, elevation, weather history and interior temperatures shall be used.

909.4.2 Temperature effect of fire. Buoyancy and expansion caused by the design fire in accordance with Section 909.9 shall be analyzed. The system shall be designed such that these effects do not adversely interfere with the system’s capabilities.

909.4.3 Wind effect. The design shall consider the adverse effects of wind. Such consideration shall be consistent with the wind-loading provisions of Chapter 16.

909.4.4 HVAC systems. The design shall consider the effects of the heating, ventilating and air-conditioning (HVAC) systems on both smoke and fire transport. The analysis shall include all permutations of systems status. The design shall consider the effects of the fire on the HVAC systems.
909.4.5 Climate. The design shall consider the effects of low temperatures on systems, property and occupants. Air inlets and exhausts shall be located so as to prevent snow or ice blockage.

909.4.6 Duration of operation. All portions of active or engineered smoke control systems shall be capable of continued operation after detection of the fire event for a period of not less than either 20 minutes or 1.5 times the calculated egress time, whichever is greater.

909.4.7 Smoke control system interaction. The design shall consider the interaction effects of the operation of multiple smoke control systems for all design scenarios.

909.5 Smoke barrier construction. Where provided, smoke barriers required for passive smoke control and a smoke control system using the pressurization method shall comply with Section 709, and shall be constructed and sealed to limit leakage areas exclusive of protected openings. The maximum allowable leakage area shall be the aggregate area calculated using the following leakage area ratios:

1. Walls $A/A_w = 0.00100$
2. Interior exit stairways and ramps and exit passageways:
 $A/A_w = 0.00035$
3. Enclosed exit access stairways and ramps and all other shafts:
 $A/A_w = 0.00150$
4. Floors and roofs: $A/A_F = 0.00050$

where:

$A =$ Total leakage area, square feet (m^2).
$A_F =$ Unit floor or roof area of barrier, square feet (m^2).
$A_w =$ Unit wall area of barrier, square feet (m^2).

The leakage area ratios shown do not include openings due to gaps around doors and operable windows. The total leakage area of the smoke barrier shall be determined in accordance with Section 909.5.1 and tested in accordance with Section 909.5.2.

909.5.1 Total leakage area. Total leakage area of the barrier is the product of the smoke barrier gross area multiplied by the allowable leakage area ratio, plus the area of other openings such as gaps around doors and operable windows.

909.5.2 Testing of leakage area. Compliance with the maximum total leakage area shall be determined by achieving the minimum air pressure difference across the barrier with the system in the smoke control mode for mechanical
smoke control systems utilizing the pressurization method. Compliance with the maximum total leakage area of passive smoke control systems shall be verified through methods such as door fan testing or other methods, as approved by the building official.

909.5.3 Opening protection. Openings in smoke barriers shall be protected by automatic-closing devices actuated by the required controls for the mechanical smoke control system. Door openings shall be protected by fire door assemblies complying with Section 716.5.3.

Exceptions:
1. Passive smoke control systems with automatic closing devices actuated by spot-type smoke detectors listed for releasing service installed in accordance with Section 907.3.
2. Fixed openings between smoke zones that are protected utilizing the airflow method.
3. In Group I-1 Condition 2, Group I-2 and ambulatory care facilities, where a pair of opposite swinging doors are installed across a corridor in accordance with Section 909.5.3.1, the doors shall not be required to be protected in accordance with Section 716. The doors shall be closefitting within operational tolerances and shall not have a center mullion or undercuts in excess of 3/4 inch (19.1 mm), louvers or grilles. The doors shall have head and jamb stops and astragals or rabbets at meeting edges and, where permitted by the door manufacturer’s listing, positive-latching devices are not required.
4. In Group I-2 and ambulatory care facilities, where such doors are special-purpose horizontal sliding, accordion or folding door assemblies installed in accordance with Section 1010.1.4.3 and are automatic closing by smoke detection in accordance with Section 716.5.9.3.
5. Group I-3.
6. Openings between smoke zones with clear ceiling heights of 14 feet (4267 mm) or greater and bank-down capacity of greater than 20 minutes as determined by the design fire size.

909.5.3.1 Group I-1 Condition 2; Group I-2 and ambulatory care facilities. In Group I-1 Condition 2, Group I-2 and ambulatory care facilities, where doors are installed across a corridor, the doors shall be automatic closing by smoke detection in accordance with Section 716.5.9.3 and shall have a vision panel with fire protection-rated glazing materials in fire protection-rated frames, the area of which shall not exceed that tested.

909.5.3.2 Ducts and air transfer openings. Ducts and air transfer openings
are required to be protected with a minimum Class II, 250°F (121°C) smoke damper complying with Section 717.

909.6 Pressurization method. The primary mechanical means of controlling smoke shall be by pressure differences across smoke barriers. Maintenance of a tenable environment is not required in the smoke control zone of fire origin.

909.6.1 Minimum pressure difference. The minimum pressure difference across a smoke barrier shall be 0.05-inch water gage (0.0124 kPa) in fully sprinklered buildings.
In buildings permitted to be other than fully sprinklered, the smoke control system shall be designed to achieve pressure differences not less than two times the maximum calculated pressure difference produced by the design fire.

909.6.2 Maximum pressure difference. The maximum air pressure difference across a smoke barrier shall be determined by required door-opening or closing forces. The actual force required to open exit doors when the system is in the smoke control mode shall be in accordance with Section 1010.1.3. Opening and closing forces for other doors shall be determined by standard engineering methods for the resolution of forces and reactions. The calculated force to set a side-hinged, swinging door in motion shall be determined by:

\[F = F_{dc} + K(WA \Delta P)/(2(W-d)) \]

(Equation 9-1)

where:
A = Door area, square feet (m²).
d = Distance from door handle to latch edge of door, feet (m).
F = Total door opening force, pounds (N).
F_{dc} = Force required to overcome closing device, pounds (N).
K = Coefficient 5.2 (1.0).
W = Door width, feet (m).
\Delta P = Design pressure difference, inches of water (Pa).

909.6.3 Pressurized stairways and elevator hoistways. Where stairways or elevator hoistways are pressurized, such pressurization systems shall comply with Section 909 as smoke control systems, in addition to the requirements of Sections 909.20 and 909.21 of this code.

909.7 Airflow design method. Where approved by the building official, smoke migration through openings fixed in a permanently open position, which are located between smoke control zones by the use of the airflow method, shall be permitted.
The design airflow shall be in accordance with this section. Airflow shall be directed to limit smoke migration from the fire zone. The geometry of openings shall be considered to prevent flow reversal from turbulent effects. Smoke control systems using the airflow method shall be designed in accordance with NFPA 92.

909.7.1 Prohibited conditions. This method shall not be employed where either the quantity of air or the velocity of the airflow will adversely affect other portions of the smoke control system, unduly intensify the fire, disrupt plume dynamics or interfere with exiting. In no case shall airflow toward the fire exceed 200 feet per minute (1.02 m/s). Where the calculated airflow exceeds this limit, the airflow method shall not be used.

909.8 Exhaust method. Where approved by the building official, mechanical smoke control for large enclosed volumes, such as in atriums or malls, shall be permitted to utilize the exhaust method. Smoke control systems using the exhaust method shall be designed in accordance with NFPA 92.

909.8.1 Smoke layer. The height of the lowest horizontal surface of the smoke layer interface shall be maintained not less than 6 feet (1829 mm) above a walking surface that forms a portion of a required egress system within the smoke zone.

909.9 Design fire. The design fire shall be based on a rational analysis performed by the registered design professional and approved by the building official. The design fire shall be based on the analysis in accordance with Section 909.4 and this section.

909.9.1 Factors considered. The engineering analysis shall include the characteristics of the fuel, fuel load, effects included by the fire and whether the fire is likely to be steady or unsteady.

909.9.2 Design fire fuel. Determination of the design fire shall include consideration of the type of fuel, fuel spacing and configuration.

909.9.3 Heat-release assumptions. The analysis shall make use of best available data from approved sources and shall not be based on excessively stringent limitations of combustible material.

909.9.4 Sprinkler effectiveness assumptions. A documented engineering analysis shall be provided for conditions that assume fire growth is halted at the time of sprinkler activation.
909.10 Equipment. Equipment including, but not limited to, fans, ducts, automatic dampers and balance dampers, shall be suitable for its intended use, suitable for the probable exposure temperatures that the rational analysis indicates and as approved by the building official.

909.10.1 Exhaust fans. Components of exhaust fans shall be rated and certified by the manufacturer for the probable temperature rise to which the components will be exposed. This temperature rise shall be computed by:

\[T_s = \left(\frac{Q_c}{mc} \right) + T_a \]

(Equation 9-3)

where:
- \(c \) = Specific heat of smoke at smoke layer temperature, Btu/lb°F (kJ/kg · K).
- \(m \) = Exhaust rate, pounds per second (kg/s).
- \(Q_c \) = Convective heat output of fire, Btu/s (kW).
- \(T_a \) = Ambient temperature, °F (K).
- \(T_s \) = Smoke temperature, °F (K).

Exception: Reduced \(T_s \) as calculated based on the assurance of adequate dilution air.

909.10.2 Ducts. Duct materials and joints shall be capable of withstanding the probable temperatures and pressures to which they are exposed as determined in accordance with Section 909.10.1. Ducts shall be constructed and supported in accordance with the mechanical code. Ducts shall be leak tested to 1.5 times the maximum design pressure in accordance with nationally accepted practices. Measured leakage shall not exceed 5 percent of design flow. Results of such testing shall be a part of the documentation procedure. Ducts shall be supported directly from fire-resistance-rated structural elements of the building by substantial, noncombustible supports.

Exception: Flexible connections, for the purpose of vibration isolation, complying with the mechanical code and that are constructed of approved fire-resistance-rated materials.

909.10.3 Equipment, inlets and outlets. Equipment shall be located so as not to expose uninvolved portions of the building to an additional fire hazard. Outside air inlets shall be located so as to minimize the potential for introducing smoke or flame into the building. Exhaust outlets shall be so located as to minimize reintroduction of smoke into the building and to limit exposure of the building or adjacent buildings to an additional fire hazard.
909.10.4 **Automatic dampers.** Automatic dampers, regardless of the purpose for which they are installed within the smoke control system, shall be listed and conform to the requirements of Section 717.3.

909.10.5 **Fans.** In addition to other requirements, belt driven fans shall have 1.5 times the number of belts required for the design duty, with the minimum number of belts being two. Fans shall be selected for stable performance based on normal temperature and, where applicable, elevated temperature. Calculations and manufacturer’s fan curves shall be part of the documentation procedures. Fans shall be supported and restrained by noncombustible devices in accordance with the requirements of Chapter 16. Motors driving fans shall not be operated beyond their nameplate horsepower (kilowatts), as determined from measurement of actual current draw, and shall have a minimum service factor of 1.15.

909.11 **Standby power.** Smoke control systems shall be provided with standby power in accordance with Section 2702.

909.11.1 **Equipment room.** The standby power source and its transfer switches shall be in a room separate from the normal power transformers and switch gears and ventilated directly to and from the exterior. The room shall be enclosed with not less than 1-hour fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both.

909.11.2 **Power sources and power surges.** Elements of the smoke control system relying on volatile memories or the like shall be supplied with uninterruptable power sources of sufficient duration to span 15-minute primary power interruption. Elements of the smoke control system susceptible to power surges shall be suitably protected by conditioners, suppressors or other approved means.

909.12 **Detection and control systems.** Fire detection systems providing control input or output signals to mechanical smoke control systems or elements thereof shall comply with the requirements of Section 907. Such systems shall be equipped with a control unit complying with UL 864 and listed as smoke control equipment.

909.12.1 **Verification.** Control systems for mechanical smoke control systems shall include provisions for verification. Verification shall include positive confirmation of actuation, testing, manual override and the presence of power downstream of all disconnects. A preprogrammed weekly test sequence shall
report abnormal conditions audibly, visually and by printed report. The preprogrammed weekly test shall operate all devices, equipment and components used for smoke control.

Exception: Where verification of individual components tested through the preprogrammed weekly testing sequence will interfere with, and produce unwanted effects to, normal building operation, such individual components are permitted to be bypassed from the preprogrammed weekly testing, where approved by the building official and in accordance with both of the following:

1. Where the operation of components is bypassed from the preprogrammed weekly test, presence of power downstream of all disconnects shall be verified weekly by a listed control unit.
2. Testing of all components bypassed from the preprogrammed weekly test shall be in accordance with Section 909.20.6 of the fire code.

909.12.2 Wiring. In addition to meeting requirements of NFPA 70, all wiring, regardless of voltage, shall be fully enclosed within continuous raceways.

909.12.3 Activation. Smoke control systems shall be activated in accordance with this section.

909.12.3.1 Pressurization, airflow or exhaust method. Mechanical smoke control systems using the pressurization, airflow or exhaust method shall have completely automatic control.

909.12.3.2 Passive method. Passive smoke control systems actuated by approved spot-type detectors listed for releasing service shall be permitted.

909.12.4 Automatic control. Where completely automatic control is required or used, the automatic-control sequences shall be initiated from an appropriately zoned automatic sprinkler system complying with Section 903.3.1.1, manual controls that are readily accessible to the fire department and any smoke detectors required by engineering analysis.

909.13 Control air tubing. Control air tubing shall be of sufficient size to meet the required response times. Tubing shall be flushed clean and dry prior to final connections and shall be adequately supported and protected from damage. Tubing passing through concrete or masonry shall be sleeved and protected from abrasion and electrolytic action.

909.13.1 Materials. Control-air tubing shall be hard drawn copper, Type L,
ACR in accordance with ASTM B 42, ASTM B 43, ASTM B 68, ASTM B 88, ASTM B 251 and ASTM B 280. Fittings shall be wrought copper or brass, solder type in accordance with ASME B 16.18 or ASME B16.22. Changes in direction shall be made with appropriate tool bends. Brass compression-type fittings shall be used at final connection to devices; other joints shall be brazed using a BCuP-5 brazing alloy with solidus above 1,100°F (593°C) and liquids below 1,500°F (816°C). Brazing flux shall be used on copper-to-brass joints only.

Exception: Nonmetallic tubing used within control panels and at the final connection to devices provided all of the following conditions are met:

1. *Combustible pneumatic tubing exposed within a plenum shall have a peak optical density not greater than 0.50, an average optical density not greater than 0.15, and a flame spread of not greater than 5 feet (1524 mm) when tested in accordance with UL 1820. Combustible pneumatic tubing shall be listed and labeled.*

2. Tubing and connected devices shall be completely enclosed within a galvanized or paint grade steel enclosure having a minimum thickness of 0.0296 inch (0.7534 mm) (No. 22 gage). Entry to the enclosure shall be by copper tubing with a protective grommet of neoprene or Teflon or by suitable brass compression male adapter.

3. Tubing shall be identified by appropriately documented coding.

4. Tubing shall be neatly tied and supported within the enclosure. Tubing bridging cabinets and doors or moveable devices shall be of sufficient length to avoid tension and excessive stress. Tubing shall be protected against abrasion. Tubing serving devices on doors shall be fastened along hinges.

909.13.2 Isolation from other functions. Control tubing serving other than smoke control functions shall be isolated by automatic isolation valves or shall be an independent system.

909.13.3 Testing. Control air tubing shall be tested at three times the operating pressure for not less than 30 minutes without any noticeable loss in gauge pressure prior to final connection to devices.

909.14 Marking and identification. The detection and control systems shall be clearly marked at all junctions, accesses and terminations.

909.15 Control diagrams. Identical control diagrams showing all devices in the system and identifying their location and function shall be maintained current and kept on file with the building official, the fire department official, and in the fire
command center in a format and manner approved by the building official with input from the fire chief official.

909.16 Fire fighter’s smoke control panel. A fire fighter’s smoke control panel for fire department emergency response purposes only shall be provided and shall include manual control or override of automatic control for mechanical smoke control systems. The panel shall be located in a fire command center complying with Section 911 in high-rise buildings or buildings with smoke-protected assembly seating. In all other buildings, the fire fighter’s smoke control panel shall be installed in an approved location adjacent to the fire alarm control panel. The fire fighter’s smoke control panel shall comply with Sections 909.16.1 through 909.16.3.

909.16.1 Smoke control systems. Fans within the building shall be shown on the fire fighter’s control panel. A clear indication of the direction of airflow and the relationship of components shall be displayed. Status indicators shall be provided for all smoke control equipment, annunciated by fan and zone, and by pilot-lamp-type indicators as follows:
1. Fans, dampers and other operating equipment in their normal status—WHITE.
2. Fans, dampers and other operating equipment in their off or closed status—RED.
3. Fans, dampers and other operating equipment in their on or open status—GREEN.
4. Fans, dampers and other operating equipment in a fault status—YELLOW/AMBER.

909.16.2 Smoke control panel. The fire fighter’s control panel shall provide control capability over the complete smoke control system equipment within the building as follows:
1. ON-AUTO-OFF control over each individual piece of operating smoke control equipment that can also be controlled from other sources within the building. This includes stairway pressurization fans; smoke exhaust fans; supply, return and exhaust fans; elevator shaft fans and other operating equipment used or intended for smoke control purposes.
2. OPEN-AUTO-CLOSE control over individual dampers relating to smoke control and that are also controlled from other sources within the building.
3. ON-OFF or OPEN-CLOSE control over smoke control and other critical equipment associated with a fire or smoke emergency and that can only be controlled from the fire fighter’s control panel.
Exceptions:
1. Complex systems, where approved, where the controls and indicators are combined to control and indicate all elements of a single smoke zone as a unit.
2. Complex systems, where approved, where the control is accomplished by computer interface using approved, plain English commands.

909.16.3 Control action and priorities. The firefighter’s control panel actions shall be as follows:
1. ON-OFF and OPEN-CLOSE control actions shall have the highest priority of any control point within the building. Once issued from the fire fighter’s control panel, automatic or manual control from any other control point within the building shall not contradict the control action. Where automatic means are provided to interrupt normal, nonemergency equipment operation or produce a specific result to safeguard the building or equipment including, but not limited to, duct freeze stats, duct smoke detectors, high-temperature cutouts, temperature-actuated linkage and similar devices, such means shall be capable of being overridden by the fire fighter’s control panel. The last control action as indicated by each fire fighter’s control panel switch position shall prevail. Control actions shall not require the smoke control system to assume more than one configuration at any one time. Exception: Power disconnects required by NFPA 70.
2. Only the AUTO position of each three-position firefighter’s control panel switch shall allow automatic or manual control action from other control points within the building. The AUTO position shall be the NORMAL, nonemergency, building control position. Where a fire fighter’s control panel is in the AUTO position, the actual status of the device (on, off, open, closed) shall continue to be indicated by the status indicator described in Section 909.16.1. Where directed by an automatic signal to assume an emergency condition, the NORMAL position shall become the emergency condition for that device or group of devices within the zone. Control actions shall not require the smoke control system to assume more than one configuration at any one time.

909.17 System response time. Smoke-control system activation shall be initiated immediately after receipt of an appropriate automatic or manual activation command. Smoke control systems shall activate individual components (such as dampers and fans) in the sequence necessary to prevent physical damage to the fans, dampers, ducts and other equipment. For purposes of smoke control, the fire fighter’s control panel response time shall be the same for automatic or manual smoke control action initiated from any other building control point. The total
response time, including that necessary for detection, shutdown of operating equipment and smoke control system startup, shall allow for full operational mode to be achieved before the conditions in the space exceed the design smoke condition. The system response time for each component and their sequential relationships shall be detailed in the required rational analysis and verification of their installed condition reported in the required final report.

909.18 Acceptance testing. Devices, equipment, components and sequences shall be individually tested. These tests, in addition to those required by other provisions of this code, shall consist of determination of function, sequence and, where applicable, capacity of their installed condition.

909.18.1 Detection devices. Smoke or fire detectors that are a part of a smoke control system shall be tested in accordance with Chapter 9 in their installed condition. Where applicable, this testing shall include verification of airflow in both minimum and maximum conditions.

909.18.2 Ducts. Ducts that are part of a smoke control system shall be traversed using generally accepted practices to determine actual air quantities.

909.18.3 Dampers. Dampers shall be tested for function in their installed condition.

909.18.4 Inlets and outlets. Inlets and outlets shall be read using generally accepted practices to determine air quantities.

909.18.5 Fans. Fans shall be examined for correct rotation. Measurements of voltage, amperage, revolutions per minute (rpm) and belt tension shall be made.

909.18.6 Smoke barriers. Measurements using inclined manometers or other approved calibrated measuring devices shall be made of the pressure differences across smoke barriers. Such measurements shall be conducted for each possible smoke control condition.

909.18.7 Controls. Each smoke zone equipped with an automatic-initiation device shall be put into operation by the actuation of one such device. Each additional device within the zone shall be verified to cause the same sequence without requiring the operation of fan motors in order to prevent damage. Control sequences shall be verified throughout the system, including verification of override from the fire-fighter’s control panel and simulation of standby power conditions.
909.18.8 Testing for smoke control. Smoke control systems shall be tested by a special inspector in accordance with Section 1705.18.

909.18.8.1 Scope of testing. Testing shall be conducted in accordance with the following:
1. During erection of ductwork and prior to concealment for the purposes of leakage testing and recording of device location.
2. Prior to occupancy and after sufficient completion for the purposes of pressure-difference testing, flow measurements, and detection and control verification.

909.18.8.2 Qualifications. Approved agencies for smoke control testing shall have expertise in fire protection engineering, mechanical engineering and certification as air balancers.

909.18.8.3 Reports. A complete report of testing shall be prepared by the approved agency. The report shall include identification of all devices by manufacturer, nameplate data, design values, measured values and identification tag or mark. The report shall be reviewed by the responsible registered design professional and, when satisfied that the design intent has been achieved, the responsible registered design professional shall sign, seal and date the report.

909.18.8.3.1 Report filing. A copy of the final report shall be filed with the building official, the fire official, and an identical copy shall be maintained in an approved location at the building.

909.18.9 Identification and documentation. Charts, drawings and other documents identifying and locating each component of the smoke control system, and describing its proper function and maintenance requirements, shall be maintained on file at the building as an attachment to the report required by Section 909.18.8.3. Devices shall have an approved identifying tag or mark on them consistent with the other required documentation and shall be dated indicating the last time they were successfully tested and by whom.

909.19 System acceptance. Buildings, or portions thereof, required by this code to comply with this section shall not be issued a certificate of occupancy until such time that the building official determines that the provisions of this section have been fully complied with and that the fire department has received satisfactory instruction on the operation, both automatic and manual, of the system and a written
maintenance program complying with the requirements of Section 909.20.1 of the fire code has been submitted and approved by the building official.

(Exception: In buildings of phased construction, a temporary certificate of occupancy, as approved by the building official, shall be allowed provided that those portions of the building to be occupied meet the requirements of this section and that the remainder does not pose a significant hazard to the safety of the proposed occupants or adjacent buildings.

909.20 Smokeproof enclosures. Where required by Section 1023.11, a smokeproof enclosure shall be constructed in accordance with this section. A smokeproof enclosure shall consist of an interior exit stairway or ramp that is enclosed in accordance with the applicable provisions of Section 1023 and an open exterior balcony or ventilated vestibule meeting the requirements of this section. Where access to the roof is required by Section 1011.12, such access shall be from the smokeproof enclosure where a smokeproof enclosure is required.

909.20.1 Access. Access to the stairway or ramp shall be by way of a vestibule or an open exterior balcony. The minimum dimension of the vestibule shall be not less than the required width of the corridor leading to the vestibule but shall not have a width of less than 44 inches (1118 mm) and shall not have a length of less than 72 inches (1829 mm) in the direction of egress travel.

909.20.2 Construction. The smokeproof enclosure shall be separated from the remainder of the building by not less than 2-hour fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both. Openings are not permitted other than the required means of egress doors. The vestibule shall be separated from the stairway or ramp by not less than 2-hour fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both. The open exterior balcony shall be constructed in accordance with the fire-resistance rating requirements for floor assemblies.

909.20.2.1 Door closers. Doors in a smokeproof enclosure shall be self- or automatic closing by actuation of a smoke detector in accordance with Section 716.5.9.3 and shall be installed at the floor-side entrance to the smokeproof enclosure. The actuation of the smoke detector on any door shall activate the closing devices on all doors in the smokeproof enclosure at all levels. Smoke detectors shall be installed in accordance with Section 907.3.

909.20.3 Natural ventilation alternative. The provisions of Sections
909.20.3.1 through 909.20.3.3 shall apply to ventilation of smokeproof enclosures by natural means.

909.20.3.1 **Balcony doors.** Where access to the stairway or ramp is by way of an open exterior balcony, the door assembly into the enclosure shall be a fire door assembly in accordance with Section 716.5.

909.20.3.2 **Vestibule doors.** Where access to the stairway or ramp is by way of a vestibule, the door assembly into the vestibule shall be a fire door assembly complying with Section 716.5. The door assembly from the vestibule to the stairway shall have not less than a 20-minute fire protection rating complying with Section 716.5.

909.20.3.3 **Vestibule ventilation.** Each vestibule shall have a minimum net area of 16 square feet (1.5 m²) of opening in a wall facing an outer court, yard or public way that is not less than 20 feet (6096 mm) in width.

909.20.4 **Mechanical ventilation alternative.** The provisions of Sections 909.20.4.1 through 909.20.4.4 shall apply to ventilation of smokeproof enclosures by mechanical means.

909.20.4.1 **Vestibule doors.** The door assembly from the building into the vestibule shall be a fire door assembly complying with Section 716.5.3. The door assembly from the vestibule to the stairway or ramp shall not have less than a 20-minute fire protection rating and shall meet the requirements for a smoke door assembly in accordance with Section 716.5.3. The door shall be installed in accordance with NFPA 105.

909.20.4.2 **Vestibule ventilation.** The vestibule shall be supplied with not less than one air change per minute and the exhaust shall be not less than 150 percent of supply. Supply air shall enter and exhaust air shall discharge from the vestibule through separate, tightly constructed ducts used only for that purpose. Supply air shall enter the vestibule within 6 inches (152 mm) of the floor level. The top of the exhaust register shall be located at the top of the smoke trap but not more than 6 inches (152 mm) down from the top of the trap, and shall be entirely within the smoke trap area. Doors in the open position shall not obstruct duct openings. Duct openings with controlling dampers are permitted where necessary to meet the design requirements, but dampers are not otherwise required.

909.20.4.2.1 **Engineered ventilation system.** Where a specially
engineered system is used, the system shall exhaust a quantity of air equal to not less than 90 air changes per hour from any vestibule in the emergency operation mode and shall be sized to handle three vestibules simultaneously. Smoke detectors shall be located at the floor-side entrance to each vestibule and shall activate the system for the affected vestibule. Smoke detectors shall be installed in accordance with Section 907.3.

909.20.4.3 Smoke trap. The vestibule ceiling shall be not less than 20 inches (508 mm) higher than the door opening into the vestibule to serve as a smoke and heat trap and to provide an upward-moving air column. The height shall not be decreased unless approved and justified by design and test.

909.20.4.4 Stairway or ramp shaft air movement system. The stairway or ramp shaft shall be provided with a dampered relief opening and supplied with sufficient air to maintain a minimum positive pressure of 0.10 inch of water (25 Pa) in the shaft relative to the vestibule with all doors closed.

909.20.5 Stairway and ramp pressurization alternative. Where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, the vestibule is not required, provided each interior exit stairway or ramp is pressurized to not less than 0.10 inch of water (25 Pa) and not more than 0.35 inches of water (87 Pa) in the shaft relative to the building measured with all interior exit stairway and ramp doors closed under maximum anticipated conditions of stack effect and wind effect.

909.20.6 Ventilating equipment. The activation of ventilating equipment required by the alternatives in Sections 909.20.4 and 909.20.5 shall be by smoke detectors installed at each floor level at an approved location at the entrance to the smokeproof enclosure. When the closing device for the stairway and ramp shaft and vestibule doors is activated by smoke detection or power failure, the mechanical equipment shall activate and operate at the required performance levels. Smoke detectors shall be installed in accordance with Section 907.3.

909.20.6.1 Ventilation systems. Smokeproof enclosure ventilation systems shall be independent of other building ventilation systems. The equipment, control wiring, power wiring and ductwork shall comply with one of the following:

1. Equipment, control wiring, power wiring and ductwork shall be located exterior to the building and directly connected to the
smokeproof enclosure or connected to the smokeproof enclosure by ductwork enclosed by not less than 2-hour fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both.

2. Equipment, control wiring, power wiring and ductwork shall be located within the smokeproof enclosure with intake or exhaust directly from and to the outside or through ductwork enclosed by not less than 2-hour fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both.

3. Equipment, control wiring, power wiring and ductwork shall be located within the building if separated from the remainder of the building, including other mechanical equipment, by not less than 2-hour fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both.

Exceptions:

1. Control wiring and power wiring utilizing a 2-hour rated cable or cable system.

2. Where encased with not less than 2 inches (51 mm) of concrete.

3. Control wiring and power wiring protected by a listed electrical circuit protective system with a fire-resistance rating of not less than 2 hours.

909.20.6.2 Standby power. Mechanical vestibule and stairway and ramp shaft ventilation systems and automatic fire detection systems shall be provided with standby power in accordance with Section 2702.

909.20.6.3 Acceptance and testing. Before the mechanical equipment is approved, the system shall be tested in the presence of the building official to confirm that the system is operating in compliance with these requirements.

909.21 Elevator hoistway pressurization alternative. Where elevator hoistway pressurization is provided in lieu of required enclosed elevator lobbies, the pressurization system shall comply with Sections 909.21.1 through 909.21.11.

909.21.1 Pressurization requirements. Elevator hoistways shall be pressurized to maintain a minimum positive pressure of 0.10 inch of water (25 Pa) and a maximum positive pressure of 0.25 inch of water (67 Pa) with respect to adjacent occupied space on all floors. This pressure shall be measured at the midpoint of each hoistway door, with all elevator cars at the floor of recall and
all hoistway doors on the floor of recall open and all other hoistway doors closed. The pressure differentials shall be measured between the hoistway and the adjacent elevator landing. The opening and closing of hoistway doors at each level must be demonstrated during this test. The supply air intake shall be from an outside, uncontaminated source located a minimum distance of 20 feet (6096 mm) from any air exhaust system or outlet.

Exceptions:

1. On floors containing only Group R occupancies, the pressure differential is permitted to be measured between the hoistway and a dwelling unit or sleeping unit.
2. Where an elevator opens into a lobby enclosed in accordance with Section 3007.6 or 3008.6, the pressure differential is permitted to be measured between the hoistway and the space immediately outside the door(s) from the floor to the enclosed lobby.
3. The pressure differential is permitted to be measured relative to the outdoor atmosphere on floors other than the following:
 3.1. The fire floor.
 3.2. The two floors immediately below the fire floor.
 3.3. The floor immediately above the fire floor.
4. The minimum positive pressure of 0.10 inch of water (25 Pa) and a maximum positive pressure of 0.25 inch of water (67 Pa) with respect to occupied floors are not required at the floor of recall with the doors open.

909.21.1.1 Use of ventilation systems. Ventilation systems, other than hoistway supply air systems, are permitted to be used to exhaust air from adjacent spaces on the fire floor, two floors immediately below and one floor immediately above the fire floor to the building’s exterior where necessary to maintain positive pressure relationships as required in Section 909.21.1 during operation of the elevator shaft pressurization system.

909.21.2 Rational analysis. A rational analysis complying with Section 909.4 shall be submitted with the construction documents.

909.21.3 Ducts for system. Any duct system that is part of the pressurization system shall be protected with the same fire-resistance rating as required for the elevator shaft enclosure.

909.21.4 Fan system. The fan system provided for the pressurization system shall be as required by Sections 909.21.4.1 through 909.21.4.4.
909.21.4.1 Fire-resistance. Where located within the building, the fan system that provides the pressurization shall be protected with the same fire-resistance rating required for the elevator shaft enclosure.

909.21.4.2 Smoke detection. The fan system shall be equipped with a smoke detector that will automatically shut down the fan system when smoke is detected within the system.

909.21.4.3 Separate systems. A separate fan system shall be used for each elevator hoistway.

909.21.4.4 Fan capacity. The supply fan shall be either adjustable with a capacity of not less than 1,000 cfm (0.4719 m³/s) per door, or that specified by a registered design professional to meet the requirements of a designed pressurization system.

909.21.5 Standby power. The pressurization system shall be provided with standby power in accordance with Section 2702.

909.21.6 Activation of pressurization system. The elevator pressurization system shall be activated upon activation of either the building fire alarm system or the elevator lobby smoke detectors. Where both a building fire alarm system and elevator lobby smoke detectors are present, each shall be independently capable of activating the pressurization system.

909.21.7 Testing. Testing for performance shall be required in accordance with Section 909.18.8. System acceptance shall be in accordance with Section 909.19.

909.21.8 Marking and identification. Detection and control systems shall be marked in accordance with Section 909.14.

909.21.9 Control diagrams. Control diagrams shall be provided in accordance with Section 909.15.

909.21.10 Control panel. A control panel complying with Section 909.16 shall be provided.

909.21.11 System response time. Hoistway pressurization systems shall comply with the requirements for smoke control system response time in Section 909.17.
SECTION 910
SMOKE AND HEAT REMOVAL

910.1 General. Where required by this code, smoke and heat vents or mechanical smoke removal systems shall conform to the requirements of this section.

910.2 Where required. Smoke and heat vents or a mechanical smoke removal system shall be installed as required by Sections 910.2.1 and 910.2.2.

Exceptions:
1. Frozen food warehouses used solely for storage of Class I and II commodities where protected by an approved automatic sprinkler system.
2. Smoke and heat removal shall not be required in areas of buildings equipped with early suppression fast-response (ESFR) sprinklers.
3. Smoke and heat removal shall not be required in areas of buildings equipped with control mode special application sprinklers with a response time index of 50 (m · s)\(^{1/2}\) or less that are listed to control a fire in stored commodities with 12 or fewer sprinklers.

910.2.1 Group F-1 or S-1. Smoke and heat vents installed in accordance with Section 910.3 or a mechanical smoke removal system installed in accordance with Section 910.4 shall be installed in buildings and portions thereof used as a Group F-1 or S-1 occupancy having more than 50,000 square feet (4645 m\(^2\)) of undivided area. In occupied portions of a building equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 where the upper surface of the story is not a roof assembly, a mechanical smoke removal system in accordance with Section 910.4 shall be installed.

Exception: Group S-1 aircraft repair hangars.

910.2.2 High-piled combustible storage. Smoke and heat removal required by Table 3206.2 of the fire code for buildings and portions thereof containing high-piled combustible storage shall be installed in accordance with Section 910.3 in unsprinklered buildings. In buildings and portions thereof containing high-piled combustible storage equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, a smoke and heat removal system shall be installed in accordance with Section 910.3 or 910.4. In occupied portions of a building equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, where the upper surface of the story is not a roof assembly, a mechanical smoke removal system in accordance with Section 910.4 shall be installed.
910.3 Smoke and heat vents. The design and installation of smoke and heat vents shall be in accordance with Sections 910.3.1 through 910.3.3.

910.3.1 Listing and labeling. Smoke and heat vents shall be listed and labeled to indicate compliance with UL 793 or FM 4430.

910.3.2 Smoke and heat vent locations. Smoke and heat vents shall be located 20 feet (6096 mm) or more from adjacent lot lines and fire walls and 10 feet (3048 mm) or more from fire barriers. Vents shall be uniformly located within the roof in the areas of the building where the vents are required to be installed by Section 910.2 with consideration given to roof pitch, sprinkler location and structural members.

910.3.3 Smoke and heat vents area. The required aggregate area of smoke and heat vents shall be calculated as follows:

For buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1:

\[A_{VR} = \frac{V}{9000} \]
(Equation 9-4)

where:
- \(A_{VR} \) = The required aggregate vent area (ft\(^2\)).
- \(V \) = Volume (ft\(^3\)) of the area that requires smoke removal.

For unsprinklered buildings:

\[A_{VR} = \frac{A_{FA}}{50} \]
(Equation 9-5)

where:
- \(A_{VR} \) = The required aggregate vent area (ft\(^2\)).
- \(A_{FA} \) = The area of the floor in the area that requires smoke removal.

910.4 Mechanical smoke removal systems. Mechanical smoke removal systems shall be designed and installed in accordance with Sections 910.4.1 through 910.4.7.

910.4.1 Automatic sprinklers required. The building shall be equipped throughout with an approved automatic sprinkler system in accordance with Section 903.3.1.1.

910.4.2 Exhaust fan construction. Exhaust fans that are part of a mechanical
smoke removal system shall be rated for operation at 221°F (105°C). Exhaust fan motors shall be located outside of the exhaust fan air stream.

910.4.3 System design criteria. The mechanical smoke removal system shall be sized to exhaust the building at a minimum rate of two air changes per hour based upon the volume of the building or portion thereof without contents. The capacity of each exhaust fan shall not exceed 30,000 cubic feet per minute (14.2 m3/sec).

910.4.3.1 Makeup air. Makeup air openings shall be provided within 6 feet (1829 mm) of the floor level. Operation of makeup air openings shall be manual or automatic. The minimum gross area of makeup air inlets shall be 8 square feet per 1,000 cubic feet per minute (0.74 m2 per 0.4719 m3/s) of smoke exhaust.

910.4.4 Activation. The mechanical smoke removal system shall be activated by manual controls only.

910.4.5 Manual control location. Manual controls shall be located so as to be accessible to the fire service from an exterior door of the building and protected against interior fire exposure by not less than 1-hour fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both.

910.4.6 Control wiring. Wiring for operation and control of mechanical smoke removal systems shall be connected ahead of the main disconnect in accordance with Section 701.12E of NFPA 70 and be protected against interior fire exposure to temperatures in excess of 1,000°F (538°C) for a period of not less than 15 minutes.

910.4.7 Controls. Where building air-handling and mechanical smoke removal systems are combined or where independent building air-handling systems are provided, fans shall automatically shut down in accordance with the mechanical code. The manual controls provided for the smoke removal system shall have the capability to override the automatic shutdown of fans that are part of the smoke removal system.

910.5 Maintenance. Smoke and heat vents and mechanical smoke removal systems shall be maintained in accordance with the fire code.
FIRE COMMAND CENTER

911.1 General. Where required by other sections of this code and in buildings classified as high-rise buildings by this code, a fire command center for fire department operations shall be provided and shall comply with Sections 911.1.1 through 911.1.6.

911.1.1 Location and access. The location and accessibility of the fire command center shall be as requested by the fire official and approved by the building official with input from the fire chief.

911.1.2 Separation. The fire command center shall be separated from the remainder of the building by not less than a 1-hour fire barrier constructed in accordance with Section 707 or horizontal assembly constructed in accordance with Section 711, or both.

911.1.3 Size. The room shall be not less than 200 square feet (19 m²) with a minimum dimension of 10 feet (3048 mm).

911.1.4 Layout approval. A layout of the fire command center and all features required by this section to be contained therein shall be submitted for approval prior to installation.

911.1.5 Storage. Storage unrelated to operation of the fire command center shall be prohibited.

911.1.6 Required features. The fire command center shall comply with NFPA 72 and shall contain all of the following features:

1. The emergency voice/alarm communication system control unit.
2. The fire department communications system.
3. Fire detection and alarm system annunciator.
4. Annunciator unit visually indicating the location of the elevators and whether they are operational.
5. Status indicators and controls for air distribution systems.
6. The fire fighter’s control panel required by Section 909.16 for smoke control systems installed in the building.
7. Controls for unlocking interior exit stairway doors simultaneously.
8. Sprinkler valve and waterflow detector display panels.
9. Emergency and standby power status indicators.
10. A telephone for fire department use with controlled access to the public telephone system.
11. Fire pump status indicators.
12. Schematic building plans indicating the typical floor plan and detailing the building core, means of egress, fire protection systems, fire fighter air replenishment system, fire-fighting equipment and fire department access and the location of fire walls, fire barriers, fire partitions, smoke barriers and smoke partitions.
13. An approved Building Information Card that contains, but is not limited to, the following information:
 13.1. General building information that includes: property name, address, the number of floors in the building above and below grade, use and occupancy classification (for mixed uses, identify the different types of occupancies on each floor), and the estimated building population during the day, night and weekend.
 13.2. Building emergency contact information that includes: a list of the building’s emergency contacts including but not limited to building manager and building engineer and their respective work phone number, cell phone number, e-mail address.
 13.3. Building construction information that includes: the type of building construction including but not limited to floors, walls, columns, and roof assembly.
 13.4. Exit access and exit stairway information that includes: number of exit access and exit stairways in the building, each exit access and exit stairway designation and floors served, location where each exit access and exit stairway discharges, interior exit stairways that are pressurized, exit stairways provided with emergency lighting, each exit stairway that allows reentry, exit stairways providing roof access; elevator information that includes: number of elevator banks, elevator bank designation, elevator car numbers and respective floors that they serve; location of elevator machine rooms, control rooms and control spaces; location of sky lobby, location of freight elevator banks.
 13.5. Building services and system information that includes: location of mechanical rooms, location of building management system, location and capacity of all fuel oil tanks, location of emergency generator, location of natural gas service.
 13.6. Fire protection system information that includes: location of standpipes, location of fire pump room, location of fire department connections, floors protected by automatic sprinklers, location of different types of automatic sprinkler systems installed including, but not limited to, dry, wet and pre-action.
 13.7. Hazardous material information that includes: location of hazardous material, quantity of hazardous material.
15. Generator supervision devices, manual start and transfer features.
16. Public address system, where specifically required by other sections of this code.
17. Elevator fire recall switch in accordance with ASME A17.1 as referenced in rule 4101:5-3-01 of the Administrative Code.
18. Elevator emergency or standby power selector switch(es), where emergency or standby power is provided.

SECTION 912
FIRE DEPARTMENT CONNECTIONS

912.1 Installation. Fire department connections shall be installed in accordance with the NFPA standard applicable to the system design and shall comply with Sections 912.2 through 912.6.

Exceptions: Fire department connections are not required for:
1. Limited area sprinkler systems supplied from the domestic water system.
2. Automatic sprinkler systems having less than 20 sprinklers.

912.2 Location. With respect to hydrants, driveways, buildings and landscaping, fire department connections shall be so located that fire apparatus and hose connected to supply the system will not obstruct access to the buildings for other fire apparatus. The location of fire department connections shall be as requested by the fire official and approved by the building official with input from the fire chief.

912.2.1 Visible location. Fire department connections shall be located as requested by the fire official and approved by the building official. In the absence of input from the fire official during the plan review process outlined in Sections 106.1.2(5) and 901.2.1.1, the fire department connection shall be located on the street side of buildings, fully visible and recognizable from the street or nearest point of fire department vehicle access or as otherwise approved by the building official with input from the fire chief.

912.2.2 Existing buildings. On existing buildings, wherever the fire department connection is not visible to approaching fire apparatus, the fire department connection shall be indicated by an approved sign mounted on the street front or on the side of the building. Such sign shall have the letters “FDC” not less than 6 inches (152 mm) high and words in letters not less than 2 inches (51 mm) high or an arrow to indicate the location. Such signs shall be subject to the approval of the building official.

912.3 Fire hose threads. Fire hose threads used in connection with standpipe systems shall be as prescribed by the fire official and approved by the building official.
official with input from the fire chief and shall be compatible with fire department hose threads. Prior to issuance of the certificate of plan approval, the building official shall communicate with the local fire official to verify that the proposed threads are compatible with those currently used by the fire department.

912.4 Access. Immediate access to fire department connections shall be maintained at all times and without obstruction by fences, bushes, trees, walls or any other fixed or moveable object. Access to fire department connections shall be approved by building official with input from the fire chief official as outlined in Sections 106.1.2(5) and 901.2.1.1.

Exception: Fences, where provided with an access gate equipped with a sign complying with the legend requirements of this section and a means of emergency operation. The gate and the means of emergency operation shall be approved by the building official with input from the fire chief official as outlined in Sections 106.1.2(5) and 901.2.1.1 and maintained operational at all times.

912.4.1 Locking fire department connection caps. The building official is authorized to require locking caps on fire department connections for water-based fire protection systems where the responding fire department requests the locks and carries appropriate key wrenches for removal.

912.4.2 Clear space around connections. A working space of not less than 36 inches (762 mm) in width, 36 inches (914 mm) in depth and 78 inches (1981 mm) in height shall be provided and maintained in front of and to the sides of wall-mounted fire department connections and around the circumference of free-standing fire department connections, except as otherwise required or requested by the fire official and approved by the building official with input from the fire chief.

912.4.3 Physical protection. Where fire department connections are subject to impact by a motor vehicle, vehicle impact protection shall be provided in accordance with Section 312 of the fire code.

912.5 Signs. A metal sign with raised letters not less than 1 inch (25 mm) in size shall be mounted on all fire department connections serving automatic sprinklers, standpipes or fire pump connections. Such signs shall read: AUTOMATIC SPRINKLERS or STANDPIPES or TEST CONNECTION or a combination thereof as applicable. Where the fire department connection does not serve the entire building, a sign shall be provided indicating the portions of the building served.
912.6 **Backflow protection.** The potable water supply to automatic sprinkler and standpipe systems shall be protected against backflow as required by the *plumbing code*.

SECTION 913

FIRE PUMPS

913.1 **General.** Where provided, fire pumps shall be installed in accordance with this section and NFPA 20.

913.1.1 **Minimum suction pressure to be maintained.** When a fire pump is installed, the “Ohio Environmental Protection Agency” requires the installation of a low pressure cut-off, a low suction throttling valve, or variable speed suction limiting controls to ensure that a minimum of 10 psi is maintained in the suction line while the pump is operating (see rule 3745-95-07 of the Administrative Code).

913.2 **Protection against interruption of service.** The fire pump, driver and controller shall be protected in accordance with NFPA 20 against possible interruption of service through damage caused by explosion, fire, flood, earthquake, rodents, insects, windstorm, freezing, vandalism and other adverse conditions.

913.2.1 **Protection of fire pump rooms.** Fire pumps shall be located in rooms that are separated from all other areas of the building by 2-hour fire barriers constructed in accordance with Section 707 or 2-hour horizontal assemblies constructed in accordance with Section 711, or both.

Exceptions:
1. In other than high-rise buildings, separation by 1-hour fire barriers constructed in accordance with Section 707 or 1-hour horizontal assemblies constructed in accordance with Section 711, or both, shall be permitted in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2.
2. Separation is not required for fire pumps physically separated in accordance with NFPA 20.

913.2.2 **Circuits supplying fire pumps.** Cables used for survivability of circuits supplying fire pumps shall be listed in accordance with UL 2196. Electrical circuit protective systems shall be installed in accordance with their listing requirements.
913.3 Temperature of pump room. Suitable means shall be provided for maintaining the temperature of a pump room or pump house, where required, above 40°F (5°C).

913.3.1 Engine manufacturer’s recommendation. Temperature of the pump room, pump house or area where engines are installed shall never be less than the minimum recommended by the engine manufacturer. The engine manufacturer’s recommendations for oil heaters shall be followed.

913.4 Valve supervision. Where provided, the fire pump suction, discharge and bypass valves, and isolation valves on the backflow prevention device or assembly shall be supervised open by one of the following methods:
 1. Central-station, proprietary or remote-station signaling service.
 2. Local signaling service that will cause the sounding of an audible signal at a constantly attended location.
 3. Locking valves open.
 4. Sealing of valves and approved weekly recorded inspection where valves are located within fenced enclosures under the control of the owner.

913.4.1 Test outlet valve supervision. Fire pump test outlet valves shall be supervised, sealed, or locked in the closed position.

913.5 Acceptance test. Acceptance testing shall be done in accordance with the requirements of NFPA 20 and Section 901.5.

SECTION 914
EMERGENCY RESPONDER SAFETY FEATURES

914.1 Shaftway markings. Vertical shafts shall be identified as required by Sections 914.1.1 and 914.1.2.

914.1.1 Exterior access to shaftways. Outside openings accessible to the fire department and that open directly on a hoistway or shaftway communicating between two or more floors in a building shall be plainly marked with the word “SHAFTWAY” in red letters not less than 6 inches (152 mm) high on a white background. Such warning signs shall be placed so as to be readily discernible from the outside of the building.

914.1.2 Interior access to shaftways. Door or window openings to a hoistway or shaftway from the interior of the building shall be plainly marked with the word “SHAFTWAY” in red letters not less than 6 inches (152 mm) high on a
white background. Such warning signs shall be placed so as to be readily discernible.

Exception: Markings shall not be required on shaftway openings that are readily discernible as openings onto a shaftway by the construction or arrangement.

914.2 Equipment room identification. Fire protection equipment shall be identified in an approved manner. Rooms containing controls for air-conditioning systems, sprinkler risers and valves or other fire detection, suppression or control elements shall be identified for the use of the fire department. Approved signs required to identify fire protection equipment and equipment location shall be constructed of durable materials, permanently installed and readily visible.

SECTION 915
CARBON MONOXIDE DETECTION

915.1 General. Carbon monoxide detection shall be installed in new buildings in accordance with Sections 915.1.1 through 915.6. Carbon monoxide detection shall be installed in existing buildings in accordance with Chapter 11 of the fire code.

915.1.1 Where required. Carbon monoxide detection shall be provided in Group I-1, I-2, I-4 and R occupancies and in classrooms in Group E occupancies in the locations specified in Section 915.2 where any of the conditions in Sections 915.1.2 through 915.1.6 exist.

915.1.2 Fuel-burning appliances and fuel-burning fireplaces. Carbon monoxide detection shall be provided in dwelling units, sleeping units and classrooms that contain a fuel-burning appliance or a fuel-burning fireplace.

915.1.3 Forced-air furnaces. Carbon monoxide detection shall be provided in dwelling units, sleeping units and classrooms served by a fuel-burning, forced-air furnace.

Exception: Carbon monoxide detection shall not be required in dwelling units, sleeping units and classrooms if carbon monoxide detection is provided in the first room or area served by each main duct leaving the furnace, and the carbon monoxide alarm signals are automatically transmitted to an approved location.

915.1.4 Fuel-burning appliances outside of dwelling units, sleeping units and classrooms. Carbon monoxide detection shall be provided in dwelling units, sleeping units and classrooms located in buildings that contain fuel
burning appliances or fuel-burning fireplaces.

Exceptions:
1. Carbon monoxide detection shall not be required in dwelling units, sleeping units and classrooms where there are no communicating openings between the fuel-burning appliance or fuel-burning fireplace and the dwelling unit, sleeping unit or classroom.
2. Carbon monoxide detection shall not be required in dwelling units, sleeping units and classrooms where carbon monoxide detection is provided in one of the following locations:
 2.1. In an approved location between the fuel-burning appliance or fuel-burning fireplace and the dwelling unit, sleeping unit or classroom.
 2.2. On the ceiling of the room containing the fuel-burning appliance or fuel-burning fireplace.

915.1.5 Private garages. Carbon monoxide detection shall be provided in dwelling units, sleeping units and classrooms in buildings with attached private garages.

Exceptions:
1. Carbon monoxide detection shall not be required where there are no communicating openings between the private garage and the dwelling unit, sleeping unit or classroom.
2. Carbon monoxide detection shall not be required in dwelling units, sleeping units and classrooms located more than one story above or below a private garage.
3. Carbon monoxide detection shall not be required where the private garage connects to the building through an open-ended corridor.
4. Where carbon monoxide detection is provided in an approved location between openings to a private garage and dwelling units, sleeping units or classrooms, carbon monoxide detection shall not be required in the dwelling units, sleeping units or classrooms.

915.1.6 Exempt garages. For determining compliance with Section 915.1.5, an open parking garage complying with Section 406.5 or an enclosed parking garage complying with Section 406.6 shall not be considered a private garage.

915.2 Locations. Where required by Section 915.1.1, carbon monoxide detection shall be installed in the locations specified in Sections 915.2.1 through 915.2.3.

915.2.1 Dwelling units. Carbon monoxide detection shall be installed in dwelling units outside of each separate sleeping area in the immediate vicinity of the bedrooms. Where a fuel-burning appliance is located within a bedroom or its attached bathroom, carbon monoxide detection shall be installed within
the bedroom.

915.2.2 Sleeping units. Carbon monoxide detection shall be installed in sleeping units.

Exception: Carbon monoxide detection shall be allowed to be installed outside of each separate sleeping area in the immediate vicinity of the sleeping unit where the sleeping unit or its attached bathroom does not contain a fuel-burning appliance and is not served by a forced air furnace.

915.2.3 Group E occupancies. Carbon monoxide detection shall be installed in classrooms in Group E occupancies. Carbon monoxide alarm signals shall be automatically transmitted to an on-site location that is staffed by school personnel.

Exception: Carbon monoxide alarm signals shall not be required to be automatically transmitted to an on-site location that is staffed by school personnel in Group E occupancies with an occupant load of 30 or less.

915.3 Detection equipment. Carbon monoxide detection required by Sections 915.1 through 915.2.3 shall be provided by carbon monoxide alarms complying with Section 915.4 or carbon monoxide detection systems complying with Section 915.5.

915.4 Carbon monoxide alarms. Carbon monoxide alarms shall comply with Sections 915.4.1 through 915.4.3.

915.4.1 Power source. Carbon monoxide alarms shall receive their primary power from the building wiring where such wiring is served from a commercial source, and when primary power is interrupted, shall receive power from a battery. Wiring shall be permanent and without a disconnecting switch other than that required for overcurrent protection.

Exception: Where installed in buildings without commercial power, battery-powered carbon monoxide alarms shall be an acceptable alternative.

915.4.2 Listings. Carbon monoxide alarms shall be listed in accordance with UL 2034.

915.4.3 Combination alarms. Combination carbon monoxide/smoke alarms shall be an acceptable alternative to carbon monoxide alarms. Combination carbon monoxide/smoke alarms shall be listed in accordance with UL 2034 and UL 217.
915.5 Carbon monoxide detection systems. Carbon monoxide detection systems shall be an acceptable alternative to carbon monoxide alarms and shall comply with Sections 915.5.1 through 915.5.3.

915.5.1 General. Carbon monoxide detection systems shall comply with NFPA 720. Carbon monoxide detectors shall be listed in accordance with UL 2075.

915.5.2 Locations. Carbon monoxide detectors shall be installed in the locations specified in Section 915.2. These locations supersede the locations specified in NFPA 720.

915.5.3 Combination detectors. Combination carbon monoxide/smoke detectors installed in carbon monoxide detection systems shall be an acceptable alternative to carbon monoxide detectors, provided they are listed in accordance with UL 2075 and UL 268.

915.6 Maintenance. Carbon monoxide alarms and carbon monoxide detection systems shall be maintained in accordance with the fire code.

SECTION 916
EMERGENCY RESPONDER RADIO COVERAGE

916.1 General. Emergency responder radio coverage shall be provided in all new buildings in accordance with Section 510 of the fire code.
Effective: 8/1/2018
Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

__
Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
4101:1-10-01 Means of egress.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:1-35-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 1001
ADMINISTRATION

1001.1 General. Buildings or portions thereof shall be provided with a means of egress system as required by this chapter. The provisions of this chapter shall control the design, construction and arrangement of means of egress components required to provide an approved means of egress from structures and portions thereof. Where Chapter 11 and this chapter have provisions relating to the same content, both chapters shall apply.

1001.2 Minimum requirements. It shall be unlawful to alter a building or structure in a manner that will reduce the number of exits or the minimum width or required capacity of the means of egress to less than required by this code.

1001.3 Maintenance. Means of egress shall be maintained in accordance with the Fire code.

1001.4 Fire safety and evacuation plans. Fire safety and evacuation plans shall be provided for all occupancies and buildings where required by the fire code. Such fire safety and evacuation plans shall comply with the applicable provisions of Sections 401.2 and 404 of the fire code.

SECTION 1002
DEFINITIONS

1002.1 Definitions. The following terms are defined in Chapter 2:
 ACCESSIBLE MEANS OF EGRESS.
 AISLE.
 AISLE ACCESSWAY.
 ALTERNATING TREAD DEVICE.
 AREA OF REFUGE.
BLEACHERS.
BREAKOUT.
COMMON PATH OF EGRESS TRAVEL.
CORRIDOR.
DOOR, BALANCED.
EGRESS COURT.
EMERGENCY ESCAPE AND RESCUE OPENING.
EXIT.
EXIT ACCESS.
EXIT ACCESS DOORWAY.
EXIT ACCESS RAMP.
EXIT ACCESS STAIRWAY.
EXIT DISCHARGE.
EXIT DISCHARGE, LEVEL OF.
EXIT, HORIZONTAL.
EXIT PASSAGEWAY.
EXTERIOR EXIT RAMP.
EXTERIOR EXIT STAIRWAY.
FIRE EXIT HARDWARE.
FIXED SEATING.
FLIGHT.
FLOOR AREA, GROSS.
FLOOR AREA, NET.
FOLDING AND TELESCOPIC SEATING.
GRANDSTAND.
GUARD.
HANDRAIL.
INTERIOR EXIT RAMP.
INTERIOR EXIT STAIRWAY.
LOW ENERGY POWER-OPERATED DOOR.
MEANS OF EGRESS.
MERCHANDISE PAD.
NOSING.
OCCUPANT LOAD.
OPEN-ENDED CORRIDOR.
SECTION 1003
GENERAL MEANS OF EGRESS

1003.1 Applicability. The general requirements specified in Sections 1003 through 1015 shall apply to all three elements of the means of egress system, in addition to those specific requirements for the exit access, the exit and the exit discharge detailed elsewhere in this chapter.

1003.2 Ceiling height. The means of egress shall have a ceiling height of not less than 7 feet 6 inches (2286 mm).

Exceptions:
1. Sloped ceilings in accordance with Section 1208.2.
2. Ceilings of dwelling units and sleeping units within residential occupancies in accordance with Section 1208.2.
3. Allowable projections in accordance with Section 1003.3.
4. Stair headroom in accordance with Section 1011.3.
5. Door height in accordance with Section 1010.1.1.
6. Ramp headroom in accordance with Section 1012.5.2.
7. The clear height of floor levels in vehicular and pedestrian traffic areas of public and private parking garages in accordance with Section 406.4.1.
8. Areas above and below mezzanine floors in accordance with Section 505.2.
1003.3 **Protruding objects.** Protruding objects on circulation paths shall comply with the requirements of Sections 1003.3.1 through 1003.3.4.

1003.3.1 **Headroom.** Protruding objects are permitted to extend below the minimum ceiling height required by Section 1003.2 where a minimum headroom of 80 inches (2032 mm) is provided over any walking surface, including walks, corridors, aisles and passageways. Not more than 50 percent of the ceiling area of a means of egress shall be reduced in height by protruding objects.

 Exception: Door closers and stops shall not reduce headroom to less than 78 inches (1981 mm).

 A barrier shall be provided where the vertical clearance is less than 80 inches (2032 mm) high. The leading edge of such a barrier shall be located 27 inches (686 mm) maximum above the floor.

1003.3.2 **Post-mounted objects.** A free-standing object mounted on a post or pylon shall not overhang that post or pylon more than 4 inches (102 mm) where the lowest point of the leading edge is more than 27 inches (686 mm) and less than 80 inches (2032 mm) above the walking surface. Where a sign or other obstruction is mounted between posts or pylons and the clear distance between the posts or pylons is greater than 12 inches (305 mm), the lowest edge of such sign or obstruction shall be 27 inches (686 mm) maximum or 80 inches (2032 mm) minimum above the finished floor or ground.

 Exception: These requirements shall not apply to sloping portions of handrails between the top and bottom riser of stairs and above the ramp run.

1003.3.3 **Horizontal projections.** Objects with leading edges more than 27 inches (685 mm) and not more than 80 inches (2030 mm) above the floor shall not project horizontally more than 4 inches (102 mm) into the circulation path.

 Exception: Handrails are permitted to protrude 4 1/2 inches (114 mm) from the wall.

1003.3.4 **Clear width.** Protruding objects shall not reduce the minimum clear width of accessible routes.

1003.4 **Floor surface.** Walking surfaces of the means of egress shall have a slip-resistant surface and be securely attached.

1003.5 **Elevation change.** Where changes in elevation of less than 12 inches (305
mm) exist in the means of egress, sloped surfaces shall be used. Where the slope is greater than one unit vertical in 20 units horizontal (5-percent slope), ramps complying with Section 1012 shall be used. Where the difference in elevation is 6 inches (152 mm) or less, the ramp shall be equipped with either handrails or floor finish materials that contrast with adjacent floor finish materials.

Exceptions:

1. A single step with a maximum riser height of 7 inches (178 mm) is permitted for buildings with occupancies in Groups F, H, R-2, R-3, S and U at exterior doors not required to be accessible by Chapter 11.

2. A stair with a single riser or with two risers and a tread is permitted at locations not required to be accessible by Chapter 11 where the risers and treads comply with Section 1011.5, the minimum depth of the tread is 13 inches (330 mm) and not less than one handrail complying with Section 1014 is provided within 30 inches (762 mm) of the centerline of the normal path of egress travel on the stair.

3. A step is permitted in aisles serving seating that has a difference in elevation less than 12 inches (305 mm) at locations not required to be accessible by Chapter 11, provided that the risers and treads comply with Section 1029.13 and the aisle is provided with a handrail complying with Section 1029.15.

Throughout a story in a Group I-2 occupancy, any change in elevation in portions of the means of egress that serve nonambulatory persons shall be by means of a ramp or sloped walkway.

1003.6 Means of egress continuity. The path of egress travel along a means of egress shall not be interrupted by a building element other than a means of egress component as specified in this chapter. Obstructions shall not be placed in the minimum width or required capacity of a means of egress component except projections permitted by this chapter. The minimum width or required capacity of a means of egress system shall not be diminished along the path of egress travel.

1003.7 Elevators, escalators and moving walks. Elevators, escalators and moving walks shall not be used as a component of a required means of egress from any other part of the building.

Exception: Elevators used as an accessible means of egress in accordance with Section 1009.4.
1004.1 Design occupant load. In determining means of egress requirements, the number of occupants for whom means of egress facilities are provided shall be determined in accordance with this section.

1004.1.1 Cumulative occupant loads. Where the path of egress travel includes intervening rooms, areas or spaces, cumulative occupant loads shall be determined in accordance with this section.

1004.1.1.1 Intervening spaces or accessory areas. Where occupants egress from one or more rooms, areas or spaces through others, the design occupant load shall be the combined occupant load of interconnected accessory or intervening spaces. Design of egress path capacity shall be based on the cumulative portion of occupant loads of all rooms, areas or spaces to that point along the path of egress travel.

1004.1.1.2 Adjacent levels for mezzanines. That portion of the occupant load of a mezzanine with required egress through a room, area or space on an adjacent level shall be added to the occupant load of that room, area or space.

1004.1.1.3 Adjacent stories. Other than for the egress components designed for convergence in accordance with Section 1005.6, the occupant load from separate stories shall not be added.

1004.1.2 Areas without fixed seating. The number of occupants shall be computed at the rate of one occupant per unit of area as prescribed in Table 1004.1.2. For areas without fixed seating, the occupant load shall be not less than that number determined by dividing the floor area under consideration by the occupant load factor assigned to the function of the space as set forth in Table 1004.1.2. Where an intended function is not listed in Table 1004.1.2, the building official shall establish a function based on a listed function that most nearly resembles the intended function.

Exception: Where approved by the building official, the actual number of occupants for whom each occupied space, floor or building is designed, although less than those determined by calculation, shall be permitted to be used in the determination of the design occupant load.

1004.2 Increased occupant load. The occupant load permitted in any building, or portion thereof, is permitted to be increased from that number established for the
occupancies in Table 1004.1.2, provided that all other requirements of the code are met based on such modified number and the occupant load does not exceed one occupant per 7 square feet (0.65 m2) of occupiable floor space. Where required by the building official, an approved aisle, seating or fixed equipment diagram substantiating any increase in occupant load shall be submitted. Where required by the building official, such diagram shall be posted.

TABLE 1004.1.2
MAXIMUM FLOOR AREA ALLOWANCES PER OCCUPANT

<table>
<thead>
<tr>
<th>FUNCTION OF SPACE</th>
<th>OCCUPANT LOAD FACTOR¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessory storage areas, mechanical</td>
<td>300 gross</td>
</tr>
<tr>
<td>equipment room</td>
<td></td>
</tr>
<tr>
<td>Agricultural building</td>
<td>300 gross</td>
</tr>
<tr>
<td>Aircraft hangars</td>
<td>500 gross</td>
</tr>
<tr>
<td>Airport terminal</td>
<td></td>
</tr>
<tr>
<td>Baggage claim</td>
<td>20 gross</td>
</tr>
<tr>
<td>Baggage handling</td>
<td>300 gross</td>
</tr>
<tr>
<td>Concourse</td>
<td>100 gross</td>
</tr>
<tr>
<td>Waiting areas</td>
<td>15 gross</td>
</tr>
<tr>
<td>Assembly</td>
<td></td>
</tr>
<tr>
<td>Gaming floors (keno, slots, etc.)</td>
<td>11 gross</td>
</tr>
<tr>
<td>Exhibit gallery and museum</td>
<td>30 net</td>
</tr>
<tr>
<td>Assembly with fixed seats</td>
<td>See Section 1004.4</td>
</tr>
<tr>
<td>Assembly without fixed seats</td>
<td></td>
</tr>
<tr>
<td>Concentrated</td>
<td>7 net</td>
</tr>
<tr>
<td>(chairs only—not fixed)</td>
<td></td>
</tr>
<tr>
<td>Standing space</td>
<td>5 net</td>
</tr>
<tr>
<td>Unconcentrated (tables and chairs)</td>
<td>15 net</td>
</tr>
<tr>
<td>Bowling centers, allow 5 persons for each</td>
<td>7 net</td>
</tr>
<tr>
<td>lane including 15 feet of runway, and for</td>
<td></td>
</tr>
<tr>
<td>additional areas</td>
<td></td>
</tr>
<tr>
<td>Business areas</td>
<td>100 gross</td>
</tr>
<tr>
<td>Courtrooms—other than fixed seating areas</td>
<td>40 net</td>
</tr>
<tr>
<td>Day care</td>
<td>35 net</td>
</tr>
<tr>
<td>Dormitories</td>
<td>50 gross</td>
</tr>
<tr>
<td>Vocational Classroom area</td>
<td></td>
</tr>
<tr>
<td>Shops and other vocational room areas</td>
<td>20 net</td>
</tr>
<tr>
<td></td>
<td>50 net</td>
</tr>
<tr>
<td>Exercise rooms</td>
<td>50 gross</td>
</tr>
<tr>
<td>Group H-5 Fabrication and manufacturing areas</td>
<td>200 gross</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>Industrial areas</td>
<td>100 gross</td>
</tr>
<tr>
<td>Institutional areas</td>
<td></td>
</tr>
<tr>
<td>Inpatient treatment areas</td>
<td>240 gross</td>
</tr>
<tr>
<td>Outpatient areas</td>
<td>100 gross</td>
</tr>
<tr>
<td>Sleeping areas</td>
<td>120 gross</td>
</tr>
<tr>
<td>Kitchens, commercial</td>
<td>200 gross</td>
</tr>
<tr>
<td>Library</td>
<td></td>
</tr>
<tr>
<td>Reading rooms</td>
<td>50 net</td>
</tr>
<tr>
<td>Stack area</td>
<td>100 gross</td>
</tr>
<tr>
<td>Locker rooms</td>
<td>50 gross</td>
</tr>
<tr>
<td>Mall buildings—covered and open</td>
<td>See Section 402.8.2</td>
</tr>
<tr>
<td>Mercantile</td>
<td>60 gross</td>
</tr>
<tr>
<td>Storage, stock, shipping areas</td>
<td>300 gross</td>
</tr>
<tr>
<td>Parking garages</td>
<td>200 gross</td>
</tr>
<tr>
<td>Residential</td>
<td>200 gross</td>
</tr>
<tr>
<td>Skating rinks, swimming pools</td>
<td></td>
</tr>
<tr>
<td>Rink and pool</td>
<td>50 gross</td>
</tr>
<tr>
<td>Decks</td>
<td>15 gross</td>
</tr>
<tr>
<td>Stages and platforms</td>
<td>15 net</td>
</tr>
<tr>
<td>Warehouses</td>
<td>500 gross</td>
</tr>
</tbody>
</table>

For SI: 1 square foot = 0.0929 m², 1 foot = 304.8 mm. a. Floor area in square feet per occupant.

1004.3 Posting of occupant load. Every room or space that is an assembly occupancy shall have the occupant load of the room or space posted in a conspicuous place, near the main exit or exit access doorway from the room or space. Posted signs shall be of an approved legible permanent design and shall be maintained by the owner or the owner’s representative.

1004.4 Fixed seating. For areas having fixed seats and aisles, the occupant load shall be determined by the number of fixed seats installed therein. The occupant load for areas in which fixed seating is not installed, such as waiting spaces, shall be determined in accordance with Section 1004.1.2 and added to the number of fixed seats.

The occupant load of wheelchair spaces and the associated companion seat shall be based on one occupant for each wheelchair space and one occupant for the associated companion seat provided in accordance with Section 1108.2.3.

For areas having fixed seating without dividing arms, the occupant load shall be not less than the number of seats based on one person for each 18 inches (457 mm) of seating length.
The occupant load of seating booths shall be based on one person for each 24 inches (610 mm) of booth seat length measured at the backrest of the seating booth.

1004.5 Outdoor areas. Yards, patios, courts and similar outdoor areas accessible to and usable by the building occupants shall be provided with means of egress as required by this chapter. The occupant load of such outdoor areas shall be assigned by the building official in accordance with the anticipated use. Where outdoor areas are to be used by persons in addition to the occupants of the building, and the path of egress travel from the outdoor areas passes through the building, means of egress requirements for the building shall be based on the sum of the occupant loads of the building plus the outdoor areas.

Exceptions:
1. Outdoor areas used exclusively for service of the building need only have one means of egress.
2. Both outdoor areas associated with Group R-3 and individual dwelling units of Group R-2.

1004.6 Multiple occupancies. Where a building contains two or more occupancies, the means of egress requirements shall apply to each portion of the building based on the occupancy of that space. Where two or more occupancies utilize portions of the same means of egress system, those egress components shall meet the more stringent requirements of all occupancies that are served.

SECTION 1005
MEANS OF EGRESS SIZING

1005.1 General. All portions of the means of egress system shall be sized in accordance with this section.

Exception: Aisles and aisle access ways in rooms or spaces used for assembly purposes complying with Section 1029.

1005.2 Minimum width based on component. The minimum width, in inches (mm), of any means of egress components shall be not less than that specified for such component, elsewhere in this code.
1005.3 Required capacity based on occupant load. The required capacity, in inches (mm), of the means of egress for any room, area, space or story shall be not less than that determined in accordance with Sections 1005.3.1 and 1005.3.2:

1005.3.1 Stairways. The capacity, in inches, of means of egress stairways shall be calculated by multiplying the occupant load served by such stairways by a means of egress capacity factor of 0.3 inch (7.6 mm) per occupant. Where stairways serve more than one story, only the occupant load of each story considered individually shall be used in calculating the required capacity of the stairways serving that story.

Exceptions:
1. For other than Group H and I-2 occupancies, the capacity, in inches, of means of egress stairways shall be calculated by multiplying the occupant load served by such stairways by a means of egress capacity factor of 0.2 inch (5.1 mm) per occupant in buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2 and an emergency voice/alarm communication system in accordance with Section 907.5.2.2.

2. Facilities with smoke-protected assembly seating shall be permitted to use the capacity factors in Table 1029.6.2 indicated for stepped aisles for exit access or exit stairways where the entire path for means of egress from the seating to the exit discharge is provided with a smoke control system complying with Section 909.

3. Facilities with outdoor smoke-protected assembly seating shall be permitted to the capacity factors in Section 1029.6.3 indicated for stepped aisles for exit access or exit stairways where the entire path for means of egress from the seating to the exit discharge is open to the outdoors.

1005.3.2 Other egress components. The capacity, in inches, of means of egress components other than stairways shall be calculated by multiplying the occupant load served by such component by a means of egress capacity factor of 0.2 inch (5.1 mm) per occupant.

Exceptions:
1. For other than Group H and I-2 occupancies, the capacity, in inches, of means of egress components other than stairways shall be calculated by multiplying the occupant load served by such component by a means of egress capacity factor of 0.15 inch (3.8 mm) per occupant in buildings equipped throughout with an automatic sprinkler system.
installed in accordance with Section 903.3.1.1 or 903.3.1.2 and an emergency voice/ alarm communication system in accordance with Section 907.5.2.2.

2. Facilities with smoke-protected assembly seating shall be permitted to use the capacity factors in Table 1029.6.2 indicated for level or ramped aisles for means of egress components other than stairways where the entire path for means of egress from the seating to the exit discharge is provided with a smoke control system complying with Section 909.

3. Facilities with outdoor smoke-protected assembly seating shall be permitted to the capacity factors in Section 1029.6.3 indicated for level or ramped aisles for means of egress components other than stairways where the entire path for means of egress from the seating to the exit discharge is open to the outdoors.

1005.4 Continuity. The minimum width or required capacity of the means of egress required from any story of a building shall not be reduced along the path of egress travel until arrival at the public way.

1005.5 Distribution of minimum width and required capacity. Where more than one exit, or access to more than one exit, is required, the means of egress shall be configured such that the loss of any one exit, or access to one exit, shall not reduce the available capacity or width to less than 50 percent of the required capacity or width.

1005.6 Egress convergence. Where the means of egress from stories above and below converge at an intermediate level, the capacity of the means of egress from the point of convergence shall be not less than the largest minimum width or the sum of the required capacities for the stairways or ramps serving the two adjacent stories, whichever is larger.

1005.7 Encroachment. Encroachments into the required means of egress width shall be in accordance with the provisions of this section.

1005.7.1 Doors. Doors, when fully opened, shall not reduce the required width by more than 7 inches (178 mm). Doors in any position shall not reduce the required width by more than one-half.

Exceptions:
1. Surface-mounted latch release hardware shall be exempt from inclusion in the 7-inch maximum (178 mm) encroachment where both of the following conditions exist:
 1.1. The hardware is mounted to the side of the door facing away from the adjacent wall where the door is in the open position.
 1.2. The hardware is mounted not less than 34 inches (865 mm) nor more than 48 inches (1219 mm) above the finished floor.

2. The restrictions on door swing shall not apply to doors within individual dwelling units and sleeping units of Group R-2 occupancies and dwelling units of Group R-3 occupancies.

1005.7.2 Other projections. Handrail projections shall be in accordance with the provisions of Section 1014.8. Other nonstructural projections such as trim and similar decorative features shall be permitted to project into the required width not more than 1 1/2 inches (38 mm) on each side.

 Exception: Projections are permitted in corridors within Group I-2 Condition 1 in accordance with Section 407.4.3.

1005.7.3 Protruding objects. Protruding objects shall comply with the applicable requirements of Section 1003.3.

SECTION 1006
NUMBER OF EXITS AND EXIT ACCESS DOORWAYS

1006.1 General. The number of exits or exit access doorways required within the means of egress system shall comply with the provisions of Section 1006.2 for spaces, including mezzanines, and Section 1006.3 for stories.

1006.2 Egress from spaces. Rooms, areas or spaces, including mezzanines, within a story or basement shall be provided with the number of exits or access to exits in accordance with this section.

1006.2.1 Egress based on occupant load and common path of egress travel distance. Two exits or exit access doorways from any space shall be provided where the design occupant load or the common path of egress travel distance exceeds the values listed in Table 1006.2.1.

 Exceptions:
 1. In Group R-2 and R-3 occupancies, one means of egress is permitted within and from individual dwelling units with a
maximum occupant load of 20 where the dwelling unit is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2 and the common path of egress travel does not exceed 125 feet (38 100 mm).

2. Care suites in Group I-2 occupancies complying with Section 407.4.

1006.2.1.1 Three or more exits or exit access doorways. Three exits or exit access doorways shall be provided from any space with an occupant load of 501 to 1,000. Four exits or exit access doorways shall be provided from any space with an occupant load greater than 1,000.

1006.2.2 Egress based on use. The numbers of exits or access to exits shall be provided in the uses described in Sections 1006.2.2.1 through 1006.2.2.8.

1006.2.2.1 Boiler, incinerator and furnace rooms. Two exit access doorways are required in boiler, incinerator and furnace rooms where the area is over 500 square feet (46 m²) and any fuel-fired equipment exceeds 400,000 British thermal units (Btu) (422 000 KJ) input capacity. Where two exit access doorways are required, one is permitted to be a fixed ladder or an alternating tread device. Exit access doorways shall be separated by a horizontal distance equal to one-half the length of the maximum overall diagonal dimension of the room.

1006.2.2.2 Refrigeration machinery rooms. Machinery rooms larger than 1,000 square feet (93 m²) shall have not less than two exits or exit access doorways. Where two exit access doorways are required, one such doorway is permitted to be served by a fixed ladder or an alternating tread device. Exit access doorways shall be separated by a horizontal distance equal to one-half the maximum horizontal dimension of the room.

All portions of machinery rooms shall be within 150 feet (45 720 mm) of an exit or exit access doorway. An increase in exit access travel distance is permitted in accordance with Section 1017.1.

Doors shall swing in the direction of egress travel, regardless of the occupant load served. Doors shall be tight fitting and self-closing.

1006.2.2.3 Refrigerated rooms or spaces. Rooms or spaces having a floor area larger than 1,000 square feet (93 m²), containing a refrigerant evaporator and maintained at a temperature below 68°F (20°C), shall have access to not less than two exits or exit access doorways.
Exit access travel distance shall be determined as specified in Section 1017.1, but all portions of a refrigerated room or space shall be within 150 feet (45 720 mm) of an exit or exit access doorway where such rooms are not protected by an approved automatic sprinkler system. Egress is allowed through adjoining refrigerated rooms or spaces.
Exception: Where using refrigerants in quantities limited to the amounts based on the volume set forth in the Mechanical code.

TABLE 1006.2.1
SPACES WITH ONE EXIT OR EXIT ACCESS DOORWAY

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>MAXIMUM OCCUPANT LOAD OF SPACE</th>
<th>MAXIMUM COMMON PATH OF EGRESS TRAVEL DISTANCE (feet) Without Sprinkler System (feet)</th>
<th></th>
<th>With Sprinkler System (feet)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Occupant Load</td>
<td>OL < 30</td>
<td>OL > 30</td>
<td></td>
</tr>
<tr>
<td>A', E, M</td>
<td>49</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75<sup>a</sup></td>
</tr>
<tr>
<td>B</td>
<td>49</td>
<td>100</td>
<td>75</td>
<td>75</td>
<td>100<sup>a</sup></td>
</tr>
<tr>
<td>F</td>
<td>49</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>100<sup>a</sup></td>
</tr>
<tr>
<td>H-1, H-2, H-3</td>
<td>3</td>
<td>NP</td>
<td>NP</td>
<td>25<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>H-4, H-5</td>
<td>10</td>
<td>NP</td>
<td>NP</td>
<td>75<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>I-1, I-2<sup>d</sup>, I-4</td>
<td>10</td>
<td>NP</td>
<td>NP</td>
<td>75<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>I-3</td>
<td>10</td>
<td>NP</td>
<td>NP</td>
<td>100<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>R-1</td>
<td>10</td>
<td>NP</td>
<td>NP</td>
<td>75<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>R-2</td>
<td>10</td>
<td>NP</td>
<td>NP</td>
<td>125<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>R-3<sup>e</sup></td>
<td>10</td>
<td>NP</td>
<td>NP</td>
<td>125<sup>a, g</sup></td>
<td></td>
</tr>
<tr>
<td>R-4<sup>e</sup></td>
<td>10</td>
<td>NP</td>
<td>NP</td>
<td>125<sup>a, g</sup></td>
<td></td>
</tr>
<tr>
<td>Sf</td>
<td>29</td>
<td>100</td>
<td>75</td>
<td>100<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>49</td>
<td>100</td>
<td>75</td>
<td>75</td>
<td>75<sup>a</sup></td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.
NP = Not Permitted.
a. Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2. See Section 903 for occupancies where automatic sprinkler systems are permitted in accordance with Section 903.3.1.2.
b. Group H occupancies equipped throughout with an automatic sprinkler system in accordance with Section 903.2.5.
c. For a room or space used for assembly purposes having fixed seating, see Section 1029.8.
d. For the travel distance limitations in Group I-2, see Section 407.4.
e. The length of common path of egress travel distance in a Group R-3 occupancy located in a mixed occupancy building or within a Group R-3 or R-4 congregate living facility.
f. The length of common path of egress travel distance in a Group S-2 open parking garage shall not be more than 100 feet.
g. For the travel distance limitations in Group R-3 and R-4 equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.3, see Section 1006.2.2.6.

1006.2.2.4 Day care means of egress.
Day care facilities, rooms or spaces where care is provided for more than 10 children that are 2½ years
of age or less, shall have access to not less than two exits or exit access doorways.

1006.2.2.5 Vehicular ramps. Vehicular ramps shall not be considered as an exit access ramp unless pedestrian facilities are provided.

1006.2.2.6 Group R-3 and R-4. Where Group R-3 occupancies are permitted by Section 903.2.8 to be protected by an automatic sprinkler system installed in accordance with Section 903.3.1.3, the exit access travel distance for Group R-3 shall not be more than 125 feet. Where Group R-4 occupancies are permitted by Section 903.2.8 to be protected by an automatic sprinkler system installed in accordance with Section 903.3.1.3, the exit access travel distance for Group R-4 shall not be more than 75 feet.

1006.2.2.7 Electrical equipment workspaces. Exit access shall be provided from electrical equipment workspaces as follows:

1. Electrical workspaces with equipment rated 1200 amperes or more. Electrical workspaces having electrical equipment rated 1200 amperes or more and over 6 ft (1.8 m) wide containing overcurrent devices, switching devices or control devices shall have exit access openings provided from the required working space at each end of the working space. The exit access openings shall be at least 24 inches (610 mm) wide and 6.5 ft (2 m) high. A single exit access opening from the required working space shall be permitted where access to the opening is continuous and unobstructed or where extra working space is provided in accordance with Article 110.26 (C)(2)(b) of NFPA 70. Where an exit access doorway is provided and the door is located less than 25 ft (7.6 m) from the nearest edge of the working space, the door(s) shall be equipped with panic hardware in accordance with Section 1010.1.10.

2. Electrical workspaces with equipment rated 800 amperes or more. Where an exit access doorway(s) is provided and is located less than 25 ft (7.6 m) from the nearest edge of the working space, the door shall be equipped with panic hardware in accordance with Section 1010.1.10.

1006.2.2.8 Elevator machine rooms and control rooms. Exit access doorways shall be provided from elevator machine rooms and control
rooms when required by Section 2.7.3.4 of ASME A17.1 as referenced in rule 4101:5-3-01 of the Administrative Code.

1006.3 Egress from stories or occupied roofs. The means of egress system serving any story or occupied roof shall be provided with the number of exits or access to exits based on the aggregate occupant load served in accordance with this section. The path of egress travel to an exit shall not pass through more than one adjacent story.

Each story above the second story of a building shall have not less than one interior or exterior exit stairway, or interior or exterior exit ramp. Where three or more exits or access to exits are required, not less than 50 percent of the required exits shall be interior or exterior exit stairways or ramps.

Exceptions:

1. Interior exit stairways and interior exit ramps are not required in open parking garages where the means of egress serves only the open parking garage.

2. Interior exit stairways and interior exit ramps are not required in outdoor facilities where all portions of the means of egress are essentially open to the outside.

1006.3.1 Egress based on occupant load. Each story and occupied roof shall have the minimum number of independent exits, or access to exits, as specified in Table 1006.3.1. A single exit or access to a single exit shall be permitted in accordance with Section 1006.3.2. The required number of exits, or exit access stairways or ramps providing access to exits, from any story or occupied roof shall be maintained until arrival at the exit discharge or a public way.

<table>
<thead>
<tr>
<th>OCCUPANT LOAD PER STORY</th>
<th>MINIMUM NUMBER OF EXITS OR ACCESS TO EXITS FROM STORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-500</td>
<td>2</td>
</tr>
<tr>
<td>501-1,000</td>
<td>3</td>
</tr>
<tr>
<td>More than 1,000</td>
<td>4</td>
</tr>
</tbody>
</table>

1006.3.2 Single exits. A single exit or access to a single exit shall be permitted from any story or occupied roof where one of the following conditions exists:
1. The occupant load, number of dwelling units and exit access common path of egress travel distance do not exceed the values in Table 1006.3.2(1) or 1006.3.2(2).

2. Rooms, areas and spaces complying with Section1006.2.1 with exits that discharge directly to the exterior at the level of exit discharge, are permitted to have one exit or access to a single exit.

3. Parking garages where vehicles are mechanically parked shall be permitted to have one exit or access to a single exit.

4. Group R-3 and R-4 occupancies shall be permitted to have one exit or access to a single exit.

5. Individual single-story or multistory dwelling units shall be permitted to have a single exit or access to a single exit from the dwelling unit provided that both of the following criteria are met:
 5.1. The dwelling unit complies with Section 1006.2.1 as a space with one means of egress.
 5.2. Either the exit from the dwelling unit discharges directly to the exterior at the level of exit discharge, or the exit access outside the dwelling unit’s entrance door provides access to not less than two approved independent exits.

1006.3.2.1 Mixed occupancies. Where one exit, or exit access stairway or ramp providing access to exits at other stories, is permitted to serve individual stories, mixed occupancies shall be permitted to be served by single exits provided each individual occupancy complies with the applicable requirements of Table 1006.3.2(1) or 1006.3.2(2) for that occupancy. Where applicable, cumulative occupant loads from adjacent provisions of Section 1004.1. In each story of a mixed occupancy building, the maximum number of occupants served by a single exit shall be such that the sum of the ratios of the calculated number of occupants of the space divided by the allowable number of occupants indicated in Table 1006.3.2(2) for each occupancy does not exceed one. Where dwelling units are located on a story with other occupancies, the actual number of dwelling units divided by four plus the ratio from the other occupancy does not exceed one.

1006.3.2.2 Basements. A basement provided with one exit shall not be located more than one story below grade plane.

TABLE 1006.3.2(1)
STORIES WITH ONE EXIT OR ACCESS TO ONE EXIT FOR R-2 OCCUPANCIES

<table>
<thead>
<tr>
<th>STORY</th>
<th>OCCUPANCY</th>
<th>MAXIMUM NUMBER OF DWELLING UNITS</th>
<th>MAXIMUM COMMON PATH OF EGRESS TRAVEL DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement, first, second or third story above grade plane</td>
<td>R-2a, b</td>
<td>4 dwelling units</td>
<td>125 feet</td>
</tr>
<tr>
<td>Fourth story above grade plane and higher</td>
<td>NP</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.

NP = Not permitted. NA = Not Applicable.

a. Except as otherwise provided in Section 903.2.8, buildings classified as Group R-2 equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2 and provided with emergency escape and rescue openings in accordance with Section 1030.
b. This table is used for R-2 occupancies consisting of dwelling units. For R-2 occupancies consisting of sleeping units, use Table 1006.3.2(2).

TABLE 1006.3.2(2)

STORIES WITH ONE EXIT OR ACCESS TO ONE EXIT FOR OTHER OCCUPANCIES

<table>
<thead>
<tr>
<th>STORY</th>
<th>OCCUPANCY</th>
<th>MAXIMUM OCCUPANT LOAD PER STORY</th>
<th>MAXIMUM COMMON PATH OF EGRESS TRAVEL DISTANCE (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First story above or below grade plane</td>
<td>A, B¹, E F⁹, M, U</td>
<td>49</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>H-2, H-3</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>H-4, H-5, I, R-1, R-2a c, R-4</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Sb, d</td>
<td>29</td>
<td>75</td>
</tr>
<tr>
<td>Second story above grade plane</td>
<td>B, F, M, S⁴</td>
<td>29</td>
<td>75</td>
</tr>
<tr>
<td>Third story above grade plane and higher</td>
<td>NP</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.

NP = Not Permitted. NA = Not Applicable.

a. Except as otherwise provided in Section 903.2.8, buildings classified as Group R-2 equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2 and provided with emergency escape and rescue openings in accordance with Section 1030.
b. Group B, F and S occupancies in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 shall have a maximum exit access travel distance of 100 feet.
c. This table is used for R-2 occupancies consisting of sleeping units. For R-2 occupancies consisting of dwelling units, use Table 1006.3.2(1).
d. The length of exit access travel distance in a Group S-2 open parking garage shall be not more than 100 feet.

SECTION 1007

EXIT AND EXIT ACCESS DOORWAY CONFIGURATION
1007.1 General. Exits, exit access doorways, and exit access stairways and ramps serving spaces, including individual building stories, shall be separated in accordance with the provisions of this section.

1007.1.1 Two exits or exit access doorways. Where two exits, exit access doorways, exit access stairways or ramps, or any combination thereof, are required from any portion of the exit access, they shall be placed a distance apart equal to not less than one-half of the length of the maximum overall diagonal dimension of the building or area to be served measured in a straight line between them. Interlocking or scissor stairways shall be counted as one exit stairway.

Exceptions:
1. Where interior exit stairways or ramps are interconnected by a 1-hour fire-resistance-rated corridor conforming to the requirements of Section 1020, the required exit separation shall be measured along the shortest direct line of travel with the within the corridor.
2. Where a building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2, the separation distance shall be not less than one-third of the length of the maximum overall diagonal dimension of the area served.

1007.1.1.1 Measurement point. The separation distance required in Section 1007.1.1 shall be measured in accordance with the following:
1. The separation distance to exit or exit access doorways shall be measured to any point along the width of the doorway.
2. The separation distance to exit access stairways shall be measured to the closest riser.
3. The separation distance to exit access ramps shall be measured to the start of the ramp run.

1007.1.2 Three or more exits or exit access doorways. Where access to three or more exits is required, not less than two exit or exit access doorways shall be arranged in accordance with the provisions of Section 1007.1.1. Additional required exit or exit access doorways shall be arranged a reasonable distance apart so that if one becomes blocked, the others will be available.

1007.1.3 Remoteness of exit access stairways or ramps. Where two exit access stairways or ramps provide the required means of egress to exits at another story, the required separation distance shall be maintained for all portions of such exit access stairways or ramps.
1007.1.3.1 Three or more exit access stairways or ramps. Where more than two exit access stairways or ramps provide the required means of egress, not less than two shall be arranged in accordance with Section 1007.1.3.

SECTION 1008
MEANS OF EGRESS ILLUMINATION

1008.1 Means of egress illumination. Illumination shall be provided in the means of egress in accordance with Section 1008.2. Under emergency power, means of egress illumination shall comply with Section 1008.3.

1008.2 Illumination required. The means of egress serving a room or space shall be illuminated at all times that the room or space is occupied.

Exceptions:
1. Occupancies in Group U.
2. Aisle accessways in Group A.
3. Dwelling units and sleeping units in Groups R-1, R-2 and R-3.
4. Sleeping units of Group I occupancies.

1008.2.1 Illumination level under normal power. The means of egress illumination level shall be not less than 1 footcandle (11 lux) at the walking surface.

Exception: For auditoriums, theaters, concert or opera halls and similar assembly occupancies, the illumination at the walking surface is permitted to be reduced during performances by one of the following methods provided that the required illumination is automatically restored upon activation of a premises’ fire alarm system:
1. Externally illuminated walking surfaces shall be permitted to be illuminated to not less than 0.2 footcandle (2.15 lux).
2. Steps, landings and the sides of ramps shall be permitted to be marked with self-luminous materials in accordance with Sections 1025.2.1, 1025.2.2 and 1025.2.4 by systems listed in accordance with UL 1994.

1008.2.2 Exit discharge. In Group I-2 occupancies where two or more exits are required, on the exterior landings required by Section 1010.6.1, means of
egress illumination levels for the exit discharge shall be provided such that failure of any single lighting unit shall not reduce the illumination level on that landing to less than 1 footcandle (11 lux).

1008.3 Emergency power for illumination. The power supply for means of egress illumination shall normally be provided by the premises’ electrical supply.

1008.3.1 General. In the event of power supply failure in rooms and spaces that require two or more means of egress, an emergency electrical system shall automatically illuminate all of the following areas:

1. Aisles.
2. Corridors.
3. Exit access stairways and ramps.

1008.3.2 Buildings. In the event of power supply failure in buildings that require two or more means of egress, an emergency electrical system shall automatically illuminate all of the following areas:

1. Interior exit access stairways and ramps.
2. Interior and exterior exit stairways and ramps.
3. Exit passageways.
4. Vestibules and areas on the level of discharge used for exit discharge in accordance with Section 1028.1.
5. Exterior landings as required by Section 1010.1.6 for exit doorways that lead directly to the exit discharge.

1008.3.3 Rooms and spaces. In the event of power supply failure, an emergency electrical system shall automatically illuminate all of the following areas:

1. Electrical equipment rooms.
2. Fire command centers.
3. Fire pump rooms.
4. Generator rooms.
5. Public restrooms with an area greater than 300 square feet (27.87 m²).

1008.3.4 Duration. The emergency power system shall provide power for a duration of not less than 90 minutes and shall consist of storage batteries, unit equipment or an on-site generator. The installation of the emergency power system shall be in accordance with Section 2702.
1008.3.5 Illumination level under emergency power. Emergency lighting facilities shall be arranged to provide initial illumination that is not less than an average of 1 footcandle (11 lux) and a minimum at any point of 0.1 footcandle (1 lux) measured along the path of egress at floor level. Illumination levels shall be permitted to decline to 0.6 footcandle (6 lux) average and a minimum at any point of 0.06 footcandle (0.6 lux) at the end of the emergency lighting time duration. A maximum-to-minimum illumination uniformity ratio of 40 to 1 shall not be exceeded. In Group I-2 occupancies, failure of any single lighting unit shall not reduce the illumination level to less than 0.2 foot-candle (2.2 lux).

SECTION 1009
ACCESSIBLE MEANS OF EGRESS

1009.1 Accessible means of egress required. Accessible means of egress shall comply with this section. Accessible spaces shall be provided with not less than one accessible means of egress. Where more than one means of egress are required by Section 1006.2 or 1006.3 from any accessible space, each accessible portion of the space shall be served by not less than two accessible means of egress.

Exceptions:
1. Accessible means of egress are not required to be provided in existing buildings.
2. One accessible means of egress is required from an accessible mezzanine level in accordance with Section 1009.3, 1009.4 or 1009.5.
3. In assembly areas with ramped aisles or stepped aisles, one accessible means of egress is permitted where the common path of egress travel is accessible and meets the requirements in Section 1029.8.

1009.2 Continuity and components. Each required accessible means of egress shall be continuous to a public way and shall consist of one or more of the following components:
1. Accessible routes complying with Section 1104.
2. Interior exit stairways complying with Sections 1009.3 and 1023.
3. Exit access stairways complying with Sections 1009.3 and 1019.3 or 1019.4.
4. Exterior exit stairways complying with Sections 1009.3 and 1027 and serving levels other than the level of exit discharge.
5. Elevators complying with Section 1009.4.
6. Platform lifts complying with Section 1009.5.
7. Horizontal exits complying with Section 1026.
8. Ramps complying with Section 1012.
9. Areas of refuge complying with Section 1009.6.
10. Exterior areas for assisted rescue complying with Section 1009.7 serving exits at the level of exit discharge.

1009.2.1 Elevators required. In buildings where a required accessible floor is four or more stories above or below a level of exit discharge, not less than one required accessible means of egress shall be an elevator complying with Section 1009.4.

Exceptions:
1. In buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2, the elevator shall not be required on floors provided with a horizontal exit and located at or above the levels of exit discharge.

2. In buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2, the elevator shall not be required on floors provided with a ramp conforming to the provisions of Section 1012.

1009.3 Stairways. In order to be considered part of an accessible means of egress, a stairway between stories shall have a clear width of 48 inches (1219 mm) minimum between handrails and shall either incorporate an area of refuge within an enlarged floor-level landing or shall be accessed from an area of refuge complying with Section 1009.6. Exit access stairways that connect levels in the same story are not permitted as part of an accessible means of egress.

Exceptions:
1. Exit access stairways providing means of egress from mezzanines are permitted as part of an accessible means of egress.
2. The clear width of 48 inches (1219 mm) between handrails is not required in buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2.
3. The clear width of 48 inches (1219 mm) between handrails is not required for stairways accessed from a refuge area in conjunction with a horizontal exit.
4. Areas of refuge are not required at exit access stairways where two-way communication is provided at the elevator landing in accordance with Section 1009.8.
5. Areas of refuge are not required at stairways in buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2.

6. Areas of refuge are not required at stairways serving open parking garages.

7. Areas of refuge are not required for smoke-protected assembly seating areas complying with Section 1029.6.2.

8. Areas of refuge are not required at stairways in Group R-2 occupancies.

9. Areas of refuge are not required for stairways accessed from a refuge area in conjunction with a horizontal exit.

1009.4 Elevators. In order to be considered part of an accessible means of egress, an elevator shall comply with the emergency operation and signaling device requirements of Section 2.27 of ASME A17.1 as referenced in rule 4101:5-3-01 of the Administrative Code. Standby power shall be provided in accordance with Chapter 27 and Section 3003. The elevator shall be accessed from an area of refuge complying with Section 1009.6.

Exceptions:

1. Areas of refuge are not required at the elevator in open parking garages.

2. Areas of refuge are not required in buildings and facilities equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2.

3. Areas of refuge are not required at elevators not required to be located in a shaft in accordance with Section 712.

4. Areas of refuge are not required at elevators serving smoke-protected assembly seating areas complying with Section 1029.6.2.

5. Areas of refuge are not required for elevators accessed from a refuge area in conjunction with a horizontal exit.

1009.5 Platform lifts. Platform lifts shall be permitted to serve as part of an accessible means of egress where allowed as part of a required accessible route in Section 1109.8 except for Item 10. Standby power for the platform lift shall be provided in accordance with Chapter 27.

1009.6 Areas of refuge. Every required area of refuge shall be accessible from the space it serves by an accessible means of egress.
1009.6.1 **Travel distance.** The maximum travel distance from any accessible space to an area of refuge shall not exceed the exit access travel distance permitted for the occupancy in accordance with Section 1017.1.

1009.6.2 **Stairway or elevator access.** Every required area of refuge shall have direct access to a stairway complying with Sections 1009.3 and 1023 or an elevator complying with Section 1009.4.

1009.6.3 **Size.** Each area of refuge shall be sized to accommodate one wheelchair space of 30 inches by 48 inches (762 mm by 1219 mm) for each 200 occupants or portion thereof, based on the occupant load of the area of refuge and areas served by the area of refuge. Such wheelchair spaces shall not reduce the means of egress minimum width or required capacity. Access to any of the required wheelchair spaces in an area of refuge shall not be obstructed by more than one adjoining wheelchair space.

1009.6.4 **Separation.** Each area of refuge shall be separated from the remainder of the story by a smoke barrier complying with Section 709 or a horizontal exit complying with Section 1026. Each area of refuge shall be designed to minimize the intrusion of smoke.

Exceptions:

1. Areas of refuge located within an enclosure for interior exit stairways complying with Section 1023.
2. Areas of refuge in outdoor facilities where exit access is essentially open to the outside.

1009.6.5 **Two-way communication.** Areas of refuge shall be provided with a two-way communication system complying with Sections 1009.8.1 and 1009.8.2.

1009.7 **Exterior areas for assisted rescue.** Exterior areas for assisted rescue shall be accessed by an accessible route from the area served. Where the exit discharge does not include an accessible route from an exit located on the level of exit discharge to a public way, an exterior area of assisted rescue shall be provided on the exterior landing in accordance with Sections 1009.7.1 through 1009.7.4.

1009.7.1 **Size.** Each exterior area for assisted rescue shall be sized to accommodate wheelchair spaces in accordance with Section 1009.6.3.
1009.7.2 Separation. Exterior walls separating the exterior area of assisted rescue from the interior of the building shall have a minimum fire-resistance rating of 1 hour, rated for exposure to fire from the inside. The fire-resistance-rated exterior wall construction shall extend horizontally 10 feet (3048 mm) beyond the landing on either side of the landing or equivalent fire-resistance-rated construction is permitted to extend out perpendicular to the exterior wall 4 feet (1220 mm) minimum on the side of the landing. The fire-resistance-rated construction shall extend vertically from the ground to a point 10 feet (3048 mm) above the floor level of the area for assisted rescue or to the roof line, whichever is lower. Openings within such fire-resistance-rated exterior walls shall be protected in accordance with Section 716.

1009.7.3 Openness. The exterior area for assisted rescue shall be open to the outside air. The sides other than the separation walls shall be not less than 50 percent open, and the open area shall be distributed so as to minimize the accumulation of smoke or toxic gases.

1009.7.4 Stairways. Stairways that are part of the means of egress for the exterior area for assisted rescue shall provide a clear width of 48 inches (1220 mm) between handrails.

Exception: The clear width of 48 inches (1220 mm) between handrails is not required at stairways serving buildings equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2.

1009.8 Two-way communication. A two-way communication system complying with Sections 1009.8.1 and 1009.8.2 shall be provided at the landing serving each elevator or bank of elevators on each accessible floor that is one or more stories above or below the level of exit discharge.

Exceptions:

1. Two-way communication systems are not required at the landing serving each elevator or bank of elevators where the two-way communication system is provided within areas of refuge in accordance with Section 1009.6.5.
2. Two-way communication systems are not required on floors provided with ramps conforming to the provisions of Section 1012.
3. Two-way communication systems are not required at the landings serving only service elevators that are not designated as part of the
accessible means of egress or serve as part of the required accessible route into a facility.

4. Two-way communication systems are not required at the landings serving only freight elevators.

5. Two-way communication systems are not required at the landing serving a private residence elevator.

1009.8.1 System requirements. Two-way communication systems shall provide communication between each required location and the fire command center or a central control point location approved by the fire department. Where the central control point is not a constantly attended location, a two-way communication system shall have a timed automatic telephone dial-out capability to a monitoring location or 9-1-1. The two-way communication system shall include both audible and visible signals.

1009.8.2 Directions. Directions for the use of the two-way communication system, instructions for summoning assistance via the two-way communication system and written identification of the location shall be posted adjacent to the two-way communication system. Signage shall comply with the ICC A117.1 requirements for visual characters.

1009.9 Signage. Signage indicating special accessibility provisions shall be provided as shown:

1. Each door providing access to an area of refuge from an adjacent floor area shall be identified by a sign stating: AREA OF REFUGE.

2. Each door providing access to an exterior area for assisted rescue shall be identified by a sign stating: EXTERIOR AREA FOR ASSISTED RESCUE.

Signage shall comply with the ICC A117.1 requirements for visual characters and include the International Symbol of Accessibility. Where exit sign illumination is required by Section 1013.3, the signs shall be illuminated. Additionally, visual characters, raised character and braille signage complying with ICC A117.1 shall be located at each door to an area of refuge and exterior area for assisted rescue in accordance with Section 1013.4.

1009.10 Directional signage. Directional signage indicating the location of all other means of egress and which of those are accessible means of egress shall be provided at the following:
1. At exits serving a required accessible space but not providing an approved accessible means of egress.
2. At elevator landings.
3. Within areas of refuge.

1009.11 Instructions. In areas of refuge and exterior areas for assisted rescue, instructions on the use of the area under emergency conditions shall be posted. Signage shall comply with the ICC A117.1 requirements for visual characters. The instructions shall include all of the following:
 1. Persons able to use the exit stairway do so as soon as possible, unless they are assisting others.
 2. Information on planned availability of assistance in the use of stairs or supervised operation of elevators and how to summon such assistance.
 3. Directions for use of the two-way communication system where provided.

SECTION 1010
DOORS, GATES AND TURNSTILES

1010.1 Doors. Means of egress doors shall meet the requirements of this section. Doors serving a means of egress system shall meet the requirements of this section and Section 1022.2. Doors provided for egress purposes in numbers greater than required by this code shall meet the requirements of this section. Means of egress doors shall be readily distinguishable from the adjacent construction and finishes such that the doors are easily recognizable as doors. Mirrors or similar reflecting materials shall not be used on means of egress doors. Means of egress doors shall not be concealed by curtains, drapes, decorations or similar materials.

1010.1.1 Size of doors. The required capacity of each door opening shall be sufficient for the occupant load thereof and shall provide a minimum clear width of 32 inches (813 mm). Clear openings of doorways with swinging doors shall be measured between the face of the door and the stop, with the door open 90 degrees (1.57 rad). Where this section requires a minimum clear width of 32 inches (813 mm) and a door opening includes two door leaves without a mullion, one leaf shall provide a clear opening width of 32 inches (813 mm). The maximum width of a swinging door leaf shall be 48 inches (1219 mm) nominal. Means of egress doors in a Group I-2 occupancy used for the movement of beds shall provide a clear width not less than 41\(\frac{1}{2}\) inches (1054 mm). The height of door openings shall be not less than 80 inches (2032 mm).

Exceptions:
1. The minimum and maximum width shall not apply to door openings that are not part of the required means of egress in Group R-2 and R-3 occupancies.

2. Door openings to resident sleeping units not required to be accessible, in Group I-3 occupancies shall have a clear width of not less than 28 inches (711 mm).

3. Door openings to reach in storage closets less than 10 square feet (0.93 m²) in area shall not be limited by the minimum width.

4. Width of door leaves in revolving doors that comply with Section 1010.1.4.1 shall not be limited.

5. Door openings within a dwelling unit or sleeping unit shall be not less than 78 inches (1981 mm) in height.

6. Exterior door openings in dwelling units and sleeping units, other than the required exit door, shall be not less than 76 inches (1930 mm) in height.

7. In other than Group R-1 occupancies, the minimum widths shall not apply to interior egress doors within a dwelling unit or sleeping unit that is not required to be an Accessible unit, Type A unit or Type B unit.

8. Door openings required to be accessible within Type B units shall have a minimum clear width of 31.75 inches (806 mm).

9. Doors to walk-in freezers and coolers less than 1,000 square feet (93 m²) in area shall have a maximum width of 60 inches (1524 mm).

10. In Group R-1 dwelling units or sleeping units not required to be Accessible units, the minimum width shall not apply to doors for showers or saunas.

1010.1.1 Projections into clear width. There shall not be projections into the required clear width lower than 34 inches (864 mm) above the floor or ground. Projections into the clear opening width between 34 inches (864 mm) and 80 inches (2032 mm) above the floor or ground shall not exceed 4 inches (102 mm).

 Exception: Door closers and door stops shall be permitted to be 78 inches (1980 mm) minimum above the floor.

1010.1.2 Door swing. Egress doors shall be of the pivoted or side-hinged swinging type.

 Exceptions:
 1. Private garages, office areas, factory and storage areas with an occupant load of 10 or less.
 2. Group I-3 occupancies used as a place of detention.
3. Critical or intensive care patient rooms within suites of health care facilities.
4. Doors within or serving a single dwelling unit in Groups R-2 and R-3.
5. In other than Group H occupancies, revolving doors complying with Section 1010.1.4.1.
6. In other than Group H occupancies, special purpose horizontal sliding, accordion or folding door assemblies complying with Section 1010.1.4.3.
7. Power-operated doors in accordance with Section 1010.1.4.2.
8. Doors serving a bathroom within an individual sleeping unit in Group R-1.
9. In other than Group H occupancies, manually operated horizontal sliding doors are permitted in a means of egress from spaces with an occupant load of 10 or less.

1010.1.2.1 Direction of swing. Pivot or side-hinged swinging doors shall swing in the direction of egress travel where serving a room or area containing an occupant load of 50 or more persons or a Group H occupancy.

1010.1.3 Door opening force. The force for pushing or pulling open interior swinging egress doors, other than fire doors, shall not exceed 5 pounds (22 N). These forces do not apply to the force required to retract latch bolts or disengage other devices that hold the door in a closed position. For other swinging doors, as well as sliding and folding doors, the door latch shall release when subjected to a 15-pound (67 N) force. The door shall be set in motion when subjected to a 30-pound (133 N) force. The door shall swing to a full-open position when subjected to a 15-pound (67 N) force.

1010.1.3.1 Location of applied forces. Forces shall be applied to the latch side of the door.

1010.1.4 Special doors. Special doors and security grilles shall comply with the requirements of Sections 1010.1.4.1 through 1010.1.4.4.

1010.1.4.1 Revolving doors. Revolving doors shall comply with the following:
1. Revolving doors shall comply with BHMAA156.27 and shall be installed in accordance with the manufacturer’s instructions.
2. Each revolving door shall be capable of breakout in accordance with BHMA A156.27 and shall provide an aggregate width of not less than 36 inches (914 mm).

3. A revolving door shall not be located within 10 feet (3048 mm) of the foot or top of stairways or escalators. A dispersal area shall be provided between the stairways or escalators and the revolving doors.

4. The revolutions per minute (rpm) for a revolving door shall not exceed the maximum rpm as specified in BHMA A156.27. Manual revolving doors shall comply with Table 1010.1.4.1(1). Automatic or power-operated revolving doors shall comply with Table 1010.1.4.1(2).

5. An emergency stop switch shall be provided near each entry point of a power or automatically operated revolving door within 48 inches (1220 mm) of the door and between 24 inches (610 mm) and 48 inches (1220 mm) above the floor. The activation area of the emergency stop switch button shall be not less than 1 inch (25 mm) in diameter and shall be red.

6. Each revolving door shall have a side-hinged swinging door that complies with Section 1010.1 in the same wall and within 10 feet (3048 mm) of the revolving door.

7. Revolving doors shall not be part of an accessible route required by Section 1009 and Chapter 11.

TABLE 1010.1.4.1(1)

<table>
<thead>
<tr>
<th>REVOLVING DOOR MAXIMUM NOMINAL DIAMETER (FT-IN)</th>
<th>MAXIMUM ALLOWABLE REVOLVING DOOR SPEED (RPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-0</td>
<td>12</td>
</tr>
<tr>
<td>7-0</td>
<td>11</td>
</tr>
<tr>
<td>8-0</td>
<td>10</td>
</tr>
<tr>
<td>9-0</td>
<td>9</td>
</tr>
<tr>
<td>10-0</td>
<td>8</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

TABLE 1010.1.4.2(2)

<table>
<thead>
<tr>
<th>REVOLVING DOOR MAXIMUM NOMINAL DIAMETER (FT-IN)</th>
<th>MAXIMUM ALLOWABLE REVOLVING DOOR SPEED (RPM)</th>
</tr>
</thead>
</table>

A revolving door used as a component of a means of egress shall comply with Section 1010.1.4.1 and the following three conditions:

1. Revolving doors shall not be given credit for more than 50 percent of the minimum width or required capacity.
2. Each revolving door shall be credited with a capacity based on not more than a 50-person occupant load.
3. Each revolving door shall provide for egress in accordance with BHMA A156.27 with a breakout force of not more than 130 pounds (578 N).

A revolving door used as other than a component of a means of egress shall comply with Section 1010.1.4.1. The breakout force of a revolving door not used as a component of a means of egress shall not be more than 180 pounds (801 N).

Exception: A breakout force in excess of 180 pounds (801 N) is permitted if the collapsing force is reduced to not more than 130 pounds (578 N) when not less than one of the following conditions is satisfied:

1. There is a power failure or power is removed to the device holding the door wings in position.
2. There is an actuation of the automatic sprinkler system where such system is provided.
3. There is an actuation of a smoke detection system that is installed in accordance with Section 907 to provide...
coverage in areas within the building that are within 75 feet (22 860 mm) of the revolving doors.

4. There is an actuation of a manual control switch, in an approved location and clearly identified, that reduces the breakout force to not more than 130 pounds (578 N).

1010.1.4.2 Power-operated doors. Where means of egress doors are operated or assisted by power, the design shall be such that in the event of power failure, the door is capable of being opened manually to permit means of egress travel or closed where necessary to safeguard means of egress. The forces required to open these doors manually shall not exceed those specified in Section 1010.1.3, except that the force to set the door in motion shall not exceed 50 pounds (220 N). The door shall be capable of swinging open from any position to the full width of the opening in which such door is installed when a force is applied to the door on the side from which egress is made. Power-operated swinging doors, power-operated sliding doors and power operated folding doors shall comply with BHMA A156.10. Power-assisted swinging doors and low energy power-operated swinging doors shall comply with BHMA A156.19.

Exceptions:
1. Occupancies in Group I-3.
2. Horizontal sliding doors complying with Section 1010.1.4.3.
3. For a biparting door in the emergency breakout mode, a door leaf located within a multiple-leaf opening shall be exempt from the minimum 32-inch (813 mm) single-leaf requirement of Section 1010.1.1, provided a minimum 32-inch (813 mm) clear opening is provided when the two biparting leaves meeting in the center are broken out.

1010.1.4.3 Special purpose horizontal sliding, accordion or folding doors. In other than Group H occupancies, special purpose horizontal sliding, accordion or folding door assemblies permitted to be a component of a means of egress in accordance with Exception 6 to Section 1010.1.2 shall comply with all of the following criteria:
1. The doors shall be power operated and shall be capable of being operated manually in the event of power failure.
2. The doors shall be openable by a simple method from both sides without special knowledge or effort.
3. The force required to operate the door shall not exceed 30 pounds (133 N) to set the door in motion and 15 pounds (67 N) to close the door or open it to the minimum required width.
4. The door shall be openable with a force not to exceed 15 pounds (67 N) when a force of 250 pounds (1100 N) is applied perpendicular to the door adjacent to the operating device.

5. The door assembly shall comply with the applicable fire protection rating and, where rated, shall be self-closing or automatic closing by smoke detection in accordance with Section 716.5.9.3, shall be installed in accordance with NFPA 80 and shall comply with Section 716.

6. The door assembly shall have an integrated standby power supply.

7. The door assembly power supply shall be electrically supervised.

8. The door shall open to the minimum required width within 10 seconds after activation of the operating device.

1010.1.4.4 Security grilles. In Groups B, F, M and S, horizontal sliding or vertical security grilles are permitted at the main exit and shall be openable from the inside without the use of a key or special knowledge or effort during periods that the space is occupied. The grilles shall remain secured in the full-open position during the period of occupancy by the general public. Where two or more means of egress are required, not more than one-half of the exits or exit access doorways shall be equipped with horizontal sliding or vertical security grilles.

1010.1.5 Floor elevation. There shall be a floor or landing on each side of a door. Such floor or landing shall be at the same elevation on each side of the door. Landings shall be level except for exterior landings, which are permitted to have a slope not to exceed 0.25 unit vertical in 12 units horizontal (2-percent slope).

Exceptions:

1. Doors serving individual dwelling units in Groups R-2 and R-3 where the following apply:
 1.1. A door is permitted to open at the top step of an interior flight of stairs, provided the door does not swing over the top step.
 1.2. Screen doors and storm doors are permitted to swing over stairs or landings.

2. Exterior doors as provided for in Section 1003.5, Exception 1, and Section 1022.2, which are not on an accessible route.

3. In Group R-3 occupancies not required to be Accessible units, Type A units or Type B units, the landing at an exterior doorway shall be not more than 7 3/4 inches (197 mm) below the top of the threshold, provided the door, other than an exterior storm or screen door, does not swing over the landing.
4. In units not required to be Accessible units, Type A units or Type B units, variations in elevation due to differences in finish materials, but not more than 1/2 inch (12.7 mm).

5. Exterior decks, patios or balconies that are part of Type B dwelling units, have impervious surfaces and that are not more than 4 inches (102 mm) below the finished floor level of the adjacent interior space of the dwelling unit.

6. Doors serving equipment spaces not required to be accessible in accordance with Section 1103.2.9 and serving an occupant load of five or less shall be permitted to have a landing on one side to be not more than 7 inches (178 mm) above or below the landing on the egress side of the door.

1010.1.6 Landings at doors. Landings shall have a width not less than the width of the stairway or the door, whichever is greater. Doors in the fully open position shall not reduce a required dimension by more than 7 inches (178 mm). Where a landing serves an occupant load of 50 or more, doors in any position shall not reduce the landing to less than one-half its required width. Landings shall have a length measured in the direction of travel of not less than 44 inches (1118 mm).

Exception: Landing length in the direction of travel in Groups R-3 and U and within individual units of Group R-2 need not exceed 36 inches (914 mm) when the units are not required to be Accessible units or Type A units.

1010.1.7 Thresholds. Thresholds at doorways shall not exceed 3/4 inch (19.1 mm) in height above the finished floor or landing for sliding doors serving dwelling units or 1/2 inch (12.7 mm) above the finished floor or landing for other doors. Raised thresholds and floor level changes greater than 1/4 inch (6.4 mm) at doorways shall be beveled with a slope not greater than one unit vertical in two units horizontal (50-percent slope).

Exceptions:
1. In occupancy Group R-2 or R-3, threshold heights for sliding and side-hinged exterior doors shall be permitted to be up to 7 3/4 inches (197 mm) in height if all of the following apply:
 1.1. The door is not part of the required means of egress.
 1.2. The door is not part of an accessible route as required by Chapter 11.
 1.3. The door is not part of an Accessible unit, Type A unit or Type B unit.

2. In Type B units, where Exception 5 to Section 1010.1.5 permits a 4-
inch (102 mm) elevation change at the door, the threshold height on the exterior side of the door shall not exceed \(4\frac{3}{4}\) inches (120 mm) in height above the exterior deck, patio or balcony for sliding doors or \(4\frac{1}{2}\) inches (114 mm) above the exterior deck, patio or balcony for other doors.

1010.1.8 Door arrangement. Space between two doors in a series shall be 48 inches (1219 mm) minimum plus the width of a door swinging into the space. Doors in a series shall swing either in the same direction or away from the space between the doors.

Exceptions:
1. The minimum distance between horizontal sliding power-operated doors in a series shall be 48 inches (1219 mm).
2. Storm and screen doors serving individual dwelling units in Groups R-2 and R-3 need not be spaced 48 inches (1219 mm) from the other door.
3. Doors within individual dwelling units in Groups R-2 and R-3 other than within Type A dwelling units.

1010.1.9 Door operations. Except as specifically permitted by this section, egress doors shall be readily openable from the egress side without the use of a key or special knowledge or effort.

1010.1.9.1 Hardware. Door handles, pulls, latches, locks and other operating devices on doors required to be accessible by Chapter 11 shall not require tight grasping, tight pinching or twisting of the wrist to operate.

Exception: Non-fixed portions of door or gate hardware, including keys, access cards and temporary door locking devices.

1010.1.9.2 Hardware height. Door handles, pulls, latches, locks and other operating devices shall be installed 34 inches (864 mm) minimum and 48 inches (1219 mm) maximum above the finished floor. Locks used only for security purposes and not used for normal operation are permitted at any height.

Exception: Access doors or gates in barrier walls and fences protecting pools, spas and hot tubs shall be permitted to have operable parts of the release of latch on self-latching devices at 54 inches (1370 mm) maximum above the finished floor or ground, provided the self-latching devices are not also self locking devices operated by means of a key, electronic opener or integral combination lock.
1010.1.9.3 **Locks and latches.** Locks and latches shall be permitted to prevent operation of doors where any of the following exist:

1. Places of detention or restraint.
2. In buildings in occupancy Group A having an occupant load of 300 or less, Groups B, F, M and S, and in places of religious worship, the main door or doors are permitted to be equipped with key-operated locking devices from the egress side provided:
 2.1. The locking device is readily distinguishable as locked.
 2.2. A readily visible durable sign is posted on the egress side on or adjacent to the door stating: THIS DOOR TO REMAIN UNLOCKED WHEN THIS SPACE IS OCCUPIED. The sign shall be in letters 1 inch (25 mm) high on a contrasting background.
 2.3. The use of the key-operated locking device is revocable by the building official for due cause.
3. Where egress doors are used in pairs, approved automatic flush bolts shall be permitted to be used, provided that the door leaf having the automatic flush bolts does not have a doorknob or surface-mounted hardware.
4. Doors from individual dwelling or sleeping units of Group R occupancies having an occupant load of 10 or less are permitted to be equipped with a night latch, dead bolt or security chain, provided such devices are operable from the inside without the use of a key or tool.
5. Fire doors after the minimum elevated temperature has disabled the unlatching mechanism in accordance with listed fire door test procedures.
6. *Temporary door locking device used in accordance with section 1010.4.*

1010.1.9.4 **Bolt locks.** Manually operated flush bolts or surface bolts are not permitted.

Exceptions:

1. On doors not required for egress in individual dwelling units or sleeping units.
2. Where a pair of doors serves a storage or equipment room, manually operated edge- or surface-mounted bolts are permitted on the inactive leaf.
3. Where a pair of doors serves an occupant load of less than 50 persons in a Group B, F or S occupancy, manually operated edge- or surface-mounted bolts are permitted on the inactive leaf. The
inactive leaf shall not contain doorknobs, panic bars or similar operating hardware.

4. Where a pair of doors serves a Group B, F or Occupancy, manually operated edge- or surface-mounted bolts are permitted on the inactive leaf provided such inactive leaf is not needed to meet egress capacity requirements and the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1. The inactive leaf shall not contain doorknobs, panic bars or similar operating hardware.

5. Where a pair of doors serves patient care rooms in Group I-2 occupancies, self-latching edge- or surface-mounted bolts are permitted on the inactive leaf provided that the inactive leaf is not needed to meet egress capacity requirements and the inactive leaf shall not contain doorknobs, panic bars or similar operating hardware.

1010.1.9.5 Unlatching. The unlatching of any door or leaf shall not require more than one operation.

Exceptions:
1. Places of detention or restraint.
2. Where manually operated bolt locks are permitted by Section 1010.1.9.4.
3. Doors with automatic flush bolts as permitted by Section 1010.1.9.3, Item 3.
4. Doors from individual dwelling units and sleeping units of Group R occupancies as permitted by Section 1010.1.9.3, Item 4.
5. Temporary door locking device used in accordance with section 1010.4.

1010.1.9.5.1 Closet and bathroom doors in Group R-4 occupancies.
In Group R-4 occupancies, closet doors that latch in the closed position shall be openable from inside the closet, and bathroom doors that latch in the closed position shall be capable of being unlocked from the ingress side.

1010.1.9.6 Controlled egress doors in Groups I-1 and I-2. Electric locking systems, including electromechanical locking systems and electromagnetic locking systems, shall be permitted to be locked in the means of egress in Group I-1 or I-2 occupancies where the clinical needs of persons receiving care require their containment. Controlled egress doors shall be permitted in such occupancies where the building is
equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or an approved automatic smoke or heat detection system installed throughout the locked space in accordance with Section 907, provided that the doors are installed and operate in accordance with all of the following:

1. The door locks shall unlock on actuation of the automatic sprinkler system or automatic fire detection system.
2. The door locks shall unlock on loss of power controlling the lock or lock mechanism.
3. The door locking system shall be installed to have the capability of being unlocked by a switch located at the fire command center, a nursing station or other approved location. The switch shall directly break power to the lock.
4. A building occupant shall not be required to pass through more than one door equipped with a controlled egress locking system before entering an exit.
5. The procedures for unlocking the doors shall be described and approved as part of the emergency planning and preparedness required by Chapter 4 of the Fire code.
6. All clinical staff shall have the keys, codes or other means necessary to operate the locking systems.
7. Emergency lighting shall be provided at the door.
8. The door locking system units shall be listed in accordance with UL 294.

Exceptions:

1. Items 1 through 4 shall not apply to doors to areas occupied by persons who, because of clinical needs, require restraint or containment as part of the function of a psychiatric treatment area.
2. Items 1 through 4 shall not apply to doors to areas where a listed egress control system is utilized to reduce the risk of child abduction from nursery and obstetric areas of a Group I2 hospital.

1010.1.9.7 Delayed egress. Delayed egress locking systems shall be permitted to be installed on doors serving any occupancy except Group A, E and H in buildings that are equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or an approved automatic smoke or heat detection system installed in accordance with Section 907. The locking system shall be installed and operated in accordance with all of the following:
1. The delay electronics of the delayed egress locking system shall deactivate upon actuation of the automatic sprinkler system or automatic fire detection system, allowing immediate, free egress.

2. The delay electronics of the delayed egress locking system shall deactivate upon loss of power controlling the lock or lock mechanism, allowing immediate free egress.

3. The delayed egress locking system shall have the capability of being deactivated at the fire command center and other approved locations.

4. An attempt to egress shall initiate an irreversible process that shall allow such egress in not more than 15 seconds when a physical effort to exit is applied to the egress side door hardware for not more than 3 seconds. Initiation of the irreversible process shall activate an audible signal in the vicinity of the door. Once the delay electronics have been deactivated, rearming the delay electronics shall be by manual means only.

 Exception: Where approved, a delay of not more than 30 seconds is permitted on a delayed egress door.

5. The egress path from any point shall not pass through more than one delayed egress locking system.

 Exception: In Group I-2 or I-3 occupancies, the egress path from any point in the building shall pass through not more than two delayed egress locking systems provided the combined delay does not exceed 30 seconds.

6. A sign shall be provided on the door and shall be located above and within 12 inches (305 mm) of the door exit hardware:

 6.1. For doors that swing in the direction of egress, the sign shall read: **PUSH UNTIL ALARM SOUNDS. DOOR CAN BE OPENED IN 15 [30] SECONDS.**

 6.2. For doors that swing in the opposite direction of egress, the sign shall read: **PULL UNTIL ALARM SOUNDS. DOOR CAN BE OPENED IN 15 [30] SECONDS.**

 6.3. The sign shall comply with the visual character requirements in ICC A117.1.

 Exception: Where approved, in Group I occupancies, the installation of a sign is not required where care recipients who because of clinical needs require restraint or containment as part of the function of the treatment area.

7. Emergency lighting shall be provided on the egress side of the door.
8. The delayed egress locking system units shall be listed in accordance with UL 294.

9. **The procedures for the operation(s) of the unlocking system shall be described and approved as part of the emergency planning and preparedness required by Chapter 4 of the fire code.**

10. **All clinical staff shall have the keys, codes or other means necessary to operate the locking devices.**

 Exception: In Group I-2 occupancies, items 1 through 3 shall not apply to doors to areas where persons, because of clinical needs, require restraint or containment as part of the function of a mental hospital.

1010.1.9.8 Sensor release of electrically locked egress doors. The electric locks on sensor released doors located in a means of egress in buildings with an occupancy in Group A, B, E, I-1, I-2, I-4, M, R-1 or R2 and entrance doors to tenant spaces in occupancies in Group A, B, E, I-1, I-2, I-4, M, R-1 or R-2 are permitted where installed and operated in accordance with all of the following criteria:

1. The sensor shall be installed on the egress side, arranged to detect an occupant approaching the doors. The doors shall be arranged to unlock by a signal from or loss of power to the sensor.

2. Loss of power to the lock or locking system shall automatically unlock the doors.

3. The doors shall be arranged to unlock from a manual unlocking device located 40 inches to 48 inches (1016 mm to 1219 mm) vertically above the floor and within 5 feet (1524 mm) of the secured doors. Ready access shall be provided to the manual unlocking device and the device shall be clearly identified by a sign that reads “PUSH TO EXIT.” When operated, the manual unlocking device shall result in direct interruption of power to the lock—indeed independent of other electronics—and the doors shall remain unlocked for not less than 30 seconds.

4. Activation of the building fire alarm system, where provided, shall automatically unlock the doors, and the doors shall remain unlocked until the fire alarm system has been reset.

5. Activation of the building automatic sprinkler system or fire detection system, where provided, shall automatically unlock the doors. The doors shall remain unlocked until the fire alarm system has been reset.

6. The door locking system units shall be listed in accordance with UL 294.
1010.1.9.9 Electromagnetically locked egress doors. Doors in the means of egress in buildings with an occupancy in Group A, B, E, I-1, I-2, I-4, M, R-1 or R-2 and doors to tenant spaces in Group A, B, E, I-1, I-2, I-4, M, R-1 or R-2 shall be permitted to be locked with an electromagnetic locking system where equipped with hardware that incorporates a built-in switch and where installed and operated in accordance with all of the following:

1. The hardware that is affixed to the door leaf has an obvious method of operation that is readily operated under all lighting conditions.
2. The hardware is capable of being operated with one hand.
3. Operation of the hardware directly interrupts the power to the electromagnetic lock and unlocks the door immediately.
4. Loss of power to the locking system automatically unlocks the door.
5. Where panic or fire exit hardware is required by Section 1010.1.10, operation of the panic or fire exit hardware also releases the electromagnetic lock.
6. The locking system units shall be listed in accordance with UL 294.

1010.1.9.10 Locking arrangements in correctional facilities. In occupancies in Groups A-2, A-3, A-4, B, E, F, I-2, I-3, M and S within correctional and detention facilities, doors in means of egress serving rooms or spaces occupied by persons whose movements are controlled for security reasons shall be permitted to be locked where equipped with egress control devices that shall unlock manually and by not less than one of the following means:

1. Activation of an automatic sprinkler system installed in accordance with Section 903.3.1.1.
2. Activation of an approved manual fire alarm box.
3. A signal from a constantly attended location.

1010.1.9.11 Stairway doors. Interior stairway means of egress doors shall be openable from both sides without the use of a key or special knowledge or effort.

Exceptions:
1. Stairway discharge doors shall be openable from the egress side and shall only be locked from the opposite side.

2. This section shall not apply to doors arranged in accordance with Section 403.5.3.

3. In stairways serving not more than four stories, doors are permitted to be locked from the side opposite the egress side, provided they are openable from the egress side and capable of being unlocked simultaneously without unlatching upon a signal from the fire command center, if present, or a signal by emergency personnel from a single location inside the main entrance to the building.

4. Stairway exit doors shall be openable from the egress side and shall only be locked from the opposite side in Group B, F, M and S occupancies where the only interior access to the tenant space is from a single exit stairway where permitted in Section 1006.3.2.

5. Stairway exit doors shall be openable from the egress side and shall only be locked from the opposite side in Group R-2 occupancies where the only interior access to the dwelling unit is from a single exit stairway where permitted in Section 1006.3.2.

1010.1.10 Panic and fire exit hardware. Doors serving a Group H occupancy and doors serving rooms or spaces with an occupant load of 50 or more in a Group A or E occupancy shall not be provided with a latch or lock other than panic hardware or fire exit hardware.

Exceptions:

1. A main exit of a Group A occupancy shall be permitted to be locking in accordance with Section 1010.1.9.3, Item 2.

2. Doors serving a Group A or E occupancy shall be permitted to be electromagnetically locked in accordance with Section 1010.1.9.9.

Where an exit access doorway is provided from an electrical equipment workspace, the door shall be equipped with panic hardware or fire exit hardware as required in Articles 110.26(C)(3), 110.31(A)(4), and 110.33(A)(3) of NFPA 70.

1010.1.10.1 Installation. Where panic or fire exit hardware is installed, it shall comply with the following:

1. Panic hardware shall be listed in accordance with UL 305.
2. Fire exit hardware shall be listed in accordance with UL 10C and UL 305.
3. The actuating portion of the releasing device shall extend not less than one-half of the door leaf width.
4. The maximum unlatching force shall not exceed 15 pounds (67 N).

1010.10.2 Balanced doors. If balanced doors are used and panic hardware is required, the panic hardware shall be the push-pad type and the pad shall not extend more than one-half the width of the door measured from the latch side.

1010.2 Gates. Gates serving the means of egress system shall comply with the requirements of this section. Gates used as a component in a means of egress shall conform to the applicable requirements for doors.

Exception: Horizontal sliding or swinging gates exceeding the 4-foot (1219 mm) maximum leaf width limitation are permitted in fences and walls surrounding a stadium.

1010.2.1 Stadiums. Panic hardware is not required on gates surrounding stadiums where such gates are under constant immediate supervision while the public is present, and where safe dispersal areas based on 3 square feet (0.28 m²) per occupant are located between the fence and enclosed space. Such required safe dispersal areas shall not be located less than 50 feet (15 240 mm) from the enclosed space. See Section 1028.5 for means of egress from safe dispersal areas.

1010.3 Turnstiles. Turnstiles or similar devices that restrict travel to one direction shall not be placed so as to obstruct any required means of egress.

Exception: Each turnstile or similar device shall be credited with a capacity based on not more than a 50-person occupant load where all of the following provisions are met:
1. Each device shall turn free in the direction of egress travel when primary power is lost and on the manual release by an employee in the area.
2. Such devices are not given credit for more than 50 percent of the required egress capacity or width.
3. Each device is not more than 39 inches (991 mm) high.
4. Each device has not less than 16 1/2 inches (419 mm) clear width at and below a height of 39 inches (991 mm) and not less than 22 inches (559 mm) clear width at heights above 39 inches (991 mm).

Where located as part of an accessible route, turnstiles shall have not less than 36 inches (914 mm) clear at and below a height of 34 inches (864 mm).
mm), not less than 32 inches (813 mm) clear width between 34 inches (864 mm) and 80 inches (2032 mm) and shall consist of a mechanism other than a revolving device.

1010.3.1 High turnstile. Turnstiles more than 39 inches (991 mm) high shall meet the requirements for revolving doors.

1010.3.2 Additional door. Where serving an occupant load greater than 300, each turnstile that is not portable shall have a side-hinged swinging door that conforms to Section 1010.1 within 50 feet (15 240 mm).

1010.4. Temporary door locking device in school buildings. A temporary door locking device shall be permitted when approved by the building official and noted on the certificate of occupancy only in school buildings where the requirements of sections 1010.4.1 and 1010.4.2 are met.

1010.4.1 Conditions of use. A temporary door locking device shall only be used on doors under the following conditions:

1. Proof is provided by the administrative authority of a school building that a school safety plan has been adopted and filed pursuant to section 3313.536 of the Revised Code; and
2. The temporary door locking device shall only be used in an emergency situation and during active shooter drills; and
3. The temporary door locking device is engaged only by a staff member of the school building; and
4. The temporary door locking device shall only be engaged for a finite period of time as determined by the administrative authority of a school building in accordance with the school safety plan adopted pursuant to section 3313.536 of the Revised Code; and
5. Proof is provided by the administrative authority of a school building that police and fire officials having jurisdiction for the school building have been notified prior to the use of the temporary door locking device; and
6. In-service training on the use of the temporary door locking device is provided for school staff members and records verifying this training shall be maintained on file and provided to the fire official upon request.

1010.4.2 Operational requirements. The temporary door locking device shall be permitted to be used in accordance with the following items:

1. The temporary door locking device shall not be permanently
mounted to the door.

Exception: Individual parts of the temporary door locking device assembly such as bolts, stops, brackets, pins, etc. that do not prevent normal ingress and egress through the door may be permanently mounted provided that when such parts are mounted on a labeled fire door assembly such installation does not affect the fire rating of the fire door assembly.

2. The removal of the temporary door locking device, after it is engaged, shall not require more than one operation.

Exception: Two operations may be permitted to remove a temporary door locking device, after it is engaged, if the school building is equipped throughout with an automatic sprinkler system in accordance with section 903.3.1.1.

Provisions of the “Americans with Disabilities Act of 1990,” 104 Stat. 327, 42 U.S.C.A. 12101, as amended, may apply to the use of the temporary door locking device but are outside the scope of this code.

SECTION 1011
STAIRWAYS

1011.1 General. Stairways serving occupied portions of a building shall comply with the requirements of Sections 1011.2 through 1011.13. Alternating tread devices shall comply with Section 1011.14. Ships ladders shall comply with Section 1011.15. Ladders shall comply with Section 1011.16.

Exception: Within rooms or spaces used for assembly purposes, stepped aisles shall comply with Section 1029.

1011.2 Width and capacity. The required capacity of stairways shall be determined as specified in Section 1005.1, but the minimum width shall be not less than 44 inches (1118 mm). See Section 1009.3 for accessible means of egress stairways.

Exceptions:
1. Stairways serving an occupant load of less than 50 shall have a width of not less than 36 inches (914 mm).
2. Spiral stairways as provided for in Section 1011.10.
3. Where an incline platform lift or stairway chairlift is installed on stairways serving occupancies in Group R-3, or within dwelling units in occupancies in Group R-2, a clear passage width not less than 20 inches (508 mm) shall be provided. Where the seat and platform can be folded when not in use, the distance shall be measured from the folded position.
1011.3 Headroom. Stairways shall have a headroom clearance of not less than 80 inches (2032 mm) measured vertically from a line connecting the edge of the nosings. Such headroom shall be continuous above the stairway to the point where the line intersects the landing below, one tread depth beyond the bottom riser. The minimum clearance shall be maintained the full width of the stairway and landing.

Exceptions:
1. Spiral stairways complying with Section 1011.10 are permitted a 78-inch (1981 mm) headroom clearance.
2. In Group R-3 occupancies; within dwelling units in Group R-2 occupancies; and in Group U occupancies that are accessory to a Group R-3 occupancy or accessory to individual dwelling units in Group R-2 occupancies; where the nosings of treads at the side of a flight extend under the edge of a floor opening through which the stair passes, the floor opening shall be allowed to project horizontally into the required headroom not more than $4\frac{3}{4}$ inches (121 mm).

1011.4 Walkline. The walkline across winder treads shall be concentric to the direction of travel through the turn and located 12 inches (305 mm) from the side where the winders are narrower. The 12-inch (305 mm) dimension shall be measured from the widest point of the clear stair width at the walking surface of the winder. Where winders are adjacent within the flight, the point of the widest clear stair width of the adjacent winders shall be used.

1011.5 Stair treads and risers. Stair treads and risers shall comply with Sections 1011.5.1 through 1011.5.5.3.

1011.5.1 Dimension reference surfaces. For the purpose of this section, all dimensions are exclusive of carpets, rugs or runners.

1011.5.2 Riser height and tread depth. Stair riser heights shall be 7 inches (178 mm) maximum and 4 inches (102 mm) minimum. The riser height shall be measured vertically between the nosings of adjacent treads. Rectangular tread depths shall be 11 inches (279 mm) minimum measured horizontally between the vertical planes of the foremost projection of adjacent treads and at a right angle to the tread’s nosing. Winder treads shall have a minimum tread depth of 11 inches (279 mm) between the vertical planes of the foremost projection of adjacent treads at the intersections with the walkline and a minimum tread depth of 10 inches (254 mm) within the clear width of the stair.
Exceptions:
1. Spiral stairways in accordance with Section 1011.10.
2. Stairways connecting stepped aisles to cross aisles or concourses shall be permitted to use the riser/tread dimension in Section 1029.13.2.
3. In Group R-3 occupancies; within dwelling units in Group R-2 occupancies; and in Group U occupancies that are accessory to a Group R-3 occupancy or accessory to individual dwelling units in Group R-2 occupancies; the maximum riser height shall be 7 3/4 inches (197 mm); the minimum tread depth shall be 10 inches (254 mm); the minimum winder tread depth at the walkline shall be 10 inches (254 mm); and the minimum winder tread depth shall be 6 inches (152 mm). A nosing projection not less than 3/4 inch (19.1 mm) but not more than 1 1/4 inches (32 mm) shall be provided on stairways with solid risers where the tread depth is less than 11 inches (279 mm).
4. See Sections 3404 and 3411.6 for the replacement of existing stairways.
5. In Group I-3 facilities, stairways providing access to guard towers, observation stations and control rooms, not more than 250 square feet (23 m²) in area, shall be permitted to have a maximum riser height of 8 inches (203 mm) and a minimum tread depth of 9 inches (229 mm).

1011.5.3 Winder treads. Winder treads are not permitted in means of egress stairways except within a dwelling unit. Exceptions:
1. Curved stairways in accordance with Section 1011.9.
2. Spiral stairways in accordance with Section 1011.10.

1011.5.4 Dimensional uniformity. Stair treads and risers shall be of uniform size and shape. The tolerance between the largest and smallest riser height or between the largest and smallest tread depth shall not exceed 3/8 inch (9.5 mm) in any flight of stairs. The greatest winder tread depth at the walkline within any flight of stairs shall not exceed the smallest by more than 3/8 inch (9.5 mm).

Exceptions:
1. Stairways connecting stepped aisles to cross aisles or concourses shall be permitted to comply with the dimensional no uniformity in Section 1029.13.2.
2. Consistently shaped winders, complying with Section 1011.5, differing from rectangular treads in the same flight of stairs.
3. Non uniform riser dimension complying with Section 1011.5.4.1.

1011.5.4.1 Non uniform height risers. Where the bottom or top riser
adjoins a sloping public way, walkway or driveway having an established
grade and serving as a landing, the bottom or top riser is permitted to be
reduced along the slope to less than 4 inches (102 mm) in height, with the
variation in height of the bottom or top riser not to exceed one unit vertical
in 12 units horizontal (8-percent slope) of stair width. The nosings or
leading edges of treads at such nonuniform height risers shall have a
distinctive marking stripe, different from any other nosing marking
provided on the stair flight. The distinctive marking stripe shall be visible
in descent of the stair and shall have a slip-resistant surface. Marking
stripes shall have a width of not less than 1 inch (25 mm) but not more
than 2 inches (51 mm).

1011.5.5 Nosing and riser profile. Nosings shall have a curvature or bevel of
not less than $\frac{1}{16}$ inch (1.6 mm) but not more than $\frac{9}{16}$ inch (14.3 mm) from the
foremost projection of the tread. Risers shall be solid and vertical or sloped
under the tread above from the underside of the nosing above at an angle not
more than 30 degrees (0.52 rad) from the vertical.

1011.5.5.1 Nosing projection size. The leading edge (nosings) of
treads shall project not more than $1\frac{1}{4}$ inches (32 mm) beyond the tread
below.

1011.5.5.2 Nosing projection uniformity. Nosing projections of the
leading edges shall be of uniform size, including the projections of the
nosing’s leading edge of the floor at the top of a flight.

1011.5.5.3 Solid risers. Risers shall be solid.

Exceptions:
1. Solid risers are not required for stairways that are not required
to comply with Section 1009.3, provided that the opening
between treads does not permit the passage of a sphere with a
diameter of 4 inches (102 mm).
2. Solid risers are not required for occupancies in Group I-3 or in
Group F, H and S occupancies other than areas accessible to
the public. There are no restrictions on the size of the opening
in the riser.
3. Solid risers are not required for spiral stairways constructed in
accordance with Section 1011.10.

1011.6 Stairway landings. There shall be a floor or landing at the top and bottom
of each stairway. The width of landings shall be not less than the width of
stairways served. Every landing shall have a minimum width measured perpendicular to the direction of travel equal to the width of the stairway. Where the stairway has a straight run the depth need not exceed 48 inches (1219 mm). Doors opening onto a landing shall not reduce the landing to less than one-half the required width. When fully open, the door shall not project more than 7 inches (178 mm) into a landing. Where wheelchair spaces are required on the stairway landing in accordance with Section 1009.6.3, the wheelchair space shall not be located in the required width of the landing and doors shall not swing over the wheelchair spaces.

Exception: Where stairways connect stepped aisles to cross aisles or concourses, stairway landings are not required at the transition between stairways and stepped aisles constructed in accordance with Section 1029.

1011.7 Stairway construction. Stairways shall be built of materials consistent with the types permitted for the type of construction of the building, except that wood handrails shall be permitted for all types of construction.

1011.7.1 Stairway walking surface. The walking surface of treads and landings of a stairway shall not be sloped steeper than one unit vertical in 48 units horizontal (2-percent slope) in any direction. Stairway treads and landings shall have a solid surface. Finish floor surfaces shall be securely attached.

Exceptions:
1. Openings in stair walking surfaces shall be a size that does not permit the passage of 1/2-inch-diameter (12.7 mm) sphere. Elongated openings shall be placed so that the long dimension is perpendicular to the direction of travel.
2. In Group F, H and S occupancies, other than areas of parking structures accessible to the public, openings in treads and landings shall not be prohibited provided a sphere with a diameter of 1 1/8 inches (29 mm) cannot pass through the opening.

1011.7.2 Outdoor conditions. Outdoor stairways and outdoor approaches to stairways shall be designed so that water will not accumulate on walking surfaces.

1011.7.3 Enclosures under interior stairways. The walls and soffits within enclosed usable spaces under enclosed and unenclosed stairways shall be protected by 1-hour fire-resistance-rated construction or the fire-resistance rating of the stairway enclosure, whichever is greater. Access to the enclosed space shall not be directly from within the stairway enclosure.
Exception: Spaces under stairways serving and contained within a single residential dwelling unit in Group R-2 or R-3 shall be permitted to be protected on the enclosed side with \(\frac{1}{2} \)-inch (12.7 mm) gypsum board.

1011.7.4 Enclosures under exterior stairways. There shall not be enclosed usable space under exterior exit stairways unless the space is completely enclosed in 1-hour fire-resistance-rated construction. The open space under exterior stairways shall not be used for any purpose.

1011.8 Vertical rise. A flight of stairs shall not have a vertical rise greater than 12 feet (3658 mm) between floor levels or landings.

Exception: Spiral stairways used as a means of egress from technical production areas.

1011.9 Curved stairways. Curved stairways with winder treads shall have treads and risers in accordance with Section 1011.5 and the smallest radius shall be not less than twice the minimum width or required capacity of the stairway.

Exception: The radius restriction shall not apply to curved stairways in Group R-3 and within individual dwelling units in Group R-2.

1011.10 Spiral stairways. Spiral stairways are permitted to be used as a component in the means of egress only within dwelling units or from a space not more than 250 square feet (23 m\(^2\)) in area and serving not more than five occupants, or from technical production areas in accordance with Section 410.6. A spiral stairway shall have a \(7\frac{1}{2} \)-inch (191 mm) minimum clear tread depth at a point 12 inches (305 mm) from the narrow edge. The risers shall be sufficient to provide a headroom of 78 inches (1981 mm) minimum, but riser height shall not be more than 9\(\frac{1}{2} \) inches (241 mm). The minimum stairway clear width at and below the handrail shall be 26 inches (660 mm).

1011.11 Handrails. Stairways shall have handrails on each side and shall comply with Section 1014. Where glass is used to provide the handrail, the handrail shall comply with Section 2407.

Exceptions:
1. Stairways within dwelling units and spiral stairways are permitted to have a handrail on one side only.
2. Decks, patios and walkways that have a single change in elevation where the landing depth on each side of the change of elevation is greater than what is required for a landing do not require handrails.
3. In Group R-3 occupancies, a change in elevation consisting of a single riser at an entrance or egress door does not require handrails.
4. Changes in room elevations of three or fewer risers within dwelling units and sleeping units in Group R2 and R-3 do not require handrails.

1011.12 **Stairway to roof.** In buildings four or more stories above grade plane, one stairway shall extend to the roof surface unless the roof has a slope steeper than four units vertical in 12 units horizontal (33-percent slope).

Exception: Other than where required by Section 1011.12.1, in buildings without an occupied roof access to the roof from the top story shall be permitted to be by an alternating tread device, a ships ladder or a permanent ladder.

1011.12.1 **Stairway to elevator equipment.** *Deleted.*

1011.12.2 **Roof access.** Where a stairway is provided to a roof, access to the roof shall be provided through a penthouse complying with Section 1510.2.

Exception: In buildings without an occupied roof, access to the roof shall be permitted to be a roof hatch or trap door not less than 16 square feet (1.5 m²) in area and having a minimum dimension of 2 feet (610 mm).

1011.13 **Guards.** Guards shall be provided along stairways and landings where required by Section 1015 and shall be constructed in accordance with Section 1015. Where the roof hatch opening providing the required access is located within 10 feet (3049 mm) of the roof edge, such roof access or roof edge shall be protected by guards installed in accordance with Section 1015.

1011.14 **Alternating tread devices.** Alternating tread devices are limited to an element of a means of egress in buildings of Groups F, H and S from a mezzanine not more than 250 square feet (23 m²) in area and that serves not more than five occupants; in buildings of Group I-3 from a guard tower, observation station or control room not more than 250 square feet (23 m²) in area and for access to unoccupied roofs. Alternating tread devices used as a means of egress shall not have a rise greater than 20 feet (6096 mm) between floor levels or landings.

1011.14.1 **Handrails of alternating tread devices.** Handrails shall be provided on both sides of alternating tread devices and shall comply with Section 1021.1014.

1011.14.2 **Treads of alternating tread devices.** Alternating tread devices shall have a minimum tread depth of 5 inches (127 mm), a minimum projected tread depth of 8½ inches (216 mm), a minimum tread width of 7 inches (178
mm) and a maximum riser height of 9\(\frac{1}{2}\) inches (241 mm). The tread depth shall be measured horizontally between the vertical planes of the foremost projections of adjacent treads. The riser height shall be measured vertically between the leading edges of adjacent treads. The riser height and tread depth provided shall result in an angle of ascent from the horizontal of between 50 and 70 degrees (0.87 and 1.22 rad). The initial tread of the device shall begin at the same elevation as the platform, landing or floor surface.

Exception: Alternating tread devices used as an element of a means of egress in buildings from a mezzanine area not more than 250 square feet (23 m\(^2\)) in area that serves not more than five occupants shall have a minimum tread depth of 3 inches (76 mm) with a minimum projected tread depth of 10\(\frac{1}{2}\) inches (267 mm). The rise to the next alternating tread surface shall not exceed 8 inches (203 mm).

1011.15 Ships ladders.
Ships ladders are permitted to be used in Group I-3 as a component of a means of egress to and from control rooms or elevated facility observation stations not more than 250 square feet (23 m\(^2\)) with not more than three occupants and for access to unoccupied roofs. The minimum clear width at and below the handrails shall be 20 inches (508 mm).

1011.15.1 Handrails of ships ladders.
Handrails shall be provided on both sides of ships ladders.

1011.15.2 Treads of ships ladders.
Ships ladders shall have a minimum tread depth of 5 inches (127 mm). The tread shall be projected such that the total of the tread depth plus the nosing projection is not less than 8\(\frac{1}{2}\) inches (216 mm). The maximum riser height shall be 9\(\frac{1}{2}\) inches (241 mm).

1011.16 Ladders.
Permanent ladders shall not serve as a part of the means of egress from occupied spaces within a building. Permanent ladders shall be permitted to provide access to the following areas:
1. Spaces frequented only by personnel for maintenance, repair or monitoring of equipment.
2. Nonoccupiable spaces accessed only by catwalks, crawl spaces, freight elevators or very narrow passageways.
3. Raised areas used primarily for purposes of security, life safety or fire safety including, but not limited to, observation galleries, prison guard towers, fire towers or lifeguard stands.
4. Elevated levels in Group U not open to the general public.
5. Nonoccupied roofs that are not required to have stairway access in accordance with Section 1011.12.1.
1011.16.1 Ladders shall be constructed in accordance with Section 306.5 of the *mechanical code*.

SECTION 1012

RAMPS

1012.1 **Scope.** The provisions of this section shall apply to ramps used as a component of a means of egress.

Exceptions:
1. Ramped aisles within assembly rooms or spaces shall comply with the provisions in Section 1029.
2. Curb ramps shall comply with ICC A117.1.
3. Vehicle ramps in parking garages for pedestrian exit access shall not be required to comply with Sections 1012.3 through 1012.10 where they are not an accessible route serving accessible parking spaces, other required accessible elements or part of an accessible means of egress.

1012.2 **Slope.** Ramps used as part of a means of egress shall have a running slope not steeper than one unit vertical in 12 units horizontal (8-percent slope). The slope of other pedestrian ramps shall not be steeper than one unit vertical in eight units horizontal (12.5-percent slope).

1012.3 **Cross slope.** The slope measured perpendicular to the direction of travel of a ramp shall not be steeper than one unit vertical in 48 units horizontal (2-percent slope).

1012.4 **Vertical rise.** The rise for any ramp run shall be 30 inches (762 mm) maximum.

1012.5 **Minimum dimensions.** The minimum dimensions of means of egress ramps shall comply with Sections 1012.5.1 through 1012.5.3.

1012.5.1 **Width and capacity.** The minimum width and required capacity of a means of egress ramp shall be not less than that required for corridors by Section 1020.2. The clear width of a ramp between handrails, if provided, or other permissible projections shall be 36 inches (914 mm) minimum.

1012.5.2 **Headroom.** The minimum headroom in all parts of the means of egress ramp shall be not less than 80 inches (2032 mm).
1012.5.3 Restrictions. Means of egress ramps shall not reduce in width in the direction of egress travel. Projections into the required ramp and landing width are prohibited. Doors opening onto a landing shall not reduce the clear width to less than 42 inches (1067 mm).

1012.6 Landings. Ramps shall have landings at the bottom and top of each ramp, points of turning, entrance, exits and at doors. Landings shall comply with Sections 1012.6.1 through 1012.6.5.

1012.6.1 Slope. Landings shall have a slope not steeper than one unit vertical in 48 units horizontal (2-percent slope) in any direction. Changes in level are not permitted.

1012.6.2 Width. The landing width shall be not less than the width of the widest ramp run adjoining the landing.

1012.6.3 Length. The landing length shall be 60 inches (1525 mm) minimum.

Exceptions:
1. In Group R-2 and R-3 individual dwelling and sleeping units that are not required to be Accessible units, Type A units or Type B units in accordance with Section 1107, landings are permitted to be 36 inches (914 mm) minimum.
2. Where the ramp is not a part of an accessible route, the length of the landing shall not be required to be more than 48 inches (1220 mm) in the direction of travel.

1012.6.4 Change in direction. Where changes in direction of travel occur at landings provided between ramp runs, the landing shall be 60 inches by 60 inches (1524 mm by 1524 mm) minimum.

Exception: In Group R-2 and R-3 individual dwelling or sleeping units that are not required to be Accessible units, Type A units or Type B units in accordance with Section 1107, landings are permitted to be 36 inches by 36 inches (914 mm by 914 mm) minimum.

1012.6.5 Doorways. Where doorways are located adjacent to a ramp landing, maneuvering clearances required by ICC A117.1 are permitted to overlap the required landing area.

1012.7 Ramp construction. Ramps shall be built of materials consistent with the types permitted for the type of construction of the building, except that wood
handrails shall be permitted for all types of construction.

1012.7.1 **Ramp surface.** The surface of ramps shall be of slip-resistant materials that are securely attached.

1012.7.2 **Outdoor conditions.** Outdoor ramps and outdoor approaches to ramps shall be designed so that water will not accumulate on walking surfaces.

1012.8 **Handrails.** Ramps with a rise greater than 6 inches (152 mm) shall have handrails on both sides. Handrails shall comply with Section 1014.

1012.9 **Guards.** Guards shall be provided where required by Section 1015 and shall be constructed in accordance with Section 1015.

1012.10 **Edge protection.** Edge protection complying with Section 1012.10.1 or 1012.10.2 shall be provided on each side of ramp runs and at each side of ramp landings.

Exceptions:
1. Edge protection is not required on ramps that are not required to have handrails, provided they have flared sides that comply with the ICC A117.1 curb ramp provisions.
2. Edge protection is not required on the sides of ramp landings serving an adjoining ramp run or stairway.
3. Edge protection is not required on the sides of ramp landings having a vertical dropoff of not more than ½ inch (12.7 mm) within 10 inches (254 mm) horizontally of the required landing area.

1012.10.1 **Curb, rail, wall or barrier.** A curb, rail, wall or barrier shall be provided to serve as edge protection. A curb shall be not less than 4 inches (102 mm) in height. Barriers shall be constructed so that the barrier prevents the passage of a 4-inch-diameter (102 mm) sphere, where any portion of the sphere is within 4 inches (102 mm) of the floor or ground surface.

1012.10.2 **Extended floor or ground surface.** The floor or ground surface of the ramp run or landing shall extend 12 inches (305 mm) minimum beyond the inside face of a handrail complying with Section 1014.
SECTION 1013
EXIT SIGNS

1013.1 Where required. Exits and exit access doors shall be marked by an approved exit sign readily visible from any direction of egress travel. The path of egress travel to exits and within exits shall be marked by readily visible exit signs to clearly indicate the direction of egress travel in cases where the exit or the path of egress travel is not immediately visible to the occupants. Intervening means of egress doors within exits shall be marked by exit signs. Exit sign placement shall be such that no point in an exit access corridor or exit passageway is more than 100 feet (30 480 mm) or the listed viewing distance for the sign, whichever is less, from the nearest visible exit sign.

Exceptions:
1. Exit signs are not required in rooms or areas that require only one exit or exit access.
2. Main exterior exit doors or gates that are obviously and clearly identifiable as exits need not have exit signs where approved by the building official.
3. Exit signs are not required in occupancies in Group U and individual sleeping units or dwelling units in Group R-1, R-2 or R-3.
4. Exit signs are not required in dayrooms, sleeping rooms or dormitories in occupancies in Group I.
5. In occupancies in Groups A-4 and A-5, exit signs are not required on the seating side of vomitories or openings into seating areas where exit signs are provided in the concourse that are readily apparent from the vomitories. Egress lighting is provided to identify each vomitory or opening within the seating area in an emergency.

1013.2 Floor-level exit signs in Group R-1. Where exit signs are required in Group R-1 occupancies by Section 1013.1, additional low-level exit signs shall be provided in all areas serving guest rooms in Group R-1 occupancies and shall comply with Section 1013.5.
The bottom of the sign shall be not less than 10 inches (254 mm) nor more than 12 inches (305 mm) above the floor level. The sign shall be flush mounted to the door or wall. Where mounted on the wall, the edge of the sign shall be within 4 inches (102 mm) of the door frame on the latch side.

1013.3 Illumination. Exit signs shall be internally or externally illuminated.
Exception: Tactile signs required by Section 1013.4 need not be provided with illumination.
1013.4 Raised character and braille exit signs. A sign stating EXIT in visual characters, raised characters and braille and complying with Chapter 11 shall be provided adjacent to each door to an area of refuge, an exterior area for assisted rescue, an exit stairway or ramp, an exit passageway and the exit discharge.

1013.5 Internally illuminated exit signs. Electrically powered, self-luminous and photoluminescent exit signs shall be listed and labeled in accordance with UL 924 and shall be installed in accordance with the manufacturer’s instructions and Chapter 27. Exit signs shall be illuminated at all times.

1013.6 Externally illuminated exit signs. Externally illuminated exit signs shall comply with Sections 1013.6.1 through 1013.6.3.

1013.6.1 Graphics. Every exit sign and directional exit sign shall have plainly legible letters not less than 6 inches (152 mm) high with the principal strokes of the letters not less than \(\frac{3}{4} \) inch (19.1 mm) wide. The word “EXIT” shall have letters having a width not less than 2 inches (51 mm) wide, except the letter “I,” and the minimum spacing between letters shall be not less than \(\frac{3}{8} \) inch (9.5 mm). Signs larger than the minimum established in this section shall have letter widths, strokes and spacing in proportion to their height. The word “EXIT” shall be in high contrast with the background and shall be clearly discernible when the means of exit sign illumination is or is not energized. If a chevron directional indicator is provided as part of the exit sign, the construction shall be such that the direction of the chevron directional indicator cannot be readily changed.

1013.6.2 Exit sign illumination. The face of an exit sign illuminated from an external source shall have an intensity of not less than 5 footcandles (54 lux).

1013.6.3 Power source. Exit signs shall be illuminated at all times. To ensure continued illumination for a duration of not less than 90 minutes in case of primary power loss, the sign illumination means shall be connected to an emergency power system provided from storage batteries, unit equipment or an on-site generator. The installation of the emergency power system shall be in accordance with Chapter 27.

Exceptions:
1. Approved exit sign illumination means that provide continuous illumination independent of external power sources for a duration of not less than 90 minutes, in case of primary power loss, are not required to be connected to an emergency electrical system.
2. Group I-2 Condition 2 exit sign illumination shall not be provided by unit equipment battery only.

SECTION 1014
HANDRAILS

1014.1 Where required. Handrails serving stairways, ramps, stepped aisles and ramped aisles shall be adequate in strength and attachment in accordance with Section 1607.8. Handrails required for stairways by Section 1011.11 shall comply with Sections 1014.2 through 1014.9. Handrails required for ramps by Section 1012.8 shall comply with Sections 1014.2 through 1014.8. Handrails for stepped aisles and ramped aisles required by Section 1029.15 shall comply with Sections 1014.2 through 1014.8.

1014.2 Height. Handrail height, measured above stair tread nosings, or finish surface of ramp slope, shall be uniform, not less than 34 inches (864 mm) and not more than 38 inches (965 mm). Handrail height of alternating tread devices and ships ladders, measured above tread nosings, shall be uniform, not less than 30 inches (762 mm) and not more than 34 inches (864 mm).

Exceptions:
1. Where handrail fittings or bendings are used to provide continuous transition between flights, the fittings or bendings shall be permitted to exceed the maximum height.
2. In Group R-3 occupancies; within dwelling units in Group R-2 occupancies; and in Group U occupancies that are associated with a Group R-3 occupancy or associated with individual dwelling units in Group R-2 occupancies; where handrail fittings or bendings are used to provide continuous transition between flights, transition at winder treads, transition from handrail to guard, or where used at the start of a flight, the handrail height at the fittings or bendings shall be permitted to exceed the maximum height.
3. Handrails on top of a guard where permitted along stepped aisles and ramped aisles in accordance with Section 1029.15.

1014.3 Handrail graspability. Required handrails shall comply with Section 1014.3.1 or shall provide equivalent graspability.

Exception: In Group R-3 occupancies; within dwelling units not required to be Accessible units, Type A units or Type B units in Group R-2 occupancies; and in Group U occupancies that are accessory to a Group R-3 occupancy or accessory to individual dwelling units in Group R-2 occupancies; handrails shall be Type I in accordance with Section 1014.3.1, Type II in accordance
with Section 1014.3.2 or shall provide equivalent graspability.

1014.3.1 Type I. Handrails with a circular cross section shall have an outside diameter of not less than 1 1/4 inches (32 mm) and not greater than 2 inches (51 mm). Where the handrail is not circular, it shall have a perimeter dimension of not less than 4 inches (102 mm) and not greater than 6 1/4 inches (160 mm) with a maximum cross-sectional dimension of 2 1/4 inches (57 mm) and minimum cross-sectional dimension of 1 inch (25 mm). Edges shall have a minimum radius of 0.01 inch (0.25 mm).

1014.3.2 Type II. Handrails with a perimeter greater than 6 1/4 inches (160 mm) shall provide a graspable finger recess area on both sides of the profile. The finger recess shall begin within a distance of 3/4 inch (19 mm) measured vertically from the tallest portion of the profile and achieve a depth of not less than 5/16 inch (8 mm) within 7/8 inch (22 mm) below the widest portion of the profile. This required depth shall continue for not less than 3/8 inch (10 mm) to a level that is not less than 1 3/4 inches (45 mm) below the tallest portion of the profile. The width of the handrail above the recess shall be not less than 1 1/4 inches (32 mm) to not greater than 2 3/4 inches (70 mm). Edges shall have a minimum radius of 0.01 inch (0.25 mm).

1014.4 Continuity. Handrail gripping surfaces shall be continuous, without interruption by newel posts or other obstructions.

Exceptions:
1. Handrails within dwelling units are permitted to be interrupted by a newel post at a turn or landing.
2. Within a dwelling unit, the use of a volute, turnout, starting easing or starting newel is allowed over the lowest tread.
3. Handrail brackets or balusters attached to the bottom surface of the handrail that do not project horizontally beyond the sides of the handrail within 1/2 inches (38 mm) of the bottom of the handrail shall not be considered obstructions. For each 1/2 inch (12.7 mm) of additional handrail perimeter dimension above 4 inches (102 mm), the vertical clearance dimension of 1 1/2 inches (38 mm) shall be permitted to be reduced by 1/8 inch (3.2 mm).
4. Where handrails are provided along walking surfaces with slopes not steeper than 1:20, the bottoms of the handrail gripping surfaces shall be permitted to be obstructed along their entire length where they are integral to crash rails or bumper guards.
5. Handrails serving stepped aisles or ramped aisles are permitted to be discontinuous in accordance with Section 1029.15.1.
1014.5 **Fittings.** Handrails shall not rotate within their fittings.

1014.6 **Handrail extensions.** Handrails shall return to a wall, guard or the walking surface or shall be continuous to the handrail of an adjacent flight of stairs or ramp run. Where handrails are not continuous between flights, the handrails shall extend horizontally not less than 12 inches (305 mm) beyond the top riser and continue to slope for the depth of one tread beyond the bottom riser. At ramps where handrails are not continuous between runs, the handrails shall extend horizontally above the landing 12 inches (305 mm) minimum beyond the top and bottom of ramp runs. The extensions of handrails shall be in the same direction of the flights of stairs at stairways and the ramp runs at ramps.

Exceptions:
1. Handrails within a dwelling unit that is not required to be accessible need extend only from the top riser to the bottom riser.
2. Handrails serving aisles in rooms or spaces used for assembly purposes are permitted to comply with the handrail extensions in accordance with Section 1029.15.
3. Handrails for alternating tread devices and ships ladders are permitted to terminate at a location vertically above the top and bottom risers. Handrails for alternating tread devices are not required to be continuous between flights or to extend beyond the top or bottom risers.

1014.7 **Clearance.** Clear space between a handrail and a wall or other surface shall be not less than 1 1/2 inches (38 mm). A handrail and a wall or other surface adjacent to the handrail shall be free of any sharp or abrasive elements.

1014.8 **Projections.** On ramps and on ramped aisles that are part of an accessible route, the clear width between handrails shall be 36 inches (914 mm) minimum. Projections into the required width of aisles, stairways and ramps at each side shall not exceed 4 1/2 inches (114 mm) at or below the handrail height. Projections into the required width shall not be limited above the minimum headroom height required in Section 1011.3. Projections due to intermediate handrails shall not constitute a reduction in the egress width. Where a pair of intermediate handrails are provided within the stairway width without a walking surface between the pair of intermediate handrails and the distance between the pair of intermediate handrails is greater than 6 inches (152 mm), the available egress width shall be reduced by the distance between the closest edges of each such intermediate pair of handrails that is greater than 6 inches (152 mm).

1014.9 **Intermediate handrails.** Stairways shall have intermediate handrails located in such a manner that all portions of the stairway minimum width or
required capacity are within 30 inches (762 mm) of a handrail. On monumental stairs, handrails shall be located along the most direct path of egress travel.

SECTION 1015
GUARDS

1015.1 General. Guards shall comply with the provisions of Sections 1015.2 through 1015.7. Operable windows with sills located more than 72 inches (1829 mm) above finished grade or other surface below shall comply with Section 1015.8.

1015.2 Where required. Guards shall be located along open-sided walking surfaces, including mezzanines, equipment platforms, aisles, stairs, ramps and landings that are located more than 30 inches (762 mm) measured vertically to the floor or grade below at any point within 36 inches (914 mm) horizontally to the edge of the open side. Guards shall be adequate in strength and attachment in accordance with Section 1607.8.

Exception: Guards are not required for the following locations:
1. On the loading side of loading docks or piers.
2. On the audience side of stages and raised platforms, including stairs leading up to the stage and raised platforms.
3. On raised stage and platform floor areas, such as runways, ramps and side stages used for entertainment or presentations.
4. At vertical openings in the performance area of stages and platforms.
5. At elevated walking surfaces appurtenant to stages and platforms for access to and utilization of special lighting or equipment.
6. Along vehicle service pits not accessible to the public.
7. In assembly seating areas at cross aisles in accordance with Section 1029.16.2.

1015.2.1 Glazing. Where glass is used to provide a guard or as a portion of the guard system, the guard shall comply with Section 2407. Where the glazing provided does not meet the strength and attachment requirements of Section 1607.8, complying guards shall be located along glazed sides of open-sided walking surfaces.

1015.3 Height. Required guards shall be not less than 42 inches (1067 mm) high, measured vertically as follows:
1. From the adjacent walking surfaces.
2. On stairways and stepped aisles, from the line connecting the leading edges of the tread nosings.
3. On ramps and ramped aisles, from the ramp surface at the guard.

Exceptions:

1. For occupancies in Group R-3 not more than three stories above grade in height and within individual dwelling units in occupancies in Group R-2 not more than three stories above grade in height with separate means of egress, required guards shall be not less than 36 inches (914 mm) in height measured vertically above the adjacent walking surfaces or adjacent fixed seating.

2. For occupancies in Group R-3, and within individual dwelling units in occupancies in Group R-2, guards on the open sides of stairs shall have a height not less than 34 inches (864 mm) measured vertically from a line connecting the leading edges of the treads.

3. For occupancies in Group R-3, and within individual dwelling units in occupancies in Group R-2, where the top of the guard also serves as a handrail on the open sides of stairs, the top of the guard shall be not less than 34 inches (864 mm) and not more than 38 inches (965 mm) measured vertically from a line connecting the leading edges of the treads.

4. The guard height in assembly seating areas shall comply with Section 1029.16 as applicable.

5. Along alternating tread devices and ships ladders, guards where the top rail also serves as a handrail shall have height not less than 30 inches (762 mm) and not more than 34 inches (864 mm), measured vertically from the leading edge of the device tread nosing.

1015.4 Opening limitations. Required guards shall not have openings that allow passage of a sphere 4 inches (102 mm) in diameter from the walking surface to the required guard height.

Exceptions:

1. From a height of 36 inches (914 mm) to 42 inches (1067 mm), guards shall not have openings that allow passage of a sphere 4 3/8 inches (111 mm) in diameter.

2. The triangular openings at the open sides of a stair, formed by the riser, tread and bottom rail shall not allow passage of a sphere 6 inches (152 mm) in diameter.

3. At elevated walking surfaces for access to and use of electrical, mechanical or plumbing systems or equipment, guards shall not have openings that allow passage of a sphere 21 inches (533 mm) in diameter.

4. In areas that are not open to the public within occupancies in Group I-3, F, H or S, and for alternating tread devices and ships ladders, guards shall not
have openings that allow passage of a sphere 21 inches (533 mm) in
diameter.

5. In assembly seating areas, guards required at the end of aisles in
accordance with Section 1029.16.4 shall not have openings that allow
passage of a sphere 4 inches (102 mm) in diameter up to a height of 26
inches (660 mm). From a height of 26 inches (660 mm) to 42 inches (1067
mm) above the adjacent walking surfaces, guards shall not have openings
that allow passage of a sphere 8 inches (203 mm) in diameter.

6. Within individual dwelling units and sleeping units in Group R-2 and R-3
occupancies, guards on the open sides of stairs shall not have openings
that allow passage of a sphere 4\(\frac{3}{8}\) (111 mm) inches in diameter.

1015.5 Screen porches. Porches and decks that are enclosed with insect
screening shall be provided with guards where the walking surface is located
more than 30 inches (762 mm) above the floor or grade below.

1015.6 Mechanical equipment, systems and devices. Guards shall be provided
where various components that require service are located within 10 feet (3048
mm) of a roof edge or open side of a walking surface and such edge or open side
is located more than 30 inches (762 mm) above the floor, roof or grade below.
The guard shall extend not less than 30 inches (762 mm) beyond each end of such
components. The guard shall be constructed so as to prevent the passage of a
sphere 21 inches (533 mm) in diameter.

Exception: Guards are not required where permanent fall arrest/restraint
anchorage connector devices that comply with ANSI/ASSE Z 359.1 are
affixed for use during the entire roof covering lifetime. The devices shall be
reevaluated for possible replacement when the entire roof covering is
replaced. The devices shall be placed not more than 10 feet (3048 mm) on
center along hip and ridge lines and placed not less than 10 feet (3048 mm)
from the roof edge or open side of the walking surface.

1015.7 Roof access. Guards shall be provided where the roof hatch opening is
located within 10 feet (3048 mm) of a roof edge or open side of a walking surface
and such edge or open side is located more than 30 inches (762 mm) above the
floor, roof or grade below. The guard shall be constructed so as to prevent the
passage of a sphere 21 inches (533 mm) in diameter.

Exception: Guards are not required where permanent fall arrest/restraint
anchorage connector devices that comply with ANSI/ASSE Z 359.1 are
affixed for use during the entire roof covering lifetime. The devices shall be
reevaluated for possible replacement when the entire roof covering is
replaced. The devices shall be placed not more than 10 feet (3048 mm) on
center along hip and ridge lines and placed not less than 10 feet (3048 mm) from the roof edge or open side of the walking surface.

1015.8 **Window openings.** Windows in Group R-2 and R-3 buildings including dwelling units, where the top of the sill of an operable window opening is located less than 36 inches above the finished floor and more than 72 inches (1829 mm) above the finished grade or other surface below on the exterior of the building, shall comply with one of the following:

1. Operable windows where the top of the sill of the opening is located more than 75 feet (22860 mm) above the finished grade or other surface below and that are provided with window fall prevention devices that comply with ASTM F 2006.
2. Operable windows where the openings will not allow a 4-inch-diameter (102 mm) sphere to pass through the opening when the window is in its largest opened position.
3. Operable windows where the openings are provided with window fall prevention devices that comply with ASTM F 2090.
4. Operable windows that are provided with window opening control devices that comply with Section 1015.8.1.

1015.8.1 **Window opening control devices.** Window opening control devices shall comply with ASTM F 2090. The window opening control device, after operation to release the control device allowing the window to fully open, shall not reduce the minimum net clear opening area of the window unit to less than the area required by Section 1030.2.

SECTION 1016
EXIT ACCESS

1016.1 **General.** The exit access shall comply with the applicable provisions of Sections 1003 through 1015. Exit access arrangement shall comply with Sections 1016 through 1021.

1016.2 **Egress through intervening spaces.** Egress through intervening spaces shall comply with this section.

1. Exit access through an enclosed elevator lobby is permitted. Access to not less than one of the required exits shall be provided without travel through the enclosed elevator lobbies required by Section 3006. Where the path of exit access travel passes through an enclosed elevator lobby, the level of protection required for the enclosed elevator lobby is not required to be
extended to the exit unless direct access to an exit is required by other sections of this code.

2. Egress from a room or space shall not pass through adjoining or intervening rooms or areas, except where such adjoining rooms or areas and the area served are accessory to one or the other, are not a Group H occupancy and provide a discernible path of egress travel to an exit.

Exception: Means of egress are not prohibited through adjoining or intervening rooms or spaces in a Group H, S or F occupancy where the adjoining or intervening rooms or spaces are the same or a lesser hazard occupancy group.

3. An exit access shall not pass through a room that can be locked to prevent egress.

4. Means of egress from dwelling units or sleeping areas shall not lead through other sleeping areas, toilet rooms or bathrooms.

5. Egress shall not pass through kitchens, storage rooms, closets or spaces used for similar purposes.

Exceptions:

1. Means of egress are not prohibited through a kitchen area serving adjoining rooms constituting part of the same dwelling unit or sleeping unit.

2. Means of egress are not prohibited through stockrooms in Group M occupancies where all of the following are met:
 2.1. The stock is of the same hazard classification as that found in the main retail area.
 2.2. Not more than 50 percent of the exit access is through the stockroom.
 2.3. The stockroom is not subject to locking from the egress side.
 2.4. There is a demarcated, minimum 44-inch-wide (1118 mm) aisle defined by full- or partial-height fixed walls or similar construction that will maintain the required width and lead directly from the retail area to the exit without obstructions.

1016.2.1 Multiple tenants. Where more than one tenant occupies any one floor of a building or structure, each tenant space, dwelling unit and sleeping unit shall be provided with access to the required exits without passing through adjacent tenant spaces, dwelling units and sleeping units.

Exception: The means of egress from a smaller tenant space shall not be prohibited from passing through a larger adjoining tenant space where such rooms or spaces of the smaller tenant occupy less than 10 percent of the area of the larger tenant space through which they pass; are the same or similar occupancy group; a discernible path of egress travel to an exit is
provided; and the means of egress into the adjoining space is not subject to locking from the egress side. A required means of egress serving the larger tenant space shall not pass through the smaller tenant space or spaces.

SECTION 1017
EXIT ACCESS TRAVEL DISTANCE

1017.1 General. Travel distance within the exit access portion of the means of egress system shall be in accordance with this section.

1017.2 Limitations. Exit access travel distance shall not exceed the values given in Table 1017.2.

1017.2.1 Exterior egress balcony increase. Exit access travel distances specified in Table 1017.2 shall be increased up to an additional 100 feet (30 480 mm) provided the last portion of the exit access leading to the exit occurs on an exterior egress balcony constructed in accordance with Section 1021. The length of such balcony shall be not less than the amount of the increase taken.

1017.2.2 Group F-1 and S-1 increase. The maximum exit access travel distance shall be 400 feet (122 m) in Group F-1 or S-1 occupancies where all of the following conditions are met:
1. The portion of the building classified as Group F-1 or S-1 is limited to one story in height.
2. The minimum height from the finished floor to the bottom of the ceiling or roof slab or deck is 24 feet (7315 mm).
3. The building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

1017.3 Measurement. Exit access travel distance shall be measured from the most remote point within a story along the natural and unobstructed path of horizontal and vertical egress travel to the entrance to an exit.

Exception: In open parking garages, exit access travel distance is permitted to be measured to the closest riser of an exit access stairway or the closest slope of an exit access ramp.

1017.3.1 Exit access stairways and ramps. Travel distance on exit access stairways or ramps shall be included in the exit access travel distance measurement. The measurement along stairways shall be made on a plane parallel and tangent to the stair tread nosings in the center of the stair and
landings. The measurement along ramps shall be made on the walking surface in the center of the ramp and landings.

SECTION 1018
AISLES

1018.1 General. Aisles and aisle accessways serving as a portion of the exit access in the means of egress system shall comply with the requirements of this section. Aisles or aisle accessways shall be provided from all occupied portions of the exit access that contain seats, tables, furnishings, displays and similar fixtures or equipment. The minimum width or required capacity of aisles shall be unobstructed.

Exception: Encroachments complying with Section 1005.7.

1018.2 Aisles in assembly spaces. Aisles and aisle accessways serving a room or space used for assembly purposes shall comply with Section 1029.

1018.3 Aisles in Groups B and M. In Group B and M occupancies, the minimum clear aisle width shall be determined by Section 1005.1 for the occupant load served, but shall be not less than that required for corridors by Section 1020.2.

Exception: Nonpublic aisles serving less than 50 people and not required to be accessible by Chapter 11 need not exceed 28 inches (711 mm) in width.

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>WITHOUT SPRINKLER SYSTEM (feet)</th>
<th>WITH SPRINKLER SYSTEM (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, E, F-1, M, R, S-1</td>
<td>200^a</td>
<td>250^b</td>
</tr>
<tr>
<td>I-1</td>
<td>Not Permitted</td>
<td>250^b</td>
</tr>
<tr>
<td>B</td>
<td>200</td>
<td>300^c</td>
</tr>
<tr>
<td>F-2, S-2, U</td>
<td>300</td>
<td>400^c</td>
</tr>
<tr>
<td>H-1</td>
<td>Not Permitted</td>
<td>75^d</td>
</tr>
<tr>
<td>H-2</td>
<td>Not Permitted</td>
<td>100^d</td>
</tr>
<tr>
<td>H-3</td>
<td>Not Permitted</td>
<td>150^d</td>
</tr>
<tr>
<td>H-4</td>
<td>Not Permitted</td>
<td>175^d</td>
</tr>
<tr>
<td>H-5</td>
<td>Not Permitted</td>
<td>200^e</td>
</tr>
<tr>
<td>I-2, I-3, I-4</td>
<td>Not Permitted</td>
<td>200^e</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.
a. See the following sections for modifications to exit access travel distance requirements:
Section 402.8: For the distance limitation in malls.
Section 404.9: For the distance limitation through an atrium space.
Section 407.4: For the distance limitation in Group I-2.
Sections 408.6.1 and 408.8.1: For the distance limitations in Group I-3.
Section 411.4: For the distance limitation in special amusement buildings.
Section 412.7: For the distance limitations in aircraft manufacturing facilities.
Section 1006.2.2.2: For the distance limitation in refrigeration machinery rooms.
Section 1006.2.2.3: For the distance limitation in refrigerated rooms and spaces.
Section 1006.3.2: For buildings with one exit.
Section 1017.2.2: For increased distance limitation in Groups F-1 and S-1.
Section 1029.7: For increased limitation in assembly seating.
Section 3103.4: For temporary structures.
Section 3104.9: For pedestrian walkways.
b. Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2. See Section 903 for occupancies where automatic sprinkler systems are permitted in accordance with Section 903.3.1.2.
c. Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.
d. Group H occupancies equipped throughout with an automatic sprinkler system in accordance with Section 903.2.5.1.
e. Group R-3 and R-4 buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.3. See Section 903.2.8 for occupancies where automatic sprinkler systems are permitted in accordance with Section 903.3.1.3.

1018.4 Aisle accessways in Group M. An aisle accessway shall be provided on not less than one side of each element within the merchandise pad. The minimum clear width for an aisle accessway not required to be accessible shall be 30 inches (762 mm). The required clear width of the aisle accessway shall be measured perpendicular to the elements and merchandise within the merchandise pad. The 30-inch (762 mm) minimum clear width shall be maintained to provide a path to an adjacent aisle or aisle accessway. The common path of egress travel shall not exceed 30 feet (9144 mm) from any point in the merchandise pad.

Exception: For areas serving not more than 50 occupants, the common path of egress travel shall not exceed 75 feet (22860 mm).

1018.5 Aisles in other than assembly spaces and Groups Band M. In other than rooms or spaces used for assembly purposes and Group B and M occupancies, the minimum clear aisle capacity shall be determined by Section 1005.1 for the occupant load served, but the width shall be not less than that required for corridors by Section 1020.2.

Exception: Nonpublic aisles serving less than 50 people and not required to be accessible by Chapter 11 need not exceed 28 inches (711 mm) in width.

SECTION 1019
EXIT ACCESS STAIRWAYS AND RAMPS
1019.1 General. Exit access stairways and ramps serving as an exit access component in a means of egress system shall comply with the requirements of this section. The number of stories connected by exit access stairways and ramps shall include basements, but not mezzanines.

1019.2 All occupancies. Exit access stairways and ramps that serve floor levels within a single story are not required to be enclosed.

1019.3 Occupancies other than Groups I-2 and I-3. In other than Group I-2 and I-3 occupancies, floor openings containing exit access stairways or ramps that do not comply with one of the conditions listed in this section shall be enclosed with a shaft enclosure constructed in accordance with Section 713.

1. Exit access stairways and ramps that serve or atmospherically communicate between only two stories. Such interconnected stories shall not be open to other stories.

2. In Group R-1, R-2 or R-3 occupancies, exit access stairways and ramps connecting four stories or less serving and contained within an individual dwelling unit or sleeping unit or live/work unit.

3. Exit access stairways serving and contained within a Group R-3 congregate residence or a Group R-4 facility are not required to be enclosed.

4. Exit access stairways and ramps in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, where the area of the vertical opening between stories does not exceed twice the horizontal projected area of the stairway or ramp and the opening is protected by a draft curtain and closely spaced sprinklers in accordance with NFPA 13. In other than Group B and M occupancies, this provision is limited to openings that do not connect more than four stories.

5. Exit access stairways and ramps within an atrium complying with the provisions of Section 404.

6. Exit access stairways and ramps in open parking garages that serve only the parking garage.

7. Exit access stairways and ramps serving open-air seating complying with the exit access travel distance requirements of Section 1029.7.

8. Exit access stairways and ramps serving the balcony, gallery or press box and the main assembly floor in occupancies such as theaters, places of religious worship, auditoriums and sports facilities.

1019.4 Group I-2 and I-3 occupancies. In Group I-2 and I-3 occupancies, floor openings between stories containing exit access stairways or ramps are required to be enclosed with a shaft enclosure constructed in accordance with Section 713.
Exception: In Group I-3 occupancies, exit access stairways or ramps constructed in accordance with Section 408 are not required to be enclosed.

SECTION 1020
CORRIDORS

1020.1 Construction. Corridors shall be fire-resistance rated in accordance with Table 1020.1. The corridor walls required to be fire-resistance rated shall comply with Section 708 for fire partitions.

Exceptions:
1. A fire-resistance rating is not required for corridors in an occupancy in Group E where each room that is used for instruction has not less than one door opening directly to the exterior and rooms for assembly purposes have not less than one-half of the required means of egress doors opening directly to the exterior. Exterior doors specified in this exception are required to be at ground level.
2. A fire-resistance rating is not required for corridors contained within a dwelling unit or sleeping unit in an occupancy in Groups I-1 and R.
3. A fire-resistance rating is not required for corridors in open parking garages.
4. A fire-resistance rating is not required for corridors in an occupancy in Group B that is a space requiring only a single means of egress complying with Section 1006.2.
5. Corridors adjacent to the exterior walls of buildings shall be permitted to have unprotected openings on unrated exterior walls where unrated walls are permitted by Table 602 and unprotected openings are permitted by Table 705.8.

TABLE 1020.1
CORRIDOR FIRE-RESISTANCE RATING

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>OCCUPANT LOAD SERVED BY CORRIDOR</th>
<th>REQUIRED RESISTANCE (hours)</th>
<th>FIRE-RATING (With sprinkler system)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1, H-2, H-3</td>
<td>All</td>
<td>Not Permitted</td>
<td>1<sup>c</sup></td>
</tr>
<tr>
<td>H-4, H-5</td>
<td>Greater than 30</td>
<td>Not Permitted</td>
<td>1<sup>c</sup></td>
</tr>
<tr>
<td>A, B, E, F, M, S, U</td>
<td>Greater than 30</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>Greater than 10</td>
<td>Not Permitted</td>
<td>0.5<sup>e</sup> / 0.5<sup>d</sup></td>
</tr>
<tr>
<td>I-2<sup>e</sup>, I-4</td>
<td>All</td>
<td>Not Permitted</td>
<td>0</td>
</tr>
</tbody>
</table>
I-1, I-3 All Not Permitted

a. For requirements for occupancies in Group I-2, see Sections 407.2 and 407.3.
b. For a reduction in the fire-resistance rating for occupancies in Group I-3, see Section 408.8.
c. Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2 where allowed.
d. Group R-3 and R-4 buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.3. See Section 903.2.8 for occupancies where automatic sprinkler systems are permitted in accordance with Section 903.3.1.3.

1020.2 Width and capacity. The required capacity of corridors shall be determined as specified in Section 1005.1, but the minimum width shall be not less than that specified in Table 1020.2.

Exception: In Group I-2 occupancies, corridors are not required to have a clear width of 96 inches (2438 mm) in areas where there will not be stretcher or bed movement for access to care or as part of the defend-in-place strategy.

| OCCUPANCY | MINIMUM CORRIDOR WIDTH
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Any facilities not listed below</td>
<td>44</td>
</tr>
<tr>
<td>Access to and utilization of mechanical, plumbing or electrical systems or</td>
<td>24</td>
</tr>
<tr>
<td>equipment</td>
<td></td>
</tr>
<tr>
<td>With an occupant load of less than 50</td>
<td>36</td>
</tr>
<tr>
<td>Within a dwelling unit</td>
<td>36</td>
</tr>
<tr>
<td>In Group E with a corridor having an occupant load of 100 or more</td>
<td>72</td>
</tr>
<tr>
<td>In corridors and areas serving stretcher traffic in ambulatory-care facilities (occupancies where patients receive outpatient medical care that causes the patient to be incapable of self-preservation)</td>
<td>72</td>
</tr>
<tr>
<td>Group I-2 in areas where required for bed movement</td>
<td>96</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

1020.3 Obstruction. The minimum width or required capacity of corridors shall be unobstructed.

Exception: Encroachments complying with Section 1005.7.

1020.4 Dead ends. Where more than one exit or exit access doorway is required, the exit access shall be arranged such that there are no dead ends in corridors more than 20 feet (6096 mm) in length.
Exceptions:
1. In occupancies in Group I-3 of Condition 2, 3 or 4, the dead end in a corridor shall not exceed 50 feet (15 240 mm).
2. In occupancies in Groups B, E, F, I-1, M, R-1, R-2, R-4, S and U, where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, the length of the dead-end corridors shall not exceed 50 feet (15 240 mm).
3. A dead-end corridor shall not be limited in length where the length of the dead-end corridor is less than 2.5 times the least width of the dead-end corridor.

1020.5 Air movement in corridors. Corridors shall not serve as supply, return, exhaust, relief or ventilation air ducts. Exceptions:
1. Use of a corridor as a source of makeup air for exhaust systems in rooms that open directly onto such corridors, including toilet rooms, bathrooms, dressing rooms, smoking lounges and janitor closets, shall be permitted, provided that each such corridor is directly supplied with outdoor air at a rate greater than the rate of makeup air taken from the corridor.
2. Where located within a dwelling unit, the use of corridors for conveying return air shall not be prohibited.
3. Where located within tenant spaces of 1,000 square feet (93 m²) or less in area, utilization of corridors for conveying return air is permitted.
4. Incidental air movement from pressurized rooms within health care facilities, provided that the corridor is not the primary source of supply or return to the room.

1020.5.1 Corridor ceiling. Use of the space between the corridor ceiling and the floor or roof structure above as a return air plenum is permitted for one or more of the following conditions:
1. The corridor is not required to be of fire-resistance rated construction.
2. The corridor is separated from the plenum by fire-resistance-rated construction.
3. The air-handling system serving the corridor is shut down upon activation of the air-handling unit smoke detectors required by the Mechanical code.
4. The air-handling system serving the corridor is shut down upon detection of sprinkler water flow where the building is equipped throughout with an automatic sprinkler system.
5. The space between the corridor ceiling and the floor or roof structure above the corridor is used as a component of an approved engineered smoke control system.
1020.6 Corridor continuity. Fire-resistance-rated corridors shall be continuous from the point of entry to an exit, and shall not be interrupted by intervening rooms. Where the path of egress travel within a fire-resistance-rated corridor to the exit includes travel along unenclosed exit access stairways or ramps, the fire-resistance rating shall be continuous for the length of the stairway or ramp and for the length of the connecting corridor on the adjacent floor leading to the exit.

Exceptions:
1. Foyers, lobbies or reception rooms constructed as required for corridors shall not be construed as intervening rooms.
2. Enclosed elevator lobbies as permitted by Item 1 of Section 1016.2 shall not be construed as intervening rooms.

SECTION 1021
EGRESS BALCONIES

1021.1 General. Balconies used for egress purposes shall conform to the same requirements as corridors for minimum width, required capacity, headroom, dead ends and projections.

1021.2 Wall separation. Exterior egress balconies shall be separated from the interior of the building by walls and opening protectives as required for corridors.

Exception: Separation is not required where the exterior egress balcony is served by not less than two stairways and a dead-end travel condition does not require travel past an unprotected opening to reach a stairway.

1021.3 Openness. The long side of an egress balcony shall be at least 50 percent open, and the open area above the guards shall be so distributed as to minimize the accumulation of smoke or toxic gases.

1021.4 Location. Exterior egress balconies shall have a minimum fire separation distance of 10 feet (3048 mm) measured at right angles from the exterior edge of the egress balcony to the following:
1. Adjacent lot lines.
2. Other portions of the building.
3. Other buildings on the same lot unless the adjacent building exterior walls and openings are protected in accordance with Section 705 based on fire separation distance.
 For the purposes of this section, other portions of the building shall be treated as separate buildings.
SECTION 1022
EXITS

1022.1 General. Exits shall comply with Sections 1022 through 1027 and the applicable requirements of Sections 1003 through 1015. An exit shall not be used for any purpose that interferes with its function as a means of egress. Once a given level of exit protection is achieved, such level of protection shall not be reduced until arrival at the exit discharge. Exits shall be continuous from the point of entry into the exit to the exit discharge.

1022.2 Exterior exit doors. Buildings or structures used for human occupancy shall have not less than one exterior door that meets the requirements of Section 1010.1.1.

1022.2.1 Detailed requirements. Exterior exit doors shall comply with the applicable requirements of Section 1010.1.

1022.2.2 Arrangement. Exterior exit doors shall lead directly to the exit discharge or the public way.

SECTION 1023
INTERIOR EXIT STAIRWAYS AND RAMPS

1023.1 General. Interior exit stairways and ramps serving as an exit component in a means of egress system shall comply with the requirements of this section. Interior exit stairways and ramps shall be enclosed and lead directly to the exterior of the building or shall be extended to the exterior of the building with an exit passageway conforming to the requirements of Section 1024, except as permitted in Section 1028.1. An interior exit stairway or ramp shall not be used for any purpose other than as a means of egress and a circulation path.

1023.2 Construction. Enclosures for interior exit stairways and ramps shall be constructed as fire barriers in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both. Interior exit stairway and ramp enclosures shall have a fire-resistance rating of not less than 2 hours where connecting four stories or more and not less than 1 hour where connecting less than four stories. The number of stories connected by the interior exit stairways or ramps shall include any basements, but not any mezzanines. Interior exit stairways and ramps shall have a fire-resistance rating not less than the floor assembly penetrated, but need not exceed 2 hours.

Exceptions:
1. Interior exit stairways and ramps in Group I-3 occupancies in accordance with the provisions of Section 408.3.8.
2. Interior exit stairways within an atrium enclosed in accordance with Section 404.6.

1023.3 Termination. Interior exit stairways and ramps shall terminate at an exit discharge or a public way.

Exception: A combination of interior exit stairways, interior exit ramps and exit passageways, constructed in accordance with Sections 1023.2, 1023.3.1 and 1024, respectively, and forming a continuous protected enclosure, shall be permitted to extend an interior exit stairway or ramp to the exit discharge or a public way.

1023.3.1 Extension. Where interior exit stairways and ramps are extended to an exit discharge or a public way by an exit passageway, the interior exit stairway and ramp shall be separated from the exit passageway by a fire barrier constructed in accordance with Section 707 or a horizontal assembly constructed in accordance with Section 711, or both. The fire-resistance rating shall be not less than that required for the interior exit stairway and ramp. A fire door assembly complying with Section 716.5 shall be installed in the fire barrier to provide a means of egress from the interior exit stairway and ramp to the exit passageway. Openings in the fire barrier other than the fire door assembly are prohibited. Penetrations in the fire barrier other than the fire door assembly are prohibited. Penetrations of the fire barrier are prohibited.

Exceptions:
1. Penetrations of the fire barrier in accordance with Section 1023.5 shall be permitted.
2. Separation between an interior exit stairway or ramp and the exit passageway extension shall not be required where there are no openings into the exit passageway extension.

1023.4 Openings. Interior exit stairway and ramp opening protectives shall be in accordance with the requirements of Section 716.

Openings in interior exit stairways and ramps other than unprotected exterior openings shall be limited to those necessary for exit access to the enclosure from normally occupied spaces and for egress from the enclosure.

Elevators shall not open into interior exit stairways and ramps.

1023.5 Penetrations. Penetrations into or through interior exit stairways and ramps are prohibited except for equipment and ductwork necessary for independent ventilation or pressurization, sprinkler piping, standpipes, electrical raceway for fire department communication systems and electrical raceway
serving the interior exit stairway and ramp and terminating at a steel box not exceeding 16 square inches (0.010 m²). Such penetrations shall be protected in accordance with Section 714. There shall not be penetrations or communication openings, whether protected or not, between adjacent interior exit stairways and ramps.

Exception: Membrane penetrations shall be permitted on the outside of the interior exit stairway and ramp. Such penetrations shall be protected in accordance with Section 714.3.2.

1023.6 Ventilation. Equipment and ductwork for interior exit stairway and ramp ventilation as permitted by Section 1023.5 shall comply with one of the following items:

1. Such equipment and ductwork shall be located exterior to the building and shall be directly connected to the interior exit stairway and ramp by ductwork enclosed in construction as required for shafts.

2. Where such equipment and ductwork is located within the interior exit stairway and ramp, the intake air shall be taken directly from the outdoors and the exhaust air shall be discharged directly to the outdoors, or such air shall be conveyed through ducts enclosed in construction as required for shafts.

3. Where located within the building, such equipment and ductwork shall be separated from the remainder of the building, including other mechanical equipment, with construction as required for shafts.

In each case, openings into the fire-resistance-rated construction shall be limited to those needed for maintenance and operation and shall be protected by opening protectives in accordance with Section 716 for shaft enclosures.

The interior exit stairway and ramp ventilation systems shall be independent of other building ventilation systems.

1023.7 Interior exit stairway and ramp exterior walls. Exterior walls of the interior exit stairway or ramp shall comply with the requirements of Section 705 for exterior walls. Where nonrated walls or unprotected openings enclose the exterior of the stairway or ramps and the walls or openings are exposed by other parts of the building at an angle of less than 180 degrees (3.14 rad), the building exterior walls within 10 feet (3048 mm) horizontally of a nonrated wall or unprotected opening shall have a fire-resistance rating of not less than 1 hour. Openings within such exterior walls shall be protected by opening protectives having a fire protection rating of not less than 3/4 hour. This construction shall extend vertically from the ground to a point 10 feet (3048 mm) above the topmost landing of the stairway or ramp, or to the roof line, whichever is lower.
1023.8 Discharge identification. An interior exit stairway and ramp shall not continue below its level of exit discharge unless an approved barrier is provided at the level of exit discharge to prevent persons from unintentionally continuing into levels below. Directional exit signs shall be provided as specified in Section 1013.

1023.9 Stairway identification signs. A sign shall be provided at each floor landing in an interior exit stairway and ramp connecting more than three stories designating the floor level, the terminus of the top and bottom of the interior exit stairway and ramp and the identification of the stairway or ramp. The signage shall also state the story of, and the direction to, the exit discharge and the availability of roof access from the interior exit stairway and ramp for the fire department. The sign shall be located 5 feet (1524 mm) above the floor landing in a position that is readily visible when the doors are in the open and closed positions. In addition to the stairway identification sign, a floor-level sign in visual characters, raised characters and braille complying with Chapter 11 shall be located at each floor-level landing adjacent to the door leading from the interior exit stairway and ramp into the corridor to identify the floor level.

1023.9.1 Signage requirements. Stairway identification signs shall comply with all of the following requirements:
 1. The signs shall be a minimum size of 18 inches (457 mm) by 12 inches (305 mm).
 2. The letters designating the identification of the interior exit stairway and ramp shall be not less than 1½ inches (38 mm) in height.
 3. The number designating the floor level shall be not less than 5 inches (127 mm) in height and located in the center of the sign.
 4. Other lettering and numbers shall be not less than 1 inch (25 mm) in height.
 5. Characters and their background shall have a nonglare finish. Characters shall contrast with their background, with either light characters on a dark background or dark characters on a light background.
 6. Where signs required by Section 1023.9 are installed in the interior exit stairways and ramps of buildings subject to Section 1025, the signs shall be made of the same materials as required by Section 1025.4.

1023.10 Elevator lobby identification signs. At landings in interior exit stairways where two or more doors lead to the floor level, any door with direct access to an enclosed elevator lobby shall be identified by signage located on the
door or directly adjacent to the door stating “Elevator Lobby.” Signage shall be in accordance with Section 1023.9.1, Items 4, 5 and 6.

1023.11 Smokeproof enclosures. Where required by Section 403.5.4 or 405.7.2, interior exit stairways and ramps shall be smokeproof enclosures in accordance with Section 909.20.

1023.11.1 Termination and extension. A smokeproof enclosure shall terminate at an exit discharge or a public way. The smokeproof enclosure shall be permitted to be extended by an exit passageway in accordance with Section 1023.3. The exit passageway shall be without openings other than the fire door assembly required by Section 1023.3.1 and those necessary for egress from the exit passageway. The exit passageway shall be separated from the remainder of the building by 2-hour fire barriers constructed in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both.

Exceptions:
1. Openings in the exit passageway serving a smokeproof enclosure are permitted where the exit passageway is protected and pressurized in the same manner as the smokeproof enclosure, and openings are protected as required for access from other floors.
2. The fire barrier separating the smokeproof enclosure from the exit passageway is not required, provided the exit passageway is protected and pressurized in the same manner as the smokeproof enclosure.
3. A smokeproof enclosure shall be permitted to egress through areas on the level of exit discharge or vestibules as permitted by Section 1028.

1023.11.2 Enclosure access. Access to the stairway or ramp within a smokeproof enclosure shall be by way of a vestibule or an open exterior balcony.

Exception: Access is not required by way of a vestibule or exterior balcony for stairways and ramps using the pressurization alternative complying with Section 909.20.5.

SECTION 1024
EXIT PASSAGEWAYS

1024.1 Exit passageways. Exit passageways serving as an exit component in a means of egress system shall comply with the requirements of this section. An exit passageway shall not be used for any purpose other than as a means of egress and a circulation path.
1024.2 Width. The required capacity of exit passageways shall be determined as specified in Section 1005.1 but the minimum width shall be not less than 44 inches (1118 mm), except that exit passageways serving an occupant load of less than 50 shall be not less than 36 inches (914 mm) in width. The minimum width or required capacity of exit passageways shall be unobstructed.

 Exception: Encroachments complying with Section 1005.7.

1024.3 Construction. Exit passageway enclosures shall have walls, floors and ceilings of not less than a 1-hour fire-resistance rating, and not less than that required for any connecting interior exit stairway or ramp. Exit passageways shall be constructed as fire barriers in accordance with Section 707 or horizontal assemblies constructed in accordance with Section 711, or both.

1024.4 Termination. Exit passageways on the level of exit discharge shall terminate at an exit discharge. Exit passageways on other levels shall terminate at an exit.

1024.5 Openings. Exit passageway opening protectives shall be in accordance with the requirements of Section 716. Except as permitted in Section 402.8.7, openings in exit passageways other than unprotected exterior openings shall be limited to those necessary for exit access to the exit passageway from normally occupied spaces and for egress from the exit passageway. Where an interior exit stairway or ramp is extended to an exit discharge or a public way by an exit passageway, the exit passageway shall comply with Section 1023.3.1. Elevators shall not open into an exit passageway.

1024.6 Penetrations. Penetrations into or through an exit passageway are prohibited except for equipment and ductwork necessary for independent pressurization, sprinkler piping, standpipes, electrical raceway for fire department communication and electrical raceway serving the exit passageway and terminating at a steel box not exceeding 16 square inches (0.010 m²). Such penetrations shall be protected in accordance with Section 714. There shall not be penetrations or communicating openings, whether protected or not, between adjacent exit passageways.

 Exception: Membrane penetrations shall be permitted on the outside of the exit passageway. Such penetrations shall be protected in accordance with Section 714.3.2.
1024.7 Ventilation. Equipment and ductwork for exit passageway ventilation as permitted by Section 1024.6 shall comply with one of the following:

1. The equipment and ductwork shall be located exterior to the building and shall be directly connected to the exit passageway by ductwork enclosed in construction as required for shafts.

2. Where the equipment and ductwork is located within the exit passageway, the intake air shall be taken directly from the outdoors and the exhaust air shall be discharged directly to the outdoors, or the air shall be conveyed through ducts enclosed in construction as required for shafts.

3. Where located within the building, the equipment and ductwork shall be separated from the remainder of the building, including other mechanical equipment, with construction as required for shafts.

In each case, openings into the fire-resistance-rated construction shall be limited to those needed for maintenance and operation and shall be protected by opening protectives in accordance with Section 716 for shaft enclosures.

Exit passageway ventilation systems shall be independent of other building ventilation systems.

SECTION 1025
LUMINOUS EGRESS PATH MARKINGS

1025.1 General. Deleted Luminous egress path markings are not required to be installed in buildings regulated by this code. However, when non-required luminous egress path markings are installed, they shall be installed in accordance with this section to the extent of the installation.

Exception. Deleted.

1025.2 Markings within exit components. Deleted Egress path markings shall be provided in interior exit stairways, interior exit ramps and exit passageways, in accordance with Sections 1025.2.1 through 1025.2.6.

1025.2.1 Steps. A solid and continuous stripe shall be applied to the horizontal leading edge of each step and shall extend for the full length of the step. Outlining stripes shall have a minimum horizontal width of 1 inch (25 mm) and a maximum width of 2 inches (51 mm). The leading edge of the stripe shall be placed not more than 1/2 inch (12.7 mm) from the leading edge of the step and the stripe shall not overlap the leading edge of the step by not more than 1/2 inch (12.7 mm) down the vertical face of the step.

Exception: The minimum width of 1 inch (25 mm) shall not apply to outlining stripes listed in accordance with UL 1994.

1025.2.2 Landings. The leading edge of landings shall be marked with a stripe consistent with the dimensional requirements for steps.
1025.2.3 **Handrails. Deleted** Handrails and handrail extensions shall be marked with a solid and continuous stripe having a minimum width of 1 inch (25 mm). The stripe shall be placed on the top surface of the handrail for the entire length of the handrail, including extensions and newel post caps. Where handrails or handrail extensions bend or turn corners, the stripe shall not have a gap of more than 4 inches (102 mm).

Exception: The minimum width of 1 inch (25 mm) shall not apply to outlining stripes listed in accordance with UL 1994.

1025.2.4 **Perimeter demarcation lines. Deleted** Stair landings and other floor areas within interior exit stairways, interior exit ramps and exit passageways, with the exception of the sides of steps, shall be provided with solid and continuous demarcation lines on the floor or on the walls or a combination of both. The stripes shall be 1 to 2 inches (25 mm to 51 mm) wide with interruptions not exceeding 4 inches (102 mm).

Exception: The minimum width of 1 inch (25 mm) shall not apply to outlining stripes listed in accordance with UL 1994.

1025.2.4.1 **Floor-mounted demarcation lines. Deleted** Perimeter demarcation lines shall be placed within 4 inches (102 mm) of the wall and shall extend to within 2 inches (51 mm) of the markings on the leading edge of landings. The demarcation lines shall continue across the floor in front of all doors.

Exception: Demarcation lines shall not extend in front of exit discharge doors that lead out of an exit and through which occupants must travel to complete the exit path.

1025.2.4.2 **Wall-mounted demarcation lines. Deleted** Perimeter demarcation lines shall be placed on the wall with the bottom edge of the stripe not more than 4 inches (102 mm) above the finished floor. At the top or bottom of the stairs, demarcation lines shall drop vertically to the floor within 2 inches (51 mm) of the step or landing edge. Demarcation lines on walls shall transition vertically to the floor and then extend across the floor where a line on the floor is the only practical method of outlining the path. Where the wall line is broken by a door, demarcation lines on walls shall continue across the face of the door or transition to the floor and extend across the floor in front of such door.

Exception: Demarcation lines shall not extend in front of exit discharge doors that lead out of an exit and through which occupants must travel to complete the exit path.

1025.2.4.3 **Transition. Deleted** Where a wall-mounted demarcation line transitions to a floor-mounted demarcation line, or vice versa, the wall-mounted demarcation line shall drop vertically to the floor to meet a complimentary
extension of the floor-mounted demarcation line, thus forming a continuous marking.

1025.2.5 Obstacles. Deleted Obstacles at or below 6 feet 6 inches (1981 mm) in height and projecting more than 4 inches (102 mm) into the egress path shall be outlined with markings not less than 1 inch (25 mm) in width comprised of a pattern of alternating equal bands, of luminous material and black, with the alternating bands not more than 2 inches (51 mm) thick and angled at 45 degrees (0.79 rad). Obstacles shall include, but are not limited to, standpipes, hose cabinets, wall projections and restricted height areas. However, such markings shall not conceal any required information or indicators including but not limited to instructions to occupants for the use of standpipes.

1025.2.6 Doors within the exit path. Deleted Doors through which occupants must pass in order to complete the exit path shall be provided with markings complying with Sections 1025.2.6.1 through 1025.2.6.3.

1025.2.6.1 Emergency exit symbol. Deleted The doors shall be identified by a low-location luminous emergency exit symbol complying with NFPA 170. The exit symbol shall be not less than 4 inches (102 mm) in height and shall be mounted on the door, centered horizontally, with the top of the symbol not higher than 18 inches (457 mm) above the finished floor.

1025.2.6.2 Door hardware markings. Deleted Door hardware shall be marked with not less than 16 square inches (406 mm²) of luminous material. This marking shall be located behind, immediately adjacent to, or on the door handle or escutcheon. Where a panic bar is installed, such material shall not be less than 1 inch (25 mm) wide for the entire length of the actuating bar or touchpad.

1025.2.6.3 Door frame markings. Deleted The top and sides of the door frame shall be marked with a solid and continuous 1-inch- to 2-inch-wide (25 mm to 51 mm) stripe. Where the door molding does not provide sufficient flat surface on which to locate the stripe, the stripe shall be permitted to be located on the wall surrounding the frame.

1025.3 Uniformity. Deleted Placement and dimensions of markings shall be consistent and uniform throughout the same enclosure.

1025.4 Self-luminous and photoluminescent. Deleted Luminous egress path markings shall be permitted to be made of any material, including paint, provided that an electrical charge is not required to maintain the required luminance. Such materials shall include, but not be limited to, self-luminous materials and photoluminescent materials. Materials shall comply with either of the following standards:

1. UL 1994.
2. ASTM E 2072, except that the charging source shall be 1 footcandle (11 lux) of fluorescent illumination for 60 minutes, and the minimum luminance shall be 30 millicandelas per square meter at 10 minutes and 5 millicandelas per square meter after 90 minutes.

1025.5 Illumination. Deleted Where photoluminescent exit path markings are installed, they shall be provided with not less than 1 footcandle (11 lux) of illumination for not less than 60 minutes prior to periods when the building is occupied and continuously during occupancy.

SECTION 1026
HORIZONTAL EXITS

1026.1 Horizontal exits. Horizontal exits serving as an exit in a means of egress system shall comply with the requirements of this section. A horizontal exit shall not serve as the only exit from a portion of a building, and where two or more exits are required, not more than one-half of the total number of exits or total exit minimum width or required capacity shall be horizontal exits.

Exceptions:
1. Horizontal exits are permitted to comprise two thirds of the required exits from any building or floor area for occupancies in Group I-2.
2. Horizontal exits are permitted to comprise 100 percent of the exits required for occupancies in Group I3. Not less than 6 square feet (0.6 m²) of accessible space per occupant shall be provided on each side of the horizontal exit for the total number of people in adjoining compartments.

1026.2 Separation. The separation between buildings or refuge areas connected by a horizontal exit shall be provided by a fire wall complying with Section 706; or by a fire barrier complying with Section 707 or a horizontal assembly complying with Section 711, or both. The minimum fire-resistance rating of the separation shall be 2 hours. Opening protectives in horizontal exits shall also comply with Section 716. Duct and air transfer openings in a fire wall or fire barrier that serves as a horizontal exit shall also comply with Section 717. The horizontal exit separation shall extend vertically through all levels of the building unless floor assemblies have a fire-resistance rating of not less than 2 hours with no unprotected openings.

Exception: A fire-resistance rating is not required at horizontal exits between a building area and an above-grade pedestrian walkway constructed in accordance with Section 3104, provided that the distance between connected buildings is more than 20 feet (6096 mm). Horizontal exits constructed as fire barriers shall be continuous from exterior wall to exterior wall so as to divide completely the floor served by the
horizontal exit.

1026.3 Opening protective. Fire doors in horizontal exits shall be self-closing or automatic-closing when activated by a smoke detector in accordance with Section 716.5.9.3. Doors, where located in a cross-corridor condition, shall be automatic-closing by activation of a smoke detector installed in accordance with Section 716.5.9.3.

1026.4 Refuge area. The refuge area of a horizontal exit shall be a space occupied by the same tenant or a public area and each such refuge area shall be adequate to accommodate the original occupant load of the refuge area plus the occupant load anticipated from the adjoining compartment. The anticipated occupant load from the adjoining compartment shall be based on the capacity of the horizontal exit doors entering the refuge area.

1026.4.1 Capacity. The capacity of the refuge area shall be computed based on a net floor area allowance of 3 square feet (0.2787 m²) for each occupant to be accommodated therein.

Exceptions: The net floor area allowable per occupant shall be as follows for the indicated occupancies:
1. Six square feet (0.6 m²) per occupant for occupancies in Group I-3.
2. Fifteen square feet (1.4 m²) per occupant for ambulatory occupancies in Group I-2.
3. Thirty square feet (2.8 m²) per occupant for nonambulatory occupancies in Group I-2.

1026.4.2 Number of exits. The refuge area into which a horizontal exit leads shall be provided with exits adequate to meet the occupant requirements of this chapter, but not including the added occupant load imposed by persons entering the refuge area through horizontal exits from other areas. Not less than one refuge area exit shall lead directly to the exterior or to an interior exit stairway or ramp.

Exception: The adjoining compartment shall not be required to have a stairway or door leading directly outside, provided the refuge area into which a horizontal exit leads has stairways or doors leading directly outside and are so arranged that egress shall not require the occupants to return through the compartment from which egress originates.

SECTION 1027
EXTERIOR EXIT STAIRWAYS AND RAMPS
1027.1 **Exterior exit stairways and ramps.** Exterior exit stairways and ramps serving as an element of a required means of egress shall comply with this section.

1027.2 **Use in a means of egress.** Exterior exit stairways shall not be used as an element of a required means of egress for Group I-2, I-4 and daycare facilities in Group E occupancies. For occupancies in other than Group I-2, I-4 and daycare facilities in Group E occupancies, exterior exit stairways and ramps shall be permitted as an element of a required means of egress for buildings not exceeding six stories above grade plane or that are not high-rise buildings.

1027.3 **Open side.** Exterior exit stairways and ramps serving as an element of a required means of egress shall be open on not less than one side, except for required structural columns, beams, handrails and guards. An open side shall have not less than 35 square feet (3.3 m²) of aggregate open area adjacent to each floor level and the level of each intermediate landing. The required open area shall be located not less than 42 inches (1067 mm) above the adjacent floor or landing level.

1027.4 **Side yards.** The open areas adjoining exterior exit stairways or ramps shall be either yards, courts or public ways; the remaining sides are permitted to be enclosed by the exterior walls of the building.

1027.5 **Location.** Exterior exit stairways and ramps shall have a minimum fire separation distance of 10 feet (3048 mm) measured at right angles from the exterior edge of the stairway or ramps, including landings, to:

1. Adjacent lot lines.
2. Other portions of the building.
3. Other buildings on the same lot unless the adjacent building exterior walls and openings are protected in accordance with Section 705 based on fire separation distance.
 For the purposes of this section, other portions of the building shall be treated as separate buildings.

1027.6 **Exterior exit stairway and ramp protection.** Exterior exit stairways and ramps shall be separated from the interior of the building as required in Section 1023.2. Openings shall be limited to those necessary for egress from normally occupied spaces. Where a vertical plane projecting from the edge of an exterior exit stairway or ramp and landings is exposed by other parts of the building at an angle of less than 180 degrees (3.14 rad), the exterior wall shall be rated in accordance with Section 1023.7.
Exceptions:
1. Separation from the interior of the building is not required for occupancies, other than those in Group R-1 or R-2, in buildings that are not more than two stories above grade plane where a level of exit discharge serving such occupancies is the first story above grade plane.
2. Separation from the interior of the building is not required where the exterior exit stairway or ramp is served by an exterior exit ramp or balcony that connects two remote exterior exit stairways or other approved exits with a perimeter that is not less than 50 percent open. To be considered open, the opening shall be not less than 50 percent of the height of the enclosing wall, with the top of the openings not less than 7 feet (2134 mm) above the top of the balcony.
3. Separation from the open-ended corridor of the building is not required for exterior exit stairways or ramps, provided that Items 3.1 through 3.5 are met:
 3.1. The building, including open-ended corridors, and stairways and ramps, shall be equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2.
 3.2. The open-ended corridors comply with Section 1020.
 3.3. The open-ended corridors are connected on each end to an exterior exit stairway or ramp complying with Section 1027.
 3.4. The exterior walls and openings adjacent to the exterior exit stairway or ramp comply with Section 1023.7.
 3.5. At any location in an open-ended corridor where a change of direction exceeding 45 degrees (0.79 rad) occurs, a clear opening of not less than 35 square feet (3.3 m²) or an exterior stairway or ramp shall be provided. Where clear openings are provided, they shall be located so as to minimize the accumulation of smoke or toxic gases.

SECTION 1028
EXIT DISCHARGE

1028.1 General. Exits shall discharge directly to the exterior of the building. The exit discharge shall be at grade or shall provide a direct path of egress travel to grade. The exit discharge shall not reenter a building. The combined use of Exceptions 1 and 2 shall not exceed 50 percent of the number and minimum width or required capacity of the required exits.

Exceptions:
1. Not more than 50 percent of the number and minimum width or required capacity of interior exit stairways and ramps is permitted to egress through areas on the level of discharge provided all of the following conditions are
met:
1.1. Discharge of interior exit stairways and ramps shall be provided with a free and unobstructed path of travel to an exterior exit door and such exit is readily visible and identifiable from the point of termination of the enclosure.
1.2. The entire area of the level of exit discharge is separated from areas below by construction conforming to the fire-resistance rating for the enclosure.
1.3. The egress path from the interior exit stairway and ramp on the level of exit discharge is protected throughout by an approved automatic sprinkler system. Portions of the level of exit discharge with access to the egress path shall be either equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 or 903.3.1.2, or separated from the egress path in accordance with the requirements for the enclosure of interior exit stairways or ramps.
1.4. Where a required interior exit stairway or ramp and an exit access stairway or ramp serve the same floor level and terminate at the same level of exit discharge, the termination of the exit access stairway or ramp and the exit discharge door of the interior exit stairway or ramp shall be separated by a distance of not less than 30 feet (9144 mm) or not less than one-fourth the length of the maximum overall diagonal dimension of the building, whichever is less. The distance shall be measured in a straight line between the exit discharge door from the interior exit stairway or ramp and the last tread of the exit access stairway or termination of slope of the exit access ramp.
2. Not more than 50 percent of the number and minimum width or required capacity of the interior exit stairways and ramps is permitted to egress through a vestibule provided all of the following conditions are met:
2.1. The entire area of the vestibule is separated from areas below by construction conforming to the fire-resistance rating of the interior exit stairway or ramp enclosure.
2.2. The depth from the exterior of the building is not greater than 10 feet (3048 mm) and the length is not greater than 30 feet (9144 mm).
2.3. The area is separated from the remainder of the level of exit discharge by a fire partition constructed in accordance with Section 708.
 Exception: The maximum transmitted temperature rise is not required.
2.4. The area is used only for means of egress and exits directly to the outside.
3. Horizontal exits complying with Section 1026 shall not be required to discharge directly to the exterior of the building.
1028.2 Exit discharge width or capacity. The minimum width or required capacity of the exit discharge shall be not less than the minimum width or required capacity of the exits being served.

1028.3 Exit discharge components. Exit discharge components shall be sufficiently open to the exterior so as to minimize the accumulation of smoke and toxic gases.

1028.4 Egress courts. Egress courts serving as a portion of the exit discharge in the means of egress system shall comply with the requirements of Sections 1028.4.1 and 1028.4.2.

1028.4.1 Width or capacity. The required capacity of egress courts shall be determined as specified in Section 1005.1, but the minimum width shall be not less than 44 inches (1118 mm), except as specified herein. Egress courts serving Group R-3 and U occupancies shall be not less than 36 inches (914 mm) in width. The required capacity and width of egress courts shall be unobstructed to a height of 7 feet (2134 mm).

Exception: Encroachments complying with Section 1005.7.

Where an egress court exceeds the minimum required width and the width of such egress court is then reduced along the path of exit travel, the reduction in width shall be gradual. The transition in width shall be affected by a guard not less than 36 inches (914 mm) in height and shall not create an angle of more than 30 degrees (0.52 rad) with respect to the axis of the egress court along the path of egress travel. The width of the egress court shall not be less than the required capacity.

1028.4.2 Construction and openings. Where an egress court serving a building or portion thereof is less than 10 feet (3048 mm) in width, the egress court walls shall have not less than 1-hour fire-resistance-rated construction for a distance of 10 feet (3048 mm) above the floor of the egress court. Openings within such walls shall be protected by opening protectives having a fire protection rating of not less than 3/4 hour.

Exceptions:
1. Egress courts serving an occupant load of less than 10.
2. Egress courts serving Group R-3.

1028.5 Access to a public way. The exit discharge shall provide a direct and unobstructed access to a public way.
Exception: Where access to a public way cannot be provided, a safe dispersal area shall be provided where all of the following are met:

1. The area shall be of a size to accommodate not less than 5 square feet (0.46 m²) for each person.
2. The area shall be located on the same lot not less than 50 feet (15 240 mm) away from the building requiring egress.
3. The area shall be permanently maintained and identified as a safe dispersal area.
4. The area shall be provided with a safe and unobstructed path of travel from the building.

SECTION 1029

ASSEMBLY

1029.1 General. A room or space used for assembly purposes that contains seats, tables, displays, equipment or other material shall comply with this section.

1029.1.1 Bleachers. Bleachers, grandstands and folding and telescopic seating, that are not building elements, shall comply with Chapters 1-4 of ICC 300.

1029.1.1.1 Spaces under grandstands and bleachers. Where spaces under grandstands or bleachers are used for purposes other than ticket booths less than 100 square feet (9.29 m²) and toilet rooms, such spaces shall be separated by fire barriers complying with Section 707 and horizontal assemblies complying with Section 711 with not less than 1-hour fire-resistance-rated construction.

1029.2 Assembly main exit. A building, room or space used for assembly purposes that has an occupant load of greater than 300 and is provided with a main exit, that main exit shall be of sufficient capacity to accommodate not less than one half of the occupant load, but such capacity shall be not less than the total required capacity of all means of egress leading to the exit. Where the building is classified as a Group A occupancy, the main exit shall front on not less than one street or an unoccupied space of not less than 10 feet (3048 mm) in width that adjoins a street or public way. In a building, room or space used for assembly purposes where there is not a well-defined main exit or where multiple main exits are provided, exits shall be permitted to be distributed around the perimeter of the building provided that the total capacity of egress is not less than 100 percent of the required capacity.
1029.3 Assembly other exits. In addition to having access to a main exit, each level in a building used for assembly purposes having an occupant load greater than 300 and provided with a main exit, shall be provided with additional means of egress that shall provide an egress capacity for not less than one-half of the total occupant load served by that level and shall comply with Section 1007.1. In a building used for assembly purposes where there is not a well-defined main exit or where multiple main exits are provided, exits for each level shall be permitted to be distributed around the perimeter of the building, provided that the total width of egress is not less than 100 percent of the required width.

1029.4 Foyers and lobbies. In Group A-1 occupancies, where persons are admitted to the building at times when seats are not available, such persons shall be allowed to wait in a lobby or similar space, provided such lobby or similar space shall not encroach upon the minimum width or required capacity of the means of egress. Such foyer, if not directly connected to a public street by all the main entrances or exits, shall have a straight and unobstructed corridor or path of travel to every such main entrance or exit.

1029.5 Interior balcony and gallery means of egress. For balconies, galleries or press boxes having a seating capacity of 50 or more located in a building, room or space used for assembly purposes, not less than two means of egress shall be provided, with one from each side of every balcony, gallery or press box.

1029.6 Capacity of aisle for assembly. The required capacity of aisles shall be not less than that determined in accordance with Section 1029.6.1 where smoke-protected assembly seating is not provided and with Section 1029.6.2 or 1029.6.3 where smoke-protected assembly seating is provided.

1029.6.1 Without smoke protection. The required capacity in inches (mm) of the aisles for assembly seating without smoke protection shall be not less than the occupant load served by the egress element in accordance with all of the following, as applicable:

1. Not less than 0.3 inch (7.6 mm) of aisle capacity for each occupant served shall be provided on stepped aisles having riser heights 7 inches (178 mm) or less and tread depths 11 inches (279 mm) or greater, measured horizontally between tread nosings.

2. Not less than 0.005 inch (0.127 mm) of additional aisle capacity for each occupant shall be provided for each 0.10 inch (2.5 mm) of riser height above 7 inches (178 mm).
3. Where egress requires stepped aisle descent, not less than 0.075 inch (1.9 mm) of additional aisle capacity for each occupant shall be provided on those portions of aisle capacity having no handrail within a horizontal distance of 30 inches (762 mm).

4. Ramped aisles, where slopes are steeper than one unit vertical in 12 units horizontal (8-percent slope), shall have not less than 0.22 inch (5.6 mm) of clear aisle capacity for each occupant served. Level or ramped aisles, where slopes are not steeper than one unit vertical in 12 units horizontal (8-percent slope), shall have not less than 0.20 inch (5.1 mm) of clear aisle capacity for each occupant served.

1029.6.2 Smoke-protected assembly seating. The required capacity in inches (mm) of the aisle for smokeprotected assembly seating shall be not less than the occupant load served by the egress element multiplied by the appropriate factor in Table 1029.6.2. The total number of seats specified shall be those within the space exposed to the same smoke-protected environment. Interpolation is permitted between the specific values shown. A life safety evaluation, complying with Section 12.4.1 or Section 13.4.1 of NFPA 101 or other approved method, shall be done for a facility utilizing the reduced width requirements of Table 1029.6.2 for smoke-protected assembly seating.

Exception: For outdoor smoke-protected assembly seating with an occupant load not greater than 18,000, the required capacity in inches (mm) shall be determined using the factors in Section 1029.6.3.

1029.6.2.1 Smoke control. Aisles and aisle accessways serving a smoke-protected assembly seating area shall be provided with a smoke control system complying with Section 909 or natural ventilation designed to maintain the smoke level not less than 6 feet (1829 mm) above the floor of the means of egress.

1029.6.2.2 Roof height. A smoke-protected assembly seating area with a roof shall have the lowest portion of the roof deck not less than 15 feet (4572 mm) above the highest aisle or aisle accessway.

Exception: A roof canopy in an outdoor stadium shall be permitted to be less than 15 feet (4572 mm) above the highest aisle or aisle accessway provided that there are no objects less than 80 inches (2032 mm) above the highest aisle or aisle accessway.

1029.6.2.3 Automatic sprinklers. Enclosed areas with walls and ceilings in buildings or structures containing smoke-protected assembly
seating shall be protected with an approved automatic sprinkler system in accordance with Section 903.3.1.1.

Exceptions:
1. The floor area used for contests, performances or entertainment provided the roof construction is more than 50 feet (15 240 mm) above the floor level and the use is restricted to low fire hazard uses.
2. Press boxes and storage facilities less than 1,000 square feet (93 m²) in area.
3. Outdoor seating facilities where seating and the means of egress in the seating area are essentially open to the outside.

1029.6.3 Outdoor smoke-protected assembly seating

The required capacity in inches (mm) of aisles shall be not less than the total occupant load served by the egress element multiplied by 0.08 (2.0 mm) where egress is by stepped aisle and multiplied by 0.06 (1.52 mm) where egress is by level aisles and ramped aisles.

Exception: The required capacity in inches (mm) of aisles shall be permitted to comply with Section 1029.6.2 for the number of seats in the outdoor smoke protected assembly seating where Section 1029.6.2 permits less capacity.

1029.7 Travel distance

Exits and aisles shall be so located that the travel distance to an exit door shall be not greater than 200 feet (60 960 mm) measured along the line of travel in nonsprinklered buildings. Travel distance shall be not more than 250 feet (76 200 mm) in sprinklered buildings. Where aisles are provided for seating, the distance shall be measured along the aisles and aisle accessways without travel over or on the seats.

Exceptions:
1. Smoke-protected assembly seating: The travel distance from each seat to the nearest entrance to a vomitory or concourse shall not exceed 200 feet (60 960 mm). The travel distance from the entrance to the vomitory or concourse to a stairway, ramp or walk on the exterior of the building shall not exceed 200 feet (60 960 mm).
2. Open-air seating: The travel distance from each seat to the building exterior shall not exceed 400 feet (122 m). The travel distance shall not be limited in facilities of Type I or II construction.

TABLE 1029.6.2
CAPACITY FOR AISLES FOR SMOKE-PROTECTED ASSEMBLY

<table>
<thead>
<tr>
<th>TOTAL NUMBER OF SEATS IN THE SMOKE-PROTECTED ASSEMBLY</th>
<th>INCHES OF CAPACITY PER SEAT SERVED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stepped aisles with handrails within 30 inches</td>
</tr>
<tr>
<td>Equal to or less than 5,000</td>
<td>0.200</td>
</tr>
<tr>
<td>10,000</td>
<td>0.130</td>
</tr>
<tr>
<td>15,000</td>
<td>0.096</td>
</tr>
<tr>
<td>20,000</td>
<td>0.076</td>
</tr>
<tr>
<td>Equal to or greater than 25,000</td>
<td>0.060</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

1029.8 Common path of egress travel.
The common path of egress travel shall not exceed 30 feet (9144 mm) from any seat to a point where an occupant has a choice of two paths of egress travel to two exits.

Exceptions:
1. For areas serving less than 50 occupants, the common path of egress travel shall not exceed 75 feet (22 860 mm).
2. For smoke-protected assembly seating, the common path of egress travel shall not exceed 50 feet (15 240 mm).

1029.8.1 Path through adjacent row.
Where one of the two paths of travel is across the aisle through a row of seats to another aisle, there shall be not more than 24 seats between the two aisles, and the minimum clear width between rows for the row between the two aisles shall be 12 inches (305 mm) plus 0.6 inch (15.2 mm) for each additional seat above seven in the row between aisles.

Exception: For smoke-protected assembly seating there shall be not more than 40 seats between the two aisles and the minimum clear width shall be 12 inches (305 mm) plus 0.3 inch (7.6 mm) for each additional seat.

1029.9 Assembly aisles are required.
Every occupied portion of any building, room or space used for assembly purposes that contains seats, tables, displays, similar fixtures or equipment shall be provided with aisles leading to exits or exit access doorways in accordance with this section.

1029.9.1 Minimum aisle width.
The minimum clear width for aisles shall comply with one of the following:
1. Forty-eight inches (1219 mm) for stepped aisles having seating on each side.
 Exception: Thirty-six inches (914 mm) where the stepped aisles serve less than 50 seats.

2. Thirty-six inches (914 mm) for stepped aisles having seating on only one side.
 Exception: Twenty-three inches (584 mm) between a stepped aisle stair handrail and seating where a stepped aisle does not serve more than five rows on one side.

3. Twenty-three inches (584 mm) between a stepped aisle handrail or guard and seating where the stepped aisle is subdivided by a mid-aisle handrail.

4. Forty-two inches (1067 mm) for level or ramped aisles having seating on both sides.
 Exceptions:
 1. Thirty-six inches (914 mm) where the aisle serves less than 50 seats.
 2. Thirty inches (762 mm) where the aisle does not serve more than 14 seats.

5. Thirty-six inches (914 mm) for level or ramped aisles having seating on only one side.
 Exception: For other than ramped aisles that serve as part of an accessible route, 30 inches (762 mm) where the ramped aisle does not serve more than 14 seats.

1029.9.2 Aisle catchment area. The aisle shall provide sufficient capacity for the number of persons accommodated by the catchment area served by the aisle. The catchment area served by an aisle is that portion of the total space served by that section of the aisle. In establishing catchment areas, the assumption shall be made that there is a balanced use of all means of egress, with the number of persons in proportion to egress capacity.

1029.9.3 Converging aisles. Where aisles converge to form a single path of egress travel, the required capacity of that path shall be not less than the combined required capacity of the converging aisles.

1029.9.4 Uniform width and capacity. Those portions of aisles, where egress is possible in either of two directions, shall be uniform in minimum width or required capacity.
1029.9.5 Dead end aisles. Each end of an aisle shall be continuous to a cross aisle, foyer, doorway, vomitory, concourse or stairway in accordance with Section 1029.9.7 having access to an exit.

Exceptions:
1. Dead-end aisles shall be not greater than 20 feet (6096 mm) in length.
2. Dead-end aisles longer than 16 rows are permitted where seats beyond the 16th row dead-end aisle are not more than 24 seats from another aisle, measured along a row of seats having a minimum clear width of 12 inches (305 mm) plus 0.6 inch (15.2 mm) for each additional seat above seven in the row where seats have backrests or beyond 10 where seats are without backrests in the row.
3. For smoke-protected assembly seating, the dead end aisle length of vertical aisles shall not exceed a distance of 21 rows.
4. For smoke-protected assembly seating, a longer dead-end aisle is permitted where seats beyond the 21-row dead-end aisle are not more than 40 seats from another aisle, measured along a row of seats having an aisle accessway with a minimum clear width of 12 inches (305 mm) plus 0.3 inch (7.6 mm) for each additional seat above seven in the row where seats have backrests or beyond 10 where seats are without backrests in the row.

1029.9.6 Aisle measurement. The clear width for aisles shall be measured to walls, edges of seating and tread edges except for permitted projections.

Exception: The clear width of aisles adjacent to seating at tables shall be permitted to be measured in accordance with Section 1029.12.

1029.9.6.1 Assembly aisle obstructions. There shall not be obstructions in the minimum width or required capacity of aisles.

Exception: Handrails are permitted to project into the required width of stepped aisles and ramped aisles in accordance with Section 1014.8.

1029.9.7 Stairways connecting to stepped aisles. A stairway that connects a stepped aisle to a cross aisle or concourse shall be permitted to comply with the assembly aisle walking surface requirements of Section 1029.12.

Transitions between stairways and stepped aisles shall comply with Section 1029.10.

1029.9.8 Stairways connecting to vomitories. A stairway that connects a vomitory to a cross aisle or concourse shall be permitted to comply with the assembly aisle walking surface requirements of Section 1029.12.
Transitions between stairways and stepped aisles shall comply with Section 1029.10.

1029.10 Transitions. Transitions between stairways and stepped aisles shall comply with either Section 1029.10.1 or 1029.10.2.

1029.10.1 Transitions and stairways that maintain stepped aisle riser and tread dimensions. Stepped aisles, transitions and stairways that maintain riser and tread dimensions shall comply with Section 1029.12[1029.13 as one exit access component.

1029.10.2 Transitions to stairways that do not maintain stepped aisle riser and tread dimensions. Transitions to stairways from stepped aisles with riser and tread dimensions that differ from the stairways shall comply with Sections 1029.10.2.1 and through 1029.10.3.

1029.10.2.1 Stairways and stepped aisles in straight run. Transitions where the stairway is a straight run from the stepped aisle shall have a minimum depth of 22 inches (559 mm) where the treads on the descending side of the transition have greater depth and 30 inches (762 mm) where the treads on the descending side of the transition have lesser depth.

1029.10.2.2 Stairways and stepped aisles that change direction. Transitions where the stairway changes direction from the stepped aisle shall have a minimum depth of 11 inches (280 mm) or the stepped aisle tread depth, whichever is greater, between the stepped aisle and stairway.

1029.10.3 Transition marking. A distinctive marking stripe shall be provided at each nosing or leading edge adjacent to the transition. Such stripe shall be not less than 1 inch (25 mm), and not more than 2 inches (51 mm), wide. The edge marking stripe shall be distinctively different from the stepped aisle contrasting marking stripe.

1029.11 Construction. Aisles, stepped aisles and ramped aisles shall be built of materials consistent with the types permitted for the type of construction of the building.

Exception: Wood handrails shall be permitted for all types of construction.
1029.11.1 Walking surface. The surface of aisles, stepped aisles and ramped aisles shall be of slip-resistant materials that are securely attached. The surface for stepped aisles shall comply with Section 1011.7.1.

1029.11.2 Outdoor conditions. Outdoor aisles, stepped aisles and ramped aisles and outdoor approaches to aisles, stepped aisles and ramped aisles shall be designed so that water will not accumulate on the walking surface.

1029.12 Aisle accessways. Aisle accessways for seating at tables shall comply with Section 1029.12.1. Aisle accessways for seating in rows shall comply with Section 1029.12.2.

1029.12.1 Seating at tables. Where seating is located at a table or counter and is adjacent to an aisle or aisle accessway, the measurement of required clear width of the aisle or aisle accessway shall be made to a line 19 inches (483 mm) away from and parallel to the edge of the table or counter. The 19-inch (483 mm) distance shall be measured perpendicular to the side of the table or counter. In the case of other side boundaries for aisles or aisle accessways, the clear width shall be measured to walls, edges of seating and tread edges.

Exception: Where tables or counters are served by fixed seats, the width of the aisle or aisle accessway shall be measured from the back of the seat.

1029.12.1.1 Aisle accessway capacity and width for seating at tables. Aisle accessways serving arrangements of seating at tables or counters shall comply with the capacity requirements of Section 1005.1 but shall not have less than 12 inches (305 mm) of width plus 1/2 inch (12.7 mm) of width for each additional 1 foot (305 mm), or fraction thereof, beyond 12 feet (3658 mm) of aisle accessway length measured from the center of the seat farthest from an aisle.

Exception: Portions of an aisle accessway having a length not exceeding 6 feet (1829 mm) and used by a total of not more than four persons.

1029.12.1.2 Seating at table aisle accessway length. The length of travel along the aisle accessway shall not exceed 30 feet (9144 mm) from any seat to the point where a person has a choice of two or more paths of egress travel to separate exits.

1029.12.2 Clear width of aisle accessways serving seating in rows. Where seating rows have 14 or fewer seats, the minimum clear aisle accessway width
shall be not less than 12 inches (305 mm) measured as the clear horizontal
distance from the back of the row ahead and the nearest projection of the row
behind. Where chairs have automatic or self-rising seats, the measurement
shall be made with seats in the raised position. Where any chair in the row
does not have an automatic or self-rising seat, the measurements shall be
made with the seat in the down position. For seats with folding tablet arms,
row spacing shall be determined with the tablet arm in the used position.

Exception: For seats with folding tablet arms, row spacing is permitted to
be determined with the tablet arm in the stored position where the tablet
arm when raised manually to vertical position in one motion automatically
returns to the stored position by force of gravity.

1029.12.2.1 **Dual access.** For rows of seating served by aisles or
doorways at both ends, there shall be not more than 100 seats per row. The
minimum clear width of 12 inches (305 mm) between rows shall be
increased by 0.3 inch (7.6 mm) for every additional seat beyond 14 seats
where seats have backrests or beyond 21 where seats are without
backrests. The minimum clear width is not required to exceed 22 inches
(559 mm).

Exception: For smoke-protected assembly seating, the row length
limits for a 12-inch-wide (305 mm) aisle accessway, beyond which the
aisle accessway minimum clear width shall be increased, are in Table
1029.12.2.1.

1029.12.2.2 **Single access.** For rows of seating served by an aisle or
doorway at only one end of the row, the minimum clear width of 12 inches
(305 mm) between rows shall be increased by 0.6 inch (15.2 mm) for
every additional seat beyond seven seats where seats have backrests or
beyond 10 where seats are without backrests. The minimum clear width is
not required to exceed 22 inches (559 mm).

Exception: For smoke-protected assembly seating, the row length
limits for a 12-inch-wide (305 mm) aisle accessway, beyond which the
aisle accessway minimum clear width shall be increased, are in Table
1029.12.2.1.

1029.13 Assembly aisle walking surfaces. Ramped aisles shall comply with
Sections 1029.13.1 through 1029.13.1.3. Stepped aisles shall comply with
Sections 1029.13.2 through 1029.13.2.4.

1029.13.1 Ramped aisles. Aisles that are sloped more than one unit vertical
in 20 units horizontal (5-percent slope) shall be considered a ramped aisle.
Ramped aisles that serve as part of an accessible route in accordance with Sections 1009 and 1108.2 shall have a maximum slope of one unit vertical in 12 units horizontal (8-percent slope). The slope of other ramped aisles shall not exceed one unit vertical in 8 units horizontal (12.5-percent slope).

1029.13.1.1 **Cross slope.** The slope measured perpendicular to the direction of travel of a ramped aisle shall not be steeper than one unit vertical in 48 units horizontal (2-percent slope).

1029.13.1.2 **Landings.** Ramped aisles shall have landings in accordance with Sections 1012.6 through 1012.6.5. Landings for ramped aisles shall be permitted to overlap required aisles or cross aisles.

1029.13.1.3 **Edge protection.** Ramped aisles shall have edge protection in accordance with Sections 1012.10 and 1012.10.1.

Exception: In assembly spaces with fixed seating, edge protection is not required on the sides of ramped aisles where the ramped aisles provide access to the adjacent seating and aisle accessways.

1029.13.2 **Stepped aisles.** Aisles with a slope exceeding one unit vertical in eight units horizontal (12.5-percent slope) shall consist of a series of risers and treads that extends across the full width of aisles and complies with Sections 1029.13.2.1 through 1029.13.2.4.

1029.13.2.1 **Treads.** Tread depths shall be not less than 11 inches (279 mm) and shall have dimensional uniformity.

Exception: The tolerance between adjacent treads shall not exceed $\frac{3}{16}$ inch (4.8 mm).
1029.13.2.2 Risers. Where the gradient of stepped aisles is to be the same as the gradient of adjoining seating areas, the riser height shall be not less than 4 inches (102 mm) nor more than 8 inches (203 mm) and shall be uniform within each flight.

Exceptions:
1. Riser height nonuniformity shall be limited to the extent necessitated by changes in the gradient of the adjoining seating area to maintain adequate sightlines. Where nonuniformities exceed 3/16 inch (4.8 mm) between adjacent risers, the exact location of such nonuniformities shall be indicated with a distinctive marking stripe on each tread at the nosing or leading edge adjacent to the non-uniform risers. Such stripe shall be not less than 1 inch (25 mm), and not more than 2 inches (51 mm), wide. The edge marking stripe shall be distinctively different from the contrasting marking stripe.
2. Riser heights not exceeding 9 inches (229 mm) shall be permitted where they are necessitated by the slope of the adjacent seating areas to maintain sightlines.

1029.13.2.2.1 Construction tolerances. The tolerance between adjacent risers on a stepped aisle that were designed to be equal height shall not exceed 3/16 inch (4.8 mm). Where the stepped aisle is designed in accordance with Exception 1 of Section 1029.13.2.2, the stepped aisle shall be constructed so that each riser of unequal height, determined in the direction of descent, is not more than 3/8 inch (9.5

<table>
<thead>
<tr>
<th>TOTAL NUMBER OF SEATS IN THE SMOKEPROTECTED ASSEMBLY SEATING</th>
<th>MAXIMUM NUMBER OF SEATS PER ROW PERMITTED TO HAVE A MINIMUM 12-INCH CLEAR WIDTH AISLE ACCESSWAY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AISLE OR DOORWAY AT BOTH ENDS OF ROW</td>
</tr>
<tr>
<td></td>
<td>Seats with backrests</td>
</tr>
<tr>
<td>Less than 4,000</td>
<td>14</td>
</tr>
<tr>
<td>4,000</td>
<td>15</td>
</tr>
<tr>
<td>7,000</td>
<td>16</td>
</tr>
<tr>
<td>10,000</td>
<td>17</td>
</tr>
<tr>
<td>13,000</td>
<td>18</td>
</tr>
<tr>
<td>16,000</td>
<td>19</td>
</tr>
<tr>
<td>19,000</td>
<td>20</td>
</tr>
<tr>
<td>22,000 and greater</td>
<td>21</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
mm) in height different from adjacent risers where stepped aisle treads are less than 22 inches (560 mm) in depth and \(\frac{3}{4} \) inch (19.1 mm) in height different from adjacent risers where stepped aisle treads are 22 inches (560 mm) or greater in depth.

1029.13.2.3 Tread contrasting marking stripe. A contrasting marking stripe shall be provided on each tread at the nosing or leading edge such that the location of each tread is readily apparent when viewed in descent. Such stripe shall be not less than 1 inch (25 mm), and not more than 2 inches (51 mm), wide.

Exception: The contrasting marking stripe is permitted to be omitted where tread surfaces are such that the location of each tread is readily apparent when viewed in descent.

1029.13.2.4 Nosing and profile. Nosing and riser profile shall comply with Sections 1011.5.5 through 1011.5.5.3.

1029.14 Seat stability. In a building, room or space used for assembly purposes, the seats shall be securely fastened to the floor.

Exceptions:
1. In a building, room or space used for assembly purposes or portions thereof without ramped or tiered floors for seating and with 200 or fewer seats, the seats shall not be required to be fastened to the floor.
2. In a building, room or space used for assembly purposes or portions thereof with seating at tables and without ramped or tiered floors for seating, the seats shall not be required to be fastened to the floor.
3. In a building, room or space used for assembly purposes or portions thereof without ramped or tiered floors for seating and with greater than 200 seats, the seats shall be fastened together in groups of not less than three or the seats shall be securely fastened to the floor.
4. In a building, room or space used for assembly purposes where flexibility of the seating arrangement is an integral part of the design and function of the space and seating is on tiered levels, not more than 200 seats shall not be required to be fastened to the floor. Plans showing seating, tiers and aisles shall be submitted for approval.
5. Groups of seats within a building, room or space used for assembly purposes separated from other seating by railings, guards, partial height walls or similar barriers with level floors and having not more than 14 seats per group shall not be required to be fastened to the floor.
6. Seats intended for musicians or other performers and separated by railings, guards, partial height walls or similar barriers shall not be required to be fastened to the floor.

1029.15 Handrails. Ramped aisles having a slope exceeding one unit vertical in 15 units horizontal (6.7-percent slope) and stepped aisles shall be provided with handrails in compliance with Section 1014 located either at one or both sides of the aisle or within the aisle width.

Exceptions:
1. Handrails are not required for ramped aisles with seating on both sides.
2. Handrails are not required where, at the side of the aisle, there is a guard with a top surface that complies with the graspability requirements of handrails in accordance with Section 1014.3.
3. Handrail extensions are not required at the top and bottom of stepped aisles and ramped aisles to permit crossovers within the aisles.

1029.15.1 Discontinuous handrails. Where there is seating on both sides of the aisle, the mid-aisle handrails shall be discontinuous with gaps or breaks at intervals not exceeding five rows to facilitate access to seating and to permit crossing from one side of the aisle to the other. These gaps or breaks shall have a clear width of not less than 22 inches (559 mm) and not greater than 36 inches (914 mm), measured horizontally, and the mid-aisle handrail shall have rounded terminations or bends.

1029.15.2 Handrail termination. Handrails located on the side of stepped aisles shall return to a wall, guard or the walking surface or shall be continuous to the handrail of an adjacent stepped aisle flight.

1029.15.3 Mid-aisle termination. Mid-aisle handrails shall not extend beyond the lowest riser and shall terminate within 18 inches (381 mm), measured horizontally, from the lowest riser. Handrail extensions are not required.

Exception: Mid-aisle handrails shall be permitted to extend beyond the lowest riser where the handrail extensions do not obstruct the width of the cross aisle.

1029.15.4 Rails. Where mid-aisle handrails are provided in stepped aisles, there shall be an additional rail located approximately 12 inches (305 mm) below the handrail. The rail shall be adequate in strength and attachment in accordance with Section 1607.8.1.2.
1029.16 Assembly guards. Guards adjacent to seating in a building, room or space used for assembly purposes shall be provided where required by Section 1015 and shall be constructed in accordance with Section 1015 except where provided in accordance with Sections 1029.16.1 through 1029.16.4. At bleachers, grandstands and folding and telescopic seating, guards must be provided where required by ICC 300 and Section 1029.16.1.

1029.16.1 Perimeter guards. Perimeter guards shall be provided where the footboards or walking surface of seating facilities are more than 30 inches (762 mm) above the floor or grade below. Where the seatboards are adjacent to the perimeter, guard height shall be 42 inches (1067 mm) high minimum, measured from the seatboard. Where the seats are self-rising, guard height shall be 42 inches (1067 mm) high minimum, measured from the floor surface. Where there is an aisle between the seating and the perimeter, the guard height shall be measured in accordance with Section 1015.2.

Exceptions:
1. Guards that impact sightlines shall be permitted to comply with Section 1029.16.3.
2. Bleachers, grandstands and folding and telescopic seating shall not be required to have perimeter guards where the seating is located adjacent to a wall and the space between the wall and the seating is less than 4 inches (102 mm).

1029.16.2 Cross aisles. Cross aisles located more than 30 inches (762 mm) above the floor or grade below shall have guards in accordance with Section 1015.

Where an elevation change of 30 inches (762 mm) or less occurs between a cross aisle and the adjacent floor or grade below, guards not less than 26 inches (660 mm) above the aisle floor shall be provided.

Exception: Where the backs of seats on the front of the cross aisle project 24 inches (610 mm) or more above the adjacent floor of the aisle, a guard need not be provided.

1029.16.3 Sightline-constrained guard heights. Unless subject to the requirements of Section 1029.16.4, a fascia or railing system in accordance with the guard requirements of Section 1015 and having a minimum height of 26 inches (660 mm) shall be provided where the floor or footboard elevation is more than 30 inches (762 mm) above the floor or grade below and the fascia or railing would otherwise interfere with the sightlines of immediately adjacent seating.
1029.16.4 Guards at the end of aisles. A fascia or railing system complying with the guard requirements of Section 1015 shall be provided for the full width of the aisle where the foot of the aisle is more than 30 inches (762 mm) above the floor or grade below. The fascia or railing shall be a minimum of 36 inches (914 mm) high and shall provide a minimum 42 inches (1067 mm) measured diagonally between the top of the rail and the nosing of the nearest tread.

SECTION 1030
EMERGENCY ESCAPE AND RESCUE

1030.1 General. In addition to the means of egress required by this chapter, provisions shall be made for emergency escape and rescue openings in Group R-2 occupancies in accordance with Tables 1006.3.2(1) and 1006.3.2(2) and Group R-3 occupancies. Basements and sleeping rooms below the fourth story above grade plane shall have at least one exterior emergency escape and rescue opening in accordance with this section. Where basements contain one or more sleeping rooms, emergency escape and rescue openings shall be required in each sleeping room, but shall not be required in adjoining areas of the basement. Such openings shall open directly into a public way or to a yard or court that opens to a public way.

Exceptions:
1. Basements with a ceiling height of less than 80 inches (2032 mm) shall not be required to have emergency escape and rescue openings.
2. Emergency escape and rescue openings are not required from basements or sleeping rooms that have an exit door or exit access door that opens directly into a public way or to a yard, court or exterior exit balcony that opens to a public way.
3. Basements without habitable spaces and having not more than 200 square feet (18.6 m²) in floor area shall not be required to have emergency escape and rescue openings.

1030.2 Minimum size. Emergency escape and rescue openings shall have a minimum net clear opening of 5.7 square feet (0.53 m²).

Exception: The minimum net clear opening for grade floor emergency escape and rescue openings shall be 5 square feet (0.46 m²).

1030.2.1 Minimum dimensions. The minimum net clear opening height dimension shall be 24 inches (610 mm). The minimum net clear opening width dimension shall be 20 inches (508 mm). The net clear opening dimensions shall be the result of normal operation of the opening.
1030.3 Maximum height from floor. Emergency escape and rescue openings shall have the bottom of the clear opening not greater than 44 inches (1118 mm) measured from the floor.

1030.4 Operational constraints. Emergency escape and rescue openings shall be operational from the inside of the room without the use of keys or tools. Bars, grilles, grates or similar devices are permitted to be placed over emergency escape and rescue openings provided the minimum net clear opening size complies with Section 1030.2 and such devices shall be releasable or removable from the inside without the use of a key, tool or force greater than that which is required for normal operation of the emergency escape and rescue opening. Where such bars, grilles, grates or similar devices are installed in existing buildings, smoke alarms shall be installed in accordance with Section 907.2.11 regardless of the valuation of the alteration.

1030.5 Window wells. An emergency escape and rescue opening with a finished sill height below the adjacent ground level shall be provided with a window well in accordance with Sections 1030.5.1 and 1030.5.2.

1030.5.1 Minimum size. The minimum horizontal area of the window well shall be 9 square feet (0.84 m²), with a minimum dimension of 36 inches (914 mm). The area of the window well shall allow the emergency escape and rescue opening to be fully opened.

1030.5.2 Ladders or steps. Window wells with a vertical depth of more than 44 inches (1118 mm) shall be equipped with an approved permanently affixed ladder or steps. Ladders or rungs shall have an inside width of at least 12 inches (305 mm), shall project at least 3 inches (76 mm) from the wall and shall be spaced not more than 18 inches (457 mm) on center (o.c.) vertically for the full height of the window well. The ladder or steps shall not encroach into the required dimensions of the window well by more than 6 inches (152 mm). The ladder or steps shall not be obstructed by the emergency escape and rescue opening. Ladders or steps required by this section are exempt from the stairway requirements of Section 1011.
Effective: 8/1/2018

Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.106, 3781.11, 3791.04
4101:1-16-01 Structural design.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:1-35-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 1601
GENERAL

1601.1 Scope. The provisions of this chapter shall govern the structural design of buildings, structures and portions thereof regulated by this code.

SECTION 1602
DEFINITIONS AND NOTATIONS

1602.1 Definitions. The following terms are defined in Chapter 2:
ALLOWABLE STRESS DESIGN.
DEAD LOADS.
DESIGN STRENGTH.
DIAPHRAGM.
 Diaphragm, blocked.
 Diaphragm boundary.
 Diaphragm chord.
ESSENTIAL FACILITIES.
FABRIC PARTITION.
FACTORED LOAD.
HELIPAD.
ICE-SENSITIVE STRUCTURE.
IMPACT LOAD.
LIMIT STATE.
LIVE LOAD.
LIVE LOAD (ROOF).
LOAD AND RESISTANCE FACTOR DESIGN (LRFD).
LOAD EFFECTS.
LOAD FACTOR.
LOADS.
NOMINAL LOADS.
OTHER STRUCTURES.

PANEL (PART OF A STRUCTURE).

RESISTANCE FACTOR.

RISK CATEGORY.

STRENGTH, NOMINAL.

STRENGTH, REQUIRED.

STRENGTH DESIGN.

SUSCEPTIBLE BAY.

VEHICLE BARRIER.

NOTATIONS.

\(D \) = Dead load.
\(D_i \) = Weight of ice in accordance with Chapter 10 of ASCE 7.
\(E \) = Combined effect of horizontal and vertical earthquake induced forces as defined in Section 12.4.2 of ASCE 7.
\(F \) = Load due to fluids with well-defined pressures and maximum heights.
\(F_a \) = Flood load in accordance with Chapter 5 of ASCE 7.
\(H \) = Load due to lateral earth pressures, ground water pressure or pressure of bulk materials.
\(L \) = Roof live load greater than 20 psf (0.96 kN/m²) and floor live load.
\(L_r \) = Roof live load of 20 psf (0.96 kN/m²) or less.
\(R \) = Rain load.
\(S \) = Snow load.
\(T \) = Self-straining load.
\(V_{asd} \) = Nominal design wind speed (3-second gust), miles per hour (mph) (km/hr) where applicable.
\(V_{ult} \) = Ultimate design wind speeds (3-second gust), miles per hour (mph) (km/hr) determined from Figure 1609.3(1), 1609.3(2), 1609.3(3) or ASCE 7.
\(W \) = Load due to wind pressure.
\(W_i \) = Wind-on-ice in accordance with Chapter 10 of ASCE 7.

1602.2 Live loads posted. Where the live loads for which each floor or portion thereof of a commercial or industrial building is or has been designed to exceed 50 psf (2.40 kN/m²), such design live loads shall be conspicuously posted by the owner in that part of each story in which they apply, using durable signs. It shall be unlawful to remove or deface such notices.

SECTION 1603

CONSTRUCTION DOCUMENTS

1603.1 General. Construction documents shall show the size, section and relative
locations of structural members with floor levels, column centers and offsets dimensioned. The design loads and other information pertinent to the structural design required by Sections 1603.1.1 through 1603.1.8 and section 106 shall be indicated on the construction documents.

Exception: Construction documents for buildings constructed in accordance with the conventional light-frame construction provisions of Section 2308 shall indicate the following structural design information:

1. Floor and roof live loads.
2. Ground snow load, P_g.
3. Ultimate design wind speed, V_{ult}, (3-second gust), miles per hour (mph) (km/hr) and nominal design wind speed, V_{asd}, as determined in accordance with Section 1609.3.1 and wind exposure.
4. Seismic design category and site class.
5. Flood design data, if located in flood hazard areas established in Section 1612.3.
6. Design load-bearing values of soils.

1603.1.1 Floor live load. The uniformly distributed, concentrated and impact floor live load used in the design shall be indicated for floor areas. Use of live load reduction in accordance with Section 1607.10 shall be indicated for each type of live load used in the design.

1603.1.2 Roof live load. The roof live load used in the design shall be indicated for roof areas (Section 1607.12).

1603.1.3 Roof snow load data. The ground snow load, P_g, shall be indicated. In areas where the ground snow load, P_g, exceeds 10 pounds per square foot (psf) (0.479 kN/m²), the following additional information shall also be provided, regardless of whether snow loads govern the design of the roof:

1. Flat-roof snow load, P_f.
2. Snow exposure factor, C_e.
3. Snow load importance factor, I_s.
4. Thermal factor, C_t.
5. Drift surcharge load(s), P_d, where the sum of P_d and P_f exceeds 20 psf (0.96 kN/m²).
6. Width of snow drift(s), w.

1603.1.4 Wind design data. The following information related to wind loads shall be shown, regardless of whether wind loads govern the design of the lateral force resisting system of the structure:
1. Ultimate design wind speed, \(V_{ult} \), (3-second gust), miles per hour (km/hr) and nominal design wind speed, \(V_{asd} \), as determined in accordance with Section 1609.3.1.
2. Risk category.
3. Wind exposure. Applicable wind direction if more than one wind exposure is utilized.
4. Applicable internal pressure coefficient.
5. Design wind pressures to be used for exterior component and cladding materials not specifically designed by the registered design professional responsible for the design of the structure, psf (kN/ m²).

1603.1.5 Earthquake design data. The following information related to seismic loads shall be shown, regardless of whether seismic loads govern the design of the lateral force-resisting system of the structure:
1. Risk category.
2. Seismic importance factor, \(I_e \).
3. Mapped spectral response acceleration parameters, \(S_S \) and \(S_I \).
4. Site class.
5. Design spectral response acceleration parameters, \(S_{DS} \) and \(S_{DI} \).
6. Seismic design category.
7. Basic seismic force-resisting system(s).
8. Design base shear(s).
9. Seismic response coefficient(s), \(CS \).
10. Response modification coefficient(s), \(R \).
11. Analysis procedure used.

1603.1.6 Geotechnical information. The design loadbearing values of soils shall be shown on the construction documents.

1603.1.7 Flood design data. For buildings located in whole or in part in flood hazard areas as established in Section 1612.3, the documentation pertaining to design, if required in Section 1612.5, shall be included and the following information, referenced to the datum on the community’s Flood Insurance Rate Map (FIRM), shall be shown, regardless of whether flood loads govern the design of the building:
1. Flood design class assigned according to ASCE 24.
2. In flood hazard areas other than coastal high hazard areas or coastal A zones, the elevation of the proposed lowest floor, including the basement.
3. In flood hazard areas other than coastal high hazard areas or coastal A zones, the elevation to which any nonresidential building will be dry floodproofed.

4. In coastal high hazard areas and coastal A zones, the proposed elevation of the bottom of the lowest horizontal structural member of the lowest floor, including the basement.

1603.1.8 Special loads. Special loads that are applicable to the design of the building, structure or portions thereof shall be indicated along with the specified section of this code that addresses the special loading condition.

1603.1.8.1 Photovoltaic panel systems. The dead load of rooftop-mounted photovoltaic panel systems, including rack support systems, shall be indicated on the construction documents.

SECTION 1604
GENERAL DESIGN REQUIREMENTS

1604.1 General. Building, structures and parts thereof shall be designed and constructed in accordance with strength design, load and resistance factor design, allowable stress design, empirical design or conventional construction methods, as permitted by the applicable material chapters.

1604.2 Strength. Buildings and other structures, and parts thereof, shall be designed and constructed to support safely the factored loads in load combinations defined in this code without exceeding the appropriate strength limit states for the materials of construction. Alternatively, buildings and other structures, and parts thereof, shall be designed and constructed to support safely the nominal loads in load combinations defined in this code without exceeding the appropriate specified allowable stresses for the materials of construction.

1604.3 Serviceability. Structural systems and members thereof shall be designed to have adequate stiffness to limit deflections and lateral drift. See Section 12.12.1 of ASCE 7 for drift limits applicable to earthquake loading.

1604.3.1 Deflections. The deflections of structural members shall not exceed the more restrictive of the limitations of Sections 1604.3.2 through 1604.3.5 or that permitted by Table 1604.3.

1604.3.2 Reinforced concrete. The deflection of reinforced concrete structural members shall not exceed that permitted by ACI 318.
1604.3.3 **Steel.** The deflection of steel structural members shall not exceed that permitted by AISC 360, AISI S100, ASCE 8, SJI CJ, SJI JG, SJI K or SJI LH/DLH, as applicable.

1604.3.4 **Masonry.** The deflection of masonry structural members shall not exceed that permitted by TMS 402/ACI 530/ASCE 5.

1604.3.5 **Aluminum.** The deflection of aluminum structural members shall not exceed that permitted by AAADM1.

1604.3.6 **Limits.** The deflection limits of Section 1604.3.1 shall be used unless more restrictive deflection limits are required by a referenced standard for the element or finish material.

1604.4 **Analysis.** Load effects on structural members and their connections shall be determined by methods of structural analysis that take into account equilibrium, general stability, geometric compatibility and both short- and long-term material properties.

Members that tend to accumulate residual deformations under repeated service loads shall have included in their analysis the added eccentricities expected to occur during their service life.

Any system or method of construction to be used shall be based on a rational analysis in accordance with well-established principles of mechanics. Such analysis shall result in a system that provides a complete load path capable of transferring loads from their point of origin to the load-resisting elements.

The total lateral force shall be distributed to the various vertical elements of the lateral force-resisting system in proportion to their rigidities, considering the rigidity of the horizontal bracing system or diaphragm. Rigid elements assumed not to be a part of the lateral force-resisting system are permitted to be incorporated into buildings provided their effect on the action of the system is considered and provided for in the design. A diaphragm is rigid for the purpose of distribution of story shear and torsional moment when the lateral deformation of the diaphragm is less than or equal to two times the average story drift. Where required by ASCE 7, provisions shall be made for the increased forces induced on resisting elements of the structural system resulting from torsion due to eccentricity between the center of application of the lateral forces and the center of rigidity of the lateral force-resisting system.

Every structure shall be designed to resist the overturning effects caused by the lateral forces specified in this chapter. See Section 1609 for wind loads, Section 1610 for lateral soil loads and Section 1613 for earthquake loads.
<table>
<thead>
<tr>
<th>CONSTRUCTION</th>
<th>L</th>
<th>S or W</th>
<th>D + L<sup>d,e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof members:<sup>e</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting plaster or stucco ceiling</td>
<td>1/360</td>
<td>1/360</td>
<td>1/240</td>
</tr>
<tr>
<td>Supporting nonplaster ceiling</td>
<td>1/240</td>
<td>1/240</td>
<td>1/180</td>
</tr>
<tr>
<td>Not supporting ceiling</td>
<td>1/180</td>
<td>1/180</td>
<td>1/120</td>
</tr>
<tr>
<td>Floor members</td>
<td>1/360</td>
<td>—</td>
<td>1/240</td>
</tr>
<tr>
<td>Exterior walls:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With plaster or stucco finishes</td>
<td>—</td>
<td>1/360</td>
<td>—</td>
</tr>
<tr>
<td>With other brittle finishes</td>
<td>—</td>
<td>1/240</td>
<td>—</td>
</tr>
<tr>
<td>With flexible finishes</td>
<td>—</td>
<td>1/120</td>
<td>—</td>
</tr>
<tr>
<td>Interior partitions:<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With plaster or stucco finishes</td>
<td>1/360</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>With other brittle finishes</td>
<td>1/240</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>With flexible finishes</td>
<td>1/120</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Farm buildings</td>
<td>—</td>
<td>—</td>
<td>1/180</td>
</tr>
<tr>
<td>Greenhouses</td>
<td>—</td>
<td>—</td>
<td>1/120</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.

a. For structural roofing and siding made of formed metal sheets, the total load deflection shall not exceed 1/60. For secondary roof structural members supporting formed metal roofing, the live load deflection shall not exceed 1/150. For secondary wall members supporting formed metal siding, the design wind load deflection shall not exceed 1/90. For roofs, this exception only applies when the metal sheets have no roof covering.

b. Flexible, folding and portable partitions are not governed by the provisions of this section. The deflection criterion for interior partitions is based on the horizontal load defined in Section 1607.14.

c. See Section 2403 for glass supports.

d. The deflection limit for the \(D+L \) load combination only applies to the deflection due to the creep component of long-term dead load deflection plus the short-term live load deflection. For wood structural members that are dry at time of installation and used under dry conditions in accordance with the AWC NDS, the creep component of the long-term deflection shall be permitted to be estimated as the immediate dead load deflection resulting from \(0.5D \). For wood structural members at all other moisture conditions, the creep component of the long-term deflection is permitted to be estimated as the immediate dead load deflection resulting from \(D \). The value of \(0.5D \) shall not be used in combination with AWC NDS provisions for long-term loading.

e. The above deflections do not ensure against ponding. Roofs that do not have sufficient slope or camber to ensure adequate drainage shall be investigated for ponding. See Section 1611 for rain and ponding requirements and Section 1503.4 for roof drainage requirements.

f. The wind load is permitted to be taken as 0.42 times the “component and cladding” loads for the purpose of determining deflection limits herein. Where members support glass in accordance with Section 2403 using the deflection limit therein, the wind load shall be no less than 0.6 times the "component and cladding" loads for the purpose of determining deflection.

g. For steel structural members, the dead load shall be taken as zero.

h. For aluminum structural members or aluminum panels used in skylights and sloped glazing framing, roofs or walls of sunroom additions or patio covers not supporting edge of glass or aluminum sandwich panels, the total load deflection shall not exceed 1/60. For continuous aluminum structural members supporting edge of glass, the total load deflection shall not exceed 1/175 for each glass lite or 1/60 for the entire length of the member, whichever is more stringent. For aluminum sandwich panels used in roofs or walls of sunroom additions or patio covers, the total load deflection shall not exceed 1/120.

i. For cantilever members, l shall be taken as twice the length of the cantilever.
1604.5 Risk category. Each building and structure shall be assigned a risk category in accordance with Table 1604.5. Where a referenced standard specifies an occupancy category, the risk category shall not be taken as lower than the occupancy category specified therein. Where a referenced standard specifies that the assignment of a risk category be in accordance with ASCE 7, Table 1.5-1, Table 1604.5 shall be used in lieu of ASCE 7, Table 1.5-1.

1604.5.1 Multiple occupancies. Where a building or structure is occupied by two or more occupancies not included in the same risk category, it shall be assigned the classification of the highest risk category corresponding to the various occupancies. Where buildings or structures have two or more portions that are structurally separated, each portion shall be separately classified. Where a separated portion of a building or structure provides required access to, required egress from or shares life safety components with another portion having a higher risk category, both portions shall be assigned to the higher risk category.

1604.6 In-situ load tests. The building official is authorized to require an engineering analysis or a load test, or both, of any construction whenever there is reason to question the safety of the construction for the intended occupancy. Engineering analysis and load tests shall be conducted in accordance with Section 17091708.

1604.7 Preconstruction load tests. Materials and methods of construction that are not capable of being designed by approved engineering analysis or that do not comply with the applicable referenced standards, or alternative test procedures in accordance with Section 1707, shall be load tested in accordance with Section 17401709.

1604.8 Anchorage. Buildings and other structures, and portions thereof, shall be provided with anchorage in accordance with Sections 1604.8.1 through 1604.8.3, as applicable.

1604.8.1 General. Anchorage of the roof to walls and columns, and of walls and columns to foundations, shall be provided to resist the uplift and sliding forces that result from the application of the prescribed loads.

1604.8.2 Structural walls. Walls that provide vertical load-bearing resistance or lateral shear resistance for a portion of the structure shall be anchored to the roof and to all floors and members that provide lateral support for the wall or that are supported by the wall. The connections shall be capable of resisting the
horizontal forces specified in Section 1.4.5 of ASCE 7 for walls of structures assigned to Seismic Design Category A and to Section 12.11 of ASCE 7 for walls of structures assigned to all other seismic design categories. Required anchors in masonry walls of hollow units or cavity walls shall be embedded in a reinforced grouted structural element of the wall. See Sections 1609 for wind design requirements and 1613 for earthquake design requirements.

1604.8.3 Decks. Where supported by attachment to an exterior wall, decks shall be positively anchored to the primary structure and designed for both vertical and lateral loads as applicable. Such attachment shall not be accomplished by the use of toenails or nails subject to withdrawal. Where positive connection to the primary building structure cannot be verified during inspection, decks shall be self-supporting. Connections of decks with cantilevered framing members to exterior walls or other framing members shall be designed for both of the following:

1. The reactions resulting from the dead load and live load specified in Table 1607.1, or the snow load specified in Section 1608, in accordance with Section 1605, acting on all portions of the deck.
2. The reactions resulting from the dead load and live load specified in Table 1607.1, or the snow load specified in Section 1608, in accordance with Section 1605, acting on the cantilevered portion of the deck, and no live load or snow load on the remaining portion of the deck.

1604.9 Counteracting structural actions. Structural members, systems, components and cladding shall be designed to resist forces due to earthquakes and wind, with consideration of overturning, sliding and uplift. Continuous load paths shall be provided for transmitting these forces to the foundation. Where sliding is used to isolate the elements, the effects of friction between sliding elements shall be included as a force.

1604.10 Wind and seismic detailing. Lateral force-resisting systems shall meet seismic detailing requirements and limitations prescribed in this code and ASCE 7, excluding Chapter 14 and Appendix 11A, even when wind load effects are greater than seismic load effects.

SECTION 1605
LOAD COMBINATIONS

1605.1 General. Buildings and other structures and portions thereof shall be designed to resist:

1. The load combinations specified in Section 1605.2,1605.3.1 or 1605.3.2;
2. The load combinations specified in Chapters 18 through 23; and
3. The seismic load effects including overstrength factor in accordance with Section 12.4.3 of ASCE 7 where required by Section 12.2.5.2, 12.3.3.3 or 12.10.2.1 of ASCE 7. With the simplified procedure of ASCE 7 Section 12.14, the seismic load effects including overstrength factor in accordance with Section 12.14.3.2 of ASCE 7 shall be used.

TABLE 1604.5

<table>
<thead>
<tr>
<th>RISK CATEGORY</th>
<th>NATURE OF OCCUPANCY</th>
</tr>
</thead>
</table>
| I | Buildings and other structures that represent a low hazard to human life in the event of failure, including but not limited to:
• Agricultural facilities.
• Certain temporary facilities.
• Minor storage facilities. |
| II | Buildings and other structures except those listed in Risk Categories I, III and IV. |
| III | Buildings and other structures that represent a substantial hazard to human life in the event of failure, including but not limited to:
• Buildings and other structures whose primary occupancy is public assembly with an occupant load greater than 300.
• Buildings and other structures containing Group E occupancies with an occupant load greater than 250.
• Buildings and other structures containing educational occupancies for students above the 12th grade with an occupant load greater than 500.
• Group I-2 occupancies with an occupant load of 50 or more resident care recipients but not having surgery or emergency treatment facilities.
• Group I-3 occupancies.
• Any other occupancy with an occupant load greater than 5,000.
• Power-generating stations, water treatment facilities for potable water, wastewater treatment facilities and other public utility facilities not included in Risk Category IV.
• Buildings and other structures not included in Risk Category IV containing quantities of toxic or explosive materials that:
 Exceed maximum allowable quantities per control area as given in Table 307.1(1) or 307.1(2) or per outdoor control area in accordance with the fire code; and
 Are sufficient to pose a threat to the public if released. |
a. For purposes of occupant load calculation, occupancies required by Table 1004.1.2 to use gross floor area calculations shall be permitted to use net floor areas to determine the total occupant load.

b. The classification of buildings and other structures as Risk Category III or IV based on their quantities of toxic, highly toxic or explosive materials is permitted to be reduced to Risk Category II, provided it can be demonstrated by a hazard assessment in accordance with Section 1.5.3 of ASCE 7 that a release of the toxic, highly toxic or explosive materials is not sufficient to pose a threat to the public.

Applicable loads shall be considered, including both earthquake and wind, in accordance with the specified load combinations. Each load combination shall also be investigated with one or more of the variable loads set to zero.

Where the load combinations with overstrength factor in Section 12.4.3.2 of ASCE 7 apply, they shall be used as follows:

1. The basic combinations for strength design with overstrength factor in lieu of Equations 16-5 and 16-7 in Section 1605.2.

2. The basic combinations for allowable stress design with overstrength factor in lieu of Equations 16-12, 1614 and 16-16 in Section 1605.3.1.

3. The basic combinations for allowable stress design with overstrength factor in lieu of Equations 16-21 and 16-22 in Section 1605.3.2.

1605.1 Stability. Regardless of which load combinations are used to design for strength, where overall structure stability (such as stability against overturning, sliding, or buoyancy) is being verified, use of the load combinations specified in Section 1605.2 or 1605.3 shall be permitted. Where the load combinations specified in Section 1605.2 are used, strength reduction factors applicable to soil resistance shall be provided by a registered design professional. The stability of retaining walls shall be verified in accordance with Section 1807.2.3.
1605.2 Load combinations using strength design or load and resistance factor design. Where strength design or load and resistance factor design is used, buildings and other structures, and portions thereof, shall be designed to resist the most critical effects resulting from the following combinations of factored loads:

\[1.4(D + F) \] \hspace{1cm} \text{(Equation 16-1)}

\[1.2(D + F) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R) \] \hspace{1cm} \text{(Equation 16-2)}

\[1.2(D + F) + 1.6(L_r \text{ or } S \text{ or } R) + 1.6H + (f_1 L \text{ or } 0.5W) \] \hspace{1cm} \text{(Equation 16-3)}

\[1.2(D + F) + 1.0W + f_1 L + 1.6H + 0.5(L_r \text{ or } S \text{ or } R) \] \hspace{1cm} \text{(Equation 16-4)}

\[1.2(D + F) + 1.0E + f_1 L + 1.6H + f_2 S \] \hspace{1cm} \text{(Equation 16-5)}

\[0.9D + 1.0W + 1.6H \] \hspace{1cm} \text{(Equation 16-6)}

\[0.9(D + F) + 1.0E + 1.6H \text{ where:} \] \hspace{1cm} \text{(Equation 16-7)}

\[f_1 = 1 \text{ for places of public assembly live loads in excess of 100 pounds per square foot (4.79 kN/m}^2)\text{, and parking garages; and 0.5 for other live loads.} \]

\[f_2 = 0.7 \text{ for roof configurations (such as saw tooth) that do not shed snow off the structure, and 0.2 for other roof configurations.} \]

Exceptions:
1. Where other factored load combinations are specifically required by other provisions of this code, such combinations shall take precedence.
2. Where the effect of \(H \) resists the primary variable load effect, a load factor of 0.9 shall be included with \(H \) where \(H \) is permanent and \(H \) shall be set to zero for all other conditions.

1605.2.1 Other loads. Where flood loads, \(F_a \), are to be considered in the design, the load combinations of Section 2.3.3 of ASCE 7 shall be used. Where self-straining loads, \(T \), are considered in design, their structural effects in combination with other loads shall be determined in accordance with Section 2.3.5 of ASCE 7. Where an ice-sensitive structure is subjected to loads due to atmospheric icing, the load combinations of Section 2.3.4 of ASCE 7 shall be considered.

1605.3 Load combinations using allowable stress design.

1605.3.1 Basic load combinations. Where allowable stress design (working stress design), as permitted by this code, is used, structures and portions thereof shall resist the most critical effects resulting from the following combinations of loads:

\[D + F \] \hspace{1cm} \text{(Equation 16-8)}

\[D + H + F + L \] \hspace{1cm} \text{(Equation 16-9)}

\[D + H + F + (L_r \text{ or } S \text{ or } R) \] \hspace{1cm} \text{(Equation 16-10)}

\[D + H + F + 0.75(L) + 0.75(L_r \text{ or } S \text{ or } R) \] \hspace{1cm} \text{(Equation 16-11)}
\[D + H + F + (0.6W \text{ or } 0.7E) \] \hspace{1cm} \text{(Equation 16-12)}

\[D + H + F + 0.75(0.6W) + 0.75L + 0.75(L_r \text{ or } S \text{ or } R) \] \hspace{1cm} \text{(Equation 16-13)}

\[D + H + F + 0.75 (0.7E) + 0.75L + 0.75S \] \hspace{1cm} \text{(Equation 16-14)}

\[0.6D + 0.6W + H \] \hspace{1cm} \text{(Equation 16-15)}

\[0.6(D + F) + 0.7E + H \] \hspace{1cm} \text{(Equation 16-16)}

\textbf{Exceptions:}

1. Crane hook loads need not be combined with roof live load or with more than three-fourths of the snow load or one-half of the wind load.

2. Flat roof snow loads of 30 psf (1.44 kN/m\(^2\)) or less and roof live loads of 30 psf (1.44 kN/m\(^2\)) or less need not be combined with seismic loads. Where flat roof snow loads exceed 30 psf (1.44 kN/m\(^2\)), 20 percent shall be combined with seismic loads.

3. Where the effect of \(H \) resists the primary variable load effect, a load factor of 0.6 shall be included with \(H \) where \(H \) is permanent and \(H \) shall be set to zero for all other conditions.

4. In Equation 16-15, the wind load, \(W \), is permitted to be reduced in accordance with Exception 2 of Section 2.4.1 of ASCE 7.

5. In Equation 16-16, 0.6 \(D \) is permitted to be increased to 0.9 \(D \) for the design of special reinforced masonry shear walls complying with Chapter 21.

\textbf{1605.3.1.1 Stress increases.} Increases in allowable stresses specified in the appropriate material chapter or the referenced standards shall not be used with the load combinations of Section 1605.3.1, except that increases shall be permitted in accordance with Chapter 23.

\textbf{1605.3.1.2 Other loads.} Where flood loads, \(F_a \), are to be considered in design, the load combinations of Section 2.4.2 of ASCE 7 shall be used. Where self-straining loads, \(T \), are considered in design, their structural effects in combination with other loads shall be determined in accordance with Section 2.4.4 of ASCE 7. Where an ice-sensitive structure is subjected to loads due to atmospheric icing, the load combinations of Section 2.4.3 of ASCE 7 shall be considered.

\textbf{1605.3.2 Alternative basic load combinations.} In lieu of the basic load combinations specified in Section 1605.3.1, structures and portions thereof shall be permitted to be designed for the most critical effects resulting from the following combinations. When using these alternative basic load combinations that include wind or seismic loads, allowable stresses are permitted to be increased or load combinations reduced where permitted by the material chapter of this code or the referenced standards.
combinations that include the counteracting effects of dead and wind loads, only two-thirds of the minimum dead load likely to be in place during a design wind event shall be used. When using allowable stresses that have been increased or load combinations that have been reduced as permitted by the material chapter of this code or the referenced standards, where wind loads are calculated in accordance with Chapters 26 through 31 of ASCE 7, the coefficient (ω) in the following equations shall be taken as 1.3. For other wind loads, (ω) shall be taken as 1. When allowable stresses have not been increased or load combinations have not been reduced as permitted by the material chapter of this code or the referenced standards, (ω) shall be taken as 1. When using these alternative load combinations to evaluate sliding, overturning and soil bearing at the soil-structure interface, the reduction of foundation overturning from Section 12.13.4 in ASCE 7 shall not be used.

When using these alternative basic load combinations for proportioning foundations for loadings, which include seismic loads, the vertical seismic load effect, E_v, in Equation 12.4-4 of ASCE 7 is permitted to be taken equal to zero.

\[
\begin{align*}
D + L + (L_t \text{ or } S \text{ or } R) & \quad \text{(Equation 16-17)} \\
D + L + 0.6 \omega W & \quad \text{(Equation 16-18)} \\
D + L + 0.6 \omega W + S/2 & \quad \text{(Equation 16-19)} \\
D + L + S + 0.6 \omega W/2 & \quad \text{(Equation 16-20)} \\
D + L + S + E/1.4 & \quad \text{(Equation 16-21)} \\
0.9D + E/1.4 & \quad \text{(Equation 16-22)}
\end{align*}
\]

Exceptions:

1. Crane hook loads need not be combined with roof live loads or with more than three-fourths of the snow load or one-half of the wind load.
2. Flat roof snow loads of 30 psf (1.44 kN/m2) or less and roof live loads of 30 psf (1.44 kN/m2) or less need not be combined with seismic loads. Where flat roof snow loads exceed 30 psf (1.44 kN/m2), 20 percent shall be combined with seismic loads.

1605.3.2.1 Other loads. Where F, H or T are to be considered in the design, each applicable load shall be added to the combinations specified in Section 1605.3.2. Where self-straining loads, T, are considered in design, their structural effects in combination with other loads shall be determined in accordance with Section 2.4.4 of ASCE 7.

SECTION 1606

DEAD LOADS

1606.1 General. Dead loads are those loads defined in Chapter 2 of this code.
Dead loads shall be considered permanent loads.

1606.2 Design dead load. For purposes of design, the actual weights of materials of construction and fixed service equipment shall be used.

SECTION 1607

LIVE LOADS

1607.1 General. Live loads are those loads defined in Chapter 2 of this code.

1607.2 Loads not specified. For occupancies or uses not designated in Table 1607.1, the live load shall be determined in accordance with generally accepted engineering practice.

1607.3 Uniform live loads. The live loads used in the design of buildings and other structures shall be the maximum loads expected by the intended use or occupancy but shall in no case be less than the minimum uniformly distributed live loads given in Table 1607.1.

1607.4 Concentrated live loads. Floors and other similar surfaces shall be designed to support the uniformly distributed live loads prescribed in Section 1607.3 or the concentrated live loads, given in Table 1607.1, whichever produces the greater load effects. Unless otherwise specified, the indicated concentration shall be assumed to be uniformly distributed over an area of 2½ feet by 2½ feet (762 mm by 762 mm) and shall be located so as to produce the maximum load effects in the structural members.

1607.5 Partition loads. In office buildings and in other buildings where partition locations are subject to change, provisions for partition weight shall be made, whether or not partitions are shown on the construction documents, unless the specified live load is 80 psf (3.83 kN/m²) or greater. The partition load shall be not less than a uniformly distributed live load of 15 psf (0.72 kN/m²).
TABLE 1607.1
MINIMUM UNIFORMLY DISTRIBUTED LIVE LOADS, L0, AND MINIMUM CONCENTRATED LIVE LOADS

<table>
<thead>
<tr>
<th>OCCUPANCY OR USE</th>
<th>UNIFORM (psf)</th>
<th>CONCENTRATED (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Apartments (see residential)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2. Access floor systems</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Office use</td>
<td>50</td>
<td>2,000</td>
</tr>
<tr>
<td>Computer use</td>
<td>100</td>
<td>2,000</td>
</tr>
<tr>
<td>3. Armories and drill rooms</td>
<td>150"</td>
<td>—</td>
</tr>
<tr>
<td>4. Assembly areas</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fixed seats (fastened to floor)</td>
<td>60"</td>
<td>—</td>
</tr>
<tr>
<td>Follow spot, projections and control rooms</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>Lobbies</td>
<td>100"</td>
<td>—</td>
</tr>
<tr>
<td>Movable seats</td>
<td>100"</td>
<td>—</td>
</tr>
<tr>
<td>Stage floors</td>
<td>150"</td>
<td>—</td>
</tr>
<tr>
<td>Platforms (assembly)</td>
<td>100"</td>
<td>—</td>
</tr>
<tr>
<td>Other assembly areas</td>
<td>100"</td>
<td>—</td>
</tr>
<tr>
<td>5. Balconies and decks</td>
<td>Same as occupancy served</td>
<td>—</td>
</tr>
<tr>
<td>6. Catwalks</td>
<td>40</td>
<td>300</td>
</tr>
<tr>
<td>7. Cornices</td>
<td>60</td>
<td>—</td>
</tr>
<tr>
<td>8. Corridors</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>First floor</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Other floors</td>
<td>Same as occupancy served except as indicated</td>
<td>—</td>
</tr>
<tr>
<td>9. Dining rooms and restaurants</td>
<td>100"</td>
<td>—</td>
</tr>
<tr>
<td>10. Dwellings (see residential)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>11. Elevator machine room and control room grating (on area of 2 inches by 2 inches)</td>
<td>—</td>
<td>300</td>
</tr>
<tr>
<td>12. Finish light floor plate construction (on area of 1 inch by 1 inch)</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>13. Fire escapes</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>On single-family dwellings only</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>14. Garages (passenger vehicles only)</td>
<td>40"</td>
<td>Note 1</td>
</tr>
<tr>
<td>Trucks and buses</td>
<td>See Section 1607.7</td>
<td>—</td>
</tr>
<tr>
<td>15. Handrails, guards and grab bars</td>
<td>See Section 1607.8</td>
<td>—</td>
</tr>
<tr>
<td>16. Helipads</td>
<td>See Section 1607.6</td>
<td>—</td>
</tr>
<tr>
<td>17. Hospitals</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>1,000</td>
</tr>
<tr>
<td>Operating rooms, laboratories</td>
<td>60</td>
<td>1,000</td>
</tr>
<tr>
<td>Patient rooms</td>
<td>40</td>
<td>1,000</td>
</tr>
<tr>
<td>18. Hotels (see residential)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19. Libraries</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>1,000</td>
</tr>
<tr>
<td>Reading rooms</td>
<td>60</td>
<td>1,000</td>
</tr>
<tr>
<td>Stack rooms</td>
<td>150"</td>
<td>1,000</td>
</tr>
<tr>
<td>20. Manufacturing</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Heavy</td>
<td>250"</td>
<td>3,000</td>
</tr>
<tr>
<td>Light</td>
<td>125"</td>
<td>2,000</td>
</tr>
<tr>
<td>21. Marquees, except one- and two-family dwellings</td>
<td>75</td>
<td>—</td>
</tr>
<tr>
<td>22. Office buildings</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>2,000</td>
</tr>
<tr>
<td>File and computer rooms shall be designed for heavier loads based on anticipated occupancy</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lobbies and first-floor corridors</td>
<td>100</td>
<td>2,000</td>
</tr>
<tr>
<td>Offices</td>
<td>50</td>
<td>2,000</td>
</tr>
<tr>
<td>23. Penal institutions</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cell blocks</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Corridors</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>24. Recreational uses:</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bowling alleys, poolrooms and similar uses</td>
<td>75"</td>
<td>—</td>
</tr>
<tr>
<td>Dance halls and ballrooms</td>
<td>100"</td>
<td>—</td>
</tr>
<tr>
<td>Gymnasiums</td>
<td>100"</td>
<td>—</td>
</tr>
<tr>
<td>Ice skating rink</td>
<td>250"</td>
<td>—</td>
</tr>
<tr>
<td>Ice skating rink</td>
<td>100"</td>
<td>—</td>
</tr>
<tr>
<td>Roller skating rink</td>
<td>100"</td>
<td>—</td>
</tr>
<tr>
<td>Stadiums and arenas with fixed seats (fastened to floor)</td>
<td>60"</td>
<td>—</td>
</tr>
<tr>
<td>25. Residential</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Uninhabitable attics without storage</td>
<td>10</td>
<td>—</td>
</tr>
<tr>
<td>Uninhabitable attics with storage day</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Habitable attics and sleeping areas</td>
<td>30</td>
<td>—</td>
</tr>
<tr>
<td>Canopies, including marquees</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>All other areas</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hotels and multifamily dwellings</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Private rooms and corridors serving them</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Public rooms" and corridors serving them</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>26. Roofs</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>All roof surfaces subject to maintenance workers</td>
<td>—</td>
<td>300</td>
</tr>
<tr>
<td>Awnings and canopies:</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Fabric construction supported by a skeleton structure</td>
<td>5</td>
<td>—</td>
</tr>
<tr>
<td>All other construction, except one- and two-family dwellings</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Ordinary flat, pitched, and curved roofs (that are not occupiable)</td>
<td>20</td>
<td>—</td>
</tr>
<tr>
<td>Primary roof members exposed to a work floor</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Single panel point of lower chord of roof trusses or any point along primary structural members supporting roof, over manufacturing, storage warehouses, and repair garages</td>
<td>2,000</td>
<td>—</td>
</tr>
<tr>
<td>All other primary roof members</td>
<td>300</td>
<td>—</td>
</tr>
<tr>
<td>Occupable roofs:</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Roof gardens</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Assembly areas</td>
<td>100"</td>
<td>—</td>
</tr>
<tr>
<td>All other similar areas</td>
<td>Note 1</td>
<td>—</td>
</tr>
<tr>
<td>27. Schools</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Classrooms</td>
<td>40</td>
<td>1,000</td>
</tr>
<tr>
<td>Corridors above first floor</td>
<td>80</td>
<td>1,000</td>
</tr>
<tr>
<td>First-floor corridors</td>
<td>100</td>
<td>1,000</td>
</tr>
<tr>
<td>28. Scutteles, skylight ribs and accessible ceilings</td>
<td>—</td>
<td>200</td>
</tr>
<tr>
<td>29. Sidewalks, vehicular driveways and yards, subject to trucking</td>
<td>250"</td>
<td>8,000"</td>
</tr>
</tbody>
</table>
TABLE 1607.1—continued
MINIMUM UNIFORMLY DISTRIBUTED LIVE LOADS, L₀, AND
MINIMUM CONCENTRATED LIVE LOADS

<table>
<thead>
<tr>
<th>OCCUPANCY OR USE</th>
<th>UNIFORM (psf)</th>
<th>CONCENTRATED (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30. Stairs and exits</td>
<td>40 100</td>
<td>300f 300f</td>
</tr>
<tr>
<td>Dwellings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31. Storage warehouses (shall be designed for heavier loads if required for anticipated storage)</td>
<td>250m 125m</td>
<td>—</td>
</tr>
<tr>
<td>Heavy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32. Stores Retail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First floor</td>
<td>100</td>
<td>1,000</td>
</tr>
<tr>
<td>Upper floors</td>
<td>75</td>
<td>1,000</td>
</tr>
<tr>
<td>Wholesale, all floors</td>
<td>125m</td>
<td>1,000</td>
</tr>
<tr>
<td>33. Vehicle barriers</td>
<td>See Section 1607.8.3</td>
<td></td>
</tr>
<tr>
<td>34. Walkways and elevated platforms (other than exitways)</td>
<td>60</td>
<td>—</td>
</tr>
<tr>
<td>35. Yards and terraces, pedestrians</td>
<td>100m</td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm,
1 square inch = 645.16 mm²,
1 square foot = 0.0929 m²,
1 pound per square foot = 0.0479 kN/m²,
1 pound = 0.0044448 kN,
1 pound per cubic foot = 16 kg/m³.

a. Floors in garages or portions of buildings used for the storage of motor vehicles shall be designed for the uniformly distributed live loads of this Table or the following concentrated loads: (1) for garages restricted to passenger vehicles accommodating not more than nine passengers, 3,000 pounds acting on an area of 4 1/2 inches by 4 1/2 inches; (2) for mechanical parking structures without slab or deck that are used for storing passenger vehicles only, 2,250 pounds per wheel.

b. The loading applies to stack room floors that support nonmobile, double-faced library book stacks, subject to the following limitations:
 1. The nominal book stack unit height shall not exceed 90 inches;
 2. The nominal shelf depth shall not exceed 12 inches for each face; and
 3. Parallel rows of double-faced book stacks shall be separated by aisles not less than 36 inches wide.

c. Design in accordance with ICC 300.

d. Other uniform loads in accordance with an approved method containing provisions for truck loadings shall be considered where appropriate.

e. The concentrated wheel load shall be applied on an area of 4.5 inches by 4.5 inches.

f. The minimum concentrated load on stair treads shall be applied on an area of 2 inches by 2 inches. This load need not be assumed to act concurrently with the uniform load.
g. Where snow loads occur that are in excess of the design conditions, the structure shall be designed to support the loads due to the increased loads caused by drift buildup or a greater snow design determined by the building official (see Section 1608).

h. See Section 1604.8.3 for decks attached to exterior walls.

i. Uninhabitable attics without storage are those where the maximum clear height between the joists and rafters is less than 42 inches, or where there are not two or more adjacent trusses with web configurations capable of accommodating an assumed rectangle 42 inches in height by 24 inches in width, or greater, within the plane of the trusses. This live load need not be assumed to act concurrently with any other live load requirements.

j. Uninhabitable attics with storage are those where the maximum clear height between the joists and rafters is 42 inches or greater, or where there are two or more adjacent trusses with web configurations capable of accommodating an assumed rectangle 42 inches in height by 24 inches in width, or greater, within the plane of the trusses. The live load need only be applied to those portions of the joists or truss bottom chords where both of the following conditions are met:
 i. The attic area is accessible from an opening not less than 20 inches in width by 30 inches in length that is located where the clear height in the attic is a minimum of 30 inches; and
 ii. The slopes of the joists or truss bottom chords are no greater than two units vertical in 12 units horizontal.

 The remaining portions of the joists or truss bottom chords shall be designed for a uniformly distributed concurrent live load of not less than 10 pounds per square foot.

k. Attic spaces served by stairways other than the pull-down type shall be designed to support the minimum live load specified for habitable attics and sleeping rooms.

l. Areas of occupiable roofs, other than roof gardens and assembly areas, shall be designed for appropriate loads. Unoccupied landscaped areas of roofs shall be designed in accordance with Section 1607.12.3.

m. Live load reduction is not permitted unless specific exceptions of Section 1607.10 apply.

1607.6 Helipads. Helipads shall be designed for the following live loads:

1. A uniform live load, \(L \), as specified below. This load shall not be reduced.
 1.1. 40 psf (1.92 kN/m²) where the design basis helicopter has a maximum take-off weight of 3,000 pounds (13.35 kN) or less.
 1.2. 60 psf (2.87 kN/m²) where the design basis helicopter has a maximum take-off weight greater than 3,000 pounds (13.35 kN).

2. A single concentrated live load, \(L \), of 3,000 pounds (13.35 kN) applied over an area of 4.5 inches by 4.5 inches (114 mm by 114 mm) and located so as to produce the maximum load effects on the structural elements under consideration. The concentrated load is not required to act concurrently with other uniform or concentrated live loads.

3. Two single concentrated live loads, \(L \), 8 feet (2438 mm) apart applied on the landing pad (representing the helicopter’s two main landing gear, whether skid type or wheeled type), each having a magnitude of 0.75 times the maximum take-off weight of the helicopter, and located so as to
produce the maximum load effects on the structural elements under consideration. The concentrated loads shall be applied over an area of 8 inches by 8 inches (203 mm by 203 mm) and are not required to act concurrently with other uniform or concentrated live loads. Landing areas designed for a design basis helicopter with maximum take-off weight of 3,000-pounds (13.35 kN) shall be identified with a 3,000 pound (13.34 kN) weight limitation. The landing area weight limitation shall be indicated by the numeral “3” (kips) located in the bottom right corner of the landing area as viewed from the primary approach path. The indication for the landing area weight limitation shall be a minimum 5 feet (1524 mm) in height.

1607.7 Heavy vehicle loads. Floors and other surfaces that are intended to support vehicle loads greater than a 10,000 pound (4536 kg) gross vehicle weight rating shall comply with Sections 1607.7.1 through 1607.7.5.

1607.7.1 Loads. Where any structure does not restrict access for vehicles that exceed a 10,000-pound (4536 kg) gross vehicle weight rating, those portions of the structure subject to such loads shall be designed using the vehicular live loads, including consideration of impact and fatigue, in accordance with the codes and specifications required by the jurisdiction having authority for the design and construction of the roadways and bridges in the same location of the structure.

1607.7.2 Fire truck and emergency vehicles. Where a structure or portions of a structure are accessed and loaded by fire department access vehicles and other similar emergency vehicles, the structure shall be designed for the greater of the following loads:
 1. The actual operational loads, including outrigger reactions and contact areas of the vehicles as stipulated; or
 2. The live loading specified in Section 1607.7.1.

1607.7.3 Heavy vehicle garages. Garages designed to accommodate vehicles that exceed a 10,000-pound (4536 kg) gross vehicle weight rating, shall be designed using the live loading specified by Section 1607.7.1. For garages the design for impact and fatigue is not required. Exception: The vehicular live loads and load placement are allowed to be determined using the actual vehicle weights for the vehicles allowed onto the garage floors, provided such loads and placement are based on rational engineering principles, but shall not be less than 50 psf (2.9 kN/m²). This live load shall not be reduced.
1607.7.4 Forklifts and movable equipment. Where a structure is intended to have forklifts or other movable equipment present, the structure shall be designed for the total vehicle or equipment load and the individual wheel loads for the anticipated vehicles as specified by the owner of the facility. These loads shall be posted in accordance with Section 1607.7.5.

1607.7.4.1 Impact and fatigue. Impact loads and fatigue loading shall be considered in the design of the supporting structure. For the purposes of design, the vehicle and wheel loads shall be increased by 30 percent to account for impact.

1607.7.5 Posting. The maximum weight of vehicles allowed into or on a garage or other structure shall be posted by the owner or the owner’s representative in accordance with Section 106.1.

1607.8 Loads on handrails, guards, grab bars, seats and vehicle barriers. Handrails, guards, grab bars, accessible seats, accessible benches and vehicle barriers shall be designed and constructed for the structural loading conditions set forth in this section.

1607.8.1 Handrails and guards. Handrails and guards shall be designed to resist a linear load of 50 pounds per linear foot (plf) (0.73 kN/m) in accordance with Section 4.5.1 of ASCE 7. Glass handrail assemblies and guards shall also comply with Section 2407.

Exceptions:
1. Deleted.
2. In Group I-3, F, H and S occupancies, for areas that are not accessible to the general public and that have an occupant load less than 50, the minimum load shall be 20 pounds per foot (0.29 kN/m).

1607.8.1.1 Concentrated load. Handrails and guards shall be designed to resist a concentrated load of 200 pounds (0.89 kN) in accordance with Section 4.5.1 of ASCE 7.

1607.8.1.2 Intermediate rails. Intermediate rails (all those except the handrail), balusters and panel fillers shall be designed to resist a concentrated load of 50 pounds (0.22 kN) in accordance with Section 4.5.1 of ASCE 7.

1607.8.2 Grab bars, shower seats and dressing room bench seats. Grab bars, shower seats and dressing room bench seats shall be designed to resist a
single concentrated load of 250 pounds (1.11 kN) applied in any direction at any point on the grab bar or seat so as to produce the maximum load effects.

1607.8.3 **Vehicle barriers.** Vehicle barriers for passenger vehicles shall be designed to resist a concentrated load of 6,000 pounds (26.70 kN) in accordance with Section 4.5.3 of ASCE 7. Garages accommodating trucks and buses shall be designed in accordance with an approved method that contains provisions for traffic railings.

1607.9 **Impact loads.** The live loads specified in Sections 1607.3 through 1607.8 shall be assumed to include adequate allowance for ordinary impact conditions. Provisions shall be made in the structural design for uses and loads that involve unusual vibration and impact forces.

1607.9.1 **Elevators.** Members, elements and components subject to dynamic loads from elevators shall be designed for impact loads and deflection limits prescribed by ASME A17.1 as referenced in rule 4010:5-3-01 of the Administrative Code.

1607.9.2 **Machinery.** For the purpose of design, the weight of machinery and moving loads shall be increased as follows to allow for impact: (1) light machinery, shaft or motor-driven, 20 percent; and (2) reciprocating machinery or power-driven units, 50 percent. Percentages shall be increased where specified by the manufacturer.

1607.9.3 **Elements supporting hoists for façade access equipment.** In addition to any other applicable live loads, structural elements that support hoists for façade access equipment shall be designed for a live load consisting of the larger of the rated load of the hoist times 2.5 and the stall load of the hoist.

1607.9.4 **Lifeline anchorages for façade access equipment.** In addition to any other applicable live loads, lifeline anchorages and structural elements that support lifeline anchorages shall be designed for a live load of at least 3,100 pounds (13.8 kN) for each attached lifeline, in every direction that a fall arrest load may be applied.

1607.10 **Reduction in uniform live loads.** Except for uniform live loads at roofs, all other minimum uniformly distributed live loads, \(L_0 \), in Table 1607.1 are permitted to be reduced in accordance with Section 1607.10.1 or 1607.10.2. Uniform live loads at roofs are permitted to be reduced in accordance with
Section 1607.12.2.

1607.10.1 Basic uniform live load reduction. Subject to the limitations of Sections 1607.10.1.1 through 1607.10.1.3 and Table 1607.1, members for which a value of K_{LLA_T} is 400 square feet (37.16 m2) or more are permitted to be designed for a reduced uniformly distributed live load, L, in accordance with the following equation:

$$L = L_o \left(0.25 + \frac{15}{\sqrt{K_{LLA_T}}} \right)$$

(Equation 16-23)

For SI: $L = L_o \left(0.25 + \frac{475}{4.57 \sqrt{K_{LLA_T}}} \right)$

where:

L = Reduced design live load per square foot (m2) of area supported by the member.

L_o = Unreduced design live load per square foot (m2) of area supported by the member (see Table 1607.1).

K_{LL} = Live load element factor (see Table 1607.10.1).

A_T = Tributary area, in square feet (m2).

L shall be not less than $0.50L_o$ for members supporting one floor and L shall be not less than $0.40L_o$ for members supporting two or more floors.

1607.10.1.1 One-way slabs. The tributary area, A_T, for use in Equation 16-23 for one-way slabs shall not exceed an area defined by the slab span times a width normal to the span of 1.5 times the slab span.

1607.10.1.2 Heavy live loads. Live loads that exceed 100 psf (4.79 kN/m2) shall not be reduced.

Exceptions:
1. The live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent, but the live load shall be not less than L as calculated in Section 1607.10.1.
2. For uses other than storage, where approved, additional live load reductions shall be permitted where shown by the registered design professional that a rational approach has been used and that such reductions are warranted.

<table>
<thead>
<tr>
<th>TABLE 1607.10.1</th>
<th>LIVE LOAD ELEMENT FACTOR, K_{LL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEMENT</td>
<td>K_{LL}</td>
</tr>
</tbody>
</table>
1607.10.1.3 Passenger vehicle garages. The live loads shall not be reduced in passenger vehicle garages.

Exception: The live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent, but the live load shall not be less than \(L \) as calculated in Section 1607.10.1.

1607.10.2 Alternative uniform live load reduction. As an alternative to Section 1607.10.1 and subject to the limitations of Table 1607.1, uniformly distributed live loads are permitted to be reduced in accordance with the following provisions. Such reductions shall apply to slab systems, beams, girders, columns, piers, walls and foundations.

1. A reduction shall not be permitted where the live load exceeds 100 psf (4.79 kN/m²) except that the design live load for members supporting two or more floors is permitted to be reduced by a maximum of 20 percent.

Exception: For uses other than storage, where approved, additional live load reductions shall be permitted where shown by the registered design professional that a rational approach has been used and that such reductions are warranted.

2. A reduction shall not be permitted in passenger vehicle parking garages except that the live loads for members supporting two or more floors are permitted to be reduced by a maximum of 20 percent.

3. For live loads not exceeding 100 psf (4.79 kN/m²), the design live load for any structural member supporting 150 square feet (13.94 m²) or more is permitted to be reduced in accordance with Equation 16-24.
4. For one-way slabs, the area, A, for use in Equation 16-24 shall not exceed the product of the slab span and a width normal to the span of 0.5 times the slab span.

\[R = 0.08(A - 150) \] \hspace{1cm} \text{(Equation 16-24)}

For SI: \[R = 0.861(A - 13.94) \]

Such reduction shall not exceed the smallest of:
1. 40 percent for members supporting one floor.
2. 60 percent for members supporting two or more floors.
3. \(R \) as determined by the following equation:

\[R = 23.1(1 + D/L_o) \] \hspace{1cm} \text{(Equation 16-25)}

where:
- \(A \) = Area of floor supported by the member, square feet (m²).
- \(D \) = Dead load per square foot (m²) of area supported.
- \(L_o \) = Unreduced live load per square foot (m²) of area supported.
- \(R \) = Reduction in percent.

1607.11 Distribution of floor loads. Where uniform floor live loads are involved in the design of structural members arranged so as to create continuity, the minimum applied loads shall be the full dead loads on all spans in combination with the floor live loads on spans selected to produce the greatest load effect at each location under consideration. Floor live loads are permitted to be reduced in accordance with Section 1607.10.

1607.12 Roof loads. The structural supports of roofs and marquees shall be designed to resist wind and, where applicable, snow and earthquake loads, in addition to the dead load of construction and the appropriate live loads as prescribed in this section, or as set forth in Table 1607.1. The live loads acting on a sloping surface shall be assumed to act vertically on the horizontal projection of that surface.

1607.12.1 Distribution of roof loads. Where uniform roof live loads are reduced to less than 20 psf (0.96 kN/m²) in accordance with Section 1607.12.2.1 and are applied to the design of structural members arranged so as to create continuity, the reduced roof live load shall be applied to adjacent spans or to alternate spans, whichever produces the most unfavorable load effect. See Section 1607.12.2 for reductions in minimum roof live loads and Section 7.5 of ASCE 7 for partial snow loading.
1607.12.2 General. The minimum uniformly distributed live loads of roofs and marquees, \(L_o \), in Table 1607.1 are permitted to be reduced in accordance with Section 1607.12.2.1.

1607.12.2.1 Ordinary roofs, awnings and canopies. Ordinary flat, pitched and curved roofs, and awnings and canopies other than of fabric construction supported by a skeleton structure, are permitted to be designed for a reduced uniformly distributed roof live load, \(L_r \), as specified in the following equations or other controlling combinations of loads as specified in Section 1605, whichever produces the greater load effect.

In structures such as greenhouses, where special scaffolding is used as a work surface for workers and materials during maintenance and repair operations, a lower roof load than specified in the following equations can be used. Such structures shall be designed for a minimum roof live load of 12 psf (0.58 kN/m²).

\[
L_r = L_o R_1 R_2
\]

(Equation 16-26)

where:

\[
12 \leq L_r \leq 20
\]

For SI: \(L_r = L_o R_1 R_2 \) where: \(0.58 \leq L_r \leq 0.96 \)

\(L_o \) = Unreduced roof live load per square foot (m²) of horizontal projection supported by the member (see Table 1607.1).

\(L_r \) = Reduced roof live load per square foot (m²) of horizontal projection supported by the member.

The reduction factors \(R_1 \) and \(R_2 \) shall be determined as follows:

\(R_1 = 1 \) for \(A_t \leq 200 \) square feet (18.58 m²)
(Equation 16-27)

\(R_1 = 1.2 - 0.001 A_t \) for 200 square feet < \(A_t \) < 600 square feet
(Equation 16-28)

For SI: \(1.2 - 0.011 A_t \) for 18.58 square meters < \(A_t \) < 55.74 square meters

\(R_1 = 0.6 \) for \(A_t \geq 600 \) square feet (55.74 m²)
(Equation 16-29)

where:

\(A_t \) = Tributary area (span length multiplied by effective width) in square feet (m²) supported by the member, and

\(R_2 = 1 \) for \(F \leq 4 \)
(Equation 16-30)

\(R_2 = 1.2 - 0.05 F \) for \(4 < F < 12 \)
(Equation 16-31)

\(R_2 = 0.6 \) for \(F \geq 12 \)
(Equation 16-32)

where:

\(F \) = For a sloped roof, the number of inches of rise per foot (for SI: \(F = \))
0.12 × slope, with slope expressed as a percentage), or for an arch or dome, the rise-to-span ratio multiplied by 32.

1607.12.3 Occupiable roofs. Areas of roofs that are occupiable, such as vegetative roofs, roof gardens or for assembly or other similar purposes, and marquees are permitted to have their uniformly distributed live loads reduced in accordance with Section 1607.10.

1607.12.3.1 Vegetative and landscaped roofs. The weight of all landscaping materials shall be considered as dead load and shall be computed on the basis of saturation of the soil as determined in accordance with ASTM E 2397. The uniform design live load in unoccupied landscaped areas on roofs shall be 20 psf (0.958 kN/m²). The uniform design live load for occupied landscaped areas on roofs shall be determined in accordance with Table 1607.1.

1607.12.4 Awnings and canopies. Awnings and canopies shall be designed for uniform live loads as required in Table 1607.1 as well as for snow loads and wind loads as specified in Sections 1608 and 1609.

1607.12.5 Photovoltaic panel systems. Roof structures that provide support for photovoltaic panel systems shall be designed in accordance with Sections 1607.12.5.1 through 1607.12.5.4, as applicable.

1607.12.5.1 Roof live load. Roof surfaces to be covered by solar photovoltaic panels or modules shall be designed for the roof live load, \(L_r \), assuming that the photovoltaic panels or modules are not present. The roof photovoltaic live load in areas covered by solar photovoltaic panels or modules shall be in addition to the panel loading unless the area covered by each solar photovoltaic panel or module is inaccessible. Areas where the clear space between the panels and the rooftop is not more than 24 inches (610 mm) shall be considered inaccessible. Roof surfaces not covered by photovoltaic panels shall be designed for the roof live load.

1607.12.5.2 Photovoltaic panels or modules. The structure of a roof that supports solar photovoltaic panels or modules shall be designed to accommodate the full solar photovoltaic panels or modules and ballast dead load, including concentrated loads from support frames in combination with the loads from Section 1607.12.5.1 and other applicable loads. Where applicable, snow drift loads created by the photovoltaic panels or modules shall be included.
1607.12.5.3 Photovoltaic panels or modules installed as an independent structure. Solar photovoltaic panels or modules that are independent structures and do not have accessible/occupied space underneath are not required to accommodate a roof photovoltaic live load, provided the area under the structure is restricted to keep the public away. All other loads and combinations in accordance with Section 1605 shall be accommodated. Solar photovoltaic panels or modules that are designed to be the roof, span to structural supports and have accessible/occupied space underneath shall have the panels or modules and all supporting structures designed to support a roof photovoltaic live load, as defined in Section 1607.12.5.1 in combination with other applicable loads. Solar photovoltaic panels or modules in this application are not permitted to be classified as “not accessible” in accordance with Section 1607.12.5.1.

1607.12.5.4 Ballasted photovoltaic panel systems. Roof structures that provide support for ballasted photovoltaic panel systems shall be designed, or analyzed, in accordance with Section 1604.4; checked in accordance with Section 1604.3.6 for deflections; and checked in accordance with Section 1611 for ponding.

1607.13 Crane loads. The crane live load shall be the rated capacity of the crane. Design loads for the runway beams, including connections and support brackets, of moving bridge cranes and monorail cranes shall include the maximum wheel loads of the crane and the vertical impact, lateral and longitudinal forces induced by the moving crane.

1607.13.1 Maximum wheel load. The maximum wheel loads shall be the wheel loads produced by the weight of the bridge, as applicable, plus the sum of the rated capacity and the weight of the trolley with the trolley positioned on its runway at the location where the resulting load effect is maximum.

1607.13.2 Vertical impact force. The maximum wheel loads of the crane shall be increased by the percentages shown below to determine the induced vertical impact or vibration force:
- Monorail cranes (powered) . 25 percent
- Cab-operated or remotely operated bridge cranes (powered) . 25 percent
- Pendant-operated bridge cranes (powered) . 10 percent
Bridge cranes or monorail cranes with
hand-geared bridge, trolley and hoist 0 percent

1607.13.3 Lateral force. The lateral force on crane runway beams with
electrically powered trolleys shall be calculated as 20 percent of the sum of the
rated capacity of the crane and the weight of the hoist and trolley. The lateral
force shall be assumed to act horizontally at the traction surface of a runway
beam, in either direction perpendicular to the beam, and shall be distributed
with due regard to the lateral stiffness of the runway beam and supporting
structure.

1607.13.4 Longitudinal force. The longitudinal force on crane runway beams,
except for bridge cranes with hand-geared bridges, shall be calculated as 10
percent of the maximum wheel loads of the crane. The longitudinal force shall
be assumed to act horizontally at the traction surface of a runway beam, in
either direction parallel to the beam.

1607.14 Interior walls and partitions. Interior walls and partitions that exceed 6
feet (1829 mm) in height, including their finish materials, shall have adequate
strength and stiffness to resist the loads to which they are subjected but not less
than a horizontal load of 5 psf (0.240 kN/m²).

1607.14.1 Fabric partitions. Fabric partitions that exceed 6 feet (1829 mm) in
height, including their finish materials, shall have adequate strength and
stiffness to resist the following load conditions:
1. The horizontal distributed load need only be applied to the partition
 framing. The total area used to determine the distributed load shall be the
 area of the fabric face between the framing members to which the fabric is
 attached. The total distributed load shall be uniformly applied to such
 framing members in proportion to the length of each member.
2. A concentrated load of 40 pounds (0.176 kN) applied to an 8-inch-
 diameter (203 mm) area [50.3 square inches (32 452 mm²)] of the fabric
 face at a height of 54 inches (1372 mm) above the floor.

SECTION 1608
SNOW LOADS

1608.1 General. Design snow loads shall be determined in accordance with
Chapter 7 of ASCE 7, but the design roof load shall not be less than that
determined by Section 1607.
1608.2 Ground snow loads. The ground snow loads to be used in determining the design snow loads for roofs shall be determined in accordance with ASCE 7 or Figure 1608.2. Site-specific case studies shall be made in areas designated “CS” in Figure 1608.2. Ground snow loads for sites at elevations above the limits indicated in Figure 1608.2 and for all sites within the CS areas shall be approved. Where these values are deemed inadequate because of record snowfall or experience, higher ground snow loads shall be determined and adopted by the local jurisdiction.

1608.3 Ponding instability. Susceptible bays of roofs shall be evaluated for ponding instability in accordance with Section 7.11 of ASCE 7.

SECTION 1609
WIND LOADS

1609.1 Applications. Buildings, structures and parts thereof shall be designed to withstand the minimum wind loads prescribed herein. Decreases in wind loads shall not be made for the effect of shielding by other structures.

1609.1.1 Determination of wind loads. Wind loads on every building or structure shall be determined in accordance with Chapters 26 to 30 of ASCE 7 or provisions of the alternate all-heights method in Section 1609.6. The type of opening protection required, the ultimate design wind speed, V_{ult}, and the exposure category for a site is permitted to be determined in accordance with Section 1609 or ASCE 7. Wind shall be assumed to come from any horizontal direction and wind pressures shall be assumed to act normal to the surface considered.

Exceptions:
1. Subject to the limitations of Section 1609.1.1.1, the provisions of ICC 600 shall be permitted for applicable Group R-2 and R-3 buildings.
2. Deleted Subject to the limitations of Section 1609.1.1.1, residential structures using the provisions of AWC WFCM.
3. Deleted Subject to the limitations of Section 1609.1.1.1, residential structures using the provisions of AISI S230.
5. Designs using TIA-222 for antenna-supporting structures and antennas, provided the horizontal extent of Topographic Category 2 escarpments in Section 2.6.6.2 of TIA-222 shall be 16 times the height of the escarpment.
6. Wind tunnel tests in accordance with ASCE 49 and Sections 31.4 and 31.5 of ASCE 7.
The wind speeds in Figures 1609.3(1), 1609.3(2) and 1609.3(3) are ultimate design wind speeds, V_{ult}, and shall be converted in accordance with Section 1609.3.1 to nominal design wind speeds, V_{asd}, when the provisions of the standards referenced in Exceptions 4 and 5 are used.

1609.1.1.1 Applicability. The provisions of ICC 600 are applicable only to buildings located within Exposure B or C as defined in Section 1609.4. The provisions of ICC 600, AWC WFCM and AISI S230 shall not apply to buildings sited on the upper half of an isolated hill, ridge or escarpment meeting the following conditions:
1. The hill, ridge or escarpment is 60 feet (18 288 mm) or higher if located in Exposure B or 30 feet (9144 mm) or higher if located in Exposure C.
2. The maximum average slope of the hill exceeds 10 percent; and
3. The hill, ridge or escarpment is unobstructed upwind by other such topographic features for a distance from the high point of 50 times the height of the hill or 1 mile (1.61 km), whichever is greater.

1609.1.2 Protection of openings. In wind-borne debris regions, glazing in buildings shall be impact resistant or protected with an impact-resistant covering meeting the requirements of an approved impact-resistant standard or ASTM E 1996 and ASTM E 1886 referenced herein as follows:
1. Glazed openings located within 30 feet (9144 mm) of grade shall meet the requirements of the large missile test of ASTM E 1996.
2. Glazed openings located more than 30 feet (9144 mm) above grade shall meet the provisions of the small missile test of ASTM E 1996.

Exceptions:
1. Wood structural panels with a minimum thickness of $\frac{7}{16}$ inch (11.1 mm) and maximum panel span of 8 feet (2438 mm) shall be permitted for opening protection in buildings with a mean roof height of 33 feet (10 058 mm) or less that are classified as a Group R-3 or R-4 occupancy. Panels shall be precut so that they shall be attached to the framing surrounding the opening containing the product with the glazed opening. Panels shall be predrilled as required for the anchorage method and shall be secured with the attachment hardware provided. Attachments shall be designed to resist the components and cladding loads determined in accordance with the provisions of ASCE 7, with corrosion-resistant attachment hardware provided and anchors permanently installed on the building. Attachment in accordance with Table 1609.1.2 with corrosion-resistant attachment hardware provided and anchors
permanently installed on the building is permitted for buildings with a mean roof height of 45 feet (13,716 mm) or less where \(V_{\text{aszd}} \) determined in accordance with Section 1609.3.1 does not exceed 140 mph (63 m/s).

2. Glazing in Risk Category I buildings, including greenhouses that are occupied for growing plants on a production or research basis, without public access shall be permitted to be unprotected.

3. Glazing in Risk Category II, III or IV buildings located over 60 feet (18,288 mm) above the ground and over 30 feet (9,144 mm) above aggregate surface roofs located within 1,500 feet (458 m) of the building shall be permitted to be unprotected.

1609.1.2.1 Louvers. Louvers protecting intake and exhaust ventilation ducts not assumed to be open that are located within 30 feet (9,144 mm) of grade shall meet the requirements of AMCA 545.40.

1609.1.2.2. Application of ASTM E 1996. The text of Section 6.2.2 of ASTM E 1996 shall be substituted as follows:

6.2.2 Unless otherwise specified, select the wind zone based on the strength design wind speed, \(V_{\text{ult}} \), as follows:

6.2.2.1 Wind Zone 1—130 mph \(\leq \) ultimate design wind speed, \(V_{\text{ult}} \) < 140 mph.

6.2.2.2 Wind Zone 2—140 mph \(\leq \) ultimate design wind speed, \(V_{\text{ult}} \) < 150 mph at greater than one mile (1.6 km) from the coastline. The coastline shall be measured from the mean high water mark.

6.2.2.3 Wind Zone 3—150 mph (58 m/s) \(\leq \) ultimate design wind speed, \(V_{\text{ult}} \) \(\leq \) 160 mph (63 m/s), or 140 mph (54 m/s) \(\leq \) ultimate design wind speed, \(V_{\text{ult}} \) \(\leq \) 160 mph (63 m/s) and within one mile (1.6 km) of the coastline. The coastline shall be measured from the mean high water mark.

6.2.2.4 Wind Zone 4—ultimate design wind speed, \(V_{\text{ult}} \) > 160 mph (63 m/s).

1609.1.2.3 Garage doors. Garage door glazed opening protection for wind-borne debris shall meet the requirements of an approved impact-resisting standard or ANSI/DASMA 115.

TABLE 1609.1.2

<table>
<thead>
<tr>
<th>WIND-BORNE DEBRIS PROTECTION FASTENING SCHEDULE FOR WOOD STRUCTURAL PANELS(^{a, b, c, d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASTENER TYPE</td>
</tr>
</tbody>
</table>

\(^a\) For wood structural panel sheathing, use the values in Table 1609.1.2.

\(^b\) Use the values in Table 1609.1.2 for wood structural panel sheathing that is not part of a wood structural panel system.

\(^c\) Use the values in Table 1609.1.2 for wood structural panel sheathing that is part of a wood structural panel system.

\(^d\) Use the values in Table 1609.1.2 for wood structural panel sheathing that is part of a wood structural panel system and is not part of a wood structural panel system.
<table>
<thead>
<tr>
<th></th>
<th>Panel Span</th>
<th>4 feet < Panel Span ≤ 6 feet</th>
<th>6 feet < Panel Span ≤ 8 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 8 wood-screw-based anchor with 2-inch embedment length</td>
<td>16</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>No. 10 wood-screw-based anchor with 2-inch embedment length</td>
<td>16</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>¼-inch diameter lag-screw-based anchor with 2-inch embedment length</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound = 4.448 N, 1 mile per hour = 0.447 m/s.

a. This table is based on 140 mph wind speeds and a 45-foot mean roof height.
b. Fasteners shall be installed at opposing ends of the wood structural panel. Fasteners shall be located a minimum of 1 inch from the edge of the panel.
c. Anchors shall penetrate through the exterior wall covering with an embedment length of 2 inches minimum into the building frame. Fasteners shall be located a minimum of 2 1/2 inches from the edge of concrete block or concrete.
d. Where panels are attached to masonry or masonry/stucco, they shall be attached using vibration-resistant anchors having a minimum ultimate withdrawal capacity of 1,500 pounds.

FIGURE 1608.2
GROUND SNOW LOADS, p_g, FOR THE UNITED STATES (psf)

FIGURE 1609.3(1)
ULTIMATE DESIGN WIND SPEEDS, V_{ult}, FOR RISK CATEGORY II BUILDINGS AND OTHER STRUCTURES

In CS areas, site-specific Case Studies are required to establish ground snow loads. Extreme local variations in ground snow loads in these areas preclude mapping at this scale.

Numbers in parentheses represent the upper elevation limits in feet for the ground snow load values presented below. Site-specific case studies are required to establish ground snow loads at elevations not covered.

To convert lb/sq ft to kN/m², multiply by 0.0479.

To convert feet to meters, multiply by 0.3048.
Notes:
1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10m) above ground for Exposure C category.
2. Linear interpolation between contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
5. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (Annual Exceedance Probability = 0.00143, MRI = 700 Years).
FIGURE 1609.3(2)
ULTIMATE DESIGN WIND SPEEDS, V_{ult}, FOR RISK CATEGORY III AND IV BUILDINGS AND OTHER STRUCTURES

Notes:
1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10m) above ground for Exposure C category.
2. Linear interpolation between contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
5. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (Annual Exceedance Probability = 0.000588, MRI = 1700 Years).
FIGURE 1609.3(3)
ULTIMATE DESIGN WIND SPEEDS, V_{ult}, FOR RISK CATEGORY I BUILDINGS AND OTHER STRUCTURES

1609.2 Definitions. For the purposes of Section 1609 and as used elsewhere in this code, the following terms are defined in Chapter 2.

HURRICANE-PRONE REGIONS.
WIND-BORNE DEBRIS REGION.
WIND SPEED, V_{ult}.
WIND SPEED, V_{asd}.

Notes:
1. Values are nominal design 3-second gust wind speeds in miles per hour (m/s) at 33 ft (10m) above ground for Exposure C category.
2. Linear interpolation between contours is permitted.
3. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
4. Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.
5. Wind speeds correspond to approximately a 3% probability of exceedance in 50 years (Annual Exceedance Probability = 0.000688, MRI = 1700 Years).
1609.3 **Ultimate design wind speed.** The ultimate design wind speed, V_{ult}, in mph, for the determination of the wind loads shall be determined by Figures 1609.3(1), 1609.3(2) and 1609.3(3). The ultimate design wind speed, V_{ult}, for use in the design of Risk Category II buildings and structures shall be obtained from Figure 1609.3(1). The ultimate design wind speed, V_{ult}, for use in the design of Risk Category III and IV buildings and structures shall be obtained from Figure 1609.3(2). The ultimate design wind speed, V_{ult}, for use in the design of Risk Category I buildings and structures shall be obtained from Figure 1609.3(3). The ultimate design wind speed, V_{ult}, for the special wind regions indicated near mountainous terrain and near gorges shall be in accordance with local jurisdiction requirements. The ultimate design wind speeds, V_{ult}, determined by the local jurisdiction shall be in accordance with Section 26.5.1 of ASCE 7. In nonhurricane-prone regions, when the ultimate design wind speed, V_{ult}, is estimated from regional climatic data, the ultimate design wind speed, V_{ult}, shall be determined in accordance with Section 26.5.3 of ASCE 7.

1609.3.1 **Wind speed conversion.** When required, the ultimate design wind speeds of Figures 1609.3(1), 1609.3(2) and 1609.3(3) shall be converted to nominal design wind speeds, V_{asd}, using Table 1609.3.1 or Equation 16-33.

$$V_{asd} = V_{ult} \sqrt{0.6}$$ \hspace{1cm} (**Equation 16-33**)

where:

- V_{asd} = Nominal design wind speed applicable to methods specified in Exceptions 4 and 5 of Section 1609.1.1.
- V_{ult} = Ultimate design wind speeds determined from Figures 1609.3(1), 1609.3(2) or 1609.3(3).

1609.4 **Exposure category.** For each wind direction considered, an exposure category that adequately reflects the characteristics of ground surface irregularities shall be determined for the site at which the building or structure is to be constructed. Account shall be taken of variations in ground surface roughness that arise from natural topography and vegetation as well as from constructed features.

1609.4.1 **Wind directions and sectors.** For each selected wind direction at which the wind loads are to be evaluated, the exposure of the building or structure shall be determined for the two upwind sectors extending 45 degrees (0.79 rad) either side of the selected wind direction. The exposures in these two sectors shall be determined in accordance with Sections 1609.4.2 and
1609.4.3 and the exposure resulting in the highest wind loads shall be used to represent winds from that direction.

1609.4.2 Surface roughness categories. A ground surface roughness within each 45-degree (0.79 rad) sector shall be determined for a distance upwind of the site as defined in Section 1609.4.3 from the categories defined below, for the purpose of assigning an exposure category as defined in Section 1609.4.3.

Surface Roughness B. Urban and suburban areas, wooded areas or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger.

Surface Roughness C. Open terrain with scattered obstructions having heights generally less than 30 feet (9144 mm). This category includes flat open country, and grasslands.

Surface Roughness D. Flat, unobstructed areas and water surfaces. This category includes smooth mud flats, salt flats and unbroken ice.

1609.4.3 Exposure categories. An exposure category shall be determined in accordance with the following:

Exposure B. For buildings with a mean roof height of less than or equal to 30 feet (9144 mm), Exposure B shall apply where the ground surface roughness, as defined by Surface Roughness B, prevails in the upwind direction for a distance of at least 1,500 feet (457 m). For buildings with a mean roof height greater than 30 feet (9144 mm), Exposure B shall apply where Surface Roughness B prevails in the upwind direction for a distance of at least 2,600 feet (792 m) or 20 times the height of the building, whichever is greater.

Exposure C. Exposure C shall apply for all cases where Exposure B or D does not apply.

Exposure D. Exposure D shall apply where the ground surface roughness, as defined by Surface Roughness D, prevails in the upwind direction for a distance of at least 5,000 feet (1524 m) or 20 times the height of the building, whichever is greater. Exposure D shall also apply where the ground surface roughness immediately upwind of the site is B or C, and the site is within a distance of 600 feet (183 m) or 20 times the building height, whichever is greater, from an Exposure D condition as defined in the previous sentence.
1609.5 Roof systems. Roof systems shall be designed and constructed in accordance with Sections 1609.5.1 through 1609.5.3, as applicable.

1609.5.1 Roof deck. The roof deck shall be designed to withstand the wind pressures determined in accordance with ASCE 7.

1609.5.2 Roof coverings. Roof coverings shall comply with Section 1609.5.1.

Exception: Rigid tile roof coverings that are air permeable and installed over a roof deck complying with Section 1609.5.1 are permitted to be designed in accordance with Section 1609.5.3. Asphalt shingles installed over a roof deck complying with Section 1609.5.1 shall comply with the wind-resistance requirements of Section 1504.1.1.

1609.5.3 Rigid tile. Wind loads on rigid tile roof coverings shall be determined in accordance with the following equation:

\[M_a = q_h C_L b L L_a [1.0 - G C_p] \]
\[(Equation \ 16-34) \]

For SI:

\[M_a = \frac{q_h C_L L L_a [1.0 - G C_p]}{1,000} \]

where:

- \(b \) = Exposed width, feet (mm) of the roof tile.
- \(C_L \) = Lift coefficient. The lift coefficient for concrete and clay tile shall be 0.2 or shall be determined by test in accordance with Section 1504.2.1.
- \(G C_p \) = Roof pressure coefficient for each applicable roof zone determined from Chapter 30 of ASCE 7. Roof coefficients shall not be adjusted for internal pressure.
- \(L \) = Length, feet (mm) of the roof tile.
- \(L_a \) = Moment arm, feet (mm) from the axis of rotation to the point of uplift on the roof tile. The point of uplift shall be taken at 0.76L from the head of

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline
V_{alt} & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline
V_{sdd} & 78 & 85 & 93 & 101 & 108 & 116 & 124 & 132 & 139 & 147 & 155 \\
\hline
\end{array}
\]

For SI: 1 mile per hour = 0.44 m/s.

a. Linear interpolation is permitted.

b. \(V_{sdd} \) = nominal design wind speed applicable to methods specified in Exceptions 1 through 5 of Section 1609.1.1.

c. \(V_{alt} \) = ultimate design wind speeds determined from Figure 1609.3(1), 1609.3(2) or 1609.3(3).
the tile and the middle of the exposed width. For roof tiles with nails or screws (with or without a tail clip), the axis of rotation shall be taken as the head of the tile for direct deck application or as the top edge of the batten for battened applications. For roof tiles fastened only by a nail or screw along the side of the tile, the axis of rotation shall be determined by testing. For roof tiles installed with battens and fastened only by a clip near the tail of the tile, the moment arm shall be determined about the top edge of the batten with consideration given for the point of rotation of the tiles based on straight bond or broken bond and the tile profile.

\[M_a = \text{Aerodynamic uplift moment, feet-pounds (N-mm) acting to raise the tail of the tile.} \]

\[q_h = \text{Wind velocity pressure, psf (kN/m}^2\text{) determined from Section 27.3.2 of ASCE 7.} \]

Concrete and clay roof tiles complying with the following limitations shall be designed to withstand the aerodynamic uplift moment as determined by this section.

1. The roof tiles shall be either loose laid on battens, mechanically fastened, mortar set or adhesive set.
2. The roof tiles shall be installed on solid sheathing that has been designed as components and cladding.
3. An underlayment shall be installed in accordance with Chapter 15.
4. The tile shall be single lapped interlocking with a minimum head lap of not less than 2 inches (51 mm).
5. The length of the tile shall be between 1.0 and 1.75 feet (305 mm and 533 mm).
6. The exposed width of the tile shall be between 0.67 and 1.25 feet (204 mm and 381 mm).
7. The maximum thickness of the tail of the tile shall not exceed 1.3 inches (33 mm).
8. Roof tiles using mortar set or adhesive set systems shall have at least two-thirds of the tile’s area free of mortar or adhesive contact.

1609.6 Alternate all-heights method. The alternate wind design provisions in this section are simplifications of the ASCE 7 Directional Procedure.

1609.6.1 Scope. As an alternative to ASCE 7 Chapters 27 and 30, the following provisions are permitted to be used to determine the wind effects on regularly shaped buildings, or other structures that are regularly shaped, that meet all of the following conditions:
1. The building or other structure is less than or equal to 75 feet (22 860 mm) in height with a height-to-least-width ratio of 4 or less, or the building or other structure has a fundamental frequency greater than or equal to 1 hertz.
2. The building or other structure is not sensitive to dynamic effects.
3. The building or other structure is not located on a site for which channeling effects or buffeting in the wake of upwind obstructions warrant special consideration.
4. The building shall meet the requirements of a simple diaphragm building as defined in ASCE 7 Section 26.2, where wind loads are only transmitted to the main windforce-resisting system (MWFRS) at the diaphragms.
5. For open buildings, multispan gable roofs, stepped roofs, sawtooth roofs, domed roofs, roofs with slopes greater than 45 degrees (0.79 rad), solid freestanding walls and solid signs, and rooftop equipment, apply ASCE 7 provisions.

1609.6.1.1 Modifications. The following modifications shall be made to certain subsections in ASCE 7: in Section 1609.6.2, symbols and notations that are specific to this section are used in conjunction with the symbols and notations in ASCE 7 Section 26.3.

1609.6.2 Symbols and notations. Coefficients and variables used in the alternative all-heights method equations are as follows:

- \(C_{net} \) = Net-pressure coefficient based on \(K_d \) \([(G)(C_p)(GC_{pi})]\), in accordance with Table 1609.6.2.
- \(G \) = Gust effect factor for rigid structures in accordance with ASCE 7 Section 26.9.1.
- \(K_d \) = Wind directionality factor in accordance with ASCE 7 Table 26-6.
- \(P_{net} \) = Design wind pressure to be used in determination of wind loads on buildings or other structures or their components and cladding, in psf (kN/m²).

1609.6.3 Design equations. When using the alternative all-heights method, the MWFRS, and components and cladding of every structure shall be designed to resist the effects of wind pressures on the building envelope in accordance with Equation 16-35.

\[
P_{net} = 0.00256V^2K_zC_{net}K_{zt} \tag{Equation 16-35}
\]

Design wind forces for the MWFRS shall be not less than 16 psf (0.77 kN/m²)
multiplied by the area of the structure projected on a plane normal to the assumed wind direction (see ASCE 7 Section 27.4.7 for criteria). Design net wind pressure for components and cladding shall be not less than 16 psf (0.77 kN/m²) acting in either direction normal to the surface.

1609.6.4 Design procedure. The MWFRS and the components and cladding of every building or other structure shall be designed for the pressures calculated using Equation 16-35.

1609.6.4.1 Main windforce-resisting systems. The MWFRS shall be investigated for the torsional effects identified in ASCE 7 Figure 27.4-8.

1609.6.4.2 Determination of Kz and Kzt. Velocity pressure exposure coefficient, Kz, shall be determined in accordance with ASCE 7 Section 27.3.1 and the topographic factor, Kzt, shall be determined in accordance with ASCE 7 Section 26.8.

1. For the windward side of a structure, Kzt and Kz shall be based on height z.
2. For leeward and sidewalls, and for windward and leeward roofs, Kzt and Kz shall be based on mean roof height h.

1609.6.4.3 Determination of net pressure coefficients, Cnet. For the design of the MWFRS and for components and cladding, the sum of the internal and external net pressure shall be based on the net pressure coefficient, Cnet.

1. The pressure coefficient, Cnet, for walls and roofs shall be determined from Table 1609.6.2.
2. Where Cnet has more than one value, the more severe wind load condition shall be used for design.

1609.6.4.4 Application of wind pressures. When using the alternative all-heights method, wind pressures shall be applied simultaneously on, and in a direction normal to, all building envelope wall and roof surfaces.

1609.6.4.4.1 Components and cladding. Wind pressure for each component or cladding element is applied as follows using Cnet values based on the effective wind area, A, contained within the zones in areas of discontinuity of width and/or length “a,” “2a” or “4a” at: corners of roofs and walls; edge strips for ridges, rakes and eaves; or field areas on walls or roofs as indicated in figures in tables in ASCE 7 as referenced in Table 1609.6.2 in accordance with the following:
1. Calculated pressures at local discontinuities acting over specific edge strips or corner boundary areas.
2. Include “field” (Zone 1, 2 or 4, as applicable) pressures applied to areas beyond the boundaries of the areas of discontinuity.
3. Where applicable, the calculated pressures at discontinuities (Zone 2 or 3) shall be combined with design pressures that apply specifically on rakes or eave overhangs.

SECTION 1610
SOIL LATERAL LOADS

1610.1 General. Foundation walls and retaining walls shall be designed to resist lateral soil loads. Soil loads specified in Table 1610.1 shall be used as the minimum design lateral soil loads unless determined otherwise by a geotechnical investigation in accordance with Section 1803. Foundation walls and other walls in which horizontal movement is restricted at the top shall be designed for at-rest pressure. Retaining walls free to move and rotate at the top shall be permitted to be designed for active pressure. Design lateral pressure from surcharge loads shall be added to the lateral earth pressure load. Design lateral pressure shall be increased if soils at the site are expansive. Foundation walls shall be designed to support the weight of the full hydrostatic pressure of undrained backfill unless a drainage system is installed in accordance with Sections 1805.4.2 and 1805.4.3.

Exception: Foundation walls extending not more than 8 feet (2438 mm) below grade and laterally supported at the top by flexible diaphragms shall be permitted to be designed for active pressure.

<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>ENCLOSURE</th>
<th>ENCLOSED FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+ INTERNAL PRESSURE</td>
<td>- INTERNAL PRESSURE</td>
</tr>
<tr>
<td>Walls:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Windward</td>
<td>0.43</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>Leeward</td>
<td>-0.51</td>
<td>-0.21</td>
</tr>
<tr>
<td></td>
<td>Sidewall</td>
<td>-0.66</td>
<td>-0.35</td>
</tr>
<tr>
<td>Parapet wall</td>
<td>Windward</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leeward</td>
<td>-0.85</td>
<td></td>
</tr>
<tr>
<td>Roofs:</td>
<td>Enclosed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind perpendicular to ridge</td>
<td>+ INTERNAL PRESSURE</td>
<td>- INTERNAL PRESSURE</td>
</tr>
</tbody>
</table>

TABLE 1609.6.2
NET PRESSURE COEFFICIENTS, C_{net}^{a,b}
<table>
<thead>
<tr>
<th>Structure or Part Thereof</th>
<th>Description</th>
<th>C_{net} Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Components and cladding not in areas of discontinuity—roofs and overhangs</td>
<td>Roof elements and slopes</td>
<td>Enclosed</td>
</tr>
<tr>
<td></td>
<td>Gable of hipped configurations (Zone 1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flat < Slope < 6:12 (27°) See ASCE 7 Figure 30.4-2B Zone 1</td>
<td></td>
</tr>
</tbody>
</table>
3. Components and cladding in areas of discontinuity—roofs and overhangs (continued)

<table>
<thead>
<tr>
<th>Overhang: Flat < Slope < 6:12 (27°) See ASCE 7 Figure 30.4-2A Zone 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
</tr>
<tr>
<td>10 square feet or less</td>
</tr>
<tr>
<td>100 square feet or more</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>10 square feet or less</td>
</tr>
<tr>
<td>100 square feet or more</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overhang: Flat < Slope < 6:12 (27°) See ASCE 7 Figure 30.4-2A Zone 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>10 square feet or less</td>
</tr>
<tr>
<td>100 square feet or more</td>
</tr>
<tr>
<td>500 square feet or more</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6:12 (27°) < Slope < 12:12 (45°) See ASCE 7 Figure 30.4-2C Zone 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
</tr>
<tr>
<td>10 square feet or less</td>
</tr>
<tr>
<td>100 square feet or more</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>10 square feet or less</td>
</tr>
<tr>
<td>100 square feet or more</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monosloped configurations (Zone 1) Enclosed Partially enclosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tall flat-topped roofs $h > 60$ feet Enclosed Partially enclosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gable or hipped configurations at ridges, eaves and rakes (Zone 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat < Slope < 6:12 (27°) See ASCE 7 Figure 30.4-2B Zone 2</td>
</tr>
<tr>
<td>Positive</td>
</tr>
<tr>
<td>10 square feet or less</td>
</tr>
<tr>
<td>100 square feet or more</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>10 square feet or less</td>
</tr>
<tr>
<td>100 square feet or more</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overhang for Slope Flat < Slope < 6:12 (27°) See ASCE 7 Figure 30.4-2B Zone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>10 square feet or less</td>
</tr>
<tr>
<td>100 square feet or more</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6:12 (27°) < Slope < 12:12 (45°) See ASCE 7 Figure 30.4-2C Enclosed Partially enclosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
TABLE 1609.6.2—continued

NET PRESSURE COEFFICIENTS, $C_{neta,b}$

<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>C_{neta} FACTOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enclosed</td>
<td>Partially enclosed</td>
<td></td>
</tr>
<tr>
<td>Monosloped configurations at ridges, eaves and rakes (Zone 2)</td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more</td>
<td>-1.53</td>
</tr>
<tr>
<td>Tall flat topped roofs $h > 60$ feet</td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-2.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>-1.51</td>
</tr>
<tr>
<td>Gable or hipped configurations at corners (Zone 3) See ASCE 7 Figure 30.4-2B Zone 3</td>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-2.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>-1.85</td>
</tr>
<tr>
<td>Overhang for Slope Flat < Slope < 6:12 (27°) See ASCE 7 Figure 30.4-2B Zone 3</td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-3.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>-2.13</td>
</tr>
<tr>
<td>6:12 (27°) < 12:12 (45°) See ASCE 7 Figure 30.4-2C Zone 3</td>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less</td>
<td>-1.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>-1.00</td>
</tr>
<tr>
<td>Overhang for 6:12 (27°) < Slope < 12:12 (45°)</td>
<td>Enclosed</td>
<td>10 square feet or less</td>
<td>-1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>-1.53</td>
</tr>
<tr>
<td>Monosloped Configurations at corners (Zone 3) See ASCE 7 Figure 30.4-5B Zone 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flat < Slope < 7:12 (30°)</td>
<td>Positive</td>
<td>10 square feet or less</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 square feet or more</td>
<td>0.41</td>
</tr>
</tbody>
</table>
TABLE 1609.6.2—continued
NET PRESSURE COEFFICIENTS, $C_{net}^{a,b}$

<table>
<thead>
<tr>
<th>STRUCTURE OR PART THEREOF</th>
<th>DESCRIPTION</th>
<th>C_{net} FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Components and cladding not in areas of discontinuity—walls and parapets</td>
<td>Negative</td>
<td>20 square feet or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>Enclosed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partially enclosed</td>
</tr>
<tr>
<td>5. Components and cladding in areas of discontinuity—walls and parapets</td>
<td>Wall elements: $h \leq 60$ feet (Zone 5) ASCE 7 Figure 30.4-1</td>
<td>Enclosed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Partially enclosed</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>10 square feet or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more</td>
</tr>
<tr>
<td></td>
<td>Positive</td>
<td>20 square feet or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>20 square feet or less</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500 square feet or more</td>
</tr>
<tr>
<td></td>
<td>Parapet walls</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Negative</td>
</tr>
</tbody>
</table>

4101:1-16-01
For SI: 1 foot = 304.8 mm, 1 square foot = 0.0929 m², 1 degree = 0.0175 rad.

a. Linear interpolation between values in the table is permitted.
b. Some C_{nt} values have been grouped together. Less conservative results may be obtained by applying ASCE 7 provisions.

TABLE 1610.1
LATERAL SOIL LOAD

<table>
<thead>
<tr>
<th>DESCRIPTION OF BACKFILL MATERIALc</th>
<th>UNIFIED SOIL CLASSIFICATION</th>
<th>DESIGN LATERAL SOIL LOAD* (pound per square foot per foot of depth)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Active pressure</td>
</tr>
<tr>
<td>Well-graded, clean gravels; gravel-sand mixes</td>
<td>GW</td>
<td>30</td>
</tr>
<tr>
<td>Poorly graded clean gravels; gravel-sand mixes</td>
<td>GP</td>
<td>30</td>
</tr>
<tr>
<td>Silty gravels, poorly graded gravel-sand mixes</td>
<td>GM</td>
<td>40</td>
</tr>
<tr>
<td>Clayey gravels, poorly graded gravel-and-clay mixes</td>
<td>GC</td>
<td>45</td>
</tr>
<tr>
<td>Well-graded, clean sands; gravelly sand mixes</td>
<td>SW</td>
<td>30</td>
</tr>
<tr>
<td>Poorly graded clean sands; sand-gravel mixes</td>
<td>SP</td>
<td>30</td>
</tr>
<tr>
<td>Silty sands, poorly graded sand-silt mixes</td>
<td>SM</td>
<td>45</td>
</tr>
<tr>
<td>Sand-silt clay mix with plastic fines</td>
<td>SM-SC</td>
<td>45</td>
</tr>
<tr>
<td>Clayey sands, poorly graded sand-clay mixes</td>
<td>SC</td>
<td>60</td>
</tr>
<tr>
<td>Inorganic silts and clayey silts</td>
<td>ML</td>
<td>45</td>
</tr>
<tr>
<td>Mixture of inorganic silt and clay</td>
<td>ML-CL</td>
<td>60</td>
</tr>
<tr>
<td>Inorganic clays of low to medium plasticity</td>
<td>CL</td>
<td>60</td>
</tr>
<tr>
<td>Organic silts and silt clays, low plasticity</td>
<td>OL</td>
<td>Note b</td>
</tr>
<tr>
<td>Inorganic clayey silts, elastic silts</td>
<td>MH</td>
<td>Note b</td>
</tr>
<tr>
<td>Inorganic clays of high plasticity</td>
<td>CH</td>
<td>Note b</td>
</tr>
<tr>
<td>Organic clays and silty clays</td>
<td>OH</td>
<td>Note b</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square foot per foot of depth = 0.157 kPa/m, 1 foot = 304.8 mm.

a. Design lateral soil loads are given for moist conditions for the specified soils at their optimum densities. Actual field conditions shall govern. Submerged or saturated soil pressures shall include the weight of the buoyant soil plus the hydrostatic loads.
b. Unsuitable as backfill material.
c. The definition and classification of soil materials shall be in accordance with ASTM D 2487.

SECTION 1611
RAIN LOADS

1611.1 Design rain loads. Each portion of a roof shall be designed to sustain the load of rainwater that will accumulate on it if the primary drainage system for that portion is blocked plus the uniform load caused by water that rises above the inlet of the secondary drainage system at its design flow. The design rainfall shall be based on the 100-year hourly rainfall rate indicated in Figure 1611.1 or on other rainfall rates determined from approved local weather data.
\[R = 5.2(d_s + d_h) \] \hspace{1cm} \text{(Equation 16-36)}

For SI: \[R = 0.0098(d_s + d_h) \]

where:

\(dh\) = Additional depth of water on the undeflected roof above the inlet of secondary drainage system at its design flow (i.e., the hydraulic head), in inches (mm).

\(ds\) = Depth of water on the undeflected roof up to the inlet of secondary drainage system when the primary drainage system is blocked (i.e., the static head), in inches (mm).

\(R\) = Rain load on the undeflected roof, in psf (kN/m²). When the phrase “undeflected roof” is used, deflections from loads (including dead loads) shall not be considered when determining the amount of rain on the roof.

\textbf{1611.2 Ponding instability.} Susceptible bays of roofs shall be evaluated for ponding instability in accordance with Section 8.4 of ASCE 7.

\textbf{1611.3 Controlled drainage.} Roofs equipped with hardware to control the rate of drainage shall be equipped with a secondary drainage system at a higher elevation that limits accumulation of water on the roof above that elevation. Such roofs shall be designed to sustain the load of rainwater that will accumulate on them to the elevation of the secondary drainage system plus the uniform load caused by water that rises above the inlet of the secondary drainage system at its design flow determined from Section 1611.1. Such roofs shall also be checked for ponding instability in accordance with Section 1611.2.

\textbf{SECTION 1612}
\textbf{FLOOD LOADS}

\textbf{1612.1 General.} Within flood hazard areas as established in Section 1612.3, all new construction of buildings, structures and portions of buildings and structures, including substantial improvement and restoration of substantial damage to buildings and structures, shall be designed and constructed to resist the effects of flood hazards and flood loads. For buildings that are located in more than one flood hazard area, the provisions associated with the most restrictive flood hazard area shall apply.

\textbf{1612.2 Definitions.} The following terms are defined in Chapter 2:

- **BASE FLOOD.**
- **BASE FLOOD ELEVATION.**
- **BASEMENT.**
COASTAL A ZONE.
COASTAL HIGH HAZARD AREA.
DESIGN FLOOD.
DESIGN FLOOD ELEVATION.
DRY FLOODPROOFING.
EXISTING CONSTRUCTION.
EXISTING STRUCTURE.
FLOOD or FLOODING.
FLOOD DAMAGE-RESISTANT MATERIALS.
FLOOD HAZARD AREA.
FLOOD INSURANCE RATE MAP (FIRM).
FLOOD INSURANCE STUDY.
FLOODWAY.
LOWEST FLOOR.
SPECIAL FLOOD HAZARD AREA.
START OF CONSTRUCTION.
SUBSTANTIAL DAMAGE.
SUBSTANTIAL IMPROVEMENT.

1612.3 Establishment of flood hazard areas. All buildings and structures which have been determined to require flood resistant construction by the local flood plain administrator of a community participating in the “National Flood Insurance Program (NFIP),” or by the Ohio department of natural resources for communities in the “NFIP”, shall be constructed as required by the provisions of this section and the local authority’s flood damage prevention regulations.

Reference to regulations in “FEMA 44 CFR Parts 59-77” in this section are adopted pursuant to section 121.75 and 121.76 of the Revised Code.

1612.3.1 Design flood elevations. Where design flood elevations are not included in the flood hazard areas established in Section 1612.3, or where floodways are not designated, the building official is authorized to require the applicant to:

1. Obtain and reasonably utilize any design flood elevation and floodway data available from a federal, state or other source; or
2. Determine the design flood elevation and/or floodway in accordance with accepted hydrologic and hydraulic engineering practices used to define special flood hazard areas. Determinations shall be undertaken by a registered design professional who shall document that the technical methods used reflect currently accepted engineering practice.
FIGURE 1611.1
100-YEAR, 1-HOUR RAINFALL (INCHES) EASTERN UNITED STATES
For SI: 1 inch = 25.4 mm.
1612.3.2 Determination of impacts. In riverine flood hazard areas where design flood elevations are specified but floodways have not been designated, the applicant shall provide a floodway analysis that demonstrates that the proposed work will not increase the design flood elevation more than 1 foot (305 mm) at any point within the jurisdiction of the applicable governing authority.

1612.4 Design and construction. The design and construction of buildings and structures located in flood hazard areas, including coastal high hazard areas and coastal A zones, shall be in accordance with Chapter 5 of ASCE 7 and ASCE 24.

1612.5 Flood hazard documentation. The following documentation shall be prepared and sealed by a registered design professional and submitted to the building official:

1. For construction in flood hazard areas other than coastal high hazard areas or coastal A zones:
 The elevation of the lowest floor, including the basement, provided by a registered surveyor.
 1.1 For fully enclosed areas below the design flood elevation where provisions to allow for the automatic entry and exit of floodwaters do not meet the minimum requirements in Section 2.6.2.1 2.7.2.1 of ASCE 24, construction documents shall include a statement that the design will provide for equalization of hydrostatic flood forces in accordance with Section 2.6.2.2 2.7.2.2 of ASCE 24.
 1.2 For dry floodproofed nonresidential buildings, construction documents shall include a statement that the dry floodproofing is designed in accordance with ASCE 24.

2. For construction in coastal high hazard areas and coastal A zones:
 2.1 The elevation of the bottom of the lowest horizontal structural member provided by a registered surveyor.
 2.2 Construction documents shall include a statement that the building is designed in accordance with ASCE 24, including that the pile or column foundation and building or structure to be attached thereto is designed to be anchored to resist flotation, collapse and lateral movement due to the effects of wind and flood loads acting simultaneously on all building components, and other load requirements of Chapter 16.
 2.3 For breakaway walls designed to have a resistance of more than 20 psf (0.96 kN/m²) determined using allowable stress design, construction
documents shall include a statement that the breakaway wall is designed in accordance with ASCE 24.

SECTION 1613
EARTHQUAKE LOADS

1613.1 Scope. Every structure, and portion thereof, including nonstructural components that are permanently attached to structures and their supports and attachments, shall be designed and constructed to resist the effects of earthquake motions in accordance with ASCE 7, excluding Chapter 14 and Appendix 11A. The seismic design category for a structure is permitted to be determined in accordance with Section 1613 or ASCE 7.

Exceptions:
1. Deleted.
2. The seismic force-resisting system of wood-frame buildings that conform to the provisions of Section 2308 are not required to be analyzed as specified in this section.
3. Agricultural storage structures intended only for incidental human occupancy.
4. Structures that require special consideration of their response characteristics and environment that are not addressed by this code or ASCE 7 and for which other regulations provide seismic criteria, such as vehicular bridges, electrical transmission towers, hydraulic structures, buried utility lines and their appurtenances and nuclear reactors.

1613.2 Definitions. The following terms are defined in Chapter 2:

DESIGN EARTHQUAKE GROUND MOTION.
MECHANICAL SYSTEMS.
ORTHOGONAL.
RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCEr) GROUND MOTION RESPONSE ACCELERATION.
SEISMIC DESIGN CATEGORY.
SEISMIC FORCE-RESISTING SYSTEM.
SITE CLASS.
SITE COEFFICIENTS.

1613.3 Seismic ground motion values. Seismic ground motion values shall be determined in accordance with this section.

1613.3.1 Mapped acceleration parameters. The parameters S_5 and S_1 shall be determined from the 0.2 and 1-second spectral response
accelerations shown on Figures 1613.3.1(1) and 1613.3.1(2) or may be determined by using longitude and latitude or by zip code with a downloadable Java application, the Seismic Design Values for Buildings, from U. S. Geological Survey’s web site.

(http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-1.pdf
and
http://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/2010_ASCE-7_Figure_22-2.pdf)

Where S_I is less than or equal to 0.04 and S_S is less than or equal to 0.15, the structure is permitted to be assigned Seismic Design Category A.

1613.3.2 Site class definitions. Based on the site soil properties, the site shall be classified as Site Class A, B, C, D, E or F in accordance with Chapter 20 of ASCE 7.

Where the soil properties are not known in sufficient detail to determine the site class, Site Class D shall be used unless the geotechnical data indicates Site Class E or F soils are present at the site.

1613.3.3 Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters. The maximum considered earthquake spectral response acceleration for short periods, S_{MS}, and at 1-second period, S_{M1}, adjusted for site class effects shall be determined by Equations 16-37 and 16-38, respectively:

\[
S_{MS} = F_a S_S \\ (Equation 16-37) \\
S_{M1} = F_v S_I \quad (Equation 16-38)
\]

where:

- \(F_a\) = Site coefficient defined in Table 1613.3.3(1).
- \(F_v\) = Site coefficient defined in Table 1613.3.3(2).
- \(S_S\) = The mapped spectral accelerations for short periods as determined in Section 1613.3.1.
- \(S_I\) = The mapped spectral accelerations for a 1-second period as determined in Section 1613.3.1.

1613.3.4 Design spectral response acceleration parameters. Five-percent damped design spectral response acceleration at short periods, S_{DS}, and at 1-second period, S_{DI}, shall be determined from Equations 16-39 and 16-40, respectively:
\[S_{DS} = \frac{2}{3} S_{MS} \]
\[S_{D1} = \frac{2}{3} S_{M1} \]

where:

\(S_{MS} \) = The maximum considered earthquake spectral response accelerations for short period as determined in Section 1613.3.3.

\(S_{M1} \) = The maximum considered earthquake spectral response accelerations for 1-second period as determined in Section 1613.3.3.

TABLE 1613.3.3(1)
VALUES OF SITE COEFFICIENT \(F_a \)

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>MAPPED SPECTRAL RESPONSE ACCELERATION AT SHORT PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(S_i \leq 0.25)</td>
</tr>
<tr>
<td>A</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1.2</td>
</tr>
<tr>
<td>D</td>
<td>1.6</td>
</tr>
<tr>
<td>E</td>
<td>2.5</td>
</tr>
<tr>
<td>F</td>
<td>Note b</td>
</tr>
</tbody>
</table>

a. Use straight-line interpolation for intermediate values of mapped spectral response acceleration at short period, \(S_i \).

b. Values shall be determined in accordance with Section 11.4.7 of ASCE 7.

TABLE 1613.3.3(2)
VALUES OF SITE COEFFICIENT \(F_V \)

<table>
<thead>
<tr>
<th>SITE CLASS</th>
<th>MAPPED SPECTRAL RESPONSE ACCELERATION AT 1-SECOND PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(S_i \leq 0.1)</td>
</tr>
<tr>
<td>A</td>
<td>0.8</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>1.7</td>
</tr>
<tr>
<td>D</td>
<td>2.4</td>
</tr>
<tr>
<td>E</td>
<td>3.5</td>
</tr>
<tr>
<td>F</td>
<td>Note b</td>
</tr>
</tbody>
</table>

a. Use straight-line interpolation for intermediate values of mapped spectral response acceleration at 1-second period, \(S_i \).

b. Values shall be determined in accordance with Section 11.4.7 of ASCE 7.
RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE\textsubscript{R}) GROUND MOTION RESPONSE ACCELERATIONS FOR THE CONTERMINOUS UNITED STATES OF 0.2-SECOND SPECTRAL RESPONSE ACCELERATION (5\% OF CRITICAL DAMPING), SITE CLASS B
FIGURE 1613.3.1(1) (ENLARGED)
RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCE dł)
GROUND MOTION RESPONSE ACCELERATIONS FOR THE
CONTERMINOUS UNITED STATES OF 0.2-SECOND SPECTRAL
RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
FIGURE 1613.3.1(2)
RISK-TARGETED MAXIMUM CONSIDERED EARTHQUAKE (MCEr) GROUND MOTION RESPONSE ACCELERATIONS FOR THE CONTERMINOUS UNITED STATES OF 1-SECOND SPECTRAL RESPONSE ACCELERATION (5% OF CRITICAL DAMPING), SITE CLASS B
1613.3.5 Determination of seismic design category. Structures classified as Risk Category I, II or III that are located where the mapped spectral
response acceleration parameter at 1-second period, \(S_1 \), is greater than or equal to 0.75 shall be assigned to Seismic Design Category E. Structures classified as Risk Category IV that are located where the mapped spectral response acceleration parameter at 1-second period, \(S_1 \), is greater than or equal to 0.75 shall be assigned to Seismic Design Category F. All other structures shall be assigned to a seismic design category based on their risk category and the design spectral response acceleration parameters, \(S_{DS} \) and \(S_{DI} \), determined in accordance with Section 1613.3.4 or the site-specific procedures of ASCE 7. Each building and structure shall be assigned to the more severe seismic design category in accordance with Table 1613.3.5(1) or 1613.3.5(2), irrespective of the fundamental period of vibration of the structure, \(T \).

1613.3.5.1 Alternative seismic design category determination. Where \(S_1 \) is less than 0.75, the seismic design category is permitted to be determined from Table 1613.3.5(1) alone when all of the following apply:

1. In each of the two orthogonal directions, the approximate fundamental period of the structure, \(T_a \), in each of the two orthogonal directions determined in accordance with Section 12.8.2.1 of ASCE 7, is less than 0.8 \(T_s \) determined in accordance with Section 11.4.5 of ASCE 7.
2. In each of the two orthogonal directions, the fundamental period of the structure used to calculate the story drift is less than \(T_s \).
3. Equation 12.8-2 of ASCE 7 is used to determine the seismic response coefficient, \(C_s \).
4. The diaphragms are rigid or are permitted to be idealized as rigid in accordance with Section 12.3.1 of ASCE 7 or, for diaphragms permitted to be idealized as flexible in accordance with Section 12.3.1 of ASCE 7, the distances between vertical elements of the seismic force-resisting system do not exceed 40 feet (12 192 mm).

1613.3.5.2 Simplified design procedure. Where the alternate simplified design procedure of ASCE 7 is used, the seismic design category shall be determined in accordance with ASCE 7.
TABLE 1613.3.5(1)
SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION

<table>
<thead>
<tr>
<th>VALUE OF S_{DS}</th>
<th>RISK CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I or II</td>
</tr>
<tr>
<td>$S_{DS} < 0.167g$</td>
<td>A</td>
</tr>
<tr>
<td>$0.167g \leq S_{DS} < 0.33g$</td>
<td>B</td>
</tr>
<tr>
<td>$0.33g \leq S_{DS} < 0.50g$</td>
<td>C</td>
</tr>
<tr>
<td>$0.50g \leq S_{DS}$</td>
<td>D</td>
</tr>
</tbody>
</table>

TABLE 1613.3.5(2)
SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

<table>
<thead>
<tr>
<th>VALUE OF S_{DI}</th>
<th>RISK CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I or II</td>
</tr>
<tr>
<td>$S_{DI} < 0.067g$</td>
<td>A</td>
</tr>
<tr>
<td>$0.067g \leq S_{DI} < 0.133g$</td>
<td>B</td>
</tr>
<tr>
<td>$0.133g \leq S_{DI} < 0.20g$</td>
<td>C</td>
</tr>
<tr>
<td>$0.20g \leq S_{DI}$</td>
<td>D</td>
</tr>
</tbody>
</table>

1613.4 Alternatives to ASCE 7. The provisions of Section 1613.4 shall be permitted as alternatives to the relevant provisions of ASCE 7.

1613.4.1 Additional seismic force-resisting systems for seismically isolated structures. Add the following exception to the end of Section 17.5.4.2 of ASCE 7:

Exception: For isolated structures designed in accordance with this standard, the structural system limitations including structural height limits, in Table 12.2-1 for ordinary steel concentrically braced frames (OCBFs) as defined in Chapter 11 and ordinary moment frames (OMFs) as defined in Chapter 11 are permitted to be taken as 160 feet (48 768 mm) for structures assigned to Seismic Design Category D, E or F, provided that the following conditions are satisfied:

1. The value of R_i as defined in Chapter 17 is taken as 1.
2. For OMFs and OCBFs, design is in accordance with AISC 341.
1613.5 **Amendments to ASCE 7.** The provisions of Section 1613.5 shall be permitted as an amendment to the relevant provisions of ASCE 7.

1613.5.1 **Transfer of anchorage forces into diaphragm.** Modify ASCE 7 Section 12.11.2.2.1 as follows:

12.11.2.2.1 Transfer of anchorage forces into diaphragm. Diaphragms shall be provided with continuous ties or struts between diaphragm chords to distribute these anchorage forces into the diaphragms. Diaphragm connections shall be positive, mechanical or welded. Added chords are permitted to be used to form subdiaphragms to transmit the anchorage forces to the main continuous cross-ties. The maximum length-to-width ratio of a wood, wood structural panel or untopped steel deck sheathed structural subdiaphragm that serves as part of the continuous tie system shall be 2.5 to 1. Connections and anchorages capable of resisting the prescribed forces shall be provided between the diaphragm and the attached components. Connections shall extend into the diaphragm a sufficient distance to develop the force transferred into the diaphragm.

1613.6 **Ballasted photovoltaic panel systems.** Ballasted, roof-mounted photovoltaic panel systems need not be rigidly attached to the roof or supporting structure. Ballasted nonpenetrating systems shall be designed and installed only on roofs with slopes not more than one unit vertical in 12 units horizontal. Ballasted nonpenetrating systems shall be designed to resist sliding and uplift resulting from lateral and vertical forces as required by Section 1605, using a coefficient of friction determined by acceptable engineering principles. In structures assigned to Seismic Design Category C, D, E or F, ballasted nonpenetrating systems shall be designed to accommodate seismic displacement determined by nonlinear response-history analysis or shake-table testing, using input motions consistent with ASCE 7 lateral and vertical seismic forces for nonstructural components on roofs.

SECTION 1614
ATMOSPHERIC ICE LOADS

1614.1 **General.** Ice-sensitive structures shall be designed for atmospheric ice loads in accordance with Chapter 10 of ASCE 7.

SECTION 1615
STRUCTURAL INTEGRITY
1615.1 General. High-rise buildings that are assigned to Risk Category III or IV shall comply with the requirements of this section. Frame structures shall comply with the requirements of Section 1615.3. Bearing wall structures shall comply with the requirements of Section 1615.4.

1615.2 Definitions. The following words and terms are defined in Chapter 2:

BEARING WALL STRUCTURE.
FRAME STRUCTURE.

1615.3 Frame structures. Frame structures shall comply with the requirements of this section.

1615.3.1 Concrete frame structures. Frame structures constructed primarily of reinforced or prestressed concrete, either cast-in-place or precast, or a combination of these, shall conform to the requirements of Section 4.10 of ACI 318. Where ACI 318 requires that nonprestressed reinforcing or prestressing steel pass through the region bounded by the longitudinal column reinforcement, that reinforcing or prestressing steel shall have a minimum nominal tensile strength equal to two-thirds of the required one-way vertical strength of the connection of the floor or roof system to the column in each direction of beam or slab reinforcement passing through the column.

Exception: Where concrete slabs with continuous reinforcement having an area not less than 0.0015 times the concrete area in each of two orthogonal directions are present and are either monolithic with or equivalently bonded to beams, girders or columns, the longitudinal reinforcing or prestressing steel passing through the column reinforcement shall have a nominal tensile strength of one-third of the required one-way vertical strength of the connection of the floor or roof system to the column in each direction of beam or slab reinforcement passing through the column.

1615.3.2 Structural steel, open web steel joist or joistgirder, or composite steel and concrete frame structures. Frame structures constructed with a structural steel frame or a frame composed of open web steel joists, joist girders with or without other structural steel elements or a frame composed of composite steel or composite steel joists and reinforced concrete elements shall conform to the requirements of this section.

1615.3.2.1 Columns. Each column splice shall have the minimum design strength in tension to transfer the design dead and live load
tributary to the column between the splice and the splice or base immediately below.

1615.3.2.2 **Beams.** End connections of all beams and girders shall have a minimum nominal axial tensile strength equal to the required vertical shear strength for allowable stress design (ASD) or two-thirds of the required shear strength for load and resistance factor design (LRFD) but not less than 10 kips (45 kN). For the purpose of this section, the shear force and the axial tensile force need not be considered to act simultaneously.

Exception: Where beams, girders, open web joist and joist girders support a concrete slab or concrete slab on metal deck that is attached to the beam or girder with not less than \(\frac{3}{8} \)-inch-diameter (9.5 mm) headed shear studs, at a spacing of not more than 12 inches (305 mm) on center, averaged over the length of the member, or other attachment having equivalent shear strength, and the slab contains continuous distributed reinforcement in each of two orthogonal directions with an area not less than 0.0015 times the concrete area, the nominal axial tension strength of the end connection shall be permitted to be taken as half the required vertical shear strength for ASD or one-third of the required shear strength for LRFD, but not less than 10 kips (45 kN).

1615.4 **Bearing wall structures.** Bearing wall structures shall have vertical ties in all load-bearing walls and longitudinal ties, transverse ties and perimeter ties at each floor level in accordance with this section and as shown in Figure 1615.4.

1615.4.1 **Concrete wall structures.** Precast bearing wall structures constructed solely of reinforced or prestressed concrete, or combinations of these shall conform to the requirements of Sections 16.2.4 and 16.2.5 of ACI 318.

1615.4.2 **Other bearing wall structures.** Ties in bearing wall structures other than those covered in Section 1615.4.1 shall conform to this section.

1615.4.2.1 **Longitudinal ties.** Longitudinal ties shall consist of continuous reinforcement in slabs; continuous or spliced decks or sheathing; continuous or spliced members framing to, within or across walls; or connections of continuous framing members to walls. Longitudinal ties shall extend across interior load-bearing walls and shall connect to exterior load-bearing walls and shall be spaced at not greater than 10 feet (3038 mm) on center. Ties shall have a minimum nominal
tensile strength, T_T, given by Equation 16-41. For ASD the minimum nominal tensile strength shall be permitted to be taken as 1.5 times the allowable tensile stress times the area of the tie.

$$T_T = w L S \leq \alpha T S$$ \hspace{1cm} \text{ (Equation 16-41)}

where:
- L = The span of the horizontal element in the direction of the tie, between bearing walls, feet (m).
- w = The weight per unit area of the floor or roof in the span being tied to or across the wall, psf (N/m²).
- S = The spacing between ties, feet (m).
- αT = A coefficient with a value of 1,500 pounds per foot (2.25 kN/m) for masonry bearing wall structures and a value of 375 pounds per foot (0.6 kN/m) for structures with bearing walls of cold-formed steel light-frame construction.

1615.4.2.2 Transverse ties. Transverse ties shall consist of continuous reinforcement in slabs; continuous or spliced decks or sheathing; continuous or spliced members framing to, within or across walls; or connections of continuous framing members to walls. Transverse ties shall be placed no farther apart than the spacing of load-bearing walls. Transverse ties shall have minimum nominal tensile strength T_T, given by Equation 16-41. For ASD the minimum nominal tensile strength shall be permitted to be taken as 1.5 times the allowable tensile stress times the area of the tie.

1615.4.2.3 Perimeter ties. Perimeter ties shall consist of continuous reinforcement in slabs; continuous or spliced decks or sheathing; continuous or spliced members framing to, within or across walls; or connections of continuous framing members to walls. Ties around the perimeter of each floor and roof shall be located within 4 feet (1219 mm) of the edge and shall provide a nominal strength in tension not less than T_p, given by Equation 16-42. For ASD the minimum nominal tensile strength shall be permitted to be taken as 1.5 times the allowable tensile stress times the area of the tie.

$$T_p = 200w \leq \beta T$$ \hspace{1cm} \text{ (Equation 16-42)}

For SI: $T_p = 90.7w \leq \beta T$
where:

\[w = \text{As defined in Section 1615.4.2.1.} \]

\[\beta_T = \text{A coefficient with a value of 16,000 pounds (7200 kN) for structures with masonry bearing walls and a value of 4,000 pounds (1300 kN) for structures with bearing walls of cold-formed steel light-frame construction.} \]

1615.4.2.4 Vertical ties. Vertical ties shall consist of continuous or spliced reinforcing, continuous or spliced members, wall sheathing or other engineered systems. Vertical tension ties shall be provided in bearing walls and shall be continuous over the height of the building. The minimum nominal tensile strength for vertical ties within a bearing wall shall be equal to the weight of the wall within that story plus the weight of the diaphragm tributary to the wall in the story below. No fewer than two ties shall be provided for each wall. The strength of each tie need not exceed 3,000 pounds per foot (450 kN/m) of wall tributary to the tie for walls of masonry construction or 750 pounds per foot (140 kN/m) of wall tributary to the tie for walls of cold-formed steel light frame construction.
FIGURE 1615.4
LONGITUDINAL, PERIMETER, TRANSVERSE AND VERTICAL TIES

T = Transverse
L = Longitudinal
V = Vertical
P = Perimeter
Effective: 8/1/2018

Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
Prior Effective Dates: 01/01/2002, 03/01/2005, 07/01/2007, 11/01/2011, 11/01/2017
4101:1-22-01 Steel.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:1-35-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 2201
GENERAL

2201.1 Scope. The provisions of this chapter govern the quality, design, fabrication and erection of steel construction.

SECTION 2202
DEFINITIONS

2202.1 Definitions. The following terms are defined in Chapter 2:

STEEL CONSTRUCTION, COLD-FORMED.
STEEL JOIST.
STEEL ELEMENT, STRUCTURAL.

SECTION 2203
IDENTIFICATION AND PROTECTION OF STEEL FOR STRUCTURAL PURPOSES

2203.1 Identification. Identification of structural steel elements shall be in accordance with AISC 360. Identification of cold-formed steel members shall be in accordance with AISI S100. Identification of cold-formed steel light-frame construction shall also comply with the requirements contained in AISI S200 or AISI S220, as applicable. Other steel furnished for structural load-carrying purposes shall be properly identified for conformity to the ordered grade in accordance with the specified ASTM standard or other specification and the provisions of this chapter. Steel that is not readily identifiable as to grade from marking and test records shall be tested to determine conformity to such standards.

2203.2 Protection. Painting of structural steel elements shall be in accordance with AISC 360. Painting of open-web steel joists and joist girders shall be in
accordance with SJI CJ, SJI JG, SJI K and SJI LH/DLH. Individual structural members and assembled panels of cold-formed steel construction shall be protected against corrosion in accordance with the requirements contained in AISI S100. Protection of cold-formed steel light-frame construction shall be in accordance with AISI S200 or AISI S220, as applicable.

SECTION 2204
CONNECTIONS

2204.1 Welding. The details of design, workmanship and technique for welding and qualification of welding personnel shall be in accordance with the specifications listed in Sections 2205, 2206, 2207, 2208, 2210 and 2211. For special inspection of welding, see Section 1705.2.

2204.2 Bolting. The design, installation and inspection of bolts shall be in accordance with the requirements of Sections 2205, 2206, 2207, 2210 and 2211. For special inspection of the installation of high-strength bolts, see Section 1705.2.

2204.3 Anchor rods. Anchor rods shall be set in accordance with the approved construction documents. The protrusion of the threaded ends through the connected material shall fully engage the threads of the nuts but shall not be greater than the length of the threads on the bolts.

SECTION 2205
STRUCTURAL STEEL

2205.1 General. The design, fabrication and erection of structural steel elements in buildings, structures and portions thereof shall be in accordance with AISC 360.

2205.2 Seismic design. Where required, the seismic design, fabrication and erection of buildings, structures and portions thereof shall be in accordance with Section 2205.2.1 or 2205.2.2, as applicable.

2205.2.1 Structural steel seismic force-resisting systems. The design, detailing, fabrication and erection of structural steel seismic force-resisting systems shall be in accordance with the provisions of Section 2205.2.1.1 or 2205.2.1.2, as applicable.

2205.2.1.1 Seismic Design Category B or C. Structures assigned to Seismic
Design Category B or C shall be of any construction permitted in Section 2205. Where a response modification coefficient, \(R \), in accordance with ASCE 7, Table 12.2-1, is used for the design of structures assigned to Seismic Design Category B or C, the structures shall be designed and detailed in accordance with the requirements of AISC 341.

Exception: The response modification coefficient, \(R \), designated for “Steel systems not specifically detailed for seismic resistance, excluding cantilever column systems” in ASCE 7, Table 12.2-1, shall be permitted for systems designed and detailed in accordance with AISC 360, and need not be designed and detailed in accordance with AISC 341.

2205.2.1.2 Seismic Design Category D, E or F
Structures assigned to Seismic Design Category D, E or F shall be designed and detailed in accordance with AISC 341, except as permitted in ASCE 7, Table 15.4-1.

2205.2.2 Structural steel elements
The design, detailing, fabrication and erection of structural steel elements in seismic force-resisting systems other than those covered in Section 2205.2.1, including struts, collectors, chords and foundation elements, shall be in accordance with AISC 341 where either of the following applies:

1. The structure is assigned to Seismic Design Category D, E or F, except as permitted in ASCE 7, Table 15.4-1.
2. A response modification coefficient, \(R \), greater than 3 in accordance with ASCE 7, Table 12.2-1, is used for the design of the structure assigned to Seismic Design Category B or C.

SECTION 2206
COMPOSITE STRUCTURAL STEEL AND CONCRETE STRUCTURES

2206.1 General
Systems of structural steel elements acting compositely with reinforced concrete shall be designed in accordance with AISC 360 and ACI 318, excluding ACI 318 Chapter 14.

2206.2 Seismic design
Where required, the seismic design, fabrication and erection of composite steel and concrete systems shall be in accordance with Section 2206.2.1.

2206.2.1 Seismic requirements for composite structural steel and concrete construction
Where a response modification coefficient, \(R \), in accordance with ASCE 7, Table 12.2-1, is used for the design of systems of structural steel acting compositely with reinforced concrete, the structures shall be
SECTION 2207
STEEL JOISTS

2207.1 General. The design, manufacture and use of openweb steel joists and joist girders shall be in accordance with one of the following Steel Joist Institute (SJI) specifications:
1. SJI CJ
2. SJI K
3. SJI LH/DLH
4. SJI JG

2207.1.1 Seismic design. Where required, the seismic design of buildings shall be in accordance with the additional provisions of Section 2205.2 or 2211.6.

2207.2 Design. The registered design professional shall indicate on the construction documents the steel joist and steel joist girder designations from the specifications listed in Section 2207.1; and shall indicate the requirements for joist and joist girder design, layout, end supports, anchorage, bridging design that differs from the SJI specifications listed in Section 2207.1, bridging termination connections and bearing connection design to resist uplift and lateral loads. These documents shall indicate special requirements as follows:
1. Special loads including:
 1.1. Concentrated loads.
 1.2. Nonuniform loads.
 1.3. Net uplift loads.
 1.4. Axial loads.
 1.5. End moments.
 1.6. Connection forces.
2. Special considerations including:
 2.1. Profiles for joist and joist girder configurations that differ from those defined by the SJI specifications listed in Section 2207.1.
 2.2. Oversized or other nonstandard web openings.
 2.3. Extended ends.
3. Live and total load deflection criteria for joists and joist girder configurations that differ from those defined by the SJI specifications listed in Section 2207.1.

2207.3 Calculations. The steel joist and joist girder manufacturer shall design the
steel joists and steel joist girders in accordance with the SJI specifications listed in Section 2207.1 to support the load requirements of Section 2207.2. The registered design professional shall be permitted to require submission of the steel joist and joist girder calculations as prepared by a registered design professional responsible for the product design. Where requested by the registered design professional, the steel joist manufacturer shall submit design calculations with a cover letter bearing the seal and signature of the joist manufacturer’s registered design professional. In addition to the design calculations submitted under seal and signature, the following shall be included:

1. Bridging design that differs from the SJI specifications listed in Section 2207.1, such as cantilevered conditions and net uplift.
2. Connection design for:
 2.1. Connections that differ from the SJI specifications listed in Section 2207.1, such as flushframed or framed connections.
 2.2. Field splices.
 2.3. Joist headers.

2207.4 Steel joist drawings. Steel joist placement plans shall be provided to show the steel joist products as specified on the approved construction documents and are to be utilized for field installation in accordance with specific project requirements as stated in Section 2207.2. Steel joist placement plans shall include, at a minimum, the following:

1. Listing of applicable loads as stated in Section 2207.2 and used in the design of the steel joists and joist girders as specified in the approved construction documents.
2. Profiles for joist and joist girder configurations that differ from those defined by the SJI specifications listed in Section 2207.1.
3. Connection requirements for:
 3.1. Joist supports.
 3.2. Joist girder supports.
 3.3. Field splices.
 3.4. Bridging attachments.
4. Live and total load deflection criteria for joists and joistgirder configurations that differ from those defined by the SJI specifications listed in Section 2207.1.
5. Size, location and connections for bridging.

Steel joist placement plans do not require the seal and signature of the joist manufacturer’s registered design professional.

2207.5 Certification. At completion of manufacture, the steel joist manufacturer
shall submit a certificate of compliance to the owner or the owner’s representative for submittal to the building official as specified in Section 1704.5 stating that work was performed in accordance with approved construction documents and with SJI specifications listed in Section 2207.1. **Deleted.**

SECTION 2208

STEEL CABLE STRUCTURES

2208.1 General. The design, fabrication and erection including related connections, and protective coatings of steel cables for buildings shall be in accordance with ASCE 19.

2208.2 Seismic requirements for steel cable. The design strength of steel cables shall be determined by the provisions of ASCE 19 except as modified by these provisions.

1. A load factor of 1.1 shall be applied to the prestress force included in \(T_3 \) and \(T_4 \) as defined in Section 3.12.
2. In Section 3.2.1, Item (c) shall be replaced with “1.5 \(T_3 \)” and Item (d) shall be replaced with “1.5 \(T_4 \)”.

SECTION 2209

STEEL STORAGE RACKS

2209.1 Storage racks. The design, testing and utilization of storage racks made of cold-formed or hot-rolled steel structural members shall be in accordance with RMI/ANSI MH 16.1. Where required by ASCE 7, the seismic design of storage racks shall be in accordance with Section 15.5.3 of ASCE 7.

SECTION 2210

COLD-FORMED STEEL

2210.1 General. The design of cold-formed carbon and low alloy steel structural members shall be in accordance with AISI S100. The design of cold-formed stainless-steel structural members shall be in accordance with ASCE 8. Cold-formed steel light-frame construction shall also comply with Section 2211. Where required, the seismic design of cold-formed steel structures shall be in accordance with the additional provisions of Section 2210.2.

2210.1.1 Steel decks. The design and construction of cold-formed steel decks shall be in accordance with this section.
2210.1.1.1 Noncomposite steel floor decks. Noncomposite steel floor decks shall be permitted to be designed and constructed in accordance with ANSI/SDI-NC1.0.

2210.1.1.2 Steel roof deck. Steel roof decks shall be permitted to be designed and constructed in accordance with ANSI/SDI-RD1.0.

2210.1.1.3 Composite slabs on steel decks. Composite slabs of concrete and steel deck shall be permitted to be designed and constructed in accordance with SDI-C.

2210.2 Seismic requirements for cold-formed steel structures. Where a response modification coefficient, R, in accordance with ASCE 7, Table 12.2-1, is used for the design of cold-formed steel structures, the structures shall be designed and detailed in accordance with the requirements of AISI S100, ASCE 8, or, for cold-formed steel special-bolted moment frames, AISI S110.

SECTION 2211
COLD-FORMED STEEL LIGHT-FRAME CONSTRUCTION

2211.1 General. The design and installation of structural and nonstructural members utilized in cold-formed steel lightframe construction where the specified minimum base steel thickness is not greater than 0.1180 inches (2.997 mm) shall be in accordance with AISI S200 and Sections 2211.2 through 2211.7, or AISI S220, as applicable.

2211.2 Header design. Headers, including box and back-to-back headers, and double and single L-headers shall be designed in accordance with AISI S212 or AISI S100.

2211.3 Truss design. Cold-formed steel trusses shall be designed in accordance with AISI S214, Sections 2211.3.1 through 2211.3.4 and accepted engineering practice.

2211.3.1 Truss design drawings. The truss design drawings shall conform to the requirements of Section B2.3 of AISI S214 and shall be provided with the shipment of trusses delivered to the job site. The truss design drawings shall include the details of permanent individual truss member restraint/bracing in accordance with Section B 6(a) or B 6(c) of AISI S214 where these methods are utilized to provide restraint/bracing.
2211.3.2 Deferred submittals. AISI S214 Section B4.2 shall be deleted.

2211.3.3 Trusses spanning 60 feet or greater. The owner or the owner’s representative shall contract with a registered design professional for the design of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing for trusses with clear spans 60 feet (18 288 mm) or greater. Special inspection of trusses over 60 feet (18 288 mm) in length shall be in accordance with Section 1705.2.

2211.3.4 Truss quality assurance. Trusses not part of a manufacturing process that provides requirements for quality control done under the supervision of a third-party quality control agency, shall be manufactured in compliance with Sections 1704.2.5 and 1705.2, as applicable.

2211.4 Structural wall stud design. Structural wall studs shall be designed in accordance with either AISI S211 or AISI S100.

2211.5 Floor and roof system design. Framing for floor and roof systems in buildings shall be designed in accordance with either AISI S210 or AISI S100.

2211.6 Lateral design. Light-frame shear walls, diagonal strap bracing that is part of a structural wall and diaphragms used to resist wind, seismic and other in-plane lateral loads shall be designed in accordance with AISI S213.

2211.7 Prescriptive framing. Deleted Townhouses, less than or equal to three stories above grade plane, shall be permitted to be constructed in accordance with AISI S230 subject to the limitations therein.
Effective: 8/1/2018

Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
Prior Effective Dates: 03/01/2005, 07/01/2007, 11/01/2011, 11/01/2017
4101:1-23-01 Wood.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:1-35-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 2301
GENERAL

2301.1 Scope. The provisions of this chapter shall govern the materials, design, construction and quality of wood members and their fasteners.

2301.2 General design requirements. The design of structural elements or systems, constructed partially or wholly of wood or wood-based products, shall be in accordance with one of the following methods:

1. Allowable stress design in accordance with Sections 2304, 2305 and 2306.
2. Load and resistance factor design in accordance with Sections 2304, 2305 and 2307.
3. Conventional light-frame construction in accordance with Sections 2304 and 2308.
4. Deleted AWC WFCM in accordance with Section 2309.
5. The design and construction of log structures in accordance with the provisions of ICC 400.

2301.3 Nominal sizes. For the purposes of this chapter, where dimensions of lumber are specified, they shall be deemed to be nominal dimensions unless specifically designated as actual dimensions (see Section 2304.2).

SECTION 2302
DEFINITIONS

2302.1 Definitions. The following terms are defined in Chapter 2:

ACREDITATION BODY.
BRACED WALL LINE.
BRACED WALL PANEL.
COLLECTOR.
CONVENTIONAL LIGHT-FRAME CONSTRUCTION.
CRIPPLE WALL.
CROSS-LAMINATED TIMBER.
DIAPHRAGM, UNBLOCKED.
DRAG STRUT.
ENGINEERED WOOD RIM BOARD.
FIBERBOARD.
GABLE.
GRADE (LUMBER).
HARDBOARD.
NAILING, BOUNDARY.
NAILING, EDGE.
NAILING, FIELD.
NOMINAL SIZE (LUMBER).
PARTICLEBOARD.
PERFORMANCE CATEGORY.
PREFABRICATED WOOD I-JOIST.
SHEAR WALL.
 Shear wall, perforated.
 Shear wall segment, perforated.
STRUCTURAL COMPOSITE LUMBER.
 Laminated strand lumber (LSL).
 Laminated veneer lumber (LVL).
 Oriented strand lumber (OSL).
 Parallel strand lumber (PSL).
STRUCTURAL GLUED-LAMINATED TIMBER.
TIE-DOWN (HOLD-DOWN).
TREATED WOOD.
 Fire-retardant-treated wood.
 Preservative-treated wood.
WOOD SHEAR PANEL.
WOOD STRUCTURAL PANEL.
 Composite panels.
 Oriented strand board (OSB).
 Plywood.

SECTION 2303
MINIMUM STANDARDS AND QUALITY

2303.1 General. Structural sawn lumber; end-jointed lumber; prefabricated wood I-joists; structural glued-laminated timber; wood structural panels; fiberboard sheathing (when used structurally); hardboard siding (when used structurally);
particleboard; preservative-treated wood; structural log members; structural composite lumber; round timber poles and piles; fire-retardant-treated wood; hardwood plywood; wood trusses; joist hangers; nails; and staples shall conform to the applicable provisions of this section.

2303.1.1 Sawn lumber. Sawn lumber used for load-supporting purposes, including end-jointed or edge-glued lumber, machine stress-rated or machine-evaluated lumber, shall be identified by the grade mark of a lumber grading or inspection agency that has been approved by an accreditation body that complies with DOC PS 20 or equivalent. Grading practices and identification shall comply with rules published by an agency approved in accordance with the procedures of DOC PS 20 or equivalent procedures.

2303.1.1.1 Certificate of inspection. In lieu of a grade mark on the material, a certificate of inspection as to species and grade issued by a lumber grading or inspection agency meeting the requirements of this section is permitted to be accepted for precut, remanufactured or rough-sawn lumber and for sizes larger than 3 inches (76 mm) nominal thickness.

2303.1.1.2 End-jointed lumber. Approved end-jointed lumber is permitted to be used interchangeably with solid-sawn members of the same species and grade. End-jointed lumber used in an assembly required to have a fire-resistance rating shall have the designation “Heat Resistant Adhesive” or “HRA” included in its grade mark.

2303.1.2 Prefabricated wood I-joists. Structural capacities and design provisions for prefabricated wood I-joists shall be established and monitored in accordance with ASTM D 5055.

2303.1.3 Structural glued-laminated timber. Glued-laminated timbers shall be manufactured and identified as required in ANSI/AITC A 190.1 and ASTM D 3737.

2303.1.4 Structural glued cross-laminated timber. Cross-laminated timbers shall be manufactured and identified in accordance with ANSI/APA PRG 320.

2303.1.5 Wood structural panels. Wood structural panels, when used structurally (including those used for siding, roof and wall sheathing, subflooring, diaphragms and built-up members), shall conform to the requirements for their type in DOC PS 1, DOC PS 2 or ANSI/APA PRP 210.
Each panel or member shall be identified for grade, bond classification, and Performance Category by the trademarks of an approved testing and grading agency. The Performance Category value shall be used as the “nominal panel thickness” or “panel thickness” whenever referenced in this code. Wood structural panel components shall be designed and fabricated in accordance with the applicable standards listed in Section 2306.1 and identified by the trademarks of an approved testing and inspection agency indicating conformance to the applicable standard. In addition, wood structural panels when permanently exposed in outdoor applications shall be of Exterior type, except that wood structural panel roof sheathing exposed to the outdoors on the underside is permitted to be Exposure 1 type.

2303.1.6 Fiberboard. Fiberboard for its various uses shall conform to ASTM C 208. Fiberboard sheathing, when used structurally, shall be identified by an approved agency as conforming to ASTM C 208.

2303.1.6.1 Jointing. To ensure tight-fitting assemblies, edges shall be manufactured with square, shiplapped, beveled, tongue-and-groove or U-shaped joints.

2303.1.6.2 Roof insulation. Where used as roof insulation in all types of construction, fiberboard shall be protected with an approved roof covering.

2303.1.6.3 Wall insulation. Where installed and fireblocked to comply with Chapter 7, fiberboards are permitted as wall insulation in all types of construction. In fire walls and fire barriers, unless treated to comply with Section 803.1 for Class A materials, the boards shall be cemented directly to the concrete, masonry or other noncombustible base and shall be protected with an approved noncombustible veneer anchored to the base without intervening airspaces.

2303.1.6.3.1 Protection. Fiberboard wall insulation applied on the exterior of foundation walls shall be protected below ground level with a bituminous coating.

2303.1.7 Hardboard. Hardboard siding used structurally shall be identified by an approved agency conforming to CPA/ANSI A135.6. Hardboard underlayment shall meet the strength requirements of 7/32-inch (5.6 mm) or 1/4-inch (6.4 mm) service class hardboard planed or sanded on one side to a uniform thickness of not less than 0.200 inch (5.1 mm). Prefinished hardboard
paneling shall meet the requirements of CPA/ANSI A135.5. Other basic hardboard products shall meet the requirements of CPA/ANSI A135.4. Hardboard products shall be installed in accordance with manufacturer's recommendations.

2303.1.8 Particleboard. Particleboard shall conform to ANSI A208.1. Particleboard shall be identified by the grade mark or certificate of inspection issued by an approved agency. Particleboard shall not be utilized for applications other than indicated in this section unless the particleboard complies with the provisions of Section 2306.3.

2303.1.8.1 Floor underlayment. Particleboard floor underlayment shall conform to Type PBU of ANSI A208.1. Type PBU underlayment shall not be less than ¼-inch (6.4 mm) thick and shall be installed in accordance with the instructions of the Composite Panel Association.

2303.1.9 Preservative-treated wood. Lumber, timber, plywood, piles and poles supporting permanent structures required by Section 2304.12 to be preservative treated shall conform to the requirements of the applicable AWPA Standard U1 and M4 for the species, product, preservative and end use. Preservatives shall be listed in Section 4 of AWPA U1. Lumber and plywood used in wood foundation systems shall conform to Chapter 18.

2303.1.9.1 Identification. Wood required by Section 2304.12 to be preservative treated shall bear the quality mark of an inspection agency that maintains continuing supervision, testing and inspection over the quality of the preservative-treated wood. Inspection agencies for preservative-treated wood shall be listed by an accreditation body that complies with the requirements of the American Lumber Standards Treated Wood Program, or equivalent. The quality mark shall be on a stamp or label affixed to the preservative-treated wood, and shall include the following information:

1. Identification of treating manufacturer.
2. Type of preservative used.
3. Minimum preservative retention (pcf).
4. End use for which the product is treated.
5. AWPA standard to which the product was treated.
6. Identity of the accredited inspection agency.

2303.1.9.2 Moisture content. Where preservative treated wood is used in enclosed locations where drying in service cannot readily occur, such wood shall be at a moisture content of 19 percent or less before being
covered with insulation, interior wall finish, floor covering or other materials.

2303.1.10 Structural composite lumber. Structural capacities for structural composite lumber shall be established and monitored in accordance with ASTM D 5456.

2303.1.11 Structural log members. Stress grading of structural log members of nonrectangular shape, as typically used in log buildings, shall be in accordance with ASTM D 3957. Such structural log members shall be identified by the grade mark of an approved lumber grading or inspection agency. In lieu of a grade mark on the material, a certificate of inspection as to species and grade issued by a lumber grading or inspection agency meeting the requirements of this section shall be permitted.

2303.1.12 Round timber poles and piles. Round timber poles and piles shall comply with ASTM D 3200 and ASTM D 25, respectively.

2303.1.13 Engineered wood rim board. Engineered wood rim boards shall conform to ANSI/APA PRR 410 or shall be evaluated in accordance with ASTM D 7672. Structural capacities shall be in accordance with ANSI/APA PRR 410 or established in accordance with ASTM D 7672. Rim boards conforming to ANSI/APA PRR 410 shall be marked in accordance with that standard.

2303.2 Fire-retardant-treated wood. Fire-retardant-treated wood is any wood product which, when impregnated with chemicals by a pressure process or other means during manufacture, shall have, when tested in accordance with ASTM E 84 or UL 723, a listed flame spread index of 25 or less and show no evidence of significant progressive combustion when the test is continued for an additional 20-minute period. Additionally, the flame front shall not progress more than $10\frac{1}{2}$ feet (3200 mm) beyond the centerline of the burners at any time during the test.

2303.2.1 Pressure process. For wood products impregnated with chemicals by a pressure process, the process shall be performed in closed vessels under pressures not less than 50 pounds per square inch gauge (psig) (345 kPa).

2303.2.2 Other means during manufacture. For wood products produced by other means during manufacture, the treatment shall be an integral part of the manufacturing process of the wood product. The treatment shall provide permanent protection to all surfaces of the wood product.
2303.2.3 Testing. For wood products produced by other means during manufacture, other than a pressure process, all sides of the wood product shall be tested in accordance with and produce the results required in Section 2303.2. Wood structural panels shall be permitted to test only the front and back faces.

2303.2.4 Labeling. Fire-retardant-treated lumber and wood structural panels shall be labeled. The label shall contain the following items:
1. The identification mark of an approved agency in accordance with Section 1703.5.
2. Identification of the treating manufacturer.
3. The name of the fire-retardant treatment.
4. The species of wood treated.
5. Flame spread and smoke-developed index.
7. Conformance with appropriate standards in accordance with Sections 2303.2.5 through 2303.2.8.
8. For fire-retardant-treated wood exposed to weather, damp or wet locations, include the words “No increase in the listed classification when subjected to the Standard Rain Test” (ASTM D 2898).

2303.2.5 Strength adjustments. Design values for untreated lumber and wood structural panels, as specified in Section 2303.1, shall be adjusted for fire-retardant-treated wood. Adjustments to design values shall be based on an approved method of investigation that takes into consideration the effects of the anticipated temperature and humidity to which the fire-retardant-treated wood will be subjected, the type of treatment and redrying procedures.

2303.2.5.1 Wood structural panels. The effect of treatment and the method of redrying after treatment, and exposure to high temperatures and high humidities on the flexure properties of fire-retardant-treated softwood plywood shall be determined in accordance with ASTM D 5516. The test data developed by ASTM D 5516 shall be used to develop adjustment factors, maximum loads and spans, or both, for untreated plywood design values in accordance with ASTM D 6305. Each manufacturer shall publish the allowable maximum loads and spans for service as floor and roof sheathing for its treatment.

2303.2.5.2 Lumber. For each species of wood that is treated, the effects of the treatment, the method of redrying after treatment and exposure to
high temperatures and high humidities on the allowable design properties of fire-retardant-treated lumber shall be determined in accordance with ASTM D 5664. The test data developed by ASTM D 5664 shall be used to develop modification factors for use at or near room temperature and at elevated temperatures and humidity in accordance with ASTM D 6841. Each manufacturer shall publish the modification factors for service at temperatures of not less than 80°F (27°C) and for roof framing. The roof framing modification factors shall take into consideration the climatological location.

2303.2.6 Exposure to weather, damp or wet locations. Where fire-retardant-treated wood is exposed to weather, or damp or wet locations, it shall be identified as “Exterior” to indicate there is no increase in the listed flame spread index as defined in Section 2303.2 when subjected to ASTM D 2898.

2303.2.7 Interior applications. Interior fire-retardant-treated wood shall have moisture content of not over 28 percent when tested in accordance with ASTM D 3201 procedures at 92-percent relative humidity. Interior fire-retardant-treated wood shall be tested in accordance with Section 2303.2.5.1 or 2303.2.5.2. Interior fire-retardant-treated wood designated as Type A shall be tested in accordance with the provisions of this section.

2303.2.8 Moisture content. Fire-retardant-treated wood shall be dried to a moisture content of 19 percent or less for lumber and 15 percent or less for wood structural panels before use. For wood kiln-dried after treatment (KDAT), the kiln temperatures shall not exceed those used in kiln drying the lumber and plywood submitted for the tests described in Section 2303.2.5.1 for plywood and 2303.2.5.2 for lumber.

2303.2.9 Type I and II construction applications. See Section 603.1 for limitations on the use of fire-retardant-treated wood in buildings of Type I or II construction.

2303.3 Hardwood and plywood. Hardwood and decorative plywood shall be manufactured and identified as required in HPVA HP-1.

2303.4 Trusses. Wood trusses shall comply with Sections 2303.4.1 through 2303.4.7.

2303.4.1 Design. Wood trusses shall be designed in accordance with the
provisions of this code and accepted engineering practice. Members are permitted to be joined by nails, glue, bolts, timber connectors, metal connector plates or other approved framing devices.

2303.4.1.1 Truss design drawings. The written, graphic and pictorial depiction of each individual truss shall be provided to the building official for review prior to installation. Truss design drawings shall also be provided with the shipment of trusses delivered to the job site. Truss design drawings shall include, at a minimum, the information specified below:

1. Slope or depth, span and spacing;
2. Location of all joints and support locations;
3. Number of plies if greater than one;
4. Required bearing widths;
5. Design loads as applicable, including:
 5.1. Top chord live load;
 5.2. Top chord dead load;
 5.3. Bottom chord live load;
 5.4. Bottom chord dead load;
 5.5. Additional loads and locations; and
 5.6. Environmental design criteria and loads (wind, rain, snow, seismic, etc.).
6. Other lateral loads, including drag strut loads;
7. Adjustments to wood member and metal connector plate design value for conditions of use;
8. Maximum reaction force and direction, including maximum uplift reaction forces where applicable;
9. Metal-connector-plate type, size and thickness or gage, and the dimensioned location of each metal connector plate except where symmetrically located relative to the joint interface;
10. Size, species and grade for each wood member;
11. Truss-to-truss connections and truss field assembly requirements;
12. Calculated span-to-deflection ratio and maximum vertical and horizontal deflection for live and total load as applicable;
13. Maximum axial tension and compression forces in the truss members;
14. Required permanent individual truss member restraint location and the method and details of restraint/bracing to be used in accordance with Section 2303.4.1.2.

2303.4.1.2 Permanent individual truss member restraint. Where
permanent restraint of truss members is required on the truss design drawings, it shall be accomplished by one of the following methods:

1. Permanent individual truss member restraint/bracing shall be installed using standard industry lateral restraint/bracing details in accordance with generally accepted engineering practice. Locations for lateral restraint shall be identified on the truss design drawing.

2. The trusses shall be designed so that the buckling of any individual truss member is resisted internally by the individual truss through suitable means (i.e., buckling reinforcement by T-reinforcement or L-reinforcement, proprietary reinforcement, etc.). The buckling reinforcement of individual members of the trusses shall be installed as shown on the truss design drawing or on supplemental truss member buckling reinforcement details provided by the truss designer.

3. A project-specific permanent individual truss member restraint/bracing design shall be permitted to be specified by any registered design professional.

2303.4.1.3 Trusses spanning 60 feet or greater. The owner or the owner’s representative shall contract with any qualified registered design professional for the design of the temporary installation restraint/bracing and the permanent individual truss member restraint/bracing for all trusses with clear spans 60 feet (18 288 mm) or greater.

2303.4.1.4 Truss designer. The individual or organization responsible for the design of trusses.

2303.4.1.4.1 Truss design drawings. Each individual truss design drawing shall bear the seal and signature a registered design professional.

Exceptions:
1. Deleted.
2. Deleted.

2303.4.2 Truss placement diagram. The truss manufacturer shall provide a truss placement diagram that identifies the proposed location for each individually designated truss and references the corresponding truss design drawing. The truss placement diagram shall be provided as part of the truss submittal package, and with the shipment of trusses delivered to the job site.
2303.4.3 **Truss submittal package.** The truss submittal package provided by the truss manufacturer shall consist of each individual truss design drawing, the truss placement diagram, the permanent individual truss member restraint/bracing method and details and any other structural details germane to the trusses; and, as applicable, the cover/truss index sheet.

2303.4.4 **Anchorage.** The design for the transfer of loads and anchorage of each truss to the supporting structure is the responsibility of the registered design professional.

2303.4.5 **Alterations to trusses.** Truss members and components shall not be cut, notched, drilled, spliced or otherwise altered in any way without written concurrence and approval of a registered design professional. Alterations resulting in the addition of loads to any member (e.g., HVAC equipment, piping, additional roofing or insulation, etc.) shall not be permitted without verification that the truss is capable of supporting such additional loading.

2303.4.6 **TPI 1 specifications.** In addition to Sections 2303.4.1 through 2303.4.5, the design, manufacture and quality assurance of metal-plate-connected wood trusses shall be in accordance with TPI 1. Job-site inspections shall be in compliance with Section 110.4, as applicable.

2303.4.7 **Truss quality assurance.** Trusses not part of a manufacturing process in accordance with either Section 2303.4.6 or a referenced standard, which provides requirements for quality control done under the supervision of a third-party quality control agency, shall be manufactured in compliance with Sections 1704.2.5 and 1705.5, as applicable.

2303.5 **Test standard for joist hangers.** Joist hangers shall be in accordance with ASTM D 7147.

2303.6 **Nails and staples.** Nails and staples shall conform to requirements of ASTM F 1667. Nails used for framing and sheathing connections shall have minimum average bending yield strengths as follows: 80 kips per square inch (ksi) (551 MPa) for shank diameters larger than 0.177 inch (4.50 mm) but not larger than 0.254 inch (6.45 mm), 90 ksi (620 MPa) for shank diameters larger than 0.142 inch (3.61 mm) but not larger than 0.177 inch (4.50 mm) and 100 ksi (689 MPa) for shank diameters of at least 0.099 inch (2.51 mm) but not larger than 0.142 inch (3.61 mm).

2303.7 **Shrinkage.** Consideration shall be given in design to the possible effect of
cross-grain dimensional changes considered vertically which may occur in lumber fabricated in a green condition.

SECTION 2304
GENERAL CONSTRUCTION REQUIREMENTS

2304.1 General. The provisions of this section apply to design methods specified in Section 2301.2.

2304.2 Size of structural members. Computations to determine the required sizes of members shall be based on the net dimensions (actual sizes) and not nominal sizes.

2304.3 Wall framing. The framing of exterior and interior walls shall be in accordance with the provisions specified in Section 2308 unless a specific design is furnished.

2304.3.1 Bottom plates. Studs shall have full bearing on a 2-inch-thick (actual 1 1/2-inch, 38 mm) or larger plate or sill having a width at least equal to the width of the studs.

2304.3.2 Framing over openings. Headers, double joists, trusses or other approved assemblies that are of adequate size to transfer loads to the vertical members shall be provided over window and door openings in load-bearing walls and partitions.

2304.3.3 Shrinkage. Wood walls and bearing partitions shall not support more than two floors and a roof unless an analysis shows that shrinkage of the wood framing will not have adverse effects on the structure or any plumbing, electrical or mechanical systems or other equipment installed therein due to excessive shrinkage or differential movements caused by shrinkage. The analysis shall also show that the roof drainage system and the foregoing systems or equipment will not be adversely affected or, as an alternate, such systems shall be designed to accommodate the differential shrinkage or movements.

2304.4 Floor and roof framing. The framing of wood joisted floors and wood-framed roofs shall be in accordance with the provisions specified in Section 2308 unless a specific design is furnished.

2304.5 Framing around flues and chimneys. Combustible framing shall be a
minimum of 2 inches (51 mm), but shall not be less than the distance specified in Sections 2111 and 2113 and the mechanical code, from flues, chimneys and fireplaces, and 6 inches (152 mm) away from flue openings.

2304.6 Exterior wall sheathing. Wall sheathing on the outside of exterior walls, including gables, and the connection of the sheathing to framing shall be designed in accordance with the general provisions of this code and shall be capable of resisting wind pressures in accordance with Section 1609.

2304.6.1 Wood structural panel sheathing. Where wood structural panel sheathing is used as the exposed finish on the outside of exterior walls, it shall have an exterior exposure durability classification. Where wood structural panel sheathing is used elsewhere, but not as the exposed finish, it shall be of a type manufactured with exterior glue (Exposure 1 or Exterior). Wood structural panel sheathing, connections and framing spacing shall be in accordance with Table 2304.6.1 for the applicable wind speed and exposure category where used in enclosed buildings with a mean roof height not greater than 30 feet (9144 mm) and a topographic factor \(K_z \) of 1.0.

2304.7 Interior paneling. Softwood wood structural panels used for interior paneling shall conform to the provisions of Chapter 8 and shall be installed in accordance with Table 2304.10.1. Panels shall comply with DOC PS 1, DOC PS 2 or ANSI/APA PRP 210. Prefinished hardboard paneling shall meet the requirements of CPA/ANSI A135.5. Hardwood plywood shall conform to HPVA HP-1.

2304.8 Floor and roof sheathing. Structural floor sheathing and structural roof sheathing shall comply with Sections 2304.8.1 and 2304.8.2, respectively.

2304.8.1 Structural floor sheathing. Structural floor sheathing shall be designed in accordance with the general provisions of this code and the special provisions in this section.
Floor sheathing conforming to the provisions of Table 2304.8(1), 2304.8(2), 2304.8(3) or 2304.8(4) shall be deemed to meet the requirements of this section.

2304.8.2 Structural roof sheathing. Structural roof sheathing shall be designed in accordance with the general provisions of this code and the special provisions in this section.
Roof sheathing conforming to the provisions of Table 2304.8(1), 2304.8(2), 2304.8(3) or 2304.8(5) shall be deemed to meet the requirements of this
section. Wood structural panel roof sheathing shall be bonded by exterior glue.

2304.9 Lumber decking. Lumber decking shall be designed and installed in accordance with the general provisions of this code and Sections 2304.9.1 through 2304.9.5.3.

2304.9.1 General. Each piece of lumber decking shall be square-end trimmed. When random lengths are furnished, each piece shall be square end trimmed across the face so that at least 90 percent of the pieces are within 0.5 degrees (0.00873 rad) of square. The ends of the pieces shall be permitted to be beveled up to 2 degrees (0.0349 rad) from the vertical with the exposed face of the piece slightly longer than the opposite face of the piece. Tongue-and-groove decking shall be installed with the tongues up on sloped or pitched roofs with pattern faces down.

| TABLE 2304.6.1 |
| MAXIMUM NOMINAL DESIGN WIND SPEED, V_{oad} PERMITTED FOR WOOD STRUCTURAL PANEL WALL SHEATHING USED TO RESIST WIND PRESSURESa,b,c |
MINIMUM NAIL PENETRATION (inches)	MINIMUM WOOD STRUCTURAL PANEL SPAN RATING (inches)	MINIMUM NOMINAL PANEL THICKNESS (inches)	MAXIMUM WALL STUD SPACING (inches)	PANEL NAIL SPACING (inches o.c.)	MAXIMUM NOMINAL DESIGN WIND SPEED, V_{oad} (MPH)				
Size	Penetration (inches)	24/0	3/8	16	6	12	110	90	85
6d common (2.0" x 0.113")	1.5	24/0	3/8	16	6	12	110	90	85
		24/16	7/16	16	6	12	110	100	90
				6	150	125	110		
8d common (2.5" x 0.131")	1.75	24/16	7/16	16	6	12	110	90	85
				6	110	90	85		

For SI: 1 inch = 25.4 mm, 1 mile per hour = 0.447 m/s.

a. Panel strength axis shall be parallel or perpendicular to supports. Three-ply plywood sheathing with studs spaced more than 16 inches on center shall be applied with panel strength axis perpendicular to supports.

b. The table is based on wind pressures acting toward and away from building surfaces in accordance with Section 30.7 of ASCE 7. Lateral requirements shall be in accordance with Section 2305 or 2308.

c. Wood structural panels with span ratings of wall-16 or wall-24 shall be permitted as an alternative to panels with a 24/0 span rating. Plywood siding rated 16 on center or 24 on center shall be permitted as an alternative to panels with a 24/16 span rating. Wall-16 and plywood siding 16 on center shall be used with studs spaced a maximum of 16 inches on center.
d. V_{ad} shall be determined in accordance with Section 1609.3.1.

TABLE 2304.8(1)
ALLOWABLE SPANS FOR LUMBER FLOOR AND ROOF SHEATHING

<table>
<thead>
<tr>
<th>SPAN (inches)</th>
<th>MINIMUM NET THICKNESS (inches) OF LUMBER PLACED</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Surrounded dryc</td>
<td>Surrounded unseasoned</td>
<td>Surrounded dryc</td>
</tr>
<tr>
<td>Floors</td>
<td>24</td>
<td>¾</td>
<td>25/32</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5/8</td>
<td>11/16</td>
</tr>
<tr>
<td>Roofs</td>
<td>24</td>
<td>5/8</td>
<td>11/16</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

- a. Installation details shall conform to Sections 2304.8.1 and 2304.8.2 for floor and roof sheathing, respectively.
- b. Floor or roof sheathing complying with this table shall be deemed to meet the design criteria of Section 2304.72304.8.
- c. Maximum 19-percent moisture content.

TABLE 2304.8(2)
SHEATHING LUMBER, MINIMUM GRADE REQUIREMENTS: BOARD GRADE

<table>
<thead>
<tr>
<th>SOLID FLOOR OR ROOF SHEATHING</th>
<th>SPACED ROOF SHEATHING</th>
<th>GRADING RULES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility Standard NLGA, WCLIB, WWPA</td>
<td>4 common or utility 3 common or standard</td>
<td>NLGA, WCLIB, WWPA</td>
</tr>
<tr>
<td>No. 3</td>
<td>No. 2</td>
<td>SPIB</td>
</tr>
<tr>
<td>Merchantable</td>
<td>Construction common</td>
<td>RIS</td>
</tr>
</tbody>
</table>

TABLE 2304.8(3)
ALLOWABLE SPANS AND LOADS FOR WOOD STRUCTURAL PANEL SHEATHING AND SINGLE-FLOOR GRADES CONTINUOUS OVER TWO OR MORE SPANS WITH STRENGTH AXIS PERPENDICULAR TO SUPPORTS

<table>
<thead>
<tr>
<th>SHEATHING GRADES</th>
<th>ROOFc</th>
<th>FLOORd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel span rating roof/ floor span</td>
<td>Panel thickness (inches)</td>
<td>Maximum load (psf)</td>
</tr>
<tr>
<td>With edge support</td>
<td>Without edge support</td>
<td>Total load</td>
</tr>
<tr>
<td>16/0</td>
<td>3/8</td>
<td>16</td>
</tr>
<tr>
<td>20/0</td>
<td>3/8</td>
<td>20</td>
</tr>
<tr>
<td>24/0</td>
<td>3/8, 7/16, ½</td>
<td>24</td>
</tr>
<tr>
<td>24/16</td>
<td>7/16, ½</td>
<td>24</td>
</tr>
<tr>
<td>32/16</td>
<td>15/32, 1/2, 5/8</td>
<td>32</td>
</tr>
<tr>
<td>40/20</td>
<td>19/32, 5/8, 3/4, 7/8</td>
<td>40</td>
</tr>
<tr>
<td>48/24</td>
<td>23/32, ¾, 7/8</td>
<td>48</td>
</tr>
<tr>
<td>54/32</td>
<td>7/8, 1</td>
<td>54</td>
</tr>
</tbody>
</table>
TABLE 2304.8(4)
ALLOWABLE SPAN FOR WOOD STRUCTURAL PANEL COMBINATION SUBFLOOR-UNDERLAYMENT (SINGLE FLOOR)a,b
(Panel Continuous Over Two or More Spans and Strength Axis Perpendicular to Supports)

<table>
<thead>
<tr>
<th>IDENTIFICATION</th>
<th>MAXIMUM SPACING OF JOISTS (inches)</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species groupc</td>
<td>Thickness (inches)</td>
<td>1/2</td>
<td>5/8</td>
<td>3/4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>2, 3</td>
<td>5/8</td>
<td>3/4</td>
<td>7/8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2, 3</td>
<td></td>
<td>3/4</td>
<td>7/8</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Single floor span ratingd</td>
<td>16 o.c.</td>
<td>20 o.c.</td>
<td>24 o.c.</td>
<td>32 o.c.</td>
<td>48 o.c.</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kN/m².

a. Spans limited to value shown because of possible effects of concentrated loads. Allowable uniform loads based on deflection of 1/360 of span is 100 pounds per square foot except allowable total uniform load for 1 1/8-inch wood structural panels over joists spaced 48 inches.
on center is 65 pounds per square foot. Panel edges shall have approved tongue-and-groove joints or shall be supported with blocking, unless 1/4-inch minimum thickness underlayment or 11/2 inches of approved cellular or lightweight concrete is placed over the subfloor, or finish floor is 3/4-inch wood strip.

b. Floor panels complying with this table shall be deemed to meet the design criteria of Section 2304.8.

c. Applicable to all grades of sanded exterior-type plywood. See DOC PS 1 for plywood species groups.

d. Applicable to Underlayment grade, C-C (Plugged) plywood, and Single Floor grade wood structural panels.

TABLE 2304.8(5)

ALLOWABLE LOAD (PSF) FOR WOOD STRUCTURAL PANEL ROOF SHEATHING CONTINUOUS

OVER TWO OR MORE SPANS AND STRENGTH AXIS PARALLEL TO SUPPORTS

(Plywood Structural Panels Are Five-Ply, Five-Layer Unless Otherwise Noted)\(^a, b\)

<table>
<thead>
<tr>
<th>PANEL GRADE</th>
<th>THICKNESS (inch)</th>
<th>MAXIMUM SPAN (inches)</th>
<th>LOAD AT MAXIMUM SPAN (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Live</td>
</tr>
<tr>
<td>Structural I sheathing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/16</td>
<td>24</td>
<td>20</td>
<td>30c</td>
</tr>
<tr>
<td>15/32</td>
<td>24</td>
<td>35c</td>
<td>45c</td>
</tr>
<tr>
<td>½</td>
<td>24</td>
<td>40c</td>
<td>50c</td>
</tr>
<tr>
<td>19/32, 5/8</td>
<td>24</td>
<td>70</td>
<td>80c</td>
</tr>
<tr>
<td>23/32, ¾</td>
<td>24</td>
<td>90</td>
<td>100c</td>
</tr>
<tr>
<td>Sheathing, other grades covered in DOC PS 1 or DOC PS 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/16</td>
<td>16</td>
<td>40</td>
<td>50c</td>
</tr>
<tr>
<td>15/32</td>
<td>24</td>
<td>20</td>
<td>25c</td>
</tr>
<tr>
<td>½</td>
<td>24</td>
<td>25</td>
<td>30c</td>
</tr>
<tr>
<td>19/32</td>
<td>24</td>
<td>40c</td>
<td>50c</td>
</tr>
<tr>
<td>5/8</td>
<td>24</td>
<td>45c</td>
<td>55c</td>
</tr>
<tr>
<td>23/32, ¾</td>
<td>24</td>
<td>60c</td>
<td>65c</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kN/m².

a. Roof sheathing complying with this table shall be deemed to meet the design criteria of Section 2304.8.

b. Uniform load deflection limitations \(\frac{1}{180}\) of span under live load plus dead load, \(\frac{1}{240}\) under live load only. Edges shall be blocked with lumber or other approved type of edge supports.

c. For composite and four-ply plywood structural panel, load shall be reduced by 15 pounds per square foot.

2304.9.2 Layup patterns. Lumber decking is permitted to be laid up following one of five standard patterns as defined in Sections 2304.9.2.1 through 2304.9.2.5. Other patterns are permitted to be used provided they are substantiated through engineering analysis.

2304.9.2.1 Simple span pattern. All pieces shall be supported on their ends (i.e., by two supports).
2304.9.2.2 Two-span continuous pattern. All pieces shall be supported by three supports, and all end joints shall occur in line on alternating supports. Supporting members shall be designed to accommodate the load redistribution caused by this pattern.

2304.9.2.3 Combination simple and two-span continuous pattern. Courses in end spans shall be alternating simple-span pattern and two-span continuous pattern. End joints shall be staggered in adjacent courses and shall bear on supports.

2304.9.2.4 Cantilevered pieces intermixed pattern. The decking shall extend across a minimum of three spans. Pieces in each starter course and every third course shall be simple span pattern. Pieces in other courses shall be cantilevered over the supports with end joints at alternating quarter or third points of the spans. Each piece shall bear on at least one support.

2304.9.2.5 Controlled random pattern. The decking shall extend across a minimum of three spans. End joints of pieces within 6 inches (152 mm) of the end joints of the adjacent pieces in either direction shall be separated by at least two intervening courses. In the end bays, each piece shall bear on at least one support. Where an end joint occurs in an end bay, the next piece in the same course shall continue over the first inner support for at least 24 inches (610 mm). The details of the controlled random pattern shall be as specified for each decking material in Section 2304.9.3.3, 2304.9.4.3 or 2304.9.5.3.

Decking that cantilevers beyond a support for a horizontal distance greater than 18 inches (457 mm), 24 inches (610 mm) or 36 inches (914 mm) for 2-inch (51 mm), 3-inch (76 mm) and 4-inch (102 mm) nominal thickness decking, respectively, shall comply with the following:

1. The maximum cantilevered length shall be 30 percent of the length of the first adjacent interior span.
2. A structural fascia shall be fastened to each decking piece to maintain a continuous, straight line.
3. There shall be no end joints in the decking between the cantilevered end of the decking and the centerline of the first adjacent interior span.

2304.9.3 Mechanically laminated decking. Mechanically laminated decking shall comply with Sections 2304.9.3.1 through 2304.9.3.3.
2304.9.3.1 General. Mechanically laminated decking consists of square-edged dimension lumber laminations set on edge and nailed to the adjacent pieces and to the supports.

2304.9.3.2 Nailing. The length of nails connecting laminations shall be not less than two and one-half times the net thickness of each lamination. Where decking supports are 48 inches (1219 mm) on center or less, side nails shall be installed not more than 30 inches (762 mm) on center alternating between top and bottom edges, and staggered one-third of the spacing in adjacent laminations. Where supports are spaced more than 48 inches (1219 mm) on center, side nails shall be installed not more than 18 inches (457 mm) on center alternating between top and bottom edges and staggered one-third of the spacing in adjacent laminations. Two side nails shall be installed at each end of butt-jointed pieces. Laminations shall be toenailed to supports with 20d or larger common nails. Where the supports are 48 inches (1219 mm) on center or less, alternate laminations shall be toenailed to alternate supports; where supports are spaced more than 48 inches (1219 mm) on center, alternate laminations shall be toenailed to every support.

2304.9.3.3 Controlled random pattern. There shall be a minimum distance of 24 inches (610 mm) between end joints in adjacent courses. The pieces in the first and second courses shall bear on at least two supports with end joints in these two courses occurring on alternate supports. A maximum of seven intervening courses shall be permitted before this pattern is repeated.

2304.9.4 Two-inch sawn tongue-and-groove decking. Two-inch (51 mm) sawn tongue-and-groove decking shall comply with Sections 2304.9.4.1 through 2304.9.4.3.

2304.9.4.1 General. Two-inch (51 mm) decking shall have a maximum moisture content of 15 percent. Decking shall be machined with a single tongue-and-groove pattern. Each decking piece shall be nailed to each support.

2304.9.4.2 Nailing. Each piece of decking shall be toenailed at each support with one 16d common nail through the tongue and face-nailed with one 16d common nail.

2304.9.4.3 Controlled random pattern. There shall be a minimum
distance of 24 inches (610 mm) between end joints in adjacent courses. The pieces in the first and second courses shall bear on at least two supports with end joints in these two courses occurring on alternate supports. A maximum of seven intervening courses shall be permitted before this pattern is repeated.

2304.9.5 Three- and four-inch sawn tongue-and-groove decking. Three- and four-inch (76 mm and 102 mm) sawn tongue-and-groove decking shall comply with Sections 2304.9.5.1 through 2304.9.5.3.

2304.9.5.1 General. Three-inch (76 mm) and four-inch (102 mm) decking shall have a maximum moisture content of 19 percent. Decking shall be machined with a double tongue-and-groove pattern. Decking pieces shall be interconnected and nailed to the supports.

2304.9.5.2 Nailing. Each piece shall be toenailed at each support with one 40d common nail and face nailed with one 60d common nail. Courses shall be spiked to each other with 8-inch (203 mm) spikes at maximum intervals of 30 inches (762 mm) through predrilled edge holes penetrating to a depth of approximately 4 inches (102 mm). One spike shall be installed at a distance not exceeding 10 inches (254 mm) from the end of each piece.

2304.9.5.3 Controlled random pattern. There shall be a minimum distance of 48 inches (1219 mm) between end joints in adjacent courses. Pieces not bearing on a support are permitted to be located in interior bays provided the adjacent pieces in the same course continue over the support for at least 24 inches (610 mm). This condition shall not occur more than once in every six courses in each interior bay.

2304.10 Connectors and fasteners. Connectors and fasteners shall comply with the applicable provisions of Sections 2304.10.1 through 2304.10.7.

2304.10.1 Fastener requirements. Connections for wood members shall be designed in accordance with the appropriate methodology in Section 2301.2. The number and size of fasteners connecting wood members shall not be less than that set forth in Table 2304.10.1.

2304.10.2 Sheathing fasteners. Sheathing nails or other approved sheathing connectors shall be driven so that their head or crown is flush with the surface of the sheathing.
2304.10.3 Joist hangers and framing anchors. Connections depending on joist hangers or framing anchors, ties and other mechanical fastenings not otherwise covered are permitted where approved. The vertical load-bearing capacity, torsional moment capacity and deflection characteristics of joist hangers shall be determined in accordance with ASTM D 7147.

2304.10.4 Other fasteners. Clips, staples, glues and other approved methods of fastening are permitted where approved.

2304.10.5 Fasteners and connectors in contact with preservative-treated and fire-retardant-treated wood. Fasteners, including nuts and washers, and connectors in contact with preservative-treated and fire-retardant-treated wood shall be in accordance with Sections 2304.10.5.1 through 2304.10.5.4. The coating weights for zinc-coated fasteners shall be in accordance with ASTM A 153.

2304.10.5.1 Fasteners and connectors for preservative-treated wood. Fasteners, including nuts and washers, in contact with preservative-treated wood shall be of hot-dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper. Fasteners other than nails, timber rivets, wood screws and lag screws shall be permitted to be of mechanically deposited zinc coated steel with coating weights in accordance with ASTM B 695, Class 55 minimum. Connectors that are used in exterior applications and in contact with preservative-treated wood shall have coating types and weights in accordance with the treated wood or connector manufacturer’s recommendations. In the absence of manufacturer's recommendations, a minimum of ASTM A 653, Type G185 zinc-coated galvanized steel, or equivalent, shall be used.

Exception: Plain carbon steel fasteners, including nuts and washers, in SBX/DOT and zinc borate preservative-treated wood in an interior, dry environment shall be permitted.

2304.10.5.2 Fastenings for wood foundations. Fastenings, including nuts and washers, for wood foundations shall be as required in AWC PWF.

2304.10.5.3 Fasteners for fire-retardant-treated wood used in exterior applications or wet or damp locations. Fasteners, including nuts and washers, for fire-retardant-treated wood used in exterior applications or wet or damp locations shall be of hot-dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper. Fasteners other than nails, timber
rivets, wood screws and lag screws shall be permitted to be of mechanically deposited zinc-coated steel with coating weights in accordance with ASTM B 695, Class 55 minimum.

2304.10.5.4 Fasteners for fire-retardant-treated wood used in interior applications. Fasteners, including nuts and washers, for fire-retardant-treated wood used in interior locations shall be in accordance with the manufacturer’s recommendations. In the absence of manufacturer’s recommendations, Section 2304.10.5.3 shall apply.

2304.10.6 Load path. Where wall framing members are not continuous from the foundation sill to the roof, the members shall be secured to ensure a continuous load path. Where required, sheet metal clamps, ties or clips shall be formed of galvanized steel or other approved corrosion-resistant material not less than 0.0329-inch (0.836 mm) base metal thickness.

2304.10.7 Framing requirements. Wood columns and posts shall be framed to provide full end bearing. Alternatively, column-and-post end connections shall be designed to resist the full compressive loads, neglecting end-bearing capacity. Column-and-post end connections shall be fastened to resist lateral and net induced uplift forces.

<table>
<thead>
<tr>
<th>TABLE 2304.10.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASTENING SCHEDULE</td>
</tr>
<tr>
<td>DESCRIPTION OF BUILDING ELEMENTS</td>
</tr>
<tr>
<td>Roof</td>
</tr>
<tr>
<td>1. Blocking between ceiling joists, rafters or trusses to top plate or other framing below</td>
</tr>
<tr>
<td>Blocking between rafters or truss not at the wall top plate, to rafter or truss</td>
</tr>
<tr>
<td>Flat blocking to truss and web filler</td>
</tr>
<tr>
<td>2. Ceiling joists to top plate</td>
</tr>
<tr>
<td>3. Ceiling joist not attached to parallel rafter, laps over partitions (no thrust) (see Section 2308.7.3.1, Table 2308.7.3.1)</td>
</tr>
<tr>
<td>DESCRIPTION OF BUILDING ELEMENTS</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>4. Ceiling joist attached to parallel rafter (heel joint) (see Section 2308.7.3.1, Table 2308.7.3.1)</td>
</tr>
<tr>
<td>5. Collar tie to rafter</td>
</tr>
<tr>
<td>6. Rafter or roof truss to top plate (See Section 2308.7.5, Table 2308.7.5)</td>
</tr>
<tr>
<td>7. Roof rafters to ridge valley or hip rafters; or roof rafter to 2-inch ridge beam</td>
</tr>
<tr>
<td>8. Stud to stud (not at braced wall panels)</td>
</tr>
<tr>
<td>9. Stud to stud and abutting studs at intersecting wall corners (at braced wall panels)</td>
</tr>
<tr>
<td>10. Built-up header (2" to 2" header)</td>
</tr>
<tr>
<td>11. Continuous header to stud</td>
</tr>
<tr>
<td>12. Top plate to top plate</td>
</tr>
<tr>
<td>13. Top plate to top plate, at end joints</td>
</tr>
<tr>
<td>14. Bottom plate to joist, rim joist, band joist or blocking (not at braced wall panels)</td>
</tr>
<tr>
<td>15. Bottom plate to joist, rim joist, band joist or blocking at braced wall panels</td>
</tr>
<tr>
<td>DESCRIPTION OF BUILDING ELEMENTS</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>16. Stud to top or bottom plate</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>17. Top or bottom plate to stud</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18. Top plates, laps at corners and intersections</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>19. 1" brace to each stud and plate</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>20. 1" × 6" sheathing to each bearing</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>21. 1" × 8" and wider sheathing to each bearing</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Floor</td>
</tr>
<tr>
<td>22. Joist to sill, top plate, or girder</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>23. Rim joist, band joist, or blocking to top plate, sill or other framing below</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>24. 1" × 6" subfloor or less to each joist</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>25. 2" subfloor to joist or girder</td>
</tr>
<tr>
<td>26. 2" planks (plank & beam – floor & roof)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>27. Built-up girders and beams, 2" lumber layers</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>28. Ledger strip supporting joists or rafters</td>
</tr>
</tbody>
</table>
29. Joist to band joist or rim joist

3-16d common (3\(\frac{1}{4}\)" × 0.162"); or
4-10d box (3" × 0.128"); or
4-3" × 0.131" nails; or
4-3" 14 gage staples, \(\frac{7}{16}\)" crown

End nail

30. Bridging or blocking to joist, rafter or truss

2-8d common (2\(\frac{1}{2}\)" × 0.162"); or
2-10d box (3" × 0.128"); or
2-3" × 0.131" nails; or
2-3" 14 gage staples, \(\frac{7}{16}\)" crown

Each end, toenail

Wood structural panels (WSP), subfloor, roof and interior wall sheathing to framing and particleboard wall sheathing to framing

<table>
<thead>
<tr>
<th>Thickness (inches)</th>
<th>Edges (inches)</th>
<th>Intermediate supports (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31. (\frac{3}{8})" – (\frac{1}{2})"</td>
<td>6d common or deformed (2" × 0.113") (subfloor and wall)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>8d box or deformed (2(\frac{1}{8})" × 0.113") (roof)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2(\frac{1}{8})" × 0.113" nail (subfloor and wall)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1(\frac{1}{4})" 16 gage staple, (\frac{7}{16})" crown (subfloor and wall)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2(\frac{1}{8})" × 0.113" nail (roof)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1(\frac{1}{4})" 16 gage staple, (\frac{7}{16})" crown (roof)</td>
<td>3</td>
</tr>
<tr>
<td>32. 19(\frac{32}{32})" – 3/4"</td>
<td>8d common (2(\frac{1}{2})" × 0.131"); or 6d deformed (2" × 0.113")</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2(\frac{3}{8})" × 0.113" nail; or 2" 16 gage staple, (\frac{7}{16})" crown</td>
<td>4</td>
</tr>
<tr>
<td>33. 7(\frac{3}{8})" – 1(\frac{1}{4})"</td>
<td>10d common (3" × 0.148"); or 8d deformed (2(\frac{1}{2})" × 0.131")</td>
<td>6</td>
</tr>
</tbody>
</table>

Other exterior wall sheathing

| 34. \(\frac{1}{2}\)" fiberboard sheathing\(^b\) | 1\(\frac{1}{2}\)" galvanized roofing nail (\(\frac{7}{16}\)" head diameter); or 1\(\frac{1}{4}\)" 16 gage staple with \(\frac{7}{16}\)" or 1" crown | 3 | 6 |
| 35. 25\(\frac{32}{32}\)" fiberboard sheathing\(^b\) | 1\(\frac{3}{8}\)" galvanized roofing nail (\(\frac{7}{16}\)" diameter head); or 1\(\frac{1}{2}\)" 16 gage staple with \(\frac{7}{16}\)" or 1" crown | 3 | 6 |

Wood structural panels, combination subfloor underlayment to framing

36. 3/4" and less	8d common (2\(\frac{1}{2}\)" × 0.131"); or 6d deformed (2" × 0.113")	6	12
37. 7\(\frac{7}{8}\)" – 1"	8d common (2\(\frac{1}{2}\)" × 0.131"); or 8d deformed (2\(\frac{1}{2}\)" × 0.131")	6	12
38. 1\(\frac{1}{8}\)" – 1\(\frac{3}{4}\)"	10d common (3" × 0.148"); or 8d deformed (2\(\frac{1}{2}\)" × 0.131")	6	12

Panel siding to framing

| 39. \(\frac{1}{2}\)" or less | 6d corrosion-resistant siding (1\(\frac{1}{6}\)" × 0.106"); or 6d corrosion-resistant casing (2" × 0.099") | 6 | 12 |
| 40. \(\frac{5}{8}\)" | 8d corrosion-resistant siding (2\(\frac{1}{6}\)" × 0.128"); or 8d corrosion-resistant casing (2\(\frac{1}{8}\)" × 0.113") | 6 | 12 |

Interior paneling
For SI: 1 inch = 25.4 mm.

<table>
<thead>
<tr>
<th>41. $\frac{1}{4}''$</th>
<th>4d casing ($1\frac{1}{2}'' \times 0.080''$); or 4d finish ($1\frac{1}{2}'' \times 0.072''$)</th>
<th>6</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>42. $\frac{3}{8}''$</td>
<td>6d casing ($2'' \times 0.099''$); or 6d finish (Panel supports at 24 inches)</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

a. Nails spaced at 6 inches at intermediate supports where spans are 48 inches or more. For nailing of wood structural panel and particleboard diaphragms and shear walls, refer to Section 2305. Nails for wall sheathing are permitted to be common, box or casing.

b. Spacing shall be 6 inches on center on the edges and 12 inches on center at intermediate supports for nonstructural applications. Panel supports at 16 inches (20 inches if strength axis in the long direction of the panel, unless otherwise marked).

c. Where a rafter is fastened to an adjacent parallel ceiling joist in accordance with this schedule and the ceiling joist is fastened to the top plate in accordance with this schedule, the number of toenails in the rafter shall be permitted to be reduced by one nail.

2304.11 **Heavy timber construction.** Where a structure or portion thereof is required to be of Type IV construction by other provisions of this code, the building elements therein shall comply with the applicable provisions of Sections 2304.11.1 through 2304.11.5.

2304.11.1 **Columns.** Columns shall be continuous or superimposed throughout all stories by means of reinforced concrete or metal caps with brackets, or shall be connected by properly designed steel or iron caps, with pintles and base plates, or by timber splice plates affixed to the columns by metal connectors housed within the contact faces, or by other approved methods.

2304.11.1.1 **Column connections.** Girders and beams shall be closely fitted around columns and adjoining ends shall be cross tied to each other, or intertied by caps or ties, to transfer horizontal loads across joints. Wood bolsters shall not be placed on tops of columns unless the columns support roof loads only.

2304.11.2 **Floor framing.** Approved wall plate boxes or hangers shall be provided where wood beams, girders or trusses rest on masonry or concrete walls. Where intermediate beams are used to support a floor, they shall rest on top of girders, or shall be supported by ledgers or blocks securely fastened to the sides of the girders, or they shall be supported by an approved metal hanger into which the ends of the beams shall be closely fitted.

2304.11.3 **Roof framing.** Every roof girder and at least every alternate roof beam shall be anchored to its supporting member; and every monitor and every sawtooth construction shall be anchored to the main roof construction.
Such anchors shall consist of steel or iron bolts of sufficient strength to resist vertical uplift of the roof.

2304.11.4 Floor decks. Floor decks and covering shall not extend closer than 1/2 inch (12.7 mm) to walls. Such 1/2-inch (12.7 mm) spaces shall be covered by a molding fastened to the wall either above or below the floor and arranged such that the molding will not obstruct the expansion or contraction movements of the floor. Corbeling of masonry walls under floors is permitted in place of such molding.

2304.11.5 Roof decks. Where supported by a wall, roof decks shall be anchored to walls to resist uplift forces determined in accordance with Chapter 16. Such anchors shall consist of steel or iron bolts of sufficient strength to resist vertical uplift of the roof.

2304.12 Protection against decay and termites. Wood shall be protected from decay and termites in accordance with the applicable provisions of Sections 2304.12.1 through 2304.12.7.

2304.12.1 Locations requiring water-borne preservatives or naturally durable wood. Wood used above ground in the locations specified in Sections 2304.12.1.1 through 2304.12.1.5, 2304.12.3 and 2304.12.5 shall be naturally durable wood or preservative-treated wood using water-borne preservatives, in accordance with AWPA U1 for above-ground use.

2304.12.1.1 Joists, girders and subfloor. Wood joists or wood structural floors that are closer than 18 inches (457 mm) or wood girders that are closer than 12 inches (305 mm) to the exposed ground in crawl spaces or unexcavated areas located within the perimeter of the building foundation shall be of naturally durable or preservative-treated wood.

2304.12.1.2 Wood supported by exterior foundation walls. Wood framing members, including wood sheathing, that are in contact with exterior foundation walls and are less than 8 inches (203 mm) from exposed earth shall be of naturally durable or preservative-treated wood.

2304.12.1.3 Exterior walls below grade. Wood framing members and furring strips in direct contact with the interior of exterior masonry or concrete walls below grade shall be of naturally durable or preservative treated wood.
2304.12.1.4 **Sleepers and sills.** Sleepers and sills on a concrete or masonry slab that is in direct contact with earth shall be of naturally durable or preservative treated wood.

2304.12.1.5 **Wood siding.** Clearance between wood siding and earth on the exterior of a building shall not be less than 6 inches (152 mm) or less than 2 inches (51 mm) vertical from concrete steps, porch slabs, patio slabs and similar horizontal surfaces exposed to the weather except where siding, sheathing and wall framing are of naturally durable or preservative-treated wood.

2304.12.2 **Other locations.** Wood used in the locations specified in Sections 2304.12.2.1 through 2304.12.2.5 shall be naturally durable wood or preservative-treated wood in accordance with AWPA U1. Preservative-treated wood used in interior locations shall be protected with two coats of urethane, shellac, latex epoxy or varnish unless water-borne preservatives are used. Prior to application of the protective finish, the wood shall be dried in accordance with the manufacturer’s recommendations.

2304.12.2.1 **Girder ends.** The ends of wood girders entering exterior masonry or concrete walls shall be provided with a 1/2-inch (12.7 mm) airspace on top, sides and end, unless naturally durable or preservative treated wood is used.

2304.12.2.2 **Posts or columns.** Posts or columns supporting permanent structures and supported by a concrete or masonry slab or footing that is in direct contact with the earth shall be of naturally durable or preservative-treated wood.

 Exception: Posts or columns that are not exposed to the weather, are supported by concrete piers or metal pedestals projected at least 1 inch (25 mm) above the slab or deck and 8 inches (152 mm) above exposed earth and are separated by an impervious moisture barrier.

2304.12.2.3 **Supporting member for permanent appurtenances.** Naturally durable or preservative treated wood shall be utilized for those portions of wood members that form the structural supports of buildings, balconies, porches or similar permanent building appurtenances where such members are exposed to the weather without adequate protection from a roof, eave, overhang or other covering to prevent moisture or water accumulation on the surface or at joints between members.

 Exception: When a building is located in a geographical region where
experience has demonstrated that climatic conditions preclude the need to use durable materials where the structure is exposed to the weather.

2304.12.2.4 **Laminated timbers.** The portions of glued-laminated timbers that form the structural supports of a building or other structure and are exposed to weather and not fully protected from moisture by a roof, eave or similar covering shall be pressure treated with preservative or be manufactured from naturally durable or preservative-treated wood.

2304.12.2.5 **Supporting members for permeable floors and roofs.** Wood structural members that support moisture-permeable floors or roofs that are exposed to the weather, such as concrete or masonry slabs, shall be of naturally durable or preservative treated wood unless separated from such floors or roofs by an impervious moisture barrier.

2304.12.3 **Wood in contact with the ground or fresh water.** Wood used in contact with exposed earth shall be naturally durable for both decay and termite resistance or preservative treated in accordance with AWPA U1 for soil or fresh water use.

Exception: Untreated wood is permitted where such wood is continuously and entirely below the groundwater level or submerged in fresh water.

2304.12.3.1 **Posts or columns.** Posts and columns that are supporting permanent structures and embedded in concrete that is exposed to the weather or in direct contact with the earth shall be of preservative-treated wood.

2304.12.4 **Termite protection.** In geographical areas where hazard of termite damage is known to be very heavy, wood floor framing in the locations specified in Section 2304.12.2.1 and exposed framing of exterior decks or balconies shall be of naturally durable species (termite resistant) or preservative treated in accordance with AWPA U1 for the species, product preservative and end use or provided with approved methods of termite protection.

2304.12.5 **Wood used in retaining walls and cribs.** Wood installed in retaining or crib walls shall be preservative treated in accordance with AWPA U1 for soil and fresh water use.

2304.12.6 **Attic ventilation.** For attic ventilation, see Section 1203.2.
2304.12.7 **Under-floor ventilation (crawl space).** For under-floor ventilation (crawl space), see Section 1203.4.

2304.13 **Long-term loading.** Wood members supporting concrete, masonry or similar materials shall be checked for the effects of long-term loading using the provisions of the AWC NDS. The total deflection, including the effects of long-term loading, shall be limited in accordance with Section 1604.3.1 for these supported materials.

Exception: Horizontal wood members supporting masonry or concrete nonstructural floor or roof surfacing not more than 4 inches (102 mm) thick need not be checked for long-term loading.

SECTION 2305

GENERAL DESIGN REQUIREMENTS FOR LATERAL FORCE-RESISTING SYSTEMS

2305.1 **General.** Structures using wood-frame shear walls or wood-frame diaphragms to resist wind, seismic or other lateral loads shall be designed and constructed in accordance with AF&PA SDPWS and the applicable provisions of Sections 2305, 2306 and 2307.

2305.1.1 **Openings in shear panels.** Openings in shear panels that materially affect their strength shall be detailed on the plans and shall have their edges adequately reinforced to transfer all shearing stresses.

2305.2 **Diaphragm deflection.** The deflection of woodframe diaphragms shall be determined in accordance with AF&PA SDPWS. The deflection (\(\Delta\)) of a blocked wood structural panel diaphragm uniformly fastened throughout with staples is permitted to be calculated in accordance with Equation 23-1. If not uniformly fastened, the constant 0.188 (For SI: 1/1627) in the third term shall be modified by an approved method.

\[
\Delta = \frac{5vL^3}{8EAb} + \frac{vL}{4Gt} + 0.188Le_n + \frac{\sum(\Delta cX)}{2b} \quad \text{(Equation 23-1)}
\]

For SI: \(\Delta = \frac{0.52vL^3}{EAb} + \frac{vL}{4Gt} + \frac{Le_n}{1672} + \frac{\sum \Delta cX}{2b}\)

where:

- \(A\) = Area of chord cross section, in square inches (mm²).
- \(b\) = Diaphragm width, in feet (mm).
- \(E\) = Elastic modulus of chords, in pounds per square inch (N/ mm²).
$e_n = \text{Staple deformation, in inches (mm) [see Table 2305.2(1)].}$

$Gt = \text{Panel rigidity through the thickness, in pounds per inch (N/mm) of panel width or depth [see Table 2305.2(2)].}$

$L = \text{Diaphragm length, in feet (mm).}$

$v = \text{Maximum shear due to design loads in the direction under consideration, in pounds per linear foot (plf) (N/mm).}$

$\Delta = \text{The calculated deflection, in inches (mm).}$

$\Sigma(\Delta, X) = \text{Sum of individual chord-splice slip values on both sides of the diaphragm, each multiplied by its distance to the nearest support.}$

<table>
<thead>
<tr>
<th>LOAD PER FASTENERb (pounds)</th>
<th>FASTENER DESIGNATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0.011</td>
</tr>
<tr>
<td>80</td>
<td>0.018</td>
</tr>
<tr>
<td>100</td>
<td>0.028</td>
</tr>
<tr>
<td>120</td>
<td>0.04</td>
</tr>
<tr>
<td>140</td>
<td>0.053</td>
</tr>
<tr>
<td>160</td>
<td>0.068</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound = 4.448 N.

a. Increase e_n values 20 percent for plywood grades other than Structural I.

b. Load per fastener = maximum shear per foot divided by the number of fasteners per foot at interior panel edges.

c. Decrease e_n values 50 percent for seasoned lumber (moisture content < 19 percent).

2305.3 Shear wall deflection. The deflection of wood-frame shear walls shall be determined in accordance with AWC SDPWS. The deflection () of a blocked wood structural panel shear wall uniformly fastened throughout with staples is permitted to be calculated in accordance with Equation 23-2.

$$\Delta = \frac{8vh^2}{EAb} + \frac{vh}{Gt} + 0.75he_n + \frac{d_a}{b} \frac{h}{b}$$

(Equation 23-2)

For SI: $\Delta = \frac{vh^3}{3EAb} + \frac{vh}{Gt} + \frac{he_n}{407.6} + \frac{d_a}{b} \frac{h}{b}$

where:
\(A = \) Area of boundary element cross section in square inches (mm\(^2\)) (vertical member at shear wall boundary).

\(b = \) Wall width, in feet (mm).

\(d_a = \) Vertical elongation of overturning anchorage (including fastener slip, device elongation, anchor rod elongation, etc.) at the design shear load (\(v\)).
TABLE 2305.2(2)
VALUES OF \(G_t \) FOR USE IN CALCULATING DEFLECTION OF WOOD STRUCTURAL PANEL SHEAR WALLS AND DIAPHRAGMS

<table>
<thead>
<tr>
<th>PANEL TYPE</th>
<th>SPAN RATING</th>
<th>VALUES OF (G_t) (lb/in. panel depth or width)</th>
<th>Other</th>
<th>Structural I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3-ply plywood</td>
<td>4-ply plywood</td>
<td>5-ply plywood</td>
</tr>
<tr>
<td>Sheathing</td>
<td>24/0</td>
<td>25,000</td>
<td>32,500</td>
<td>37,500</td>
</tr>
<tr>
<td></td>
<td>24/16</td>
<td>27,000</td>
<td>35,000</td>
<td>40,500</td>
</tr>
<tr>
<td></td>
<td>32/16</td>
<td>27,000</td>
<td>35,000</td>
<td>40,500</td>
</tr>
<tr>
<td></td>
<td>40/20</td>
<td>28,500</td>
<td>37,000</td>
<td>43,000</td>
</tr>
<tr>
<td></td>
<td>48/24</td>
<td>31,000</td>
<td>40,500</td>
<td>46,500</td>
</tr>
<tr>
<td>Single Floor</td>
<td>16 o.c.</td>
<td>27,000</td>
<td>35,000</td>
<td>40,500</td>
</tr>
<tr>
<td></td>
<td>20 o.c.</td>
<td>28,000</td>
<td>36,500</td>
<td>42,000</td>
</tr>
<tr>
<td></td>
<td>24 o.c.</td>
<td>30,000</td>
<td>39,000</td>
<td>45,000</td>
</tr>
<tr>
<td></td>
<td>32 o.c.</td>
<td>36,000</td>
<td>47,000</td>
<td>54,000</td>
</tr>
<tr>
<td></td>
<td>48 o.c.</td>
<td>50,500</td>
<td>65,500</td>
<td>76,000</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound/inch = 0.1751 N/mm.

a. Applies to plywood with five or more layers; for five-ply/three-layer plywood, use values for four ply.

\[E = \text{Elastic modulus of boundary element (vertical member at shear wall boundary), in pounds per square inch (N/mm}^2) \]

\[e_n = \text{Staple deformation, in inches (mm) [see Table 2305.2(1)].} \]
G_t = Panel rigidity through the thickness, in pounds per inch (N/mm) of panel width or depth [see Table 2305.2(2)].
h = Wall height, in feet (mm).
v = Maximum shear due to design loads at the top of the wall, in pounds per linear foot (N/mm).
$Δ$ = The calculated deflection, in inches (mm).

SECTION 2306
ALLOWABLE STRESS DESIGN

2306.1 Allowable stress design. The design and construction of wood elements in structures using allowable stress design shall be in accordance with the following applicable standards:

American Wood Council.
NDS National Design Specification for Wood Construction
SDPWS Special Design Provisions for Wind and Seismic

American Institute of Timber Construction.
AITC 104 Typical Construction Details
AITC 110 Standard Appearance Grades for Structural Glued Laminated Timber
AITC 113 Standard for Dimensions of Structural Glued Laminated Timber
AITC 117 Standard Specifications for Structural Glued Laminated Timber of Softwood Species
AITC 119 Standard Specifications for Structural Glued Laminated Timber of Hardwood Species

ANSI/AITC A190.1 Structural Glued Laminated Timber
AITC 200 Inspection Manual

American Society of Agricultural and Biological Engineers.
ASABE EP 484.2 Diaphragm Design of Metal-clad, Post Frame Rectangular Buildings
ASABE EP 486.1 Shallow Post Foundation Design
ASABE 559 Design Requirements and Bending Properties for Mechanically Laminated Columns

APA—The Engineered Wood Association.
Panel Design Specification
Plywood Design Specification Supplement 1—Design & Fabrication of Plywood Curved Panel
Plywood Design Specification Supplement 2—Design & Fabrication of Glued
2306.1.1 Joists and rafters. The design of rafter spans is permitted to be in accordance with the AWC STJR.

2306.1.2 Plank and beam flooring. The design of plank and beam flooring is permitted to be in accordance with the AWC Wood Construction Data No. 4.

2306.1.3 Treated wood stress adjustments. The allowable unit stresses for preservative-treated wood need no adjustment for treatment, but are subject to other adjustments. The allowable unit stresses for fire-retardant-treated wood, including fastener values, shall be developed from an approved method of investigation that considers the effects of anticipated temperature and humidity to which the fire-retardant-treated wood will be subjected, the type of treatment and the redrying process. Other adjustments are applicable except that the impact load duration shall not apply.

2306.1.4 Lumber decking. The capacity of lumber decking arranged according to the patterns described in Section 2304.9.2 shall be the lesser of the capacities determined for flexure and deflection according to the formulas in Table 2306.1.4.

2306.2 Wood-frame diaphragms. Wood-frame diaphragms shall be designed and constructed in accordance with AWC SDPWS. Where panels are fastened to framing members with staples, requirements and limitations of AWC SDPWS
shall be met and the allowable shear values set forth in Table 2306.2(1) or 2306.2(2) shall be permitted. The allowable shear values in Tables 2306.2(1) and 2306.2(2) are permitted to be increased 40 percent for wind design.

2306.2.1 Gypsum board diaphragm ceilings. Gypsum board diaphragm ceilings shall be in accordance with Section 2508.5.

<table>
<thead>
<tr>
<th>PATTERN</th>
<th>ALLOWABLE LOADS FOR LUMBER DECKING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALLOWABLE AREA LOADa,b</td>
</tr>
<tr>
<td></td>
<td>Flexure</td>
</tr>
<tr>
<td></td>
<td>Deflection</td>
</tr>
<tr>
<td>Simple span</td>
<td>$\sigma_b = 8F'd^2/\ell^2$</td>
</tr>
<tr>
<td>Two-span continuous</td>
<td>$\sigma_b = 8F'd^2/\ell^2$</td>
</tr>
<tr>
<td>Combination simple- and two-span</td>
<td>$\sigma_b = 8F'd^2/\ell^2$</td>
</tr>
<tr>
<td>continuous</td>
<td></td>
</tr>
<tr>
<td>Cantilevered pieces intermixed</td>
<td>$\sigma_b = 20F'd^2/3\ell^2$</td>
</tr>
<tr>
<td>Controlled random layup</td>
<td></td>
</tr>
<tr>
<td>Mechanically laminated decking</td>
<td>$\sigma_b = \frac{20F'd^2}{3\ell^2}$</td>
</tr>
<tr>
<td>2-inch decking</td>
<td>$\sigma_b = \frac{20F'd^2}{3\ell^2}$</td>
</tr>
</tbody>
</table>
2306.3 Wood-frame shear walls

Wood-frame shear walls shall be designed and constructed in accordance with AWC SDPWS. Where panels are fastened to framing members with staples, requirements and limitations of AWC SDPWS shall be met and the allowable shear values set forth in Table 2306.3(1), 2306.3(2) or 2306.3(3) shall be permitted. The allowable shear values in Tables 2306.3(1) and 2306.3(2) are permitted to be increased 40 percent for wind design. Panels complying with ANSI/APA PRP-210 shall be permitted to use design values for Plywood Siding in the AWC SDPWS.

SECTION 2307

LOAD AND RESISTANCE FACTOR DESIGN

2307.1 Load and resistance factor design

The design and construction of wood elements and structures using load and resistance factor design shall be in accordance with AWC NDS and AWC SDPWS.

SECTION 2308

CONVENTIONAL LIGHT-FRAME CONSTRUCTION

2308.1 General

The requirements of this section are intended for conventional light-frame construction. Other construction methods are permitted to be used, provided a satisfactory design is submitted showing compliance with other provisions of this code. Interior nonload-bearing partitions, ceilings and curtain walls of conventional light-frame construction are not subject to the limitations of Section 2308.2.

2308.1.1 Portions exceeding limitations of conventional light-frame construction

When portions of a building of otherwise conventional light-frame construction exceed the limits of Section 2308.2, those portions and the

| 3-inch and 4-inch decking | $\sigma_b = \frac{20F^{'d^2}}{3l^6}$ | $\sigma_{\Delta} = \frac{116E^{'d^3}}{l^4}$ |

For SI: 1 inch = 25.4 mm.

a. σ_b = Allowable total uniform load limited by bending.

b. σ_{Δ} = Allowable total uniform load limited by deflection.

d = Actual decking thickness.

l = Span of decking.

$F^{'d}$ = Allowable bending stress adjusted by applicable factors.

$E^'$ = Modulus of elasticity adjusted by applicable factors.
supporting load path shall be designed in accordance with accepted engineering practice and the provisions of this code. For the purposes of this section, the term “portions” shall mean parts of buildings containing volume and area such as a room or a series of rooms. The extent of such design need only demonstrate compliance of the nonconventional light-framed elements with other applicable provisions of this code and shall be compatible with the performance of the conventional light-framed system.

2308.1.2 Connections and fasteners. Connectors and fasteners used in conventional construction shall comply with the requirements of Section 2304.10.

2308.2 Limitations. Buildings are permitted to be constructed in accordance with the provisions of conventional light-frame construction, subject to the limitations in Sections 2308.2.1 through 2308.2.6.

2308.2.1 Stories. Structures of conventional light-frame construction shall be limited in story height in accordance with Table 2308.2.1.

<table>
<thead>
<tr>
<th>SEISMIC DESIGN CATEGORY</th>
<th>ALLOWABLE STORY ABOVE GRADE PLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B</td>
<td>Three stories</td>
</tr>
<tr>
<td>C</td>
<td>Two stories</td>
</tr>
<tr>
<td>D and E<sup>a</sup></td>
<td>One story</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. For the purposes of this section, for buildings assigned to Seismic Design Category D or E, cripple walls shall be considered to be a story unless cripple walls are solid blocked and do not exceed 14 inches in height.

2308.2.2 Allowable floor-to-floor height. Maximum floor-to-floor height shall not exceed 11 feet, 7 inches (3531 mm). Exterior bearing wall and interior braced wall heights shall not exceed a stud height of 10 feet (3048 mm).
<table>
<thead>
<tr>
<th>PANEL GRADE</th>
<th>STAPLE LENGTH AND GAGE(a)</th>
<th>MINIMUM FASTENER PENETRATION IN FRAMING (inches)</th>
<th>MINIMUM NOMINAL PANEL THICKNESS (inch)</th>
<th>MINIMUM NOMINAL WIDTH OF FRAMING MEMBERS AT ADJOINING PANEL EDGES AND BOUNDARIES(a) (inches)</th>
<th>BLOCKED DIAPHRAGMS</th>
<th>UNBLOCKED DIAPHRAGMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural I grades</td>
<td>1 1/2 16 gage</td>
<td>1(\frac{3}{8})</td>
<td>2</td>
<td>175</td>
<td>235</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>200</td>
<td>265</td>
<td>395</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>200</td>
<td>265</td>
<td>395</td>
<td>450</td>
</tr>
<tr>
<td>Sheathing, single floor and other grades covered in DOC PS 1 and PS 2</td>
<td>1 1/2 16 gage</td>
<td>1(\frac{3}{8})</td>
<td>2</td>
<td>160</td>
<td>210</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>180</td>
<td>235</td>
<td>355</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{7}{8})</td>
<td>2</td>
<td>165</td>
<td>225</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>190</td>
<td>250</td>
<td>375</td>
<td>425</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{1}{2})</td>
<td>2</td>
<td>160</td>
<td>210</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>180</td>
<td>235</td>
<td>355</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1(\frac{3}{4})</td>
<td>2</td>
<td>175</td>
<td>235</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>200</td>
<td>265</td>
<td>395</td>
<td>450</td>
</tr>
</tbody>
</table>

(continued)
TABLE 2306.2(1)—continued
ALLOWABLE SHEAR VALUES (POUNDS PER FOOT) FOR WOOD STRUCTURAL PANEL DIAPHRAGMS UTILIZING STAPLES WITH FRAMING OF DOUGLAS FIR-LARCH, OR SOUTHERN PINEa FOR WIND OR SEISMIC LOADINGf FOR SI: 1 inch = 25.4 mm, 1 pound per foot = 14.5939 N/m.

For framing of other species: (1) Find specific gravity for species of lumber in AF\&PA ANSI/AWC NDS. (2) For staples find shear value from table above for Structural I panels (regardless of actual grade) and multiply value by 0.82 for species with specific gravity of 0.42 or greater, or 0.65 for all other species.

b. Space fasteners maximum 12 inches on center along intermediate framing members (6 inches on center where supports are spaced 48 inches on center).

c. Framing at adjoining panel edges shall be 3 inches nominal or wider.

d. Staples shall have a minimum crown width of $\frac{7}{16}$ inch and shall be installed with their crowns parallel to the long dimension of the framing members.

e. The minimum nominal width of framing members not located at boundaries or adjoining panel edges shall be 2 inches.

f. For shear loads of normal or permanent load duration as defined by the AF\&PA ANSI/AWC NDS, the values in the table above shall be multiplied by 0.63 or 0.56, respectively.
TABLE 2306.2(2)
ALLOWABLE SHEAR VALUES (POUNDS PER FOOT) FOR WOOD STRUCTURAL PANEL BLOCKED DIAPHRAGMS UTILIZING MULTIPLE ROWS OF STAPLES (HIGH-LOAD DIAPHRAGMS) WITH FRAMING OF DOUGLAS FIR-LARCH OR SOUTHERN PINE* FOR WIND OR SEISMIC LOADING**, **g, h**

<table>
<thead>
<tr>
<th>PANEL GRADEc</th>
<th>STAPLE GAGEf</th>
<th>MINIMUM FASTENER PENETRATION IN FRAMING (inches)</th>
<th>MINIMUM NOMINAL PANEL THICKNESS (inch)</th>
<th>MINIMUM NOMINAL WIDTH OF FRAMING MEMBER AT ADJOINING PANEL EDGES AND BOUNDARIESg</th>
<th>LINES OF FASTENERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural I grades 14 gage staples</td>
<td>15 19 23 gage staples</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>600 600 600 860 960 1,060 1,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>860 900 1,160 1,295 1,295 1,400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>600 600 875 960 1,075 1,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>875 900 1,175 1,440 1,475 1,795</td>
</tr>
<tr>
<td>Sheathing single floor and other grades covered in DOC PS 1 and PS 2 14 gage staples</td>
<td>15 19 gage staples</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>540 540 735 865 915 1,080</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>735 810 1,005 1,105 1,105 1,195</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>600 600 865 960 1,065 1,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>865 900 1,130 1,430 1,370 1,485</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>3</td>
<td>865 900 1,130 1,490 1,430 1,545</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per foot = 14.5939 N/m.

a. For framing of other species: (1) Find specific gravity for species of framing lumber in AE&PA ANSI/AWC NDS. (2) For staples, find shear value from table above for Structural I panels (regardless of actual grade) and multiply value by 0.82 for species with specific gravity of 0.42 or greater, or 0.65 for all other species.
b. Fastening along intermediate framing members: Space fasteners a maximum of 12 inches on center, except 6 inches on center for spans greater than 32 inches.
c. Panels conforming to PS 1 or PS 2.
d. This table gives shear values for Cases 1 and 2 as shown in Table 2306.2(1). The values shown are applicable to Cases 3, 4, 5 and 6 as shown in Table 2306.2(1), providing fasteners at all continuous panel edges are spaced in accordance with the boundary fastener spacing.
e. The minimum nominal width of framing members shall be 3 inches nominal. The minimum nominal depth of framing members not located at boundaries or adjoining panel edges shall be 2 inches.
f. Staples shall have a minimum crown width of 7/16 inch, and shall be installed with their crowns parallel to the long dimension of the framing members.
g. High-load diaphragms shall be subject to special inspection in accordance with Section 1705.5.1.
h. For shear loads of normal or permanent load duration as defined by the AE&PA ANSI/AWC NDS, the values in the table above shall be multiplied by 0.63 or 0.56, respectively.
TABLE 2306.2(2)—continued
ALLOWABLE SHEAR VALUES (POUNDS PER FOOT) FOR WOOD STRUCTURAL
PANEL BLOCKED DIAPHRAGMS UTILIZING MULTIPLE ROWS OF STAPLES
(HIGH-LOAD DIAPHRAGMS) WITH FRAMING OF DOUGLAS FIR-LARCH OR
SOUTHERN PINE FOR WIND OR SEISMIC LOADING

TABLE 2306.3(1)
ALLOWABLE SHEAR VALUES (POUNDS PER FOOT) FOR WOOD STRUCTURAL
PANEL SHEAR WALLS UTILIZING STAPLES WITH FRAMING OF DOUGLAS FIR-
LARCH OR SOUTHERN PINE\(^a\) FOR WIND OR SEISMIC LOADING\(^b, f, g, i\)

<table>
<thead>
<tr>
<th>PANEL GRADE</th>
<th>MINIMUM NOMINAL PANEL THICKNESS (inch)</th>
<th>MINIMUM FASTENER PENETRATION IN FRAMING (inches)</th>
<th>PANELS APPLIED DIRECT TO FRAMING</th>
<th>PANELS APPLIED OVER 1(\frac{1}{2})" OR 5/8" GYPSUM SHEATHING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural I</td>
<td>3/8</td>
<td>1</td>
<td>1 (\frac{1}{2}) 16</td>
<td>155 235 315 400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 16 Gage</td>
<td>155 235 310 400</td>
</tr>
</tbody>
</table>

NOTE: SPACE PANEL END AND EDGE JOINT 1/8 INCH. REDUCE SPACING BETWEEN LINES OF NAILS AS NECESSARY TO
MAYAIN MINIMUM 3/8 INCH FASTENER EDGE MARGINS. MINIMUM SPACING BETWEEN LINES IS 3/8 INCH.
TABLE 2306.3(2)
ALLOWABLE SHEAR VALUES (pplF) FOR WIND OR SEISMIC LOADING ON SHEAR WALLS OF FIBERBOARD SHEATHING BOARD CONSTRUCTION UTILIZING STAPLES FOR TYPE V CONSTRUCTION ONLY \(^a, b, c, d, e\)

<table>
<thead>
<tr>
<th>THICKNESS AND GRADE</th>
<th>FASTENER SIZE</th>
<th>ALLOWABLE SHEAR VALUE (pounds per linear foot)</th>
<th>STAPLE SPACING AT PANEL EDGES (inches) (^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gage 170 260 345 440</td>
<td>155 310 400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gage 185 280 375 475</td>
<td>155 300 400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ½ 16 Gage</td>
<td>140 210 280 360</td>
<td>140 210 280 360</td>
<td></td>
</tr>
<tr>
<td>2 16 Gage</td>
<td>110 165 220 285</td>
<td>140 210 280 360</td>
<td></td>
</tr>
<tr>
<td>3/8</td>
<td>110 165 220 285</td>
<td>140 210 280 360</td>
<td></td>
</tr>
<tr>
<td>7/16</td>
<td>155 235 310 395</td>
<td>140 210 280 360</td>
<td></td>
</tr>
<tr>
<td>15/32</td>
<td>140 210 280 360</td>
<td>140 210 280 360</td>
<td></td>
</tr>
<tr>
<td>19/32</td>
<td>140 210 280 360</td>
<td>140 210 280 360</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per foot = 14.5939 N/m.

a. For framing of other species: (1) Find specific gravity for species of lumber in AF&PA ANSI/AWC NDS. (2) For staples find shear value from table above for Structural I panels (regardless of actual grade) and multiply value by 0.82 for species with specific gravity of 0.42 or greater, or 0.65 for all other species.
b. Panel edges backed with 2-inch nominal or wider framing. Install panels either horizontally or vertically. Space fasteners maximum 6 inches on center along intermediate framing members for 3/8-inch and 7/16-inch panels installed on studs spaced 24 inches on center. For other conditions and panel thickness, space fasteners maximum 12 inches on center on intermediate supports.
c. 3/8-inch panel thickness or siding with a span rating of 16 inches on center is the minimum recommended where applied directly to framing as exterior siding.
 For grooved panel siding, the nominal panel thickness is the thickness of the panel measured at the point of fastening.
d. Framing at adjoining panel edges shall be 3 inches nominal or wider.
e. Values apply to all-veneer plywood. Thickness at point of fastening on panel edges governs shear values.
f. Where panels are applied on both faces of a wall and fastener spacing is less than 6 inches on center on either side, panel joints shall be offset to fall on different framing members, or framing shall be 3 inches nominal or thicker at adjoining panel edges.
g. In Seismic Design Category D, E or F, where shear design values exceed 350 pounds per linear foot, all framing members receiving edge fastening from abutting panels shall be not less than a single 3-inch nominal member, or two 2-inch nominal members fastened together in accordance with Section 2306.1 to transfer the design shear value between framing members. Wood structural panel joint and sill plate nailing shall be staggered at all panel edges. See AF&PA AWC SDPWS for sill plate size and anchorage requirements.
h. Staples shall have a minimum crown width of 7/16 inch and shall be installed with their crowns parallel to the long dimension of the framing members.
i. For shear loads of normal or permanent load duration as defined by the AF&PA ANSI/AWC NDS, the values in the table above shall be multiplied by 0.63 or 0.56, respectively.
Table 2306.3(3)
ALLOWABLE SHEAR VALUES FOR WIND OR SEISMIC FORCES FOR SHEAR WALLS OF LATH AND PLASTER OR GYPSUM BOARD WOOD FRAMED WALL ASSEMBLIES UTILIZING STAPLES

<table>
<thead>
<tr>
<th>TYPE OF MATERIAL</th>
<th>THICKNESS OF MATERIAL</th>
<th>WALL CONSTRUCTION</th>
<th>STAPLE SPACING<sup>h</sup> MAXIMUM (inches)</th>
<th>SHEAR VALUE<sup>a, c</sup> (plf)</th>
<th>MINIMUM STAPLE SIZE<sup>f, g</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Expanded metal or woven wire lath and Portland cement plaster</td>
<td>7/8"</td>
<td>Unblocked</td>
<td>6</td>
<td>180</td>
<td>No. 16 gage galv. staple, 7/8" legs</td>
</tr>
<tr>
<td>2. Gypsum lath, plain or perforated</td>
<td>3/8" lath and 1/2" plaster</td>
<td>Unblocked</td>
<td>5</td>
<td>100</td>
<td>No. 16 gage galv. staple, 1 1/4" long</td>
</tr>
<tr>
<td>3. Gypsum sheathing</td>
<td>1/2" x 2' x 8'</td>
<td>Unblocked</td>
<td>4</td>
<td>75</td>
<td>No. 16 gage galv. staple, 1 1/4" long</td>
</tr>
<tr>
<td></td>
<td>4/2" x 4'</td>
<td>Blocked<sup>d</sup> Unblocked</td>
<td>7</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>115</td>
<td>No. 16 gage galv. staple, 1 1/2" long</td>
</tr>
<tr>
<td>4. Gypsum board, gypsum veneer base or water-resistant gypsum backing board</td>
<td>5/8"</td>
<td>Unblocked<sup>d</sup></td>
<td>7</td>
<td>115</td>
<td>No. 16 gage galv. staple, 1 1/2" legs, 1 5/8" long</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked<sup>e</sup></td>
<td>7</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blocked<sup>e</sup> Two-ply Base ply: 9 Face ply: 7</td>
<td></td>
<td>250</td>
<td>No. 16 gage galv. staple 1 5/8" long</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per foot = 14.5939 N/m.
These shear walls shall not be used to resist loads imposed by masonry or concrete walls (see AF & PA AWC SDPWS). Values shown are for short-term loading due to wind or seismic loading. Walls resisting seismic loads shall be subject to the limitations in Section 12.2.1 of ASCE 7. Values shown shall be reduced 25 percent for normal loading.

b. Applies to fastening at studs, top and bottom plates and blocking.

c. Except as noted, shear values are based on a maximum framing spacing of 16 inches on center.

d. Maximum framing spacing of 24 inches on center.

e. All edges are blocked, and edge fastening is provided at all supports and all panel edges.

f. Staples shall have a minimum crown width of \(7/16\) inch, measured outside the legs, and shall be installed with their crowns parallel to the long dimension of the framing members.

g. Staples for the attachment of gypsum lath and woven-wire lath shall have a minimum crown width of \(3/4\) inch, measured outside the legs.

2308.2.3 Allowable loads. Loads shall be in accordance with Chapter 16 and shall not exceed the following:

1. Average dead loads shall not exceed 15 psf (718 N/m\(^2\)) for combined roof and ceiling, exterior walls, floors and partitions.

 Exceptions:
 1. Subject to the limitations of Section 2308.6.10, stone or masonry veneer up to the lesser of 5 inches (127 mm) thick or 50 psf (2395 N/m\(^2\)) and installed in accordance with Chapter 14 is permitted to a height of 30 feet (9144 mm) above a noncombustible foundation, with an additional 8 feet (2438 mm) permitted for gable ends.
 2. Concrete or masonry fireplaces, heaters and chimneys shall be permitted in accordance with the provisions of this code.

2. Live loads shall not exceed 40 psf (1916 N/m\(^2\)) for floors.

3. Ground snow loads shall not exceed 50 psf (2395 N/m\(^2\)).

2308.2.4 Ultimate wind speed. \(V_{ult}\) shall not exceed 130 miles per hour (57 m/s) (3-second gust).

 Exceptions:
 1. \(V_{ult}\) shall not exceed 140 mph (61.6 m/s) (3-second gust) for buildings in Exposure Category B that are not located in a hurricane-prone region.
 2. Where \(V_{ult}\) exceeds 130 mph (3-second gust), the provisions of either AWC WFCM or ICC 600 are permitted to be used.

2308.2.5 Allowable roof span. Ceiling joist and rafter framing constructed in accordance with Section 2308.7 and trusses shall not span more than 40 feet (12 192 mm) between points of vertical support. A ridge board in accordance with Section 2308.7 or 2308.7.3.1 shall not be considered a vertical support.
2308.2.6 **Risk category limitation.** The use of the provisions for conventional light-frame construction in this section shall not be permitted for Risk Category IV buildings, as determined by Section 1604.5, assigned to Seismic Design Category B, C, D or EF.

2308.3 **Foundations and footings.** Foundations and footings shall be designed and constructed in accordance with Chapter 18. Connections to foundations and footings shall comply with this section.

2308.3.1 **Foundation plates or sills.** Foundation plates or sills resting on concrete or masonry foundations shall comply with Section 2304.3.1. Foundation plates or sills shall be bolted or anchored to the foundation with not less than 1/2-inch-diameter (12.7 mm) steel bolts or approved anchors spaced to provide equivalent anchorage as the steel bolts. Bolts shall be embedded at least 7 inches (178 mm) into concrete or masonry. Bolts shall be spaced not more than 6 feet (1829 mm) on center and there shall be not less than two bolts or anchor straps per piece with one bolt or anchor strap located not more than 12 inches (305 mm) or less than 4 inches (102 mm) from each end of each piece. A properly sized nut and washer shall be tightened on each bolt to the plate.

Exceptions:

1. Along braced wall lines in structures assigned to Seismic Design Category E, steel bolts with a minimum nominal diameter of 5/8 inch (15.9 mm) or approved anchor straps load-rated in accordance with Section 2304.10.3 and spaced to provide equivalent anchorage shall be used.
2. Bolts in braced wall lines in structures over two stories above grade shall be spaced not more than 4 feet (1219 mm) on center.

2308.3.2 **Braced wall line sill plate anchorage in Seismic Design Categories D and E.** Sill plates along braced wall lines in buildings assigned to Seismic Design Category D or E shall be anchored with anchor bolts with steel plate washers between the foundation sill plate and the nut, or approved anchor straps load-rated in accordance with Section 2304.10.3. Such washers shall be a minimum of 0.229 inch by 3 inches by 3 inches (5.82 mm by 76 mm by 76 mm) in size. The hole in the plate washer is permitted to be diagonally slotted with a width of up to 3/16 inch (4.76 mm) larger than the bolt diameter and a slot length not to exceed 1 3/4 inches (44 mm), provided a standard cut washer is placed between the plate washer and the nut.

2308.4 **Floor framing.** Floor framing shall comply with this section.
2308.4.1 **Girders.** Girders for single-story construction or girders supporting loads from a single floor shall be not less than 4 inches by 6 inches (102 mm by 152 mm) for spans 6 feet (1829 mm) or less, provided that girders are spaced not more than 8 feet (2438 mm) on center. Other girders shall be designed to support the loads specified in this code. Girder end joints shall occur over supports. Where a girder is spliced over a support, an adequate tie shall be provided. The ends of beams or girders supported on masonry or concrete shall not have less than 3 inches (76 mm) of bearing.

2308.4.1.1 **Allowable girder spans.** The allowable spans of girders that are fabricated of dimension lumber shall not exceed the values set forth in Table 2308.4.1.1(1) or 2308.4.1.1(2).

2308.4.2 **Floor joists.** Floor joists shall comply with this section.

2308.4.2.1 **Span.** Spans for floor joists shall be in accordance with Table 2308.4.2.1(1) or 2308.4.2.1(2) or the AWC STJR.

2308.4.2.2 **Bearing.** The ends of each joist shall have not less than 1 1/2 inches (38 mm) of bearing on wood or metal, or not less than 3 inches (76 mm) on masonry, except where supported on a 1-inch by 4-inch (25 mm by 102 mm) ribbon strip and nailed to the adjoining stud.

2308.4.2.3 **Framing details.** Joists shall be supported laterally at the ends and at each support by solid blocking except where the ends of the joists are nailed to a header, band or rim joist or to an adjoining stud or by other means. Solid blocking shall be not less than 2 inches (51 mm) in thickness and the full depth of the joist. Joist framing from opposite sides of a beam, girder or partition shall be lapped at least 3 inches (76 mm) or the opposing joists shall be tied together in an approved manner. Joists framing into the side of a wood girder shall be supported by framing anchors or on ledger strips not less than 2 inches by 2 inches (51 mm by 51 mm).

2308.4.2.4 **Notches and holes.** Notches on the ends of joists shall not exceed one-fourth the joist depth. Notches in the top or bottom of joists shall not exceed one-sixth the depth and shall not be located in the middle third of the span. Holes bored in joists shall not be within 2 inches (51
mm) of the top or bottom of the joist and the diameter of any such hole shall not exceed one-third the depth of the joist.

2308.4.3 Engineered wood products. Engineered wood products shall be installed in accordance with manufacturer’s recommendations. Cuts, notches and holes bored in trusses, structural composite lumber, structural glued-laminated members or I-joists are not permitted except where permitted by the manufacturer’s recommendations or where the effects of such alterations are specifically considered in the design of the member by a registered design professional.

TABLE 2308.4.1.1(1)

HEADER AND GIRDER SPANS^{a, b} FOR EXTERIOR BEARING WALLS

(Maximum spans for Douglas Fir-Larch, Hem-Fir, Southern Pine and Spruce-Pine-Fir^b and required number of jack studs)

<table>
<thead>
<tr>
<th>GIRDERS AND HEADERS SUPPORTING</th>
<th>SIZE</th>
<th>20</th>
<th>28</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Span</td>
<td>Span</td>
<td>Span</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NJ<sup>d</sup></td>
<td>NJ<sup>d</sup></td>
<td>NJ<sup>d</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Building width (feet)</td>
<td>Building width (feet)</td>
<td></td>
</tr>
</tbody>
</table>

Roof and ceiling

		20	28	36	
		Span	Span	Span	
		NJ^d	NJ^d	NJ^d	
		30	50	30	50
		3-6	1	3-2	1
		5-5	1	4-8	1
		6-10	1	5-11	2
		8-5	2	7-3	2
		9-9	2	8-5	2
		8-4	1	7-5	1
		10-6	1	9-1	2
		12-2	2	10-7	2
		9-2	1	8-4	1
		11-8	1	10-6	1
		14-1	1	12-2	2

Roof, ceiling and one center-bearing floor

		20	28	36	
		Span	Span	Span	
		NJ^d	NJ^d	NJ^d	
		3-1	1	2-9	1
		4-6	1	3-7	2
		5-9	2	4-6	2
		7-0	2	5-6	2
		8-1	2	6-5	2
		7-2	1	6-3	2
		8-9	2	6-11	2
		10-2	2	8-11	2
		8-1	1	6-7	1
		10-1	1	8-10	2
		11-9	2	9-3	2
		2-8	1	2-4	1
		3-11	1	3-5	2

Roof, ceiling and one clear span floor

		20	28	36	
		Span	Span	Span	
		NJ^d	NJ^d	NJ^d	
		3-6	1	3-0	2

^a Based on the building width, ground snow load, and joist size.

^b Maximum span for Douglas Fir-Larch, Hem-Fir, Southern Pine and Spruce-Pine-Fir.
TABLE 2308.4.1.1(1)—continued
HEADER AND GIRDER SPANS for exterior bearing walls

(For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kPa.)

<table>
<thead>
<tr>
<th>GIRDERS AND HEADERS SUPPORTING</th>
<th>SIZE</th>
<th>20</th>
<th>28</th>
<th>36</th>
<th>50</th>
<th>Building width (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GROUND SNOW LOAD (psf)</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Span</td>
<td>NJd</td>
<td>Span</td>
<td>NJd</td>
<td>Span</td>
<td>NJd</td>
</tr>
<tr>
<td>Roof, ceiling, and two clear span floors</td>
<td>2-2 × 10</td>
<td>4-9</td>
<td>2</td>
<td>4-1</td>
<td>3</td>
<td>3-8</td>
</tr>
<tr>
<td></td>
<td>2-2 × 12</td>
<td>5-6</td>
<td>3</td>
<td>4-9</td>
<td>3</td>
<td>4-3</td>
</tr>
<tr>
<td></td>
<td>3-2 × 8</td>
<td>4-10</td>
<td>2</td>
<td>4-2</td>
<td>2</td>
<td>3-9</td>
</tr>
<tr>
<td></td>
<td>3-2 × 10</td>
<td>5-11</td>
<td>2</td>
<td>5-1</td>
<td>2</td>
<td>4-7</td>
</tr>
<tr>
<td></td>
<td>3-2 × 12</td>
<td>6-10</td>
<td>2</td>
<td>5-11</td>
<td>3</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>4-2 × 8</td>
<td>5-7</td>
<td>2</td>
<td>4-10</td>
<td>2</td>
<td>4-4</td>
</tr>
<tr>
<td></td>
<td>4-2 × 10</td>
<td>6-10</td>
<td>2</td>
<td>5-11</td>
<td>2</td>
<td>5-3</td>
</tr>
<tr>
<td></td>
<td>4-2 × 12</td>
<td>7-11</td>
<td>2</td>
<td>6-10</td>
<td>2</td>
<td>6-2</td>
</tr>
</tbody>
</table>
a. Spans are given in feet and inches.
b. Spans are based on minimum design properties for No. 2 grade lumber of Douglas Fir-Larch, Hem-Fir and Spruce-Pine Fir. No. 1 or better grade lumber shall be used for Southern Pine.
c. Building width is measured perpendicular to the ridge. For widths between those shown, spans are permitted to be interpolated.
d. NJ - Number of jack studs required to support each end. Where the number of required jack studs equals one, the header is permitted to be supported by an approved framing anchor attached to the full-height wall stud and to the header.
e. Use 30 psf ground snow load for cases in which ground snow load is less than 30 psf and the roof live load is equal to or less than 20 psf.

TABLE 2308.4.1.1(2)
HEADER AND GIRDER SPANS\(^a, b\) FOR INTERIOR BEARING WALLS
(Maximum spans for Douglas Fir-Larch, Hem-Fir, Southern Pine and Spruce-Pine-Fir\(^b\) and required number of jack studs)

<table>
<thead>
<tr>
<th>HEADERS AND GIRDERS SUPPORTING</th>
<th>SIZE</th>
<th>BUILDING WIDTH(^c) (feet)</th>
<th>20</th>
<th>28</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Span</td>
<td>NJ(^d)</td>
<td>Span</td>
<td>NJ(^d)</td>
</tr>
<tr>
<td>One floor only</td>
<td>2-2 × 4</td>
<td>3-1</td>
<td>1</td>
<td>2-8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2-2 × 6</td>
<td>4-6</td>
<td>1</td>
<td>3-11</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2-2 × 8</td>
<td>5-9</td>
<td>1</td>
<td>5-0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2 × 10</td>
<td>7-0</td>
<td>2</td>
<td>6-1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2 × 12</td>
<td>8-1</td>
<td>2</td>
<td>7-0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3-2 × 8</td>
<td>7-2</td>
<td>1</td>
<td>6-3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3-2 × 10</td>
<td>8-9</td>
<td>1</td>
<td>7-7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3-2 × 12</td>
<td>10-2</td>
<td>2</td>
<td>8-10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4-2 × 8</td>
<td>9-0</td>
<td>1</td>
<td>7-8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4-2 × 10</td>
<td>10-1</td>
<td>1</td>
<td>8-9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4-2 × 12</td>
<td>11-9</td>
<td>1</td>
<td>10-2</td>
<td>2</td>
</tr>
<tr>
<td>Two floors</td>
<td>2-2 × 4</td>
<td>2-2</td>
<td>1</td>
<td>1-10</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2-2 × 6</td>
<td>3-2</td>
<td>2</td>
<td>2-9</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2 × 8</td>
<td>4-1</td>
<td>2</td>
<td>3-6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2 × 10</td>
<td>4-11</td>
<td>2</td>
<td>4-3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2 × 12</td>
<td>5-9</td>
<td>2</td>
<td>5-0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3-2 × 8</td>
<td>5-1</td>
<td>2</td>
<td>4-5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3-2 × 10</td>
<td>6-2</td>
<td>2</td>
<td>5-4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3-2 × 12</td>
<td>7-2</td>
<td>2</td>
<td>6-3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4-2 × 8</td>
<td>6-1</td>
<td>1</td>
<td>5-3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4-2 × 10</td>
<td>7-2</td>
<td>2</td>
<td>6-2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>4-2 × 12</td>
<td>8-4</td>
<td>2</td>
<td>7-2</td>
<td>2</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.
a. Spans are given in feet and inches.
b. Spans are based on minimum design properties for No. 2 grade lumber of Douglas Fir-Larch, Hem-Fir and Spruce-Pine Fir. No. 1 or better grade lumber shall be used for Southern Pine.
c. Building width is measured perpendicular to the ridge. For widths between those shown, spans are permitted to be interpolated.
d. **NJ** - Number of jack studs required to support each end. Where the number of required jack studs equals one, the header is permitted to be supported by an approved framing anchor attached to the full-height wall stud and to the header.

TABLE 2308.4.2.1(1)

FLOOR JOIST SPANS FOR COMMON LUMBER SPECIES

(Residential sleeping areas, live load = 30 psf, \(L/\Delta = 360\))

<table>
<thead>
<tr>
<th>JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>(\text{DEAD LOAD} = 10 \text{ psf})</th>
<th>(\text{DEAD LOAD} = 20 \text{ psf})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 6</td>
<td>2 x 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>12</td>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>12-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>12-0</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>11-10</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>9-8</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>SS</td>
<td>11-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>11-7</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#2</td>
<td>11-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#3</td>
<td>9-8</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>SS</td>
<td>12-3</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>11-10</td>
<td>15-7</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#2</td>
<td>11-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#3</td>
<td>9-2</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>11-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>11-3</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>11-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#3</td>
<td>9-8</td>
</tr>
<tr>
<td>16</td>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>11-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>10-11</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>10-9</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>8-5</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>SS</td>
<td>10-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>10-6</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#2</td>
<td>10-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#3</td>
<td>8-5</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>SS</td>
<td>11-2</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>10-9</td>
<td>14-2</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#2</td>
<td>10-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#3</td>
<td>7-11</td>
</tr>
</tbody>
</table>
TABLE 2308.4.2.1(1)—continued

FLOOR JOIST SPANS FOR COMMON LUMBER SPECIES

(Residential sleeping areas, live load = 30 psf, $L/\Delta = 360$)

<table>
<thead>
<tr>
<th>JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 × 6</td>
<td>2 × 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>19.2</td>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>10-6</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#1</td>
<td>10-3</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>10-3</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>8-5</td>
</tr>
<tr>
<td>24</td>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>10-8</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#1</td>
<td>10-4</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>10-1</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>7-8</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>SS</td>
<td>10-1</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#1</td>
<td>9-10</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#2</td>
<td>9-5</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#3</td>
<td>7-8</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>SS</td>
<td>10-6</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#1</td>
<td>10-1</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#2</td>
<td>9-6</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#3</td>
<td>7-3</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>9-10</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#1</td>
<td>9-8</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>9-8</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>7-8</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>9-11</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#1</td>
<td>9-7</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>9-1</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>6-10</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#1</td>
<td>9-2</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#2</td>
<td>8-9</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>#3</td>
<td>6-10</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>SS</td>
<td>9-9</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#1</td>
<td>9-4</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>#2</td>
<td>8-6</td>
</tr>
<tr>
<td>JOIST SPACING (inches)</td>
<td>SPECIES AND GRADE</td>
<td>DEAD LOAD = 10 psf</td>
<td>DEAD LOAD = 20 psf</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2 × 6)</td>
<td>(2 × 8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>12</td>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>11-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>10-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#2</td>
<td>10-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#3</td>
<td>8-8</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>SS</td>
<td>10-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>10-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#2</td>
<td>10-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#3</td>
<td>8-8</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>SS</td>
<td>11-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>10-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#2</td>
<td>10-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#3</td>
<td>8-2</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>10-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>10-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#2</td>
<td>10-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#3</td>
<td>8-8</td>
</tr>
<tr>
<td>16</td>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>10-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>9-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#2</td>
<td>9-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#3</td>
<td>7-6</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>SS</td>
<td>9-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#1</td>
<td>9-6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#2</td>
<td>9-1</td>
</tr>
</tbody>
</table>
TABLE 2308.4.2.1(2)—continued
FLOOR JOIST SPANS FOR COMMON LUMBER SPECIES
(Residential living areas, live load = 40 psf, \(L/\Delta = 360\))

<table>
<thead>
<tr>
<th>JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 × 6</td>
<td>2 × 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>19.2</td>
<td>Hem-Fir #3</td>
<td>7-6</td>
<td>9-6</td>
</tr>
<tr>
<td></td>
<td>Southern Pine SS</td>
<td>10-2</td>
<td>13-4</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #1</td>
<td>9-9</td>
<td>12-10</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #2</td>
<td>9-4</td>
<td>11-10</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #3</td>
<td>7-1</td>
<td>8-11</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir SS</td>
<td>9-6</td>
<td>12-7</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #1</td>
<td>9-4</td>
<td>12-3</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #2</td>
<td>9-4</td>
<td>12-3</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #3</td>
<td>7-6</td>
<td>9-6</td>
</tr>
</tbody>
</table>

(continued)
2308.4.4 Framing around openings. Trimmer and header joists shall be doubled, or of lumber of equivalent cross section, where the span of the header exceeds 4 feet (1219 mm). The ends of header joists more than 6 feet (1829 mm) in length shall be supported by framing anchors or joist hangers unless bearing on a beam, partition or wall. Tail joists over 12 feet (3658 mm) in length shall be supported at the header by framing anchors or on ledger strips not less than 2 inches by 2 inches (51 mm by 51 mm).

2308.4.4.1 Openings in floor diaphragms in Seismic Design Categories B, C, D and E. Openings in horizontal diaphragms in Seismic Design Categories B, C, D and E with a dimension that is greater than 4 feet (1219 mm) shall be constructed with metal ties and blocking in accordance with this section and Figure 2308.4.4.1(1). Metal ties shall be not less than 0.058 inch [1.47 mm (16 galvanized gage)] in thickness by 1 1/2 inches (38 mm) in width and shall have a yield stress not less than 33,000 psi (227 Mpa). Blocking shall extend not less than the dimension of the opening in the direction of the tie and blocking. Ties shall be attached to blocking in accordance with the manufacturer’s instructions but with not less than eight 16d common nails on each side of the header-joist intersection.

Openings in floor diaphragms in Seismic Design Categories D and E shall not have any dimension exceeding 50 percent of the distance between braced wall lines or an area greater than 25 percent of the area between orthogonal pairs of braced wall lines [see Figure 2308.4.4.1(2)]; or the

<table>
<thead>
<tr>
<th>Material</th>
<th>Grade</th>
<th>8-6</th>
<th>11-3</th>
<th>14-4</th>
<th>17-5</th>
<th>8-6</th>
<th>11-3</th>
<th>14-4</th>
<th>16-10*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hem-Fir SS</td>
<td></td>
<td>8-6</td>
<td>10-9</td>
<td>13-1</td>
<td>15-2</td>
<td>7-9</td>
<td>9-9</td>
<td>11-11</td>
<td>13-10</td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td></td>
<td>7-11</td>
<td>10-2</td>
<td>12-5</td>
<td>14-4</td>
<td>7-4</td>
<td>9-3</td>
<td>11-4</td>
<td>13-1</td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td></td>
<td>6-2</td>
<td>7-9</td>
<td>9-6</td>
<td>11-0</td>
<td>5-7</td>
<td>7-1</td>
<td>8-8</td>
<td>10-1</td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td></td>
<td>6-2</td>
<td>7-9</td>
<td>9-6</td>
<td>11-0</td>
<td>5-7</td>
<td>7-1</td>
<td>8-8</td>
<td>10-1</td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td></td>
<td>8-10</td>
<td>11-8</td>
<td>14-11</td>
<td>18-1</td>
<td>8-10</td>
<td>11-8</td>
<td>14-11</td>
<td>18-0</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td></td>
<td>7-7</td>
<td>9-8</td>
<td>11-5</td>
<td>13-6</td>
<td>7-0</td>
<td>10-1</td>
<td>12-0</td>
<td>14-3</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td></td>
<td>5-9</td>
<td>7-3</td>
<td>8-10</td>
<td>10-5</td>
<td>5-3</td>
<td>6-8</td>
<td>8-1</td>
<td>9-6</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td></td>
<td>6-2</td>
<td>7-9</td>
<td>9-6</td>
<td>11-0</td>
<td>5-7</td>
<td>7-1</td>
<td>8-8</td>
<td>10-1</td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td></td>
<td>8-4</td>
<td>11-0</td>
<td>14-0</td>
<td>17-0</td>
<td>8-4</td>
<td>11-0</td>
<td>13-8</td>
<td>15-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td></td>
<td>8-1</td>
<td>10-3</td>
<td>12-7</td>
<td>14-7</td>
<td>7-5</td>
<td>9-5</td>
<td>11-6</td>
<td>13-4</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td></td>
<td>8-1</td>
<td>10-3</td>
<td>12-7</td>
<td>14-7</td>
<td>7-5</td>
<td>9-5</td>
<td>11-6</td>
<td>13-4</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td></td>
<td>6-2</td>
<td>7-9</td>
<td>9-6</td>
<td>11-0</td>
<td>5-7</td>
<td>7-1</td>
<td>8-8</td>
<td>10-1</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.

Note: Check sources for availability of lumber in lengths greater than 20 feet. a. End bearing length shall be increased to 2 inches.
portion of the structure containing the opening shall be designed in accordance with accepted engineering practice to resist the forces specified in Chapter 16, to the extent such irregular opening affects the performance of the conventional framing system.

2308.4.4.2 Vertical offsets in floor diaphragms in Seismic Design Categories D and E. In Seismic Design Categories D and E, portions of a floor level shall not be vertically offset such that the framing members on either side of the offset cannot be lapped or tied together in an approved manner in accordance with Figure 2308.4.4.2 unless the portion of the structure containing the irregular offset is designed in accordance with accepted engineering practice.

Exception: Framing supported directly by foundations need not be lapped or tied directly together.

2308.4.5 Joists supporting bearing partitions. Bearing partitions parallel to joists shall be supported on beams, girders, doubled joists, walls or other bearing partitions. Bearing partitions perpendicular to joists shall not be offset from supporting girders, walls or partitions more than the joist depth unless such joists are of sufficient size to carry the additional load.

2308.4.6 Lateral support. Floor and ceiling framing with a nominal depth-to-thickness ratio not less than 5 to 1 shall have one edge held in line for the entire span. Where the nominal depth-to-thickness ratio of the framing member exceeds 6 to 1, there shall be one line of bridging for each 8 feet (2438 mm) of span, unless both edges of the member are held in line. The bridging shall consist of not less than 1-inch by 3-inch (25 mm by 76 mm) lumber, double nailed at each end, or equivalent metal bracing of equal rigidity, full-depth solid blocking or other approved means. A line of bridging shall also be required at supports where equivalent lateral support is not otherwise provided.

2308.4.7 Structural floor sheathing. Structural floor sheathing shall comply with the provisions of Section 2304.8.1.

2308.4.8 Under-floor ventilation. For under-floor ventilation, see Section 1203.4.

2308.4.9 Floor framing supporting braced wall panels. Where braced wall panels are supported by cantilevered floors or are set back from the floor joist support, the floor framing shall comply with Section 2308.6.7.
2308.4.10 Anchorage of exterior means of egress components in Seismic Design Categories D and E. Exterior egress balconies, exterior stairways and ramps and similar means of egress components in structures assigned to Seismic Design Category D or E shall be positively anchored to the primary structure at not more than 8 feet (2438 mm) on center or shall be designed for lateral forces. Such attachment shall not be accomplished by use of toenails or nails subject to withdrawal.

2308.5 Wall construction. Walls of conventional light-frame construction shall be in accordance with this section.

2308.5.1 Stud size, height and spacing. The size, height and spacing of studs shall be in accordance with Table 2308.5.1. Studs shall be continuous from a support at the sole plate to a support at the top plate to resist loads perpendicular to the wall. The support shall be a foundation or floor, ceiling or roof diaphragm or shall be designed in accordance with accepted engineering practice.

Exception: Jack studs, trimmer studs and cripple studs at openings in
walls that comply with Table 2308.4.1.1(1) or 2308.4.1.1(2).

2308.5.2 Framing details. Studs shall be placed with their wide dimension perpendicular to the wall. Not less than three studs shall be installed at each corner of an exterior wall.

Exceptions:
1. In interior nonbearing walls and partitions, studs are permitted to be set with the long dimension parallel to the wall.
2. At corners, two studs are permitted, provided that wood spacers or backup cleats of 3/8-inch-thick (9.5 mm) wood structural panel, 3/8-inch (9.5 mm) Type M “Exterior Glue” particleboard, 1-inch-thick (25 mm) lumber or other approved devices that will serve as an adequate backing for the attachment of facing materials are used. Where fire-resistance ratings or shear values are involved, wood spacers, backup cleats or other devices shall not be used unless specifically approved for such use.

FIGURE 2308.4.4.1(2)
OPENING LIMITATIONS FOR FLOOR AND ROOF DIAPHRAGMS
2308.5.3 Plates and sills. Studs shall have plates and sills in accordance with this section.

2308.5.3.1 Bottom plate or sill. Studs shall have full bearing on a plate or sill. Plates or sills shall be not less than 2 inches (51 mm) nominal in thickness and have a width not less than the width of the wall studs.

2308.5.3.2 Top plates. Bearing and exterior wall studs shall be capped with double top plates installed to provide overlapping at corners and at intersections with other partitions. End joints in double top plates shall be offset not less than 48 inches (1219 mm), and shall be nailed in accordance with Table 2304.10.1. Plates shall be a nominal 2 inches (51 mm) in depth and have a width not less than the width of the studs.

Exception: A single top plate is permitted, provided that the plate is adequately tied at corners and intersecting walls by not less than the equivalent of 3inch by 6-inch (76 mm by 152 mm) by 0.036-inch-thick (0.914 mm) galvanized steel plate that is nailed to each wall or segment of wall by six 8d [21/2” × 0.113” (64-mm by 2.87 mm)] box nails or equivalent on each side of the joint. For the butt-joint splice between adjacent single top plates, not less than the equivalent of a 3-inch by 12-inch (76 mm by 304 mm) by 0.036-inch-thick (0.914 mm) galvanized steel plate that is nailed to each wall or segment of wall by 12 8d [21/2-inch × 0.113-inch (64 mm by 2.87 mm)] box nails on each side of the joint shall be required, provided that the rafters, joists or trusses are centered over the studs with a tolerance of not more than 1 inch (25 mm). The top plate shall not be required over headers that are in the same plane and in line with the upper surface of the adjacent top plates and are tied to adjacent wall sections as required for the butt joint splice between adjacent single top plates. Where bearing studs are spaced at 24-inch (610 mm) intervals, top plates are less than two 2-inch by 6-inch (51 mm by 152 mm) or two 3-inch by 4-inch (76 mm by 102 mm) members and the floor joists, floor trusses or roof trusses that they support are spaced at more than 16-inch (406 mm) intervals, such joists or trusses shall bear within 5 inches (127 mm) of the studs beneath or a third plate shall be installed.

2308.5.4 Nonload-bearing walls and partitions. In nonload-bearing walls and partitions, that are not part of a braced wall panel, studs shall be spaced
not more than 24 inches (610 mm) on center. In interior nonload-bearing walls and partitions, studs are permitted to be set with the long dimension parallel to the wall. Where studs are set with the long dimensions parallel to the wall, use of utility grade lumber or studs exceeding 10 feet (3048 mm) is not permitted. Interior nonload-bearing partitions shall be capped with not less than a single top plate installed to provide overlapping at corners and at intersections with other walls and partitions. The plate shall be continuously tied at joints by solid blocking not less than 16 inches (406 mm) in length and equal in size to the plate or by 1/2-inch by 1 1/2-inch (12.7 mm by 38 mm) metal ties with spliced sections fastened with two 16d nails on each side of the joint.

2308.5.5 Openings in walls and partitions. Openings in exterior and interior walls and partitions shall comply with Sections 2308.5.5.1 through 2308.5.5.3.

2308.5.5.1 Openings in exterior bearing walls. Headers shall be provided over each opening in exterior bearing walls. Headers shall be designed in accordance with Section 2301.2, Item 1 or 2. Headers shall be of two pieces of nominal 2-inch (51 mm) framing lumber set on edge as permitted by Table 2308.4.1.1(1) and nailed together in accordance with Table 2304.10.1 or of solid lumber of equivalent size. Wall studs shall support the ends of the header in accordance with Table 2308.4.1.1(1). Each end of a lintel or header shall have a bearing length of not less than 1 1/2 inches (38 mm) for the full width of the lintel.

TABLE 2308.5.1
SIZE, HEIGHT AND SPACING OF WOOD STUDS

<table>
<thead>
<tr>
<th>STUD SIZE (inches)</th>
<th>BEARING WALLS</th>
<th>NONBEARING WALLS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laterally unsupported stud height (feet)</td>
<td>Supporting roof and ceiling only</td>
</tr>
<tr>
<td></td>
<td>Spacing (inches)</td>
<td></td>
</tr>
<tr>
<td>2 × 3b</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2 × 4</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>3 × 4</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>2 × 5</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>2 × 6</td>
<td>10</td>
<td>24</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.
a. Listed heights are distances between points of lateral support placed perpendicular to the plane of the wall. Increases in unsupported height are permitted where justified by an analysis.
b. Shall not be used in exterior walls.
c. Utility-grade studs shall not be spaced more than 16 inches on center or support more than a roof and ceiling, or exceed 8 feet in height for exterior walls and load-bearing walls or 10 feet for interior nonload-bearing walls.
2308.5.5.2 Openings in interior bearing partitions. Headers shall be provided over each opening in interior bearing partitions as required in Section 2308.5.5.1. The spans in Table 2308.4.1.1(2) are permitted to be used. Wall studs shall support the ends of the header in accordance with Table 2308.4.1.1(1) or 2308.4.1.1(2), as applicable.

2308.5.5.3 Openings in interior nonbearing partitions. Openings in nonbearing partitions are permitted to be framed with single studs and headers. Each end of a lintel or header shall have a bearing length of not less than 1 1/2 inches (38 mm) for the full width of the lintel.

2308.5.6 Cripple walls. Foundation cripple walls shall be framed of studs that are not less than the size of the studding above and not less than 14 inches (356 mm) in length, or shall be framed of solid blocking. Where exceeding 4 feet (1219 mm) in height, such walls shall be framed of studs having the size required for an additional story. See Section 2308.6.6 for cripple wall bracing.

2308.5.7 Bridging. Unless covered by interior or exterior wall coverings or sheathing meeting the minimum requirements of this code, stud partitions or walls with studs having a height-to-least-thickness ratio exceeding 50 shall have bridging that is not less than 2 inches (51 mm) in thickness and of the same width as the studs fitted snugly and nailed thereto to provide adequate lateral support. Bridging shall be placed in every stud cavity and at a frequency such that no stud so braced shall have a height-to-least-thickness ratio exceeding 50 with the height of the stud measured between horizontal framing and bridging or between bridging, whichever is greater.

2308.5.8 Pipes in walls. Stud partitions containing plumbing, heating or other pipes shall be framed and the joists underneath spaced to provide proper clearance for the piping. Where a partition containing piping runs parallel to the floor joists, the joists underneath such partitions shall be doubled and spaced to permit the passage of pipes and shall be bridged. Where plumbing, heating or other pipes are placed in, or partly in, a partition, necessitating the cutting of the soles or plates, a metal tie not less than 0.058 inch (1.47 mm) (16 galvanized gage) and 1 1/2 inches (38 mm) in width shall be fastened to each plate across and to each side of the opening with not less than six 16d nails.

2308.5.9 Cutting and notching. In exterior walls and bearing partitions, wood studs are permitted to be cut or notched to a depth not exceeding 25
percent of the width of the stud. Cutting or notching of studs to a depth not greater than 40 percent of the width of the stud is permitted in nonbearing partitions supporting no loads other than the weight of the partition.

2308.5.10 Bored holes. Bored holes not greater than 40 percent of the stud width are permitted to be bored in any wood stud. Bored holes not greater than 60 percent of the stud width are permitted in nonbearing partitions or in any wall where each bored stud is doubled, provided not more than two such successive doubled studs are so bored. In no case shall the edge of a bored hole be nearer than $5/8$ inch (15.9 mm) to the edge of the stud. Bored holes shall not be located at the same section of stud as a cut or notch.

2308.5.11 Exterior wall sheathing. Except where stucco construction that complies with Section 2510 is installed, the outside of exterior walls, including gables, of enclosed buildings shall be sheathed with one of the materials of the nominal thickness specified in Table 2308.5.11 with fasteners in accordance with the requirements of Section 2304.10 or fasteners designed in accordance with accepted engineering practice. Alternatively, sheathing materials and fasteners complying with Section 2304.6 shall be permitted.

2308.6 Wall bracing. Buildings shall be provided with exterior and interior braced wall lines as described in Sections 2308.6.1 through 2308.6.10.2.

<table>
<thead>
<tr>
<th>SHEATHING TYPE</th>
<th>MINIMUM THICKNESS</th>
<th>MAXIMUM WALL STUD SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal wood boards</td>
<td>5/8 inch</td>
<td>24 inches on center</td>
</tr>
<tr>
<td>Structural fiberboard</td>
<td>1/2 inch</td>
<td>16 inches on center</td>
</tr>
<tr>
<td>Wood structural panel</td>
<td>In accordance with Tables 2308.6.3(2) and 2308.6.3(3)</td>
<td>—</td>
</tr>
<tr>
<td>M-S “Exterior Glue” and M-2 “Exterior Glue” particleboard</td>
<td>In accordance with Section 2306.3 and Table 2308.6.3(4)</td>
<td>—</td>
</tr>
<tr>
<td>Gypsum sheathing</td>
<td>1/2 inch</td>
<td>16 inches on center</td>
</tr>
<tr>
<td>Material</td>
<td>Thickness</td>
<td>Spacing</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Reinforced cement mortar</td>
<td>1 inch</td>
<td>24 inches on center</td>
</tr>
<tr>
<td>Hardboard panel siding</td>
<td>In accordance with Table 2308.6.3(5)</td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
BRACED PANELS ALLOWED UP TO 4' OFFSET FROM BRACED WALL LINE

MAX DISTANCE FROM END OF BWL TO BRACED PANEL PER TABLE 2308.6.1

EXAMPLES OF THE SUM OF BRACING PER BWL
BWL 1 = BWP 1A + BWP 1B + BWP 1C
BWL 3 = BWP 3A + B3B

BWL 2 CAN BE CONSIDERED SEPARATE BWL FROM BWL 3 IF IT HAS BRACED PANELS PER TABLE 2308.6.1

BRACED PANELS ALLOWED UP TO 4' OFFSET FROM BRACED WALL LINE

CONTINUOUS FOUNDATION AND BRACED CRIPPLE WALL RECOMMENDED UNDER LOWER STORY BRACED WALL PANELS

EXAMPLES OF THE SUM OF BRACING PER BWL
BWL 1 = BWP 1A + BWP 1B + BWP 1C

MAX DISTANCE OF BWP EXTENDING OVER OPENING BELOW IN SEISMIC DESIGN CATEGORIES D AND E IN ACCORDANCE WITH SECTION 2308.6.8.1

For SI: 1 foot = 304.8 mm.

FIGURE 2308.6.1
BASIC COMPONENTS OF THE LATERAL BRACING SYSTEM
TABLE 2308.6.1a
WALL BRACING REQUIREMENTS

<table>
<thead>
<tr>
<th>SEISMIC DESIGN CATEGORY</th>
<th>STORY CONDITION (SEE SECTION 2308.2)</th>
<th>MAXIMUM SPACING OF BRACED WALL LINES</th>
<th>BRACED PANEL LOCATION, SPACING (O.C.) AND MINIMUM PERCENTAGE (X)</th>
<th>MAXIMUM DISTANCE OF BRACED WALL PANELS FROM EACH END OF BRACED WALL LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>LIB</td>
<td>DWC, WSP</td>
<td>SFB, PBS, PCP, HPS, GB<sup>c</sup>, d</td>
</tr>
<tr>
<td>A and B</td>
<td></td>
<td>35'- 0" Each end and ≤ 25'- 0" o.c.</td>
<td>Each end and ≤ 25'- 0" o.c.</td>
<td>Each end and ≤ 25'- 0" o.c.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35'- 0" Each end and ≤ 25'- 0" o.c.</td>
<td>Each end and ≤ 25'- 0" o.c.</td>
<td>Each end and ≤ 25'- 0" o.c.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35'- 0" NP</td>
<td>Each end and ≤ 25'- 0" o.c.</td>
<td>Each end and ≤ 25'- 0" o.c.</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>35'- 0" NP</td>
<td>Each end and ≤ 25'- 0" o.c.</td>
<td>Each end and ≤ 25'- 0" o.c.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35'- 0" NP</td>
<td>Each end and ≤ 25'- 0" o.c. (minimum 25% of wall length)<sup>e</sup></td>
<td>Each end and ≤ 25'- 0" o.c. (minimum 25% of wall length)<sup>e</sup></td>
</tr>
<tr>
<td>D and E</td>
<td></td>
<td>25'- 0" NP</td>
<td>S<sub>DS</sub> < 0.50: Each end and ≤ 25'- 0" o.c. (minimum 21% of wall length)<sup>f</sup></td>
<td>S<sub>DS</sub> < 0.50: Each end and ≤ 25'- 0" o.c. (minimum 43% of wall length)<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5 ≤ S<sub>DS</sub> < 0.75: Each end and ≤ 25'- 0" o.c. (minimum 32% of wall length)<sup>e</sup></td>
<td>0.5 ≤ S<sub>DS</sub> < 0.75: Each end and ≤ 25'- 0" o.c. (minimum 59% of wall length)<sup>e</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.75 ≤ S<sub>DS</sub> ≤ 1.00: Each end and ≤ 25'- 0" o.c. (minimum 37% of wall length)<sup>e</sup></td>
<td>0.75 ≤ S<sub>DS</sub> ≤ 1.00: Each end and ≤ 25'- 0" o.c. (minimum 75% of wall length)</td>
</tr>
</tbody>
</table>

^a Table includes bracing requirements for foundation walls and bracing lines.

^b Bracing method includes Lib, DWB, WSP, SFB, PBS, PCP, HPS, GB^c, d.

^c GB = Graystone, Blackstone.

^d d = Deadweight.

^e NP = Not permitted.

^f S_{DS} = Story Drift System.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.
NP = Not Permitted.

<table>
<thead>
<tr>
<th>SDS > 1.00: Each end and ≤ 25'-0" o.c. (minimum 48% of wall length)a</th>
<th>SDS > 1.00: Each end and ≤ 25'-0" o.c. (minimum 100% of wall length)a</th>
</tr>
</thead>
</table>

This table specifies minimum requirements for braced wall panels along interior or exterior braced wall lines.

See Section 2308.6.3 for full description of bracing methods.

For Method GB, gypsum wallboard applied to framing supports that are spaced at 16 inches on center.

The required lengths shall be doubled for gypsum board applied to only one face of a braced wall panel.

Percentage shown represents the minimum amount of bracing required along the building length (or wall length if the structure has an irregular shape).

2308.6.2 Braced wall panels

Braced wall panels shall be placed along braced wall lines in accordance with Table 2308.6.1 and Figure 2308.6.1 and as specified in Table 2308.6.3(1). A braced wall panel shall be located at each end of the braced wall line and at the corners of intersecting braced wall lines or shall begin within the maximum distance from the end of the braced wall line in accordance with Table 2308.6.1. Braced wall panels in a braced wall line shall not be offset from each other by more than 4 feet (1219 mm). Braced wall panels shall be clearly indicated on the plans.

2308.6.3 Braced wall panel methods

Construction of braced wall panels shall be by one or a combination of the methods in Table 2308.6.3(1). Braced wall panel length shall be in accordance with Section 2308.6.4 or 2308.6.5.

2308.6.4 Braced wall panel construction

For Methods DWB, WSP, SFB, PBS, PCP and HPS, each panel must be not less than 48 inches (1219 mm) in length, covering three stud spaces where studs are spaced 16 inches (406 mm) on center and covering two stud spaces where studs are spaced 24 inches (610 mm) on center. Braced wall panels less than 48 inches (1219 mm) in length shall not contribute toward the amount of required bracing. Braced wall panels that are longer than the required length shall be credited for their actual length. For Method GB, each panel must be not less than 96 inches (2438 mm) in length where applied to one side of the studs or 48 inches (1219 mm) in length where applied to both sides.

Vertical joints of panel sheathing shall occur over studs and adjacent panel joints shall be nailed to common framing members. Horizontal joints shall occur over blocking or other framing equal in size to the studding except where waived by the installation requirements for the specific sheathing.
materials. Sole plates shall be nailed to the floor framing in accordance with Section 2308.6.7 and top plates shall be connected to the framing above in accordance with Section 2308.6.7.2. Where joists are perpendicular to braced wall lines above, blocking shall be provided under and in line with the braced wall panels.

<table>
<thead>
<tr>
<th>TABLE 2308.6.3(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRACING METHODS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>METHODS, MATERIAL</th>
<th>MINIMUM THICKNESS</th>
<th>FIGURE</th>
<th>CONNECTION CRITERIA*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fasteners</td>
</tr>
<tr>
<td>LIBa Let-in-bracing</td>
<td>1" × 4" wood or approved metal straps attached at 45° to 60° angles to studs at maximum of 16" o.c.</td>
<td></td>
<td>Table 2304.10.1</td>
</tr>
<tr>
<td>DWB Diagonal wood boards</td>
<td>3/4" thick (1" nominal) × 6" minimum width to studs at maximum of 24" o.c.</td>
<td></td>
<td>Table 2304.10.1</td>
</tr>
<tr>
<td>WSP Wood structural panel</td>
<td>3/4" in accordance with Table 2308.6.3(2) or 2308.6.3(3)</td>
<td></td>
<td>Table 2304.10.1</td>
</tr>
<tr>
<td>SFB Structural fiberboard sheathing</td>
<td>1/2" in accordance with Table 2304.10.1 to studs at maximum 16" o.c.</td>
<td></td>
<td>Table 2304.10.1</td>
</tr>
</tbody>
</table>

(continued)
TABLE 2308.6.3(1)—continued
BRACING METHODS

<table>
<thead>
<tr>
<th>METHODS, MATERIAL</th>
<th>MINIMUM THICKNESS</th>
<th>FIGURE</th>
<th>CONNECTION CRITERIA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB (Double sided)</td>
<td>3/8" or 1/8" by a minimum of 4" wide to studs at maximum of 24" o.c.</td>
<td>Section 2506.2 for exterior and interior sheathing: 5d annual ringed common nails (1 1/2" x 0.086") or 1 1/4" screws (Type W or S) for 3/8" gypsum board or 1 1/2" screws (Type W or S) for 1/2" gypsum board</td>
<td>For all braced wall panel locations: 7" o.c. along panel edges (including top and bottom plates) and 7" o.c. in the field</td>
</tr>
<tr>
<td>PBS Partyboard sheathing</td>
<td>3/4" or 1/2" in accordance with Table 2308.6.3(4) to studs at maximum of 16" o.c.</td>
<td>6d common (2" long x 0.113" dia.) nails for 3/4" thick sheathing or 8d common (2 1/2" long x 0.131" dia.) nails for 1/2" thick sheathing</td>
<td>3" edges 6" field</td>
</tr>
<tr>
<td>PCP Portland cement plaster</td>
<td>Section 2510 to studs at maximum of 16" o.c.</td>
<td>1 1/2" long, 11 gauge, 3/16" dia. head nails or 5/8" long, 16 gauge staples</td>
<td>6" o.c. on all framing members</td>
</tr>
<tr>
<td>HPS Hardboard panel siding</td>
<td>7/16" in accordance with Table 2308.6.3(5)</td>
<td>Table 2304.10.1</td>
<td>4" edges 8" field</td>
</tr>
<tr>
<td>ABW Alternate braced wall</td>
<td>3/8"</td>
<td>Figure 2308.6.5.1 and Section 2308.6.5.1</td>
<td>Figure 2308.6.5.1</td>
</tr>
<tr>
<td>PFH Portal frame with hold-downs</td>
<td>3/8"</td>
<td>Figure 2308.6.5.2 and Section 2308.6.5.2</td>
<td>Figure 2308.6.5.2</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm, 1 degree = 0.01745 rad.

a. Method LIB shall have gypsum board fastened to at least one side with nails or screws.

TABLE 2308.6.3(2)
EXPOSED PLYWOOD PANEL SIDING

<table>
<thead>
<tr>
<th>MINIMUM THICKNESS* (inch)</th>
<th>MINIMUM NUMBER OF PLIES</th>
<th>STUD SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/8</td>
<td>3</td>
<td>16b</td>
</tr>
<tr>
<td>1/2</td>
<td>4</td>
<td>24</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm.
a. Thickness of grooved panels is measured at bottom of grooves.
b. Spans are permitted to be 24 inches if plywood siding applied with face grain perpendicular to studs or over one of the following: (1) 1-inch board sheathing, (2) 7/16-inch wood structural panel sheathing or (3) 3/8-inch wood structural panel sheathing with strength axis (which is the long direction of the panel unless otherwise marked) of sheathing perpendicular to studs.

TABLE 2308.6.3(3)
WOOD STRUCTURAL PANEL WALL SHEATHING
(Not Exposed to the Weather, Strength Axis Parallel or Perpendicular to Studs Except as Indicated Below)

<table>
<thead>
<tr>
<th>MINIMUM THICKNESS (inch)</th>
<th>PANEL SPAN RATING</th>
<th>STUD SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Siding nailed to studs</td>
</tr>
<tr>
<td>3/8, 15/32, 1/2</td>
<td>16/0, 20/0, 24/0, 32/16 Wall—24” o.c.</td>
<td>24</td>
</tr>
<tr>
<td>7/16, 15/32, 1/2</td>
<td>24/0, 24/16, 32/16 Wall—24” o.c.</td>
<td>24</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Plywood shall consist of four or more plies.
b. Blocking of horizontal joints shall not be required except as specified in Section 2308.6.4.

TABLE 2308.6.3(4)
ALLOWABLE SPANS FOR PARTICLEBOARD WALL SHEATHING
(Not Exposed to the Weather, Long Dimension of the Panel Parallel or Perpendicular to Studs)

<table>
<thead>
<tr>
<th>GRADE</th>
<th>THICKNESS (inch)</th>
<th>STUD SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Siding nailed to studs</td>
</tr>
<tr>
<td>M-S “Exterior Glue” and M-2 “Exterior Glue”</td>
<td>3/8</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>½</td>
<td>16</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

TABLE 2308.6.3(5)
HARDBOARD SIDING

<table>
<thead>
<tr>
<th>SIDING</th>
<th>MINIMUM NOMINAL THICKNESS (inch)</th>
<th>2 × 4 FRAMING MAXIMUM SPACING</th>
<th>NAIL SIZE a, b, d</th>
<th>NAIL SPACING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>General</td>
<td>Bracing panels c</td>
</tr>
<tr>
<td>1. Lap siding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct to studs</td>
<td>3/8</td>
<td>16” o.c.</td>
<td>8d</td>
<td>16” o.c.</td>
</tr>
<tr>
<td>Over sheathing</td>
<td>3/8</td>
<td>16” o.c.</td>
<td>10d</td>
<td>16” o.c.</td>
</tr>
<tr>
<td>2. Square edge panel siding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct to studs</td>
<td>3/8</td>
<td>24” o.c.</td>
<td>6d</td>
<td>6” o.c. edges; 12” o.c. at intermediate supports</td>
</tr>
</tbody>
</table>
Over sheathing 3/8 24” o.c. 8d 6” o.c. edges; 12” o.c. at intermediate supports 4” o.c. edges; 8” o.c. at intermediate supports

3. Shiplap edge panel siding

<table>
<thead>
<tr>
<th></th>
<th>Over sheathing</th>
<th>3/8</th>
<th>16” o.c.</th>
<th>8d</th>
<th>6” o.c. edges; 12” o.c. at intermediate supports</th>
<th>4” o.c. edges; 8” o.c. at intermediate supports</th>
</tr>
</thead>
</table>

For SI: 1 inch = 25.4 mm.

a. Nails shall be corrosion resistant.

b. Minimum acceptable nail dimensions:

<table>
<thead>
<tr>
<th></th>
<th>Panel Siding</th>
<th>Lap Siding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shank diameter</td>
<td>0.092</td>
<td>0.099</td>
</tr>
<tr>
<td>Head diameter</td>
<td>0.225</td>
<td>0.240</td>
</tr>
</tbody>
</table>

c. Where used to comply with Section 2308.6.

d. Nail length must accommodate the sheathing and penetrate framing 1 1/2 inches.

2308.6.5 Alternative bracing. An alternate braced wall (ABW) or a portal frame with hold-downs (PFH) described in this section is permitted to substitute for a 48 inch (1219 mm) braced wall panel of Method DWB, WSP, SFB, PBS, PCP or HPS. For Method GB, each 96 inch (2438 mm) section (applied to one face) or 48-inch (1219 mm) section (applied to both faces) or portion thereof required by Table 2308.6.1 is permitted to be replaced by one panel constructed in accordance with Method ABW or PFH.

2308.6.5.1. Alternate braced wall (ABW). An ABW shall be constructed in accordance with this section and Figure 2308.6.5.1. In one-story buildings, each panel shall have a length of not less than 2 feet 8 inches (813 mm) and a height of not more than 10 feet (3048 mm). Each panel shall be sheathed on one face with 3/8-inch (3.2 mm) minimum-thickness wood structural panel sheathing nailed with 8d common or galvanized box nails in accordance with Table 2304.10.1 and blocked at wood structural panel edges. Two anchor bolts installed in accordance with Section 2308.3.1 shall be provided in each panel. Anchor bolts shall be placed at each panel outside quarter points. Each panel end stud shall have a hold-down device fastened to the foundation, capable of providing an approved uplift capacity of not less than 1,800 pounds (8006 N). The hold-down device shall be installed in accordance with the manufacturer’s recommendations. The ABW shall be supported directly on a foundation or on floor framing supported directly on a foundation that is continuous across the entire length of the brace wall line. This foundation shall be
reinforced with not less than one No. 4 bar top and bottom. Where the continuous foundation is required to have a depth greater than 12 inches (305 mm), a minimum 12-inch by 12-inch (305 mm by 305 mm) continuous footing or turned-down slab edge is permitted at door openings in the braced wall line.

This continuous footing or turned-down slab edge shall be reinforced with not less than one No. 4 bar top and bottom. This reinforcement shall be lapped 15 inches (381 mm) with the reinforcement required in the continuous foundation located directly under the braced wall line.

Where the ABW is installed at the first story of two-story buildings, the wood structural panel sheathing shall be provided on both faces, three anchor bolts shall be placed at one-quarter points and tie-down device uplift capacity shall be not less than 3,000 pounds (13 344 N).

2308.6.5.2 Portal frame with hold-downs (PFH). A PFH shall be constructed in accordance with this section and Figure 2308.6.5.2. The adjacent door or window opening shall have a full-length header.

In one-story buildings, each panel shall have a length of not less than 16 inches (406 mm) and a height of not more than 10 feet (3048 mm). Each panel shall be sheathed on one face with a single layer of \(\frac{3}{8} \)-inch (9.5 mm) minimum-thickness wood structural panel sheathing nailed with 8d common or galvanized box nails in accordance with Figure 2308.6.5.2. The wood structural panel sheathing shall extend up over the solid sawn or glued-laminated header and shall be nailed in accordance with Figure 2308.6.5.2. A built-up header consisting of at least two 2-inch by 12-inch (51 mm by 305 mm) boards, fastened in accordance with Item 24 of Table 2304.10.1 shall be permitted to be used. A spacer, if used, shall be placed on the side of the built-up beam opposite the wood structural panel sheathing. The header shall extend between the inside faces of the first full-length outer studs of each panel. The clear span of the header between the inner studs of each panel shall be not less than 6 feet (1829 mm) and not more than 18 feet (5486 mm) in length. A strap with an uplift capacity of not less than 1,000 pounds (4,400 N) shall fasten the header to the inner studs opposite the sheathing. One anchor bolt not less than \(\frac{5}{8} \) inch (15.9 mm) diameter and installed in accordance with Section 2308.3.1 shall be provided in the center of each sill plate. The studs at each end of the panel shall have a hold-down device fastened to the foundation with an uplift capacity of not less than 3,500 pounds (15 570 N).
Where a panel is located on one side of the opening, the header shall extend between the inside face of the first full-length stud of the panel and the bearing studs at the other end of the opening. A strap with an uplift capacity of not less than 1,000 pounds (4400 N) shall fasten the header to the bearing studs. The bearing studs shall also have a hold-down device fastened to the foundation with an uplift capacity of not less than 1,000 pounds (4400 N). The hold-down devices shall be an embedded strap type, installed in accordance with the manufacturer’s recommendations. The PFH panels shall be supported directly on a foundation that is continuous across the entire length of the braced wall line. This foundation shall be reinforced with not less than one No. 4 bar top and bottom. Where the continuous foundation is required to have a depth greater than 12 inches (305 mm), a minimum 12-inch by 12-inch (305 mm by 305 mm) continuous footing or turned-down slab edge is permitted at door openings in the braced wall line. This continuous footing or turned-down slab edge shall be reinforced with not less than one No. 4 bar top and bottom. This reinforcement shall be lapped not less than 15 inches (381 mm) with the reinforcement required in the continuous foundation located directly under

FIGURE 2308.6.5.1

ALTERNATE BRACED WALL PANEL (ABW)

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.
the braced wall line.
Where a PFH is installed at the first story of two-story buildings, each panel shall have a length of not less than 24 inches (610 mm).

2308.6.6 Cripple wall bracing. Cripple walls shall be braced in accordance with Section 2308.6.6.1 or 2308.6.6.2.

2308.6.6.1 Cripple wall bracing in Seismic Design Categories A, B and C. For the purposes of this section, cripple walls in Seismic Design Categories A, B and C having a stud height exceeding 14 inches (356 mm) shall be considered a story and shall be braced in accordance with Table 2308.6.1. Spacing of edge nailing for required cripple wall bracing shall not exceed 6 inches (152 mm) on center along the foundation plate and the top plate of the cripple wall. Nail size, nail spacing for field nailing and more restrictive boundary nailing requirements shall be as required elsewhere in the code for the specific bracing material used.

2308.6.6.2 Cripple wall bracing in Seismic Design Categories D and E. For the purposes of this section, cripple walls in Seismic Design Categories D and E having a stud height exceeding 14 inches (356 mm) shall be considered a story and shall be braced in accordance with Table 2308.6.1. Where interior braced wall lines occur without a continuous foundation below, the length of parallel exterior cripple wall bracing shall be one and one-half times the lengths required by Table 2308.6.1. Where the cripple wall sheathing type used is Method WSP or DWB and this additional length of bracing cannot be provided, the capacity of WSP or DWB sheathing shall be increased by reducing the spacing of fasteners along the perimeter of each piece of sheathing to 4 inches (102 mm) on center.

2308.6.7 Connections of braced wall panels. Braced wall panel joints shall occur over studs or blocking. Braced wall panels shall be fastened to studs, top and bottom plates and at panel edges. Braced wall panels shall be applied to nominal 2-inch-wide [actual 1½-inch (38 mm)] or larger stud framing.
2308.6.7.1 Bottom plate connection. Braced wall line bottom plates shall be connected to joists or full-depth blocking below in accordance with Table 2304.10.1, or to foundations in accordance with Section 2308.6.7.3.

2308.6.7.2 Top plate connection. Where joists or rafters are used, braced wall line top plates shall be fastened over the full length of the braced wall line to joists, rafters, rim boards or full-depth blocking above in accordance with Table 2304.10.1, as applicable, based on the orientation of the joists or rafters to the braced wall line. Blocking shall be not less than 2 inches (51 mm) in nominal thickness and shall be fastened to the braced wall line top plate as specified in Table 2304.10.1. Notching or drilling of holes in blocking in accordance with the requirements of Section 2308.4.2.4 or 2308.7.4 shall be permitted.

At exterior gable end walls, braced wall panel sheathing in the top story shall be extended and fastened to the roof framing where the spacing between parallel exterior braced wall lines is greater than 50 feet (15 240 mm).

Where roof trusses are used and are installed perpendicular to an exterior braced wall line, lateral forces shall be transferred from the roof...
diaphragm to the braced wall over the full length of the braced wall line by blocking of the ends of the trusses or by other approved methods providing equivalent lateral force transfer. Blocking shall be not less than 2 inches (51 mm) in nominal thickness and equal to the depth of the truss at the wall line and shall be fastened to the braced wall line top plate as specified in Table 2304.10.1. Notching or drilling of holes in blocking in accordance with the requirements of Section 2308.4.2.4 or 2308.7.4 shall be permitted.

Exception: Where the roof sheathing is greater than 9 1/4 inches (235 mm) above the top plate, solid blocking is not required where the framing members are connected using one of the following methods:

1. In accordance with Figure 2308.6.7.2(1).
2. In accordance with Figure 2308.6.7.2(2).
3. Full-height engineered blocking panels designed for values listed in AWC WFCM.
4. A design in accordance with accepted engineering methods.

2308.6.7.3 Sill anchorage. Where foundations are required by Section 2308.6.8, braced wall line sills shall be anchored to concrete or masonry foundations. Such anchorage shall conform to the requirements of Section 2308.3. The anchors shall be distributed along the length of the braced wall line. Other anchorage devices having equivalent capacity are permitted.

2308.6.7.4 Anchorage to all-wood foundations. Where all-wood foundations are used, the force transfer from the braced wall lines shall be determined based on calculation and shall have a capacity that is not less than the connections required by Section 2308.3.

2308.6.8 Braced wall line and diaphragm support. Braced wall lines and floor and roof diaphragms shall be supported in accordance with this section.

2308.6.8.1 Foundation requirements. Braced wall lines shall be supported by continuous foundations.

Exception: For structures with a maximum plan dimension not more than 50 feet (15 240 mm), continuous foundations are required at exterior walls only.

For structures in Seismic Design Categories D and E, exterior braced wall panels shall be in the same plane vertically with the foundation or the portion of the structure containing the offset shall be designed in accordance with accepted engineering practice and Section 2308.1.1.
Exceptions:

1. Exterior braced wall panels shall be permitted to be located not more than 4 feet (1219 mm) from the foundation below where supported by a floor constructed in accordance with all of the following:
 1.1. Cantilevers or setbacks shall not exceed four times the nominal depth of the floor joists.
 1.2. Floor joists shall be 2 inches by 10 inches (51 mm by 254 mm) or larger and spaced not more than 16 inches (406 mm) on center.
 1.3. The ratio of the back span to the cantilever shall be not less than 2 to 1.
 1.4. Floor joists at ends of braced wall panels shall be doubled.
 1.5. A continuous rim joist shall be connected to the ends of cantilevered joists. The rim joist is permitted to be spliced using a metal tie not less than 0.058 inch (1.47 mm) (16 galvanized gage) and 1 1/2 inches (38 mm) in width fastened with six 16d common nails on each side. The metal tie shall have a yield stress not less than 33,000 psi (227 MPa).
 1.6. Joists at setbacks or the end of cantilevered joists shall not carry gravity loads from more than a single story having uniform wall and roof loads nor carry the reactions from headers having a span of 8 feet (2438 mm) or more.

2. The end of a required braced wall panel shall be allowed to extend not more than 1 foot (305 mm) over an opening in the wall below. This requirement is applicable to braced wall panels offset in plane and braced wall panels offset out of plane as permitted by Exception 1. Braced wall panels are permitted to extend over an opening not more than 8 feet (2438 mm) in width where the header is a 4-inch by 12-inch (102 mm by 305 mm) or larger member.
2308.6.8.2 Floor and roof diaphragm support in Seismic Design Categories D and E. In structures assigned to Seismic Design Categories D or E, floor and roof diaphragms shall be laterally supported by braced wall lines on all edges and connected in accordance with Section 2308.6.7 [see Figure 2308.6.8.2(1)].

Exception: Portions of roofs or floors that do not support braced wall panels above are permitted to extend up to 6 feet (1829 mm) beyond a braced wall line [see Figure 2308.6.8.2(2)] provided that the framing members are connected to the braced wall line below in accordance with Section 2308.6.7.

2308.6.8.3 Stepped footings in Seismic Design Categories B, C, D and E. In Seismic Design Categories B, C, D and E, where the height of a required braced wall panel extending from foundation to floor above varies more than 4 feet (1219 mm), the following construction shall be used:

1. Where the bottom of the footing is stepped and the lowest floor framing rests directly on a sill bolted to the footings, the sill shall be anchored as required in Section 2308.3.
2. Where the lowest floor framing rests directly on a sill bolted to a footing not less than 8 feet (2438 mm) in length along a line of bracing, the line shall be considered to be braced. The double plate of the cripple stud wall beyond the segment of footing extending to the lowest framed floor shall be spliced to the sill plate with metal ties, one on each side of the sill and plate. The metal ties shall be not less than 0.058 inch [1.47 mm (16 galvanized gage)] by 1 1/2 inches (38 mm) in width by 48 inches (1219 mm) with eight 16d common nails on each side of the splice location (see Figure 2308.6.8.3). The metal tie shall have yield stress not less than 33,000 pounds per square inch (psi) (227 MPa).

3. Where cripple walls occur between the top of the footing and the lowest floor framing, the bracing requirements for a story shall apply.

For SI: 1 foot = 304.8 mm.

FIGURE 2308.6.7.2(2)

BRACED WALL PANEL TOP PLATE CONNECTION
FIGURE 2308.6.8.2(1)
ROOF IN SDC D OR E NOT SUPPORTED ON ALL EDGES

FIGURE 2308.6.8.2(2)
ROOF EXTENSION IN SDC D OR E BEYOND BRACED WALL LINE

For SI: 1 foot = 304.8 mm.

2308.6.9 Attachment of sheathing. Fastening of braced wall panel sheathing shall be not less than that prescribed in Tables 2308.6.1 and 2304.10.1. Wall sheathing shall not be attached to framing members by adhesives.
2308.6.10 Limitations of concrete or masonry veneer. Concrete or masonry veneer shall comply with Chapter 14 and this section.

2308.6.10.1 Limitations of concrete or masonry veneer in Seismic Design Category B or C. In Seismic Design Categories B and C, concrete or masonry walls and stone or masonry veneer shall not extend above a basement.

Exceptions:
1. In structures assigned to Seismic Design Category B, stone and masonry veneer is permitted to be used in the first two stories above grade plane where the lowest story has concrete or masonry walls, provided that wood structural panel wall bracing is used and the length of bracing provided is one and one-half times the required length specified in Table 2308.6.1.

2. Stone and masonry veneer is permitted to be used in the first story above grade plane or the first two stories above grade plane where the lowest story has concrete or masonry walls.

3. Stone and masonry veneer is permitted to be used in both stories of buildings with two stories above grade plane, provided the following criteria are met:
 3.1. Type of brace in accordance with Section 2308.6.1 shall be WSP and the allowable shear capacity in accordance with Section 2306.3 shall be not less than 350 plf (5108 N/m).
 3.2. Braced wall panels in the second story shall be located in accordance with Section 2308.6.1 and not more than 25 feet (7620 mm) on center, and the total length of braced wall panels shall be not less than 25 percent of the braced wall line length. Braced wall panels in the first story shall be located in accordance with Section 2308.6.1 and not more than 25 feet (7620 mm) on center, and the total length of braced wall panels shall be not less than 45 percent of the braced wall line length.
 3.3. Hold-down connectors with an allowable capacity of 2,000 pounds (8896 N) shall be provided at the ends of each braced wall panel for the second plane or the first three stories above grade story to the first story connection. Hold-down connectors with an allowable capacity of 3,900 pounds (17 347 N) shall be provided at the ends of the each braced wall panel for the first story to the foundation connection. In all cases, the hold-down connector force shall be transferred to the foundation.
3.4. Cripple walls shall not be permitted.

2308.6.10.2 Limitations of concrete or masonry in Seismic Design Categories D and E. In Seismic Design Categories D and E, concrete or masonry walls and stone or masonry veneer shall not extend above a basement.

Exception: In structures assigned to Seismic Design Category D, stone and masonry veneer is permitted to be used in the first story above grade plane, provided the following criteria are met:
1. Type of brace in accordance with Section 2308.6.1 shall be WSP and the allowable shear capacity in accordance with Section 2306.3 shall be not less than 350 plf (5108 N/m).
2. The braced wall panels in the first story shall be located at each end of the braced wall line and not more than 25 feet (7620 mm) on center, and the total length of braced wall panels shall be not less than 45 percent of the braced wall line length.
3. Hold-down connectors shall be provided at the ends of braced walls for the first floor to foundation with an allowable capacity of 2,100 pounds (9341 N).
4. Cripple walls shall not be permitted.

2308.7 Roof and ceiling framing. The framing details required in this section apply to roofs having a slope of not less than three units vertical in 12 units horizontal (25-percent slope). Where the roof slope is less than three units vertical in 12 units horizontal (25-percent slope), members supporting rafters and ceiling joists such as ridge board, hips and valleys shall be designed as beams.
2308.7.1 Ceiling joist spans. Spans for ceiling joists shall be in accordance with Table 2308.7.1(1) or 2308.7.1(2). For other grades and species, and other loading conditions, refer to the AWC STJR.

2308.7.2 Rafter spans. Spans for rafters shall be in accordance with Table 2308.7.2(1), 2308.7.2(2), 2308.7.2(3), 2308.7.2(4), 2308.7.2(5) or 2308.7.2(6). For other grades and species and other loading conditions, refer to the AWC STJR. The span of each rafter shall be measured along the horizontal projection of the rafter.

2308.7.3 Ceiling joist and rafter framing. Rafters shall be framed directly opposite each other at the ridge. There shall be a ridge board not less than 1-inch (25 mm) nominal thickness at ridges and not less in depth than the cut end of the rafter. At valleys and hips, there shall be a single valley or hip rafter not less than 2-inch (51 mm) nominal thickness and not less in depth than the cut end of the rafter.

2308.7.3.1 Ceiling joist and rafter connections. Ceiling joists and rafters shall be nailed to each other and the assembly shall be nailed to the top wall plate in accordance with Tables 2304.10.1 and 2308.7.5. Ceiling joists shall be continuous or securely joined where they meet over interior partitions and be fastened to adjacent rafters in accordance with Tables 2304.10.1 and 2308.7.3.1 to provide a continuous rafter tie across the building where such joists are parallel to the rafters. Ceiling joists shall have a bearing surface of not less than 1½ inches (38 mm) on the top plate at each end.

Where ceiling joists are not parallel to rafters, an equivalent rafter tie shall be installed in a manner to provide a continuous tie across the building, at a spacing of not more than 4 feet (1219 mm) on center. The connections shall be in accordance with Tables 2308.7.3.1 and 2304.10.1, or connections of equivalent capacities shall be provided. Where ceiling joists or rafter ties are not provided at the top of the rafter support walls, the ridge formed by these rafters shall also be supported by a girder conforming to Section 2308.8. Rafter ties shall be spaced not more than 4 feet (1219 mm) on center.

Rafter tie connections shall be based on the equivalent rafter spacing in Table 2308.7.3.1. Rafter-to-ceiling joist connections and rafter tie connections shall be of sufficient size and number to prevent splitting from nailing.

Roof framing member connection to braced wall lines shall be in
accordance with Section 2308.6.7.2.

2308.7.4 Notches and holes. Notching at the ends of rafters or ceiling joists shall not exceed one-fourth the depth. Notches in the top or bottom of the rafter or ceiling joist shall not exceed one-sixth the depth and shall not be located in the middle one-third of the span, except that a notch not more than one-third of the depth is permitted in the top of the rafter or ceiling joist not further from the face of the support than the depth of the member. Holes bored in rafters or ceiling joists shall not be within 2 inches (51 mm) of the top and bottom and their diameter shall not exceed one-third the depth of the member.

2308.7.5 Wind uplift. The roof construction shall have rafter and truss ties to the wall below. Resultant uplift loads shall be transferred to the foundation using a continuous load path. The rafter or truss to wall connection shall comply with Tables 2304.10.1 and 2308.7.5.

2308.7.6 Framing around openings. Trimmer and header rafters shall be doubled, or of lumber of equivalent cross section, where the span of the header exceeds 4 feet (1219 mm). The ends of header rafters that are more than 6 feet (1829 mm) in length shall be supported by framing anchors or rafter hangers unless bearing on a beam, partition or wall.

2308.7.6.1 Openings in roof diaphragms in Seismic Design Categories B, C, D and E. In buildings classified as Seismic Design Category B, C, D or E, openings in horizontal diaphragms with a dimension that is greater than 4 feet (1219 mm) shall be constructed with metal ties and blocking in accordance with this section and Figure 2308.4.4.1(1). Metal ties shall be not less than 0.058 inch [1.47 mm (16 galvanized gage)] in thickness by 1 1/2 inches (38 mm) in width and shall have a yield stress not less than 33,000 psi (227 Mpa). Blocking shall extend not less than the dimension of the opening in the direction of the tie and blocking. Ties shall be attached to blocking in accordance with the manufacturer’s instructions but with not less than eight 16d common nails on each side of the header-joint intersection.

2308.7.7 Purlins. Purlins to support roof loads are permitted to be installed to reduce the span of rafters within allowable limits and shall be supported by struts to bearing walls. The maximum span of 2-inch by 4-inch (51 mm by 102 mm) purlins shall be 4 feet (1219 mm). The maximum span of the 2-inch by 6-inch (51 mm by 152 mm) purlin shall be 6 feet (1829 mm), but in no case shall the purlin be smaller than the supported rafter. Struts shall be not
less than 2-inch by 4-inch (51 mm by 102 mm) members. The unbraced length of struts shall not exceed 8 feet (2438 mm) and the slope of the struts shall be not less than 45 degrees (0.79 rad) from the horizontal.

2308.7.8 Blocking. Roof rafters and ceiling joists shall be supported laterally to prevent rotation and lateral displacement in accordance with Section 2308.4.6 and connected to braced wall lines in accordance with Section 2308.6.7.2.

2308.7.9 Engineered wood products. Prefabricated wood I-joists, structural glued-laminated timber and structural composite lumber shall not be notched or drilled except where permitted by the manufacturer’s recommendations or where the effects of such alterations are specifically considered in the design of the member by a registered design professional.

2308.7.10 Roof sheathing. Roof sheathing shall be in accordance with Tables 2304.8(3) and 2304.8(5) for wood structural panels, and Tables 2304.8(1) and 2304.8(2) for lumber and shall comply with Section 2304.8.2.

2308.7.11 Joints. Joints in lumber sheathing shall occur over supports unless approved end-matched lumber is used, in which case each piece shall bear on at least two supports.

2308.7.12 Roof planking. Planking shall be designed in accordance with the general provisions of this code. In lieu of such design, 2-inch (51 mm) tongue-and-groove planking is permitted in accordance with Table 2308.7.12. Joints in such planking are permitted to be randomly spaced, provided the system is applied to not less than three continuous spans, planks are center matched and end matched or splined, each plank bears on at least one support, and joints are separated by not less than 24 inches (610 mm) in adjacent pieces.

2308.7.13 Wood trusses. Wood trusses shall be designed in accordance with Section 2303.4. Connection to braced wall lines shall be in accordance with Section 2308.6.7.2.

2308.7.14 Attic ventilation. For attic ventilation, see Section 1203.2.

TABLE 2308.7.5

<table>
<thead>
<tr>
<th>NOMINAL DESIGN WIND SPEED, V_{w}</th>
<th>ROOF SPAN (feet)</th>
<th>OVERHANGS (pounds/feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>20</td>
<td>24</td>
</tr>
</tbody>
</table>
The uplift connection requirements are based on a 30-foot mean roof height located in Exposure B. For Exposure C or D and for other mean roof heights, multiply the above loads by the adjustment coefficients below.

<table>
<thead>
<tr>
<th>Mean Roof Height (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPOSURE</td>
</tr>
<tr>
<td>B 1.00 1.00 1.00 1.05 1.09 1.12 1.16 1.19 1.22</td>
</tr>
<tr>
<td>C 1.21 1.29 1.35 1.40 1.45 1.49 1.53 1.56 1.59 1.62</td>
</tr>
<tr>
<td>D 1.47 1.55 1.61 1.66 1.70 1.74 1.78 1.81 1.84 1.87</td>
</tr>
</tbody>
</table>

b. The uplift connection requirements are based on the framing being spaced 24 inches on center. Multiply by 0.67 for framing spaced 16 inches on center and multiply by 0.5 for framing spaced 12 inches on center.

c. The uplift connection requirements include an allowance for 10 pounds of dead load.

d. The uplift connection requirements do not account for the effects of overhangs. The magnitude of the above loads shall be increased by adding the overhang loads found in the table. The overhang loads are also based on framing spaced 24 inches on center. The overhang loads given shall be multiplied by the overhang projection and added to the roof uplift value in the table.

e. The uplift connection requirements are based upon wind loading on end zones as defined in Figure 28.6.3 of ASCE 7. Connection loads for connections located a distance of 20 percent of the least horizontal dimension of the building from the corner of the building are permitted to be reduced by multiplying the table connection value by 0.7 and multiplying the overhang load by 0.8.

f. For wall-to-wall and wall-to-foundation connections, the capacity of the uplift connector is permitted to be reduced by 100 pounds for each full wall above. (For example, if a 500-pound rated connector is used on the roof framing, a 400-pound rated connector is permitted at the next floor level down).

g. Interpolation is permitted for intermediate values of V_{ad} and roof spans.

h. The rated capacity of approved tie-down devices is permitted to include up to a 60-percent increase for wind effects where allowed by material specifications.

i. V_{ad} shall be determined in accordance with Section 1609.3.1.

TABLE 2308.7.1(1)

CEILING JOIST SPANS FOR COMMON LUMBER SPECIES
(Uninhabitable Attics Without Storage, Live Load = 10 psf, L/Δ = 240)

<table>
<thead>
<tr>
<th>CEILING JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 5 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 × 4</td>
<td>2 × 6</td>
</tr>
<tr>
<td></td>
<td>Maximum ceiling joist spans (ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 mile per hour = 1.61 km/hr, 1 pound = 0.454 Kg, 1 pound/foot = 14.5939 N/m.
(continued)

TABLE 2308.7.1(1)—continued

CEILING JOIST SPANS FOR COMMON LUMBER SPECIES
(Uninhabitable Attics Without Storage, Live Load = 10 psf, \(L/\Delta = 240 \))

<table>
<thead>
<tr>
<th>CEILING JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 5 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 × 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td>11-9</td>
<td>18-5</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td>11-3</td>
<td>17-8</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>10-9</td>
<td>16-11</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>8-9</td>
<td>12-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td>11-0</td>
<td>17-4</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td>10-9</td>
<td>16-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td>10-9</td>
<td>16-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td>9-5</td>
<td>13-9</td>
</tr>
<tr>
<td>CEILING JOIST SPACING (inches)</td>
<td>SPECIES AND GRADE</td>
<td>DEAD LOAD = 10 psf</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 × 4</td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td>10-0</td>
<td>17-4</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td>10-7</td>
<td>16-0</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>9-11</td>
<td>15-7</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>8-7</td>
<td>12-6</td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td>10-4</td>
<td>16-0</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td>10-2</td>
<td>15-7</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td>9-11</td>
<td>15-7</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td>8-7</td>
<td>12-6</td>
</tr>
</tbody>
</table>

Check sources for availability of lumber in lengths greater than 20 feet.

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.

a. Span exceeds 26 feet in length.
<table>
<thead>
<tr>
<th>CEILING JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 × 4</td>
<td>2 × 6</td>
<td>2 × 8</td>
<td>2 × 10</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>10-5</td>
<td>16-4</td>
<td>21-7</td>
<td>Note a</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>10-0</td>
<td>15-9</td>
<td>20-1</td>
<td>24-6</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-10</td>
<td>14-10</td>
<td>18-9</td>
<td>22-11</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>7-8</td>
<td>11-2</td>
<td>14-2</td>
<td>17-4</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>9-10</td>
<td>15-6</td>
<td>20-5</td>
<td>Note a</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-8</td>
<td>15-2</td>
<td>19-7</td>
<td>23-11</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-7</td>
<td>14-5</td>
<td>18-6</td>
<td>22-7</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>7-8</td>
<td>11-2</td>
<td>14-2</td>
<td>17-4</td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>10-3</td>
<td>16-1</td>
<td>21-2</td>
<td>Note a</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-10</td>
<td>15-6</td>
<td>20-5</td>
<td>24-0</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-3</td>
<td>13-11</td>
<td>17-7</td>
<td>20-11</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>7-2</td>
<td>10-6</td>
<td>13-3</td>
<td>16-1</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>9-8</td>
<td>15-2</td>
<td>19-11</td>
<td>25-5</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>9-5</td>
<td>14-9</td>
<td>18-9</td>
<td>22-11</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>9-5</td>
<td>14-9</td>
<td>18-9</td>
<td>22-11</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>7-8</td>
<td>11-2</td>
<td>14-2</td>
<td>17-4</td>
</tr>
</tbody>
</table>

(continued)

TABLE 2308.7.1(2)—continued
CEILING JOIST SPANS FOR COMMON LUMBER SPECIES
(Uninhabitable Attics With Limited Storage, Live Load = 20 psf, L/Δ = 240)

<table>
<thead>
<tr>
<th>CEILING JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 × 4</td>
<td>2 × 6</td>
<td>2 × 8</td>
<td>2 × 10</td>
<td></td>
</tr>
<tr>
<td>Southern Pine</td>
<td>SS</td>
<td>9-4</td>
<td>14-7</td>
<td>19-3</td>
<td>24-7</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-11</td>
<td>14-0</td>
<td>17-9</td>
<td>20-9</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-0</td>
<td>12-0</td>
<td>15-3</td>
<td>18-1</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>6-2</td>
<td>9-2</td>
<td>11-6</td>
<td>14-0</td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>8-9</td>
<td>13-9</td>
<td>18-1</td>
<td>23-1</td>
</tr>
<tr>
<td></td>
<td>#1</td>
<td>8-7</td>
<td>12-10</td>
<td>16-3</td>
<td>19-10</td>
</tr>
<tr>
<td></td>
<td>#2</td>
<td>8-7</td>
<td>12-10</td>
<td>16-3</td>
<td>19-10</td>
</tr>
<tr>
<td></td>
<td>#3</td>
<td>6-8</td>
<td>9-8</td>
<td>12-4</td>
<td>15-0</td>
</tr>
<tr>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>8-11</td>
<td>14-0</td>
<td>18-5</td>
<td>23-4</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #1</td>
<td>8-7</td>
<td>12-6</td>
<td>15-10</td>
<td>19-5</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #2</td>
<td>8-0</td>
<td>11-9</td>
<td>14-10</td>
<td>18-2</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #3</td>
<td>6-1</td>
<td>8-10</td>
<td>11-3</td>
<td>13-8</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>8-5</td>
<td>13-3</td>
<td>17-5</td>
<td>22-3</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td>8-3</td>
<td>12-3</td>
<td>15-6</td>
<td>18-11</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td>7-10</td>
<td>11-7</td>
<td>14-8</td>
<td>17-10</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td>6-1</td>
<td>8-10</td>
<td>11-3</td>
<td>13-8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Pine SS</td>
<td>8-9</td>
<td>13-9</td>
<td>18-2</td>
<td>23-1</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td>8-5</td>
<td>12-9</td>
<td>16-2</td>
<td>18-11</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>7-4</td>
<td>11-0</td>
<td>13-11</td>
<td>16-6</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>5-8</td>
<td>8-4</td>
<td>10-6</td>
<td>12-9</td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td>8-3</td>
<td>12-11</td>
<td>17-1</td>
<td>21-8</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td>8-0</td>
<td>11-9</td>
<td>14-10</td>
<td>18-2</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td>8-0</td>
<td>11-9</td>
<td>14-10</td>
<td>18-2</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td>6-1</td>
<td>8-10</td>
<td>11-3</td>
<td>13-8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Pine SS</td>
<td>8-3</td>
<td>13-0</td>
<td>17-1</td>
<td>20-11</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td>7-8</td>
<td>11-2</td>
<td>14-2</td>
<td>17-4</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>7-2</td>
<td>10-6</td>
<td>13-3</td>
<td>16-3</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>5-5</td>
<td>7-11</td>
<td>10-0</td>
<td>12-3</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>7-10</td>
<td>12-3</td>
<td>16-2</td>
<td>20-6</td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td>7-6</td>
<td>10-11</td>
<td>13-10</td>
<td>16-11</td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td>7-1</td>
<td>10-4</td>
<td>13-1</td>
<td>16-0</td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td>5-5</td>
<td>7-11</td>
<td>10-0</td>
<td>12-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
<th>(ft. - in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Pine SS</td>
<td>8-1</td>
<td>12-9</td>
<td>16-10</td>
<td>21-6</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td>7-8</td>
<td>11-5</td>
<td>14-6</td>
<td>16-11</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>6-7</td>
<td>9-10</td>
<td>12-6</td>
<td>14-9</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>5-1</td>
<td>7-5</td>
<td>9-5</td>
<td>11-5</td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td>7-8</td>
<td>12-0</td>
<td>15-10</td>
<td>19-5</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td>7-2</td>
<td>10-6</td>
<td>13-3</td>
<td>16-3</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td>7-2</td>
<td>10-6</td>
<td>13-3</td>
<td>16-3</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td>5-5</td>
<td>7-11</td>
<td>10-0</td>
<td>12-3</td>
</tr>
</tbody>
</table>

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.
a. Span exceeds 26 feet in length.
TABLE 2308.7.2(1)
RAFTER SPANS FOR COMMON LUMBER SPECIES
(Chuck Freeman)

<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 × 4 (ft. - in.)</td>
<td>2 × 6 (ft. - in.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 × 8 (ft. - in.)</td>
<td>2 × 10 (ft. - in.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 × 12 (ft. - in.)</td>
<td>2 × 4 (ft. - in.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 × 6 (ft. - in.)</td>
<td>2 × 8 (ft. - in.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 × 10 (ft. - in.)</td>
<td>2 × 12 (ft. - in.)</td>
</tr>
<tr>
<td>Maximum rafter spans</td>
<td></td>
<td>(ft.)</td>
<td>(ft.)</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>11-6 18-0 23-9 Note b Note b</td>
<td>11-6 18-0 23-5 Note b Note b</td>
</tr>
<tr>
<td>Douglas Fir-Larch #1</td>
<td>11-1 17-4 22-5 Note b Note b</td>
<td>10-6 15-4 19-5 Note b Note b</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #2</td>
<td>10-10 16-7 21-0 Note b Note b</td>
<td>9-10 14-4 18-2 22-3 25-9</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #3</td>
<td>8-7 12-6 15-10 19-5 22-6 Note b</td>
<td>7-5 10-10 13-9 16-9 19-6</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>10-10 17-0 22-5 Note b Note b</td>
<td>10-10 17-0 22-5 Note b Note b</td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td>10-7 16-8 21-10 Note b Note b</td>
<td>10-3 14-11 18-11 23-2 Note b Note b</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td>10-1 15-11 20-8 25-3 Note b</td>
<td>9-8 14-2 17-1 21-11 25-5</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td>8-7 12-6 15-10 19-5 22-6</td>
<td>7-5 10-10 13-9 16-9 19-6</td>
<td></td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td>11-3 17-8 23-4</td>
<td>Note b Note b</td>
<td>11-3 17-8 23-4</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td>10-10 17-0 22-5 26-0</td>
<td>10-6 15-8 19-10 23-2</td>
<td>Note b</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>10-4 15-7 19-8 23-5 26-0</td>
<td>9-0 13-6 17-1 20-3 23-10</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>8-0 11-9 14-10 18-0 21-4</td>
<td>6-11 10-2 12-10 15-7 18-6</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td>10-7 16-8 21-11 Note b Note b</td>
<td>10-7 16-8 21-9 Note b Note b</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td>10-4 16-3 21-0 25-8 Note b</td>
<td>9-10 14-4 18-2 22-3 25-9</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td>10-4 16-3 21-0 25-8 Note b</td>
<td>9-10 14-4 18-2 22-3 25-9</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td>8-7 12-6 15-10 19-5 22-6</td>
<td>7-5 10-10 13-9 16-9 19-6</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch SS</td>
<td>10-5 16-4 21-7 Note b Note b</td>
<td>10-5 16-0 13-9 16-10 20-7 23-10</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #1</td>
<td>10-0 15-4 19-5 23-9 Note b Note b</td>
<td>9-1 13-2-5 16-10 20-7 23-10</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #2</td>
<td>9-10 14-4 18-2 22-3 25-9</td>
<td>8-6 9-5 15-9 19-3 22-4</td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #3</td>
<td>7-5 10-10 13-9 16-9 19-6</td>
<td>6-5 11-11 14-9 16-10 22-9</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir SS</td>
<td>9-10 15-6 20-5 Note b Note b</td>
<td>9-10 12-11 19-11 24-4 Note b</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td>9-8 14-11 18-11 23-2 Note b Note b</td>
<td>8-10 12-3 16-5 20-0 23-3</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td>9-2 14-2 17-11 21-11 25-5</td>
<td>8-5 9-5 15-6 18-11 22-0</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td>7-5 10-10 13-9 16-9 19-6</td>
<td>6-5 11-11 14-6 16-10</td>
<td></td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td>10-3 16-1 21-2 Note b Note b</td>
<td>10-3 21-2 25-7 Note b</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td>9-10 15-6 19-10 23-2 26-0</td>
<td>9-1 13-7 17-2 20-1 23-10</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>9-0 13-6 17-1 20-3 23-10</td>
<td>7-9 11-8 14-9 17-6 20-8</td>
<td></td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>6-11 10-2 12-10 15-7 18-6</td>
<td>6-0 8-10 11-2 13-6 16-0</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td>9-8 15-2 19-11 25-5 Note b</td>
<td>9-8 14-10 18-10 23-0 Note b</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td>9-5 14-4 18-2 22-3 25-9</td>
<td>8-6 12-5 15-9 19-3 22-4</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td>9-5 14-4 18-2 22-3 25-9</td>
<td>8-6 12-5 15-9 19-3 22-4</td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td>7-5 10-10 13-9 16-9 19-6</td>
<td>6-5 9-5 11-11 14-6 16-10</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
TABLE 2308.7.2(1)—continued
(Roof Live Load = 20 psf, Ceiling Not Attached to Rafters, L/Δ = 180)

<table>
<thead>
<tr>
<th>Rafter Spacing (inches)</th>
<th>Rafters</th>
<th>Species and Grade</th>
<th>Maximum rafter spans[a]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DEAD LOAD = 10 psf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 × 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>RAFTERS</td>
<td>SPECIES AND GRADE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch SS</td>
<td>19.2</td>
<td></td>
<td>9-10</td>
</tr>
<tr>
<td>Douglas Fir-Larch #2</td>
<td>8-11</td>
<td>13-1</td>
<td>16-7</td>
</tr>
<tr>
<td>Douglas Fir-Larch #3</td>
<td>6-9</td>
<td>9-11</td>
<td>12-7</td>
</tr>
<tr>
<td>Hem-Fir SS</td>
<td>9-3</td>
<td>14-7</td>
<td>19-2</td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td>9-1</td>
<td>13-8</td>
<td>17-4</td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td>8-8</td>
<td>12-11</td>
<td>16-4</td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td>6-9</td>
<td>9-11</td>
<td>12-7</td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td>9-8</td>
<td>15-2</td>
<td>19-11</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td>9-3</td>
<td>14-3</td>
<td>18-1</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>8-2</td>
<td>12-3</td>
<td>15-7</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>6-4</td>
<td>9-4</td>
<td>11-9</td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td>9-1</td>
<td>14-3</td>
<td>18-9</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td>8-10</td>
<td>13-1</td>
<td>16-7</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td>8-10</td>
<td>13-1</td>
<td>16-7</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td>6-9</td>
<td>9-11</td>
<td>12-7</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td>9-3</td>
<td>14-3</td>
<td>18-1</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>8-2</td>
<td>12-3</td>
<td>15-7</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>6-4</td>
<td>9-4</td>
<td>11-9</td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td>9-1</td>
<td>14-3</td>
<td>18-9</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td>8-10</td>
<td>13-1</td>
<td>16-7</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td>8-10</td>
<td>13-1</td>
<td>16-7</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td>6-9</td>
<td>9-11</td>
<td>12-7</td>
</tr>
</tbody>
</table>

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.

a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic.

(continued)
space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. When ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the factors given below:

<table>
<thead>
<tr>
<th>HC/HR</th>
<th>Rafter Span Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.67</td>
</tr>
<tr>
<td>1/4</td>
<td>0.76</td>
</tr>
<tr>
<td>1/5</td>
<td>0.83</td>
</tr>
<tr>
<td>1/6</td>
<td>0.90</td>
</tr>
<tr>
<td>1/7.5 or less</td>
<td>1.00</td>
</tr>
</tbody>
</table>

where:

- \(H_C \) = Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.
- \(H_R \) = Height of roof ridge measured vertically above the top of the rafter support walls.

b. Span exceeds 26 feet in length.

TABLE 2308.7.2(2)

RAFTER SPANS FOR COMMON LUMBER SPECIES

(Roof Live Load = 20 psf, Ceiling Attached to Rafters, \(L/\Delta = 240 \))

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10-5</td>
<td>16-4</td>
<td>21-7</td>
<td>Note b</td>
<td>10-5</td>
<td>16-4</td>
<td>21-7</td>
<td>Note b</td>
<td>10-5</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch SS</td>
<td>10-0</td>
<td>15-9</td>
<td>20-10</td>
<td>Note b</td>
<td>10-0</td>
<td>15-4</td>
<td>19-5</td>
<td>22-3</td>
<td>19-9</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #1</td>
<td>9-10</td>
<td>15-6</td>
<td>20-5</td>
<td>25-8</td>
<td>Note b</td>
<td>9-10</td>
<td>14-4</td>
<td>18-2</td>
<td>22-3</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #2</td>
<td>8-7</td>
<td>12-6</td>
<td>15-10</td>
<td>19-5</td>
<td>Note b</td>
<td>8-7</td>
<td>12-6</td>
<td>15-10</td>
<td>19-5</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir SS</td>
<td>9-9</td>
<td>15-6</td>
<td>20-5</td>
<td>Note b</td>
<td>9-9</td>
<td>15-6</td>
<td>20-5</td>
<td>Note b</td>
<td>19-11</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #1</td>
<td>8-9</td>
<td>15-5</td>
<td>19-11</td>
<td>25-5</td>
<td>Note b</td>
<td>8-9</td>
<td>14-11</td>
<td>18-11</td>
<td>23-2</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #2</td>
<td>8-9</td>
<td>14-5</td>
<td>19-0</td>
<td>24-3</td>
<td>Note b</td>
<td>8-9</td>
<td>14-2</td>
<td>17-11</td>
<td>21-11</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #3</td>
<td>8-7</td>
<td>12-6</td>
<td>15-10</td>
<td>19-5</td>
<td>Note b</td>
<td>7-5</td>
<td>10-10</td>
<td>13-9</td>
<td>16-9</td>
</tr>
</tbody>
</table>

TABLE 2308.7.2(2) (continued)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Southern Pine SS</td>
<td>10-3</td>
<td>16-1</td>
<td>21-2</td>
<td>Note b</td>
<td>10-3</td>
<td>16-1</td>
<td>21-2</td>
<td>Note b</td>
<td>10-3</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #1</td>
<td>9-10</td>
<td>15-6</td>
<td>20-5</td>
<td>26-0</td>
<td>26-0</td>
<td>9-10</td>
<td>15-6</td>
<td>19-10</td>
<td>23-2</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #2</td>
<td>9-5</td>
<td>15-6</td>
<td>19-6</td>
<td>23-5</td>
<td>26-0</td>
<td>9-0</td>
<td>13-6</td>
<td>17-1</td>
<td>20-3</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #3</td>
<td>8-0</td>
<td>11-9</td>
<td>14-10</td>
<td>18-0</td>
<td>21-4</td>
<td>6-11</td>
<td>10-2</td>
<td>15-7</td>
<td>18-6</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #1</td>
<td>8-5</td>
<td>14-9</td>
<td>19-6</td>
<td>24-10</td>
<td>Note b</td>
<td>9-5</td>
<td>14-4</td>
<td>18-2</td>
<td>22-3</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #2</td>
<td>8-5</td>
<td>14-9</td>
<td>19-6</td>
<td>24-10</td>
<td>Note b</td>
<td>9-5</td>
<td>14-4</td>
<td>18-2</td>
<td>22-3</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #3</td>
<td>8-7</td>
<td>12-6</td>
<td>15-10</td>
<td>19-5</td>
<td>Note b</td>
<td>7-5</td>
<td>10-10</td>
<td>13-9</td>
<td>16-9</td>
</tr>
</tbody>
</table>

Note b: Refer to the notes associated with each species and grade.
TABLE 2308.7.2(2)—continued
(Roof Live Load = 20 psf, Ceiling Attached to Rafters, L/Δ = 240)

<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Maximum rafter spans (ft. - in.)</td>
<td>Maximum rafter spans (ft. - in.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>8-9</td>
<td>13-9</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #1</td>
<td>8-5</td>
<td>13-3</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #2</td>
<td>8-1</td>
<td>12-3</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #3</td>
<td>6-4</td>
<td>9-4</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>8-3</td>
<td>12-11</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #1</td>
<td>8-1</td>
<td>12-8</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #2</td>
<td>8-1</td>
<td>12-8</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #3</td>
<td>6-9</td>
<td>9-11</td>
</tr>
</tbody>
</table>
Check sources for availability of lumber in lengths greater than 20 feet.

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.

a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. When ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the factors given below:

<table>
<thead>
<tr>
<th>HC/HR</th>
<th>Rafter Span Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.67</td>
</tr>
<tr>
<td>1/4</td>
<td>0.76</td>
</tr>
<tr>
<td>1/5</td>
<td>0.83</td>
</tr>
<tr>
<td>1/6</td>
<td>0.90</td>
</tr>
<tr>
<td>1/7.5 or less</td>
<td>1.00</td>
</tr>
</tbody>
</table>

H_c = Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.

H_r = Height of roof ridge measured vertically above the top of the rafter support walls.

b. Span exceeds 26 feet in length.

TABLE 2308.7.2(3)

(Ground Snow Load = 30 psf, Ceiling Not Attached to Rafters, L/\(\Delta \) = 180)

<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 × 4</td>
<td>2 × 6</td>
</tr>
<tr>
<td>Maximum rafter spansa</td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Species</th>
<th>Grade</th>
<th>10-0</th>
<th>15-9</th>
<th>20-9</th>
<th>Note b</th>
<th>10-0</th>
<th>15-9</th>
<th>20-1</th>
<th>24-6</th>
<th>Note b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>9-8</td>
<td>14-9</td>
<td>18-8</td>
<td>22-9</td>
<td>9-0</td>
<td>13-2</td>
<td>16-8</td>
<td>20-4</td>
<td>23-7</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#1</td>
<td>9-5</td>
<td>13-9</td>
<td>17-5</td>
<td>21-4</td>
<td>24-8</td>
<td>8-5</td>
<td>12-4</td>
<td>15-7</td>
<td>19-1</td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>7-1</td>
<td>10-5</td>
<td>13-2</td>
<td>16-1</td>
<td>18-8</td>
<td>6-4</td>
<td>9-4</td>
<td>11-9</td>
<td>14-5</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>9-6</td>
<td>14-10</td>
<td>19-7</td>
<td>25-0</td>
<td>9-6</td>
<td>14-10</td>
<td>19-7</td>
<td>24-1</td>
<td>Note b</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#1</td>
<td>8-3</td>
<td>14-4</td>
<td>18-2</td>
<td>22-2</td>
<td>25-9</td>
<td>8-9</td>
<td>12-10</td>
<td>16-3</td>
<td>19-10</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#2</td>
<td>8-10</td>
<td>13-7</td>
<td>17-2</td>
<td>21-0</td>
<td>24-4</td>
<td>8-4</td>
<td>12-2</td>
<td>15-4</td>
<td>18-9</td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#3</td>
<td>7-1</td>
<td>10-5</td>
<td>13-2</td>
<td>16-1</td>
<td>18-8</td>
<td>6-4</td>
<td>9-4</td>
<td>11-9</td>
<td>14-5</td>
</tr>
</tbody>
</table>

(continued)
TABLE 2308.7.2(3)—continued

(Ground Snow Load = 30 psf, Ceiling Not Attached to Rafters, $L/\Delta = 180$)

<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 × 4</td>
<td>2 × 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>Rafter Spansa</td>
<td></td>
<td>8-5</td>
<td>13-3</td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td></td>
<td>8-0</td>
<td>11-10</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td></td>
<td>6-10</td>
<td>10-2</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td></td>
<td>5-3</td>
<td>7-9</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td></td>
<td>7-11</td>
<td>12-5</td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td></td>
<td>7-5</td>
<td>10-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td></td>
<td>7-5</td>
<td>10-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td></td>
<td>5-7</td>
<td>8-3</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td></td>
<td>7-11</td>
<td>12-6</td>
</tr>
<tr>
<td>Douglas Fir-Larch SS</td>
<td></td>
<td>7-11</td>
<td>12-6</td>
</tr>
<tr>
<td>Douglas Fir-Larch #1</td>
<td></td>
<td>6-8</td>
<td>9-9</td>
</tr>
<tr>
<td>Douglas Fir-Larch #2</td>
<td></td>
<td>5-0</td>
<td>7-4</td>
</tr>
<tr>
<td>Hem-Fir SS</td>
<td></td>
<td>7-6</td>
<td>11-10</td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td></td>
<td>6-11</td>
<td>10-2</td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td></td>
<td>6-7</td>
<td>9-7</td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td></td>
<td>5-0</td>
<td>7-4</td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td></td>
<td>7-1</td>
<td>10-7</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td></td>
<td>6-1</td>
<td>9-2</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td></td>
<td>4-8</td>
<td>6-11</td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td></td>
<td>7-4</td>
<td>11-7</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td></td>
<td>6-8</td>
<td>9-9</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td></td>
<td>6-8</td>
<td>9-9</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td></td>
<td>5-0</td>
<td>7-4</td>
</tr>
</tbody>
</table>

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.

a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. When ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the factors given below:

<table>
<thead>
<tr>
<th>HC/HR</th>
<th>Rafter Span Adjustment Factor</th>
</tr>
</thead>
</table>

(continued)
TABLE 2308.7.2(4)
(Ground Snow Load = 50 psf, Ceiling Not Attached to Rafters, L/Δ = 180)

<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>Rafter Spans (ft.-in.)</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 x 4 (ft.-in.)</td>
<td>2 x 6 (ft.-in.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 x 8 (ft.-in.)</td>
<td>2 x 10 (ft.-in.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 x 2 (ft.-in.)</td>
<td>2 x 6 (ft.-in.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 x 8 (ft.-in.)</td>
<td>2 x 10 (ft.-in.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 x 12 (ft.-in.)</td>
<td>2 x 12 (ft.-in.)</td>
</tr>
<tr>
<td>12</td>
<td>Douglas Fir-Larch SS</td>
<td>8-5 13-3 17-6</td>
<td>22-4 26-0</td>
<td>8-5 13-3 17-0 20-9 24-0</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #1</td>
<td>8-2 12-0 15-3</td>
<td>18-7 21-7</td>
<td>7-7 11-2 14-1 17-3 20-0</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #2</td>
<td>7-8 11-3 14-3</td>
<td>17-5 20-2</td>
<td>7-1 10-5 13-2 16-1 18-8</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #3</td>
<td>5-10 8-6 10-9</td>
<td>13-2 15-3</td>
<td>5-5 7-10 10-0 12-2 14-1</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir SS</td>
<td>8-0 12-6 16-6</td>
<td>21-1 25-6</td>
<td>8-0 12-6 16-6 20-4 23-7</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #1</td>
<td>7-10 11-9 14-10</td>
<td>18-1 21-0</td>
<td>7-5 10-10 13-9 16-9 19-5</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #2</td>
<td>7-5 11-1 14-0</td>
<td>17-2 19-11</td>
<td>7-0 10-3 13-0 15-10 18-5</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #3</td>
<td>5-10 8-6 10-9</td>
<td>13-2 15-3</td>
<td>5-5 7-10 10-0 12-2 14-1</td>
</tr>
<tr>
<td></td>
<td>Southern Pine SS</td>
<td>8-4 13-1 17-2</td>
<td>21-11 Note b</td>
<td>8-4 13-1 17-2 21-5 25-3</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #1</td>
<td>8-0 12-3 15-6</td>
<td>18-2 21-7</td>
<td>7-7 11-4 14-5 16-10 20-0</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #2</td>
<td>7-0 10-6 13-4</td>
<td>15-10 18-8</td>
<td>6-6 9-9 12-4 14-8 17-3</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #3</td>
<td>5-5 8-0 10-1</td>
<td>12-3 14-6</td>
<td>5-0 7-5 9-4 11-4 13-5</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir SS</td>
<td>7-10 12-3 16-2</td>
<td>20-8 24-1</td>
<td>7-10 12-3 15-9 19-3 22-4</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #1</td>
<td>7-8 11-3 14-3</td>
<td>17-5 20-2</td>
<td>7-1 10-5 13-2 16-1 18-8</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #2</td>
<td>7-8 11-3 14-3</td>
<td>17-5 20-2</td>
<td>7-1 10-5 13-2 16-1 18-8</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #3</td>
<td>5-10 8-6 10-9</td>
<td>13-2 15-3</td>
<td>5-5 7-10 10-0 12-2 14-1</td>
</tr>
</tbody>
</table>

Hc= Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.
HR= Height of roof ridge measured vertically above the top of the rafter support walls.
b. Span exceeds 26 feet in length.

(continued)
<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>2 × 4 (ft. - in.)</th>
<th>2 × 6 (ft. - in.)</th>
<th>2 × 8 (ft. - in.)</th>
<th>2 × 10 (ft. - in.)</th>
<th>2 × 12 (ft. - in.)</th>
<th>Maximum rafter spans* (ft. - in.)</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2</td>
<td>Southern Pine</td>
<td>7-1</td>
<td>11-2</td>
<td>14-8</td>
<td>18-3</td>
<td>21-7</td>
<td>7-1</td>
<td>11-2</td>
<td>14-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-9</td>
<td>10-5</td>
<td>13-5</td>
<td>16-6</td>
<td>20-0</td>
<td>6-9</td>
<td>10-5</td>
<td>13-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-7</td>
<td>9-4</td>
<td>12-4</td>
<td>15-9</td>
<td>19-3</td>
<td>5-7</td>
<td>9-4</td>
<td>13-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-7</td>
<td>8-0</td>
<td>11-6</td>
<td>14-8</td>
<td>18-3</td>
<td>4-7</td>
<td>8-0</td>
<td>13-5</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>7-1</td>
<td>12-6</td>
<td>16-0</td>
<td>20-0</td>
<td>24-0</td>
<td>6-8</td>
<td>12-5</td>
<td>15-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-8</td>
<td>11-2</td>
<td>14-5</td>
<td>18-5</td>
<td>22-0</td>
<td>6-8</td>
<td>12-5</td>
<td>15-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-7</td>
<td>10-1</td>
<td>13-6</td>
<td>17-1</td>
<td>21-0</td>
<td>5-7</td>
<td>12-5</td>
<td>15-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-7</td>
<td>9-0</td>
<td>12-3</td>
<td>15-9</td>
<td>19-4</td>
<td>4-7</td>
<td>12-5</td>
<td>15-3</td>
</tr>
</tbody>
</table>

*TABLE 2308.7.2(4)

(Ground Snow Load = 50 psf, Ceiling Not Attached to Rafters, L/∆ = 180)

(continued)
The table below provides rafter spans for various species and grades of lumber, along with adjustment factors for HC/HR values. The spans are for ground snow loads and ceiling attached to rafters, with a load factor of L/\Delta = 240.

TABLE 2308.7.2(5)

Ground Snow Load = 30 psf, Ceiling Attached to Rafters, L/\Delta = 240

<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 × 4</td>
<td>2 × 6</td>
</tr>
<tr>
<td>2 × 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 × 12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rafter Span Adjustment Factor

<table>
<thead>
<tr>
<th>HC/HR</th>
<th>Rafter Span Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.67</td>
</tr>
<tr>
<td>1/4</td>
<td>0.76</td>
</tr>
<tr>
<td>1/5</td>
<td>0.83</td>
</tr>
<tr>
<td>1/6</td>
<td>0.90</td>
</tr>
<tr>
<td>1/7.5 or less</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Check sources for availability of lumber in lengths greater than 20 feet.

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.

a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. When ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the factors given below:

HC/HR

- Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.

HR

- Height of roof ridge measured vertically above the top of the rafter support walls.

b. Span exceeds 26 feet in length.
12	Southern Pine SS	8-11	14-1	18-6	23-8	Note b	8-11	14-1	18-6	23-8	Note b
	Southern Pine #1	8-7	13-6	17-10	22-9	Note b	8-7	13-5	17-0	19-11	23-7
	Southern Pine #2	8-3	12-11	16-4	19-5	22-10	7-8	11-7	14-8	17-4	20-5
	Southern Pine #3	6-7	9-9	12-4	15-0	17-9	5-11	8-9	11-0	13-5	15-10
	Spruce-Pine-Fir SS	8-5	13-3	17-5	22-3	Note b	8-5	13-4	17-5	22-3	Note b
	Spruce-Pine-Fir #1	8-3	12-11	17-0	21-4	24-8	8-3	12-4	15-7	19-1	22-1
	Spruce-Pine-Fir #2	8-3	12-11	17-0	21-4	24-8	8-3	12-4	15-7	19-1	22-1
	Spruce-Pine-Fir #3	7-1	10-5	13-2	16-1	18-8	6-4	9-4	11-9	14-5	16-8

16	Southern Pine SS	8-1	12-9	16-10	21-6	Note b	8-1	12-9	16-10	21-6	25-11
	Southern Pine #1	7-10	12-3	16-2	19-3	22-10	7-10	11-7	14-9	17-3	20-5
	Southern Pine #2	7-6	11-2	14-2	16-10	19-10	6-8	10-0	12-8	15-1	17-9
	Southern Pine #3	5-9	8-6	10-8	13-0	15-4	5-2	7-7	9-7	11-7	13-9
	Spruce-Pine-Fir SS	7-8	12-0	15-10	20-2	24-7	7-8	12-0	15-10	19-9	22-10
	Spruce-Pine-Fir #1	7-6	11-9	15-1	18-5	21-5	7-3	10-8	13-6	16-6	19-2
	Spruce-Pine-Fir #2	7-6	11-9	15-1	18-5	21-5	7-3	10-8	13-6	16-6	19-2
	Spruce-Pine-Fir #3	6-2	9-0	11-5	13-11	16-2	5-6	8-1	10-3	12-6	14-6

19.2	Douglas Fir-Larch SS	7-9	12-3	16-1	20-7	25-0	7-9	12-3	15-10	19-5	22-6
	Douglas Fir-Larch #1	7-6	11-8	14-9	18-0	20-11	7-1	10-5	13-2	16-1	18-8
	Douglas Fir-Larch #2	7-4	10-11	13-9	16-10	19-6	6-8	9-9	12-4	15-1	17-6
	Douglas Fir-Larch #3	5-7	8-3	0-5	12-9	14-9	5-0	7-4	9-4	11-5	13-2

	Hem-Fir SS	7-4	11-7	15-3	19-5	23-7	7-4	11-7	15-3	19-1	22-1
	Hem-Fir #1	7-2	11-4	14-4	17-7	20-4	6-11	10-2	12-10	15-8	18-2
	Hem-Fir #2	6-10	10-9	13-7	16-7	19-3	6-7	9-7	12-2	14-10	17-3
	Hem-Fir #3	5-7	8-3	10-5	12-9	14-9	5-0	7-4	9-4	11-5	13-2
TABLE 2308.7.2(5)—continued

(Ground Snow Load = 30 psf, Ceiling Attached to Rafters, L/∆ = 240)

<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th></th>
<th>DEAD LOAD = 20 psf</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>19.2</td>
<td>Southern Pine</td>
<td>7-8</td>
<td>12-0</td>
<td>15-10</td>
<td>20-2</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #1</td>
<td>7-4</td>
<td>11-7</td>
<td>15-1</td>
<td>17-7</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #2</td>
<td>6-10</td>
<td>10-2</td>
<td>12-11</td>
<td>15-4</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #3</td>
<td>5-3</td>
<td>7-9</td>
<td>9-9</td>
<td>11-10</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>7-2</td>
<td>11-4</td>
<td>14-11</td>
<td>19-0</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #1</td>
<td>7-0</td>
<td>10-11</td>
<td>13-9</td>
<td>16-10</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #2</td>
<td>7-0</td>
<td>10-11</td>
<td>13-9</td>
<td>16-10</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir #3</td>
<td>5-7</td>
<td>8-3</td>
<td>10-5</td>
<td>12-9</td>
</tr>
<tr>
<td>24</td>
<td>Douglas Fir-Larch</td>
<td>7-3</td>
<td>11-4</td>
<td>15-0</td>
<td>19-1</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #1</td>
<td>7-0</td>
<td>10-5</td>
<td>13-2</td>
<td>16-1</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #2</td>
<td>6-8</td>
<td>9-9</td>
<td>12-4</td>
<td>15-1</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #3</td>
<td>5-0</td>
<td>7-4</td>
<td>9-4</td>
<td>11-5</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>6-10</td>
<td>10-9</td>
<td>14-2</td>
<td>18-0</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #1</td>
<td>6-8</td>
<td>10-2</td>
<td>12-10</td>
<td>15-8</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #2</td>
<td>6-4</td>
<td>9-7</td>
<td>12-2</td>
<td>14-10</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #3</td>
<td>5-0</td>
<td>7-4</td>
<td>9-4</td>
<td>11-5</td>
</tr>
</tbody>
</table>

Check sources for availability of lumber in lengths greater than 20 feet.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.

a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. When ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the factors given below:

<table>
<thead>
<tr>
<th>HC/HR</th>
<th>Rafter Span Adjustment Factor</th>
</tr>
</thead>
</table>

(continued)
1/3, 1/4, 1/5, 1/6, 1/7.5 or less

\(H_c = \) Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.

\(H_R = \) Height of roof ridge measured vertically above the top of the rafter support walls.

b. Span exceeds 26 feet in length.

TABLE 2308.7.2(6)

*(Ground Snow Load = 50 psf, Ceiling Attached to Rafters, \(L/\Delta = 240 \))

<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Douglas Fir-Larch SS</td>
<td>7-8</td>
<td>12-1</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #1</td>
<td>7-5</td>
<td>11-7</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #2</td>
<td>7-3</td>
<td>11-3</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir-Larch #3</td>
<td>5-10</td>
<td>8-6</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir SS</td>
<td>7-3</td>
<td>11-5</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #1</td>
<td>7-1</td>
<td>11-2</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #2</td>
<td>6-9</td>
<td>10-8</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir #3</td>
<td>5-10</td>
<td>8-6</td>
</tr>
<tr>
<td>12</td>
<td>Southern Pine SS</td>
<td>7-6</td>
<td>11-0</td>
</tr>
<tr>
<td>12</td>
<td>Southern Pine #1</td>
<td>7-3</td>
<td>11-5</td>
</tr>
<tr>
<td>12</td>
<td>Southern Pine #2</td>
<td>6-11</td>
<td>10-6</td>
</tr>
<tr>
<td>12</td>
<td>Southern Pine #3</td>
<td>5-5</td>
<td>8-0</td>
</tr>
<tr>
<td>12</td>
<td>Spruce-Pine-Fir SS</td>
<td>7-1</td>
<td>11-2</td>
</tr>
<tr>
<td>12</td>
<td>Spruce-Pine-Fir #1</td>
<td>6-11</td>
<td>10-11</td>
</tr>
<tr>
<td>12</td>
<td>Spruce-Pine-Fir #2</td>
<td>6-11</td>
<td>10-11</td>
</tr>
<tr>
<td>12</td>
<td>Spruce-Pine-Fir #3</td>
<td>5-10</td>
<td>8-6</td>
</tr>
<tr>
<td>16</td>
<td>Southern Pine SS</td>
<td>7-0</td>
<td>11-0</td>
</tr>
<tr>
<td>16</td>
<td>Southern Pine #1</td>
<td>6-9</td>
<td>10-5</td>
</tr>
<tr>
<td>16</td>
<td>Southern Pine #2</td>
<td>6-7</td>
<td>9-9</td>
</tr>
<tr>
<td>16</td>
<td>Southern Pine #3</td>
<td>5-0</td>
<td>7-4</td>
</tr>
<tr>
<td>16</td>
<td>Hem-Fir SS</td>
<td>6-7</td>
<td>10-4</td>
</tr>
<tr>
<td>16</td>
<td>Hem-Fir #1</td>
<td>6-5</td>
<td>10-2</td>
</tr>
<tr>
<td>16</td>
<td>Hem-Fir #2</td>
<td>6-2</td>
<td>9-7</td>
</tr>
<tr>
<td>16</td>
<td>Hem-Fir #3</td>
<td>5-0</td>
<td>7-4</td>
</tr>
<tr>
<td>16</td>
<td>Southern Pine SS</td>
<td>6-10</td>
<td>10-9</td>
</tr>
</tbody>
</table>

(continued)
<p>| | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Pine</td>
<td>#1</td>
<td>6-7</td>
<td>10-4</td>
<td>13-5</td>
<td>15-9</td>
<td>18-8</td>
<td>6-7</td>
<td>9-10</td>
<td>12-5</td>
<td>14-7</td>
<td>17-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#2</td>
<td>6-1</td>
<td>9-2</td>
<td>11-7</td>
<td>13-9</td>
<td>16-2</td>
<td>5-8</td>
<td>8-5</td>
<td>10-9</td>
<td>12-9</td>
<td>15-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Pine</td>
<td>#3</td>
<td>4-8</td>
<td>6-11</td>
<td>8-9</td>
<td>10-7</td>
<td>12-6</td>
<td>4-4</td>
<td>6-5</td>
<td>8-1</td>
<td>9-10</td>
<td>11-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>SS</td>
<td>6-5</td>
<td>10-2</td>
<td>13-4</td>
<td>17-0</td>
<td>20-9</td>
<td>6-5</td>
<td>10-2</td>
<td>13-4</td>
<td>16-8</td>
<td>19-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#1</td>
<td>6-4</td>
<td>9-9</td>
<td>12-4</td>
<td>15-1</td>
<td>17-6</td>
<td>6-2</td>
<td>9-0</td>
<td>11-5</td>
<td>13-11</td>
<td>16-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#2</td>
<td>6-4</td>
<td>9-9</td>
<td>12-4</td>
<td>15-1</td>
<td>17-6</td>
<td>6-2</td>
<td>9-0</td>
<td>11-5</td>
<td>13-11</td>
<td>16-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir</td>
<td>#3</td>
<td>5-0</td>
<td>7-4</td>
<td>9-4</td>
<td>11-5</td>
<td>13-2</td>
<td>4-8</td>
<td>6-10</td>
<td>8-8</td>
<td>10-6</td>
<td>12-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>SS</td>
<td>6-7</td>
<td>10-4</td>
<td>13-7</td>
<td>17-4</td>
<td>20-6</td>
<td>6-7</td>
<td>10-4</td>
<td>13-5</td>
<td>16-5</td>
<td>19-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#1</td>
<td>6-4</td>
<td>9-6</td>
<td>12-0</td>
<td>14-8</td>
<td>17-1</td>
<td>6-0</td>
<td>8-10</td>
<td>11-2</td>
<td>13-7</td>
<td>15-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#2</td>
<td>6-1</td>
<td>8-11</td>
<td>11-3</td>
<td>13-9</td>
<td>15-11</td>
<td>5-7</td>
<td>8-3</td>
<td>10-5</td>
<td>12-9</td>
<td>14-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch</td>
<td>#3</td>
<td>4-7</td>
<td>6-9</td>
<td>8-6</td>
<td>10-5</td>
<td>12-1</td>
<td>4-3</td>
<td>6-3</td>
<td>7-11</td>
<td>9-7</td>
<td>11-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.2</td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>SS</td>
<td>6-2</td>
<td>9-9</td>
<td>12-10</td>
<td>16-5</td>
<td>19-11</td>
<td>6-2</td>
<td>9-9</td>
<td>12-10</td>
<td>16-1</td>
<td>18-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#1</td>
<td>6-1</td>
<td>9-3</td>
<td>11-9</td>
<td>14-4</td>
<td>16-7</td>
<td>5-10</td>
<td>8-7</td>
<td>10-10</td>
<td>13-3</td>
<td>15-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#2</td>
<td>5-9</td>
<td>8-9</td>
<td>11-1</td>
<td>13-7</td>
<td>15-9</td>
<td>5-7</td>
<td>8-1</td>
<td>10-3</td>
<td>12-7</td>
<td>14-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hem-Fir</td>
<td>#3</td>
<td>4-7</td>
<td>6-9</td>
<td>8-6</td>
<td>10-5</td>
<td>12-1</td>
<td>4-3</td>
<td>6-3</td>
<td>7-11</td>
<td>9-7</td>
<td>11-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
TABLE 2308.7.2(6)—continued

RAFTER SPANS FOR COMMON LUMBER SPECIES

(Ground Snow Load = 50 psf, Ceiling Attached to Rafters, L/∆ = 240)

<table>
<thead>
<tr>
<th>RAFTER SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 4</td>
<td>2 x 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft. - in.)</td>
<td>(ft. - in.)</td>
</tr>
<tr>
<td>Southern Pine SS</td>
<td>6-5</td>
<td>10-2</td>
<td>13-4</td>
</tr>
<tr>
<td>Southern Pine #1</td>
<td>5-9</td>
<td>8-8</td>
<td>12-3</td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>4-3</td>
<td>6-4</td>
<td>8-0</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir SS</td>
<td>5-11</td>
<td>9-6</td>
<td>12-7</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #1</td>
<td>4-7</td>
<td>8-6</td>
<td>10-9</td>
</tr>
<tr>
<td>Spruce-Pine-Fir #2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spruce-Pine-Fir #3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch SS</td>
<td>5-8</td>
<td>8-3</td>
<td>11-6</td>
</tr>
<tr>
<td>Douglas Fir-Larch #1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Douglas Fir-Larch #3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hem-Fir SS</td>
<td>5-5</td>
<td>8-3</td>
<td>11-6</td>
</tr>
<tr>
<td>Hem-Fir #1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hem-Fir #3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check sources for availability of lumber in lengths greater than 20 feet.

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.

a. The tabulated rafter spans assume that ceiling joists are located at the bottom of the attic space or that some other method of resisting the outward push of the rafters on the bearing walls, such as rafter ties, is provided at that location. When ceiling joists or rafter ties are located higher in the attic space, the rafter spans shall be multiplied by the factors given below:
<table>
<thead>
<tr>
<th>HC/HR</th>
<th>Rafter Span Adjustment Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>0.67</td>
</tr>
<tr>
<td>1/4</td>
<td>0.76</td>
</tr>
<tr>
<td>1/5</td>
<td>0.83</td>
</tr>
<tr>
<td>1/6</td>
<td>0.90</td>
</tr>
<tr>
<td>1/7.5 or less</td>
<td>1.00</td>
</tr>
</tbody>
</table>

where:

- \(H_C \) = Height of ceiling joists or rafter ties measured vertically above the top of the rafter support walls.
- \(H_R \) = Height of roof ridge measured vertically above the top of the rafter support walls.

TABLE 2308.7.3.1
RAFTER TIE CONNECTIONS

<table>
<thead>
<tr>
<th>RAFTER SLOPE</th>
<th>TIE SPACING (inches)</th>
<th>NO SNOW LOAD</th>
<th>GROUND SNOW LOAD (pound per square foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30 pounds per square foot</td>
<td>50 pounds per square foot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>3:12</td>
<td>12</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>4:12</td>
<td>12</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>5:12</td>
<td>12</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>7:12</td>
<td>12</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 47.8 N/m².

a. 40d box \((5'' \times 0.162'')\) or 16d sinker \((3\frac{1}{4}'' \times 0.148'')\) nails are permitted to be substituted for 16d common \((3\frac{1}{2}'' \times 0.16'')\) nails.

b. Nailing requirements are permitted to be reduced 25 percent if nails are clinched.

c. Rafter tie heel joint connections are not required where the ridge is supported by a load-bearing wall, header or ridge beam.

d. When intermediate support of the rafter is provided by vertical struts or purlins to a load-bearing wall, the tabulated heel joint connection requirements are permitted to be reduced proportionally to the reduction in span.

e. Equivalent nailing patterns are required for ceiling joist to ceiling joist lap splices.

f. Connected members shall be of sufficient size to prevent splitting due to nailing.

g. For snow loads less than 30 pounds per square foot, the required number of nails is permitted to be reduced by multiplying by the ratio of actual snow load plus 10 divided by 40, but not less than the number required for no snow load.

Table 2308.7.5

Required Rating of Approved Uplift Connectors (pounds)

| NOMINAL DESIGN WIND SPEED, \(V_{asd}\) | 12 | 20 | 24 | 28 | 32 | 36 | 40 | OVERHANGS (pounds/feet) ≤
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>-91</td>
<td>-151</td>
<td>-181</td>
<td>-212</td>
<td>-242</td>
<td>-272</td>
<td>-302</td>
<td>-43.22</td>
</tr>
<tr>
<td>100</td>
<td>-131</td>
<td>-281</td>
<td>-326</td>
<td>-365</td>
<td>-393</td>
<td>-436</td>
<td>-53.36</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>-175</td>
<td>-292</td>
<td>-351</td>
<td>-409</td>
<td>-467</td>
<td>-526</td>
<td>-584</td>
<td>-64.56</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 mile per hour = 1.61 km/hr, 1 pound = 0.454 Kg, 1 pound per square foot = 47.8 N/m².

a. The uplift connection requirements are based on a 30-foot mean roof height located in Exposure B. For Exposure C or D and for other mean roof heights, multiply the above loads by the adjustment coefficients below.
<table>
<thead>
<tr>
<th>SPAN<sup>a</sup> (feet)</th>
<th>LIVE LOAD (pounds per square foot)</th>
<th>DEFLECTION LIMIT</th>
<th>BENDING STRESS (f) (pounds per square inch)</th>
<th>MODULUS OF ELASTICITY (E) (pounds per square inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>20</td>
<td>1/240 1/360</td>
<td>160</td>
<td>170,000 256,000</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1/240 1/360</td>
<td>210</td>
<td>256,000 384,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240 1/360</td>
<td>270</td>
<td>340,000 512,000</td>
</tr>
<tr>
<td>4.5</td>
<td>20</td>
<td>1/240 1/360</td>
<td>200</td>
<td>242,000 305,000</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1/240 1/360</td>
<td>270</td>
<td>363,000 405,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240 1/360</td>
<td>350</td>
<td>484,000 725,000</td>
</tr>
<tr>
<td>5.0</td>
<td>20</td>
<td>1/240 1/360</td>
<td>250</td>
<td>332,000 500,000</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1/240 1/360</td>
<td>330</td>
<td>495,000 742,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240 1/360</td>
<td>420</td>
<td>660,000 1,000,000</td>
</tr>
<tr>
<td>5.5</td>
<td>20</td>
<td>1/240 1/360</td>
<td>300</td>
<td>442,000 660,000</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1/240 1/360</td>
<td>400</td>
<td>662,000 998,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240 1/360</td>
<td>500</td>
<td>884,000 1,330,000</td>
</tr>
<tr>
<td>6.0</td>
<td>20</td>
<td>1/240 1/360</td>
<td>360</td>
<td>575,000 862,000</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1/240 1/360</td>
<td>480</td>
<td>862,000 1,295,000</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1/240 1/360</td>
<td>600</td>
<td>1,150,000 1,730,000</td>
</tr>
</tbody>
</table>

^a Roofs
Table 2308.7.12—continued

ALLOWABLE SPANS FOR 2-INCH TONGUE-AND-GROOVE DECKING

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kN/m², 1 pound per square inch = 0.00689 N/mm².

a. Spans are based on simple beam action with 10 pounds per square foot dead load and provisions for a 300-pound concentrated load on a 12-inch width of decking. Random layup is permitted in accordance with the provisions of Section 2308.7.12. Lumber thickness is 1 1/2 inches nominal.

2308.8 Design of elements.
Combining of engineered elements or systems and conventionally specified elements or systems shall be permitted subject to the limits of Sections 2308.8.1 and 2308.8.2.

2308.8.1 Elements exceeding limitations of conventional construction.

Where a building of otherwise conventional construction contains structural elements exceeding the limits of Section 2308.2, these elements and the
supporting load path shall be designed in accordance with accepted engineering practice and the provisions of this code.

2308.8.2 Structural elements or systems not described herein. Where a building of otherwise conventional construction contains structural elements or systems not described in Section 2308, these elements or systems shall be designed in accordance with accepted engineering practice and the provisions of this code. The extent of such design need only demonstrate compliance of the nonconventional elements with other applicable provisions of this code and shall be compatible with the performance of the conventionally framed system.

SECTION 2309
WOOD FRAME CONSTRUCTION MANUAL

2309.1 Wood Frame Construction Manual. Structural design in accordance with the AWC WFCM shall be permitted for buildings assigned to Risk Category I or II subject to the limitations of Section 1.1.3 of the AWC WFCM and the load assumptions contained therein. Structural elements beyond these limitations shall be designed in accordance with accepted engineering practice.
Effective: 8/1/2018
Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
Prior Effective Dates: 03/01/2005, 07/01/2007, 11/01/2011, 11/01/2017
4101:1-25-01 Gypsum board, gypsum panel products and plaster.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:1-35-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 2501
GENERAL

2501.1 Scope. Provisions of this chapter shall govern the materials, design, construction and quality of gypsum board, gypsum panel products, lath, gypsum plaster, cement plaster and reinforced gypsum concrete.

2501.2 Performance. Lathing, plastering, gypsum board and gypsum panel product construction shall be done in the manner and with the materials specified in this chapter and, when required for fire protection, shall also comply with the provisions of Chapter 7.

2501.3 Other materials. Other approved wall or ceiling coverings shall be permitted to be installed in accordance with the recommendations of the manufacturer and the conditions of approval.

SECTION 2502
DEFINITIONS

2502.1 Definitions. The following terms are defined in Chapter 2:

CEMENT PLASTER.
EXTERIOR SURFACES.
GYPSUM BOARD.
GYPSUM PANEL PRODUCTS.
GYPSUM PLASTER.
GYPSUM VENEER PLASTER.
INTERIOR SURFACES.
WEATHER-EXPOSED SURFACES.
WIRE BACKING.

SECTION 2503
INSPECTION

2503.1 Inspection. Lath, gypsum board and gypsum panel products shall be
SECTION 2504
VERTICAL AND HORIZONTAL ASSEMBLIES

2504.1 Scope. The following requirements shall be met where construction involves gypsum board, gypsum panel products or lath and plaster in vertical and horizontal assemblies.

2504.1.1 Wood framing. Wood supports for lath, gypsum board or gypsum panel products, as well as wood stripping or furring, shall be not less than 2 inches (51 mm) nominal thickness in the least dimension.

Exception: The minimum nominal dimension of wood furring strips installed over solid backing shall be not less than 1 inch by 2 inches (25 mm by 51 mm).

2504.1.2 Studless partitions. The minimum thickness of vertically erected studless solid plaster partitions of 3/8-inch (9.5 mm) and 3/4-inch (19.1 mm) rib metal lath, 1/2-inch-thick (12.7 mm) gypsum lath, gypsum board or gypsum panel product shall be 2 inches (51 mm).

SECTION 2505
SHEAR WALL CONSTRUCTION

2505.1 Resistance to shear (wood framing). Wood-frame shear walls sheathed with gypsum board, gypsum panel products or lath and plaster shall be designed and constructed in accordance with Section 2306.3 and are permitted to resist wind and seismic loads. Walls resisting seismic loads shall be subject to the limitations in Section 12.2.1 of ASCE 7.

2505.2 Resistance to shear (steel framing). Cold-formed steel-frame shear walls sheathed with gypsum board or gypsum panel products and constructed in accordance with the materials and provisions of Section 2211.6 are permitted to resist wind and seismic loads. Walls resisting seismic loads shall be subject to the limitations in Section 12.2.1 of ASCE 7.

SECTION 2506
GYPSUM BOARD AND GYPSUM PANEL PRODUCT MATERIALS

2506.1 General. Gypsum board, gypsum panel products and accessories shall be identified by the manufacturer’s designation to indicate compliance with the appropriate standards referenced in this section and stored to protect such materials from the weather.

2506.2 Standards. Gypsum board and gypsum panel products shall conform to the appropriate standards listed in Table 2506.2 and Chapter 35 and, where required for fire protection, shall conform to the provisions of Chapter 7.
TABLE 2506.2
GYPSUM BOARD AND GYPSUM PANEL PRODUCTS MATERIALS AND ACCESSORIES

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories for gypsum board</td>
<td>ASTM C1047</td>
</tr>
<tr>
<td>Adhesives for fastening gypsum board</td>
<td>ASTM C557</td>
</tr>
<tr>
<td>Cold-formed steel studs and track, structural</td>
<td>AISI S200 and ASTM C 955, Section 8</td>
</tr>
<tr>
<td>Cold-formed steel studs and track, nonstructural</td>
<td>AISI S220 and ASTM C 645, Section 10</td>
</tr>
<tr>
<td>Elastomeric joint sealants</td>
<td>ASTM C 920</td>
</tr>
<tr>
<td>Fiber-reinforced gypsum panels</td>
<td>ASTM C 1278</td>
</tr>
<tr>
<td>Glass mat gypsum backing panel</td>
<td>ASTM C 1178</td>
</tr>
<tr>
<td>Glass mat gypsum panel 5</td>
<td>ASTM C 1658</td>
</tr>
<tr>
<td>Glass mat gypsum substrate</td>
<td>ASTM C 1177</td>
</tr>
<tr>
<td>Joint reinforcing tape and compound</td>
<td>ASTM C 474; C 475</td>
</tr>
<tr>
<td>Nails for gypsum boards</td>
<td>ASTM C 514, F 547, F 1667</td>
</tr>
<tr>
<td>Steel screws</td>
<td>ASTM C 954; C 1002</td>
</tr>
<tr>
<td>Standard specification for gypsum board</td>
<td>ASTM C 1396</td>
</tr>
<tr>
<td>Testing gypsum and gypsum products</td>
<td>ASTM C 22; C 472; C 473</td>
</tr>
</tbody>
</table>

2506.2.1 Other materials. Metal suspension systems for acoustical and lay-in panel ceilings shall comply with ASTM C 635 listed in Chapter 35 and Section 13.5.6 of ASCE 7 for installation in high seismic areas.

SECTION 2507
LATHING AND PLASTERING

2507.1 General. Lathing and plastering materials and accessories shall be marked by the manufacturer’s designation to indicate compliance with the appropriate standards referenced in this section and stored in such a manner to protect them from the weather.

2507.2 Standards. Lathing and plastering materials shall conform to the standards listed in Table 2507.2 and Chapter 35 and, where required for fire protection, shall also conform to the provisions of Chapter 7.

TABLE 2507.2
LATH, PLASTERING MATERIALS AND ACCESSORIES

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories for gypsum veneer base</td>
<td>ASTM C1047</td>
</tr>
<tr>
<td>Blended cement</td>
<td>ASTM C595</td>
</tr>
<tr>
<td>Exterior plaster bonding compounds</td>
<td>ASTM C932</td>
</tr>
<tr>
<td>Cold-formed steel studs and track, structural</td>
<td>AISI S200 and ASTM C 955, Section 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold-formed steel studs and track, nonstructural</td>
<td>AISI S220 and ASTM C 645, Section 10</td>
</tr>
<tr>
<td>Hydraulic cement</td>
<td>ASTM C 1157; C 1600</td>
</tr>
<tr>
<td>Gypsum casting and molding plaster</td>
<td>ASTM C 59</td>
</tr>
<tr>
<td>Gypsum Keene’s cement</td>
<td>ASTM C 61</td>
</tr>
<tr>
<td>Gypsum plaster</td>
<td>ASTM C 28</td>
</tr>
<tr>
<td>Gypsum veneer plaster</td>
<td>ASTM C 587</td>
</tr>
<tr>
<td>Interior bonding compounds, gypsum</td>
<td>ASTM C 631</td>
</tr>
<tr>
<td>Lime plasters</td>
<td>ASTM C 5; C 206</td>
</tr>
<tr>
<td>Masonry cement</td>
<td>ASTM C 91</td>
</tr>
<tr>
<td>Metal lath</td>
<td>ASTM C 847</td>
</tr>
<tr>
<td>Plaster aggregates</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>ASTM C 35; C 897</td>
</tr>
<tr>
<td>Perlite</td>
<td>ASTM C 35</td>
</tr>
<tr>
<td>Vermiculite</td>
<td>ASTM C 35</td>
</tr>
<tr>
<td>Plastic cement</td>
<td>ASTM C 1328</td>
</tr>
<tr>
<td>Portland cement</td>
<td>ASTM C 150</td>
</tr>
<tr>
<td>Steel screws</td>
<td>ASTM C 1002; C 954</td>
</tr>
<tr>
<td>Welded wire lath</td>
<td>ASTM C 933</td>
</tr>
<tr>
<td>Woven wire plaster base</td>
<td>ASTM C 1032</td>
</tr>
</tbody>
</table>

SECTION 2508

GYPSUM CONSTRUCTION

2508.1 **General.** Gypsum board, gypsum panel products and gypsum plaster construction shall be of the materials listed in Tables 2506.2 and 2507.2. These materials shall be assembled and installed in compliance with the appropriate standards listed in Tables 2508.1 and 2511.1.1 and Chapter 35.

TABLE 2508.1

INSTALLATION OF GYPSUM CONSTRUCTION

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gypsum board and gypsum panel products</td>
<td>GA-216; ASTM C840</td>
</tr>
<tr>
<td>Gypsum sheathing and gypsum panel products</td>
<td>ASTM C1280</td>
</tr>
<tr>
<td>Gypsum veneer base</td>
<td>ASTM C844</td>
</tr>
<tr>
<td>Interior lathing and furring</td>
<td>ASTM C841</td>
</tr>
<tr>
<td>Steel framing for gypsum board and</td>
<td>ASTM C754; ASTM C1007</td>
</tr>
</tbody>
</table>
2508.2 Limitations. Gypsum wallboard or gypsum plaster shall not be used in any exterior surface where such gypsum construction will be exposed directly to the weather. Gypsum wallboard shall not be used where there will be direct exposure to water or continuous high humidity conditions. Gypsum sheathing shall be installed on exterior surfaces in accordance with ASTM C 1280.

2508.2.1 Weather protection. Gypsum wallboard, gypsum lath or gypsum plaster shall not be installed until weather protection for the installation is provided.

2508.3 Single-ply application. Edges and ends of gypsum board and gypsum panel products shall occur on the framing members, except those edges and ends that are perpendicular to the framing members. Edges and ends of gypsum board and gypsum panel products shall be in moderate contact except in concealed spaces where fire-resistance-rated construction, shear resistance or diaphragm action is not required.

2508.3.1 Floating angles. Fasteners at the top and bottom plates of vertical assemblies, or the edges and ends of horizontal assemblies perpendicular to supports, and at the wall line are permitted to be omitted except on shear resisting elements or fire-resistance-rated assemblies. Fasteners shall be applied in such a manner as not to fracture the face paper with the fastener head.

2508.4 Joint treatment. Gypsum board and gypsum panel product fire-resistance-rated assemblies shall have joints and fasteners treated.

Exception: Joint and fastener treatment need not be provided where any of the following conditions occur:

1. Where the gypsum board or the gypsum panel product is to receive a decorative finish such as wood paneling, battens, acoustical finishes or any similar application that would be equivalent to joint treatment.
2. On single-layer systems where joints occur over wood framing members.
3. Square edge or tongue-and-groove edge gypsum board (V-edge), gypsum panel products, gypsum backing board or gypsum sheathing.
4. On multilayer systems where the joints of adjacent layers are offset.
5. Assemblies tested without joint treatment.
2508.5 Horizontal gypsum board or gypsum panel product diaphragm ceilings. Gypsum board or gypsum panel products shall be permitted to be used on wood joists to create a horizontal diaphragm ceiling in accordance with Table 2508.5.

TABLE 2508.5
SHEAR CAPACITY FOR HORIZONTAL WOOD-FRAME GYPSUM BOARD DIAPHRAGM CEILING ASSEMBLIES

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>THICKNESS OF MATERIAL (MINIMUM) (inches)</th>
<th>SPACING OF FRAMING MEMBERS (inches)</th>
<th>SHEAR VALUE<sup>a,b</sup> (PLF OF CEILING)</th>
<th>MINIMUM FASTENER SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gypsum board or gypsum panel product</td>
<td>1/2</td>
<td>16 o.c.</td>
<td>90</td>
<td>5d cooler or wallboard nail; 15/8-inch long; 0.086-inch shank; 15/64-inch head.<sup>c</sup></td>
</tr>
<tr>
<td>Gypsum board or gypsum panel product</td>
<td>1/2</td>
<td>24 o.c.</td>
<td>70</td>
<td>5d cooler or wallboard nail; 15/8-inch long; 0.086-inch shank; 15/64-inch head.<sup>c</sup></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per foot = 14.59 N/m.

^a Values are not cumulative with other horizontal diaphragm values and are for short-term wind or seismic loading. Values shall be reduced 25 percent for normal loading.

^b Values shall be reduced 50 percent in Seismic Design Categories D, E and F.

^c 1 1/4-inch, No. 6 Type S or W screws are permitted to be substituted for the listed nails.

2508.5.1 Diaphragm proportions. The maximum allowable diaphragm proportions shall be 1 1/2:1 between shear resisting elements. Rotation or cantilever conditions shall not be permitted.

2508.5.2 Installation. Gypsum board or gypsum panel products used in a horizontal diaphragm ceiling shall be installed perpendicular to ceiling framing members. End joints of adjacent courses of gypsum board shall not occur on the same joist.

2508.5.3 Blocking of perimeter edges. Perimeter edges shall be blocked using a wood member not less than 2 inch by 6-inch (51 mm by 152 mm) nominal dimension. Blocking material shall be installed flat over the top plate of the wall to provide a nailing surface not less than 2 inches (51 mm) in width for the attachment of the gypsum board or gypsum panel product.

2508.5.4 Fasteners. Fasteners used for the attachment of gypsum board or gypsum panel products to a horizontal diaphragm ceiling shall be as defined in Table 2508.5. Fasteners shall be spaced not more than 7 inches (178 mm) on center at all supports, including perimeter blocking, and not more than 3/8 inch (9.5 mm) from the edges and ends of the gypsum board or gypsum panel product.
2508.5.5 Lateral force restrictions. Gypsum board or gypsum panel products shall not be used in diaphragm ceilings to resist lateral forces imposed by masonry or concrete construction.

SECTION 2509
SHOWERS AND WATER CLOSETS
2509.1 Wet areas. Showers and public toilet walls shall conform to Section 1210.2.

2509.2 Base for tile. Materials used as a base for wall tile in tub and shower areas and wall and ceiling panels in shower areas shall be of materials listed in Table 2509.2 and installed in accordance with the manufacturer’s recommendations. Water-resistant gypsum backing board shall be used as a base for tile in water closet compartment walls when installed in accordance with GA-216 or ASTM C 840 and the manufacturer’s recommendations. Regular gypsum wallboard is permitted under tile or wall panels in other wall and ceiling areas when installed in accordance with GA-216 or ASTM C 840.

TABLE 2509.2
BACKERBOARD MATERIALS

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass mat gypsum backing panel</td>
<td>ASTM C 1178</td>
</tr>
<tr>
<td>Nonasbestos fiber-cement backer board</td>
<td>ASTM C 1288 or ISO 8336, Category C</td>
</tr>
<tr>
<td>Nonasbestos fiber-mat reinforced cementitious backer unit</td>
<td>ASTM C 1325</td>
</tr>
</tbody>
</table>

2509.3 Limitations. Water-resistant gypsum backing board shall not be used in the following locations:
1. Over a vapor retarder in shower or bathtub compartments.
2. Where there will be direct exposure to water or in areas subject to continuous high humidity.

SECTION 2510
LATTHING AND FURRING FOR CEMENT PLASTER (STUCCO)
2510.1 General. Exterior and interior cement plaster and lathing shall be done with the appropriate materials listed in Table 2507.2 and Chapter 35.

2510.2 Weather protection. Materials shall be stored in such a manner as to protect them from the weather.

2510.3 Installation. Installation of these materials shall be in compliance with ASTM C 926 and ASTM C 1063.

2510.4 Corrosion resistance. Metal lath and lath attachments shall be of
corrosion-resistant material.

2510.5 **Backing.** Backing or a lath shall provide sufficient rigidity to permit plaster applications.

2510.5.1 **Support of lath.** Where lath on vertical surfaces extends between rafters or other similar projecting members, solid backing shall be installed to provide support for lath and attachments.

2510.5.2 **Use of gypsum backing board.** Gypsum backing for cement plaster shall be in accordance with Section 2510.5.2.1 or 2510.5.2.2.

2510.5.2.1 **Gypsum board as a backing board.** Gypsum lath or gypsum wallboard shall not be used as a backing for cement plaster.

Exception: Gypsum lath or gypsum wallboard is permitted, with a water-resistive barrier, as a backing for self-furred metal lath or self-furred wire fabric lath and cement plaster where either of the following conditions occur:

1. On horizontal supports of ceilings or roof soffits.
2. On interior walls.

2510.5.2.2 **Gypsum sheathing backing.** Gypsum sheathing is permitted as a backing for metal or wire fabric lath and cement plaster on walls. A water-resistive barrier shall be provided in accordance with Section 2510.6.

2510.5.3 **Backing not required.** Wire backing is not required under expanded metal lath or paperbacked wire fabric lath.

2510.6 **Water-resistant barriers.** Water-resistant barriers shall be installed as required in Section 1404.2 and, where applied over wood-based sheathing, shall include a water-resistant vapor-permeable barrier with a performance at least equivalent to two layers of water-resistant barrier complying with ASTM E 2556, Type I. The individual layers shall be installed independently such that each layer provides a separate continuous plane and any flashing (installed in accordance with Section 1405.4) intended to drain to the water-resistant barrier is directed between the layers.

Exception: Where the water-resistant barrier that is applied over wood-based sheathing has a water resistance equal to or greater than that of a water-resistant barrier complying with ASTM E 2556, Type II and is separated from the stucco by an intervening, substantially nonwater-absorbing layer or drainage space.

2510.7 **Preparation of masonry and concrete.** Surfaces shall be clean, free from efflorescence, sufficiently damp and rough for proper bond. If the surface is insufficiently rough, approved bonding agents or a Portland cement dash bond coat mixed in proportions of not more than two parts volume of sand to one part volume of Portland cement or plastic cement shall be applied. The dash bond coat shall be left undisturbed and shall be moist cured not less than 24 hours.
SECTION 2511
INTERIOR PLASTER

2511.1 General. Plastering gypsum plaster or cement plaster shall be not less than three coats where applied over metal lath or wire fabric lath and not less than two coats where applied over other bases permitted by this chapter.

Exception: Gypsum veneer plaster and cement plaster specifically designed and approved for one-coat applications.

2511.1.1 Installation. Installation of lathing and plaster materials shall conform to Table 2511.1.1 and Section 2507.

<table>
<thead>
<tr>
<th>TABLE 2511.1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTALLATION OF PLASTER CONSTRUCTION</td>
</tr>
<tr>
<td>MATERIAL</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Cement plaster</td>
</tr>
<tr>
<td>Gypsum plaster</td>
</tr>
<tr>
<td>Gypsum veneer plaster</td>
</tr>
<tr>
<td>Interior lathing and furring (gypsum plaster)</td>
</tr>
<tr>
<td>Lathing and furring (cement plaster)</td>
</tr>
<tr>
<td>Steel framing</td>
</tr>
</tbody>
</table>

2511.2 Limitations. Plaster shall not be applied directly to fiber insulation board. Cement plaster shall not be applied directly to gypsum lath or gypsum plaster except as specified in Sections 2510.5.1 and 2510.5.2.

2511.3 Grounds. Where installed, grounds shall ensure the minimum thickness of plaster as set forth in ASTM C 842 and ASTM C 926. Plaster thickness shall be measured from the face of lath and other bases.

2511.4 Interior masonry or concrete. Condition of surfaces shall be as specified in Section 2510.7. Approved specially prepared gypsum plaster designed for application to concrete surfaces or approved acoustical plaster is permitted. The total thickness of base coat plaster applied to concrete ceilings shall be as set forth in ASTM C 842 or ASTM C 926. Should ceiling surfaces require more than the maximum thickness permitted in ASTM C 842 or ASTM C 926, metal lath or wire fabric lath shall be installed on such surfaces before plastering.

2511.5 Wet areas. Showers and public toilet walls shall conform to Sections 1210.2 and 1210.3. When wood frame walls and partitions are covered on the interior with cement plaster or tile of similar material and are subject to water splash, the framing shall be protected with an approved moisture barrier.

SECTION 2512
EXTERIOR PLASTER

2512.1 General. Plastering with cement plaster shall be not less than three coats when applied over metal lath or wire fabric lath or gypsum board backing as specified in Section 2510.5 and shall be not less than two coats when applied over masonry or concrete. If the plaster surface is to be completely covered by veneer or other facing material, or is completely concealed by another wall, plaster application need only be two coats, provided the total thickness is as set forth in ASTM C 926.

2512.1.1 On-grade floor slab. On wood frame or steel stud construction with an on-grade concrete floor slab system, exterior plaster shall be applied in such a manner as to cover, but not to extend below, the lath and paper. The application of lath, paper and flashing or drip screeds shall comply with ASTM C 1063.

2512.1.2 Weep screeds. A minimum 0.019-inch (0.48 mm) (No. 26 galvanized sheet gage), corrosion-resistant weep screed with a minimum vertical attachment flange of 3 1/2 inches (89 mm) shall be provided at or below the foundation plate line on exterior stud walls in accordance with ASTM C 926. The weep screed shall be placed a minimum of 4 inches (102 mm) above the earth or 2 inches (51 mm) above paved areas and be of a type that will allow trapped water to drain to the exterior of the building. The water-resistive barrier shall lap the attachment flange. The exterior lath shall cover and terminate on the attachment flange of the weep screed.

2512.2 Plasticity agents. Only approved plasticity agents and approved amounts thereof shall be added to Portland cement or blended cements. When plastic cement or masonry cement is used, no additional lime or plasticizers shall be added. Hydrated lime or the equivalent amount of lime putty used as a plasticizer is permitted to be added to cement plaster or cement and lime plaster in an amount not to exceed that set forth in ASTM C 926.

2512.3 Limitations. Gypsum plaster shall not be used on exterior surfaces.

2512.4 Cement plaster. Plaster coats shall be protected from freezing for a period of not less than 24 hours after set has occurred. Plaster shall be applied when the ambient temperature is higher than 40°F (4°C), unless provisions are made to keep cement plaster work above 40°F (4°C) during application and 48 hours thereafter.

2512.5 Second-coat application. The second coat shall be brought out to proper thickness, rodded and floated sufficiently rough to provide adequate bond for the finish coat. The second coat shall have no variation greater than 1/4 inch (6.4 mm) in any direction under a 5-foot (1524 mm) straight edge.

2512.6 Curing and interval. First and second coats of cement plaster shall be applied and moist cured as set forth in ASTM C 926 and Table 2512.6.
TABLE 2512.6
CEMENT PLASTERS

<table>
<thead>
<tr>
<th>COAT</th>
<th>MINIMUM PERIOD MOIST CURING</th>
<th>MINIMUM INTERVAL BETWEEN COATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>48 hours (^a)</td>
<td>48 hours (^b)</td>
</tr>
<tr>
<td>Second</td>
<td>48 hours</td>
<td>7 days (^c)</td>
</tr>
<tr>
<td>Finish</td>
<td>—</td>
<td>Note (^c)</td>
</tr>
</tbody>
</table>

\(^a\) The first two coats shall be as required for the first coats of exterior plaster, except that the moist-curing time period between the first and second coats shall be not less than 24 hours. Moist curing shall not be required where job and weather conditions are favorable to the retention of moisture in the cement plaster for the required time period.

\(^b\) Twenty-four-hour minimum interval between coats of interior cement plaster. For alternative method of application, see Section 2512.8.

\(^c\) Finish coat plaster is permitted to be applied to interior cement plaster base coats after a 48-hour period.

2512.7 Application to solid backings. Where applied over gypsum backing as specified in Section 2510.5 or directly to unit masonry surfaces, the second coat is permitted to be applied as soon as the first coat has attained sufficient hardness.

2512.8 Alternate method of application. The second coat is permitted to be applied as soon as the first coat has attained sufficient rigidity to receive the second coat.

2512.8.1 Admixtures. When using this method of application, calcium aluminate cement up to 15 percent of the weight of the Portland cement is permitted to be added to the mix.

2512.8.2 Curing. Curing of the first coat is permitted to be omitted and the second coat shall be cured as set forth in ASTM C 926 and Table 2512.6.

2512.9 Finish coats. Cement plaster finish coats shall be applied over base coats that have been in place for the time periods set forth in ASTM C 926. The third or finish coat shall be applied with sufficient material and pressure to bond and to cover the brown coat and shall be of sufficient thickness to conceal the brown coat.

SECTION 2513
EXPOSED AGGREGATE PLASTER

2513.1 General. Exposed natural or integrally colored aggregate is permitted to be partially embedded in a natural or colored bedding coat of cement plaster or gypsum plaster, subject to the provisions of this section.

2513.2 Aggregate. The aggregate shall be applied manually or mechanically and shall consist of marble chips, pebbles or similar durable, moderately hard (three or more on the Mohs hardness scale), nonreactive materials.
2513.3 Bedding coat proportions. The bedding coat for interior or exterior surfaces shall be composed of one part Portland cement and one part Type S lime; or one part blended cement and one part Type S lime; or masonry cement; or plastic cement and a maximum of three parts of graded white or natural sand by volume. The bedding coat for interior surfaces shall be composed of 100 pounds (45.4 kg) of neat gypsum plaster and a maximum of 200 pounds (90.8 kg) of graded white sand. A factory-prepared bedding coat for interior or exterior use is permitted. The bedding coat for exterior surfaces shall have a minimum compressive strength of 1,000 pounds per square inch (psi) (6895 kPa).

2513.4 Application. The bedding coat is permitted to be applied directly over the first (scratch) coat of plaster, provided the ultimate overall thickness is a minimum of \(\frac{7}{8} \) inch (22 mm), including lath. Over concrete or masonry surfaces, the overall thickness shall be a minimum of \(\frac{1}{2} \) inch (12.7 mm).

2513.5 Bases. Exposed aggregate plaster is permitted to be applied over concrete, masonry, cement plaster base coats or gypsum plaster base coats installed in accordance with Section 2511 or 2512.

2513.6 Preparation of masonry and concrete. Masonry and concrete surfaces shall be prepared in accordance with the provisions of Section 2510.7.

2513.7 Curing of base coats. Cement plaster base coats shall be cured in accordance with ASTM C 926. Cement plaster bedding coats shall retain sufficient moisture for hydration (hardening) for 24 hours minimum or, where necessary, shall be kept damp for 24 hours by light water spraying.

SECTION 2514
REINFORCED GYPSUM CONCRETE

2514.1 General. Reinforced gypsum concrete shall comply with the requirements of ASTM C 317 and ASTM C 956.

2514.2 Minimum thickness. The minimum thickness of reinforced gypsum concrete shall be 2 inches (51 mm) except the minimum required thickness shall be reduced to 1\(\frac{1}{2} \) inches (38 mm), provided the following conditions are satisfied:
 1. The overall thickness, including the form board, is not less than 2 inches (51 mm).
 2. The clear span of the gypsum concrete between supports does not exceed 33 inches (838 mm).
 3. Diaphragm action is not required.

 The design live load does not exceed 40 pounds per square foot (psf) (1915 Pa).
Effective: 8/1/2018
Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
Prior Effective Dates: 07/01/2007, 11/01/2011, 11/01/2017
SECTION 2601
GENERAL

2601.1 Scope. These provisions shall govern the materials, design, application, construction and installation of foam plastic, foam plastic insulation, plastic veneer, interior plastic finish and trim, light-transmitting plastics and plastic composites, including plastic lumber. See Chapter 14 for requirements for exterior wall finish and trim.

SECTION 2602
DEFINITIONS

2602.1 Definitions. The following terms are defined in Chapter 2:
- FIBER-REINFORCED POLYMER.
- FOAM PLASTIC INSULATION.
- LIGHT-DIFFUSING SYSTEM.
- LIGHT-TRANSMITTING PLASTIC ROOF PANELS.
- LIGHT-TRANSMITTING PLASTIC WALL PANELS.
- PLASTIC, APPROVED.
- PLASTIC COMPOSITE.
- PLASTIC GLAZING.
- PLASTIC LUMBER.
- THERMOPLASTIC MATERIAL.
- THERMOSETTING MATERIAL.
- WOOD/PLASTIC COMPOSITE.

SECTION 2603
FOAM PLASTIC INSULATION

2603.1 General. The provisions of this section shall govern the requirements and uses of foam plastic insulation in buildings and structures.

2603.2 Labeling and identification. Packages and containers of foam plastic
insulation and foam plastic insulation components delivered to the job site shall bear the label of an approved agency showing the manufacturer’s name, product listing, product identification and information sufficient to determine that the end use will comply with the code requirements.

2603.3 Surface-burning characteristics. Unless otherwise indicated in this section, foam plastic insulation and foam plastic cores of manufactured assemblies shall have a flame spread index of not more than 75 and a smoke-developed index of not more than 450 where tested in the maximum thickness intended for use in accordance with ASTM E 84 or UL 723. Loose fill-type foam plastic insulation shall be tested as board stock for the flame spread and smoke-developed indexes.

Exceptions:
1. Smoke-developed index for interior trim as provided for in Section 2604.2.
2. In cold storage buildings, ice plants, food plants, food processing rooms and similar areas, foam plastic insulation where tested in a thickness of 4 inches (102 mm) shall be permitted in a thickness up to 10 inches (254 mm) where the building is equipped throughout with an automatic fire sprinkler system in accordance with Section 903.3.1.1. The approved automatic sprinkler system shall be provided in both the room and that part of the building in which the room is located.
3. Foam plastic insulation that is a part of a Class A, B or C roof-covering assembly provided the assembly with the foam plastic insulation satisfactorily passes NFPA 276 or UL 1256. The smoke-developed index shall not be limited for roof applications.
4. Foam plastic insulation greater than 4 inches (102 mm) in thickness shall have a maximum flame spread index of 75 and a smoke-developed index of 450 where tested at a minimum thickness of 4 inches (102 mm), provided the end use is approved in accordance with Section 2603.9 using the thickness and density intended for use.
5. Flame spread and smoke-developed indexes for foam plastic interior signs in covered and open mall buildings provided the signs comply with Section 402.6.4.

2603.4 Thermal barrier. Except as provided for in Sections 2603.4.1 and 2603.9, foam plastic shall be separated from the interior of a building by an approved thermal barrier of 1/2 inch (12.7 mm) gypsum wallboard or a material that is tested in accordance with and meets the acceptance criteria of both the Temperature Transmission Fire Test and the Integrity Fire Test of NFPA 275. Combustible concealed spaces shall comply with Section 718.
2603.4.1 Thermal barrier not required. The thermal barrier specified in Section 2603.4 is not required under the conditions set forth in Sections 2603.4.1.1 through 2603.4.1.14.

2603.4.1.1 Masonry or concrete construction. A thermal barrier is not required for foam plastic installed in a masonry or concrete wall, floor or roof system where the foam plastic insulation is covered on each face by not less than 1-inch (25 mm) thickness of masonry or concrete.

2603.4.1.2 Cooler and freezer walls. Foam plastic installed in a maximum thickness of 10 inches (254 mm) in cooler and freezer walls shall:

1. Have a flame spread index of 25 or less and a smoke-developed index of not more than 450, where tested in a minimum 4-inch (102 mm) thickness.
2. Have flash ignition and self-ignition temperatures of not less than 600°F and 800°F (316°C and 427°C), respectively.
3. Have a covering of not less than 0.032-inch (0.8 mm) aluminum or corrosion-resistant steel having a base metal thickness not less than 0.0160 inch (0.4 mm) at any point.
4. Be protected by an automatic sprinkler system in accordance with Section 903.3.1.1. Where the cooler or freezer is within a building, both the cooler or freezer and that part of the building in which it is located shall be sprinklered.

2603.4.1.3 Walk-in coolers. In nonsprinklered buildings, foam plastic having a thickness that does not exceed 4 inches (102 mm) and a maximum flame spread index of 75 is permitted in walk-in coolers or freezer units where the aggregate floor area does not exceed 400 square feet (37 m²) and the foam plastic is covered by a metal facing not less than 0.032-inch thick (0.81 mm) aluminum or corrosion-resistant steel having a minimum base metal thickness of 0.016 inch (0.41 mm). A thickness of up to 10 inches (254 mm) is permitted where protected by a thermal barrier.

2603.4.1.4 Exterior walls-one-story buildings. For one-story buildings, foam plastic having a flame spread index of 25 or less, and a smoke-developed index of not more than 450, shall be permitted without thermal barriers in or on exterior walls in a thickness not more than 4 inches (102 mm) where the foam plastic is covered by a thickness of not less than 0.032-inch-thick (0.81 mm) aluminum or corrosion-resistant steel having a
base metal thickness of 0.0160 inch (0.41 mm) and the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

2603.4.1.5 Roofing. A thermal barrier is not required for foam plastic insulation that is a part of a Class A, B or C roof-covering assembly that is installed in accordance with the code and the manufacturer’s instructions and is either constructed as described in Item 1 or tested as described in Item 2.

1. The roof assembly is separated from the interior of the building by wood structural panel sheathing not less than 0.47 inch (11.9 mm) in thickness bonded with exterior glue, with edges supported by blocking, tongue-and-groove joints, other approved type of edge support or an equivalent material.

2. The assembly with the foam plastic insulation satisfactorily passes NFPA 276 or UL 1256.

2603.4.1.6 Attics and crawl spaces. Within an attic or crawl space where entry is made only for service of utilities, foam plastic insulation shall be protected against ignition by 1 1/2-inch-thick (38 mm) mineral fiber insulation; 1/4-inch-thick (6.4 mm) wood structural panel, particleboard or hardboard; 3/8-inch (9.5 mm) gypsum wallboard, corrosion-resistant steel having a base metal thickness of 0.016 inch (0.4 mm); 1 1/2-inch-thick (38 mm) self-supported spray-applied cellulose insulation in attic spaces only or other approved material installed in such a manner that the foam plastic insulation is not exposed. The protective covering shall be consistent with the requirements for the type of construction.

2603.4.1.7 Doors not required to have a fire protection rating. Where pivoted or side-hinged doors are permitted without a fire protection rating, foam plastic insulation, having a flame spread index of 75 or less and a smoke-developed index of not more than 450, shall be permitted as a core material where the door facing is of metal having a minimum thickness of 0.032-inch (0.8 mm) aluminum or steel having a base metal thickness of not less than 0.016 inch (0.4 mm) at any point.

2603.4.1.8 Exterior doors in buildings of Group R-2 or R-3. In occupancies classified as Group R-2 or R-3, foam-filled exterior entrance doors to individual dwelling units that do not require a fire-resistance rating shall be faced with aluminum, steel, fiberglass, wood or other approved materials.
2603.4.1.9 Garage doors. Where garage doors are permitted without a fire-resistance rating and foam plastic is used as a core material, the door facing shall be metal having a minimum thickness of 0.032-inch (0.8 mm) aluminum or 0.010-inch (0.25 mm) steel or the facing shall be minimum 0.125-inch-thick (3.2 mm) wood. Garage doors having facings other than those described above shall be tested in accordance with, and meet the acceptance criteria of, DASMA 107.

Exception: Deleted.

2603.4.1.10 Siding backer board. Foam plastic insulation of not more than 2,000 British thermal units per square feet (Btu/sq. ft.) (22.7 mJ/m²) as determined by NFPA 259 shall be permitted as a siding backer board with a maximum thickness of \(\frac{1}{2} \) inch (12.7 mm), provided it is separated from the interior of the building by not less than 2 inches (51 mm) of mineral fiber insulation or equivalent or where applied as insulation with residing over existing wall construction.

2603.4.1.11 Interior trim. Foam plastic used as interior trim in accordance with Section 2604 shall be permitted without a thermal barrier.

2603.4.1.12 Interior signs. Foam plastic used for interior signs in covered mall buildings in accordance with Section 402.6.4 shall be permitted without a thermal barrier. Foam plastic signs that are not affixed to interior building surfaces shall comply with Chapter 8 of the fire code.

2603.4.1.13 Type V construction. Foam plastic spray applied to a sill plate, joist header and rim joist in Type V construction is subject to all of the following:

1. The maximum thickness of the foam plastic shall be 3 \(\frac{1}{4} \) inches (82.6 mm).
2. The density of the foam plastic shall be in the range of 1.5 to 2.0pcf (24 to 32 kg/m³).
3. The foam plastic shall have a flame spread index of 25 or less and an accompanying smoke-developed index of 450 or less when tested in accordance with ASTM E 84 or UL 723.

2603.4.1.14 Floors. The thermal barrier specified in Section 2603.4 is not required to be installed on the walking surface of a structural floor system that contains foam plastic insulation when the foam plastic is covered by a minimum nominal \(\frac{1}{2} \)-inch-thick (12.7 mm) wood structural panel or approved equivalent. The thermal barrier specified in Section 2603.4 is
required on the underside of the structural floor system that contains foam plastic insulation when the underside of the structural floor system is exposed to the interior of the building.

Exception: Foam plastic used as part of an interior floor finish.

2603.5 Exterior walls of buildings of any height.

Exterior walls of buildings of Type I, II, III or IV construction of any height shall comply with Sections 2603.5.1 through 2603.5.7. Exterior walls of cold storage buildings required to be constructed of noncombustible materials, where the building is more than one story in height, shall comply with the provisions of Sections 2603.5.1 through 2603.5.7. Exterior walls of buildings of Type V construction shall comply with Sections 2603.2, 2603.3 and 2603.4.

2603.5.1 Fire-resistance-rated walls.

Where the wall is required to have a fire-resistance rating, data based on tests conducted in accordance with ASTM E 119 or UL 263 shall be provided to substantiate that the fire-resistance rating is maintained.

2603.5.2 Thermal barrier.

Any foam plastic insulation shall be separated from the building interior by a thermal barrier meeting the provisions of Section 2603.4, unless special approval is obtained on the basis of Section 2603.9.

Exception: One-story buildings complying with Section 2603.4.1.4.

2603.5.3 Potential heat.

The potential heat of foam plastic insulation in any portion of the wall or panel shall not exceed the potential heat expressed in Btu per square feet (mJ/m²) of the foam plastic insulation contained in the wall assembly tested in accordance with Section 2603.5.5.

The potential heat of the foam plastic insulation shall be determined by tests conducted in accordance with NFPA 259 and the results shall be expressed in Btu per square feet (mJ/m²).

Exception: One-story buildings complying with Section 2603.4.1.4.

2603.5.4 Flame spread and smoke-developed indexes.

Foam plastic insulation, exterior coatings and facings shall be tested separately in the thickness intended for use, but not to exceed 4 inches (102 mm), and shall each have a flame spread index of 25 or less and a smoke-developed index of 450 or less as determined in accordance with ASTM E 84 or UL 723.

Exception: Prefabricated or factory-manufactured panels having minimum 0.020-inch (0.51 mm) aluminum facings and a total thickness of 1/4 inch (6.4 mm) or less are permitted to be tested as an assembly where the foam
plastic core is not exposed in the course of construction.

2603.5.5 **Vertical and lateral fire propagation.** The exterior wall assembly shall be tested in accordance with and comply with the acceptance criteria of NFPA 285.

Exceptions:
1. One-story buildings complying with Section 2603.4.1.4.
2. Wall assemblies where the foam plastic insulation is covered on each face by not less than 1-inch (25 mm) thickness of masonry or concrete and meeting one of the following:
 2.1. There is no airspace between the insulation and the concrete or masonry.
 2.2. The insulation has a flame spread index of not more than 25 as determined in accordance with ASTM E 84 or UL 723 and the maximum airspace between the insulation and the concrete or masonry is not more than 1 inch (25 mm).

2603.5.6 **Label required.** The edge or face of each piece, package or container of foam plastic insulation shall bear the label of an approved agency. The label shall contain the manufacturer’s or distributor’s identification, model number, serial number or definitive information describing the product or materials’ performance characteristics and approved agency’s identification.

2603.5.7 **Ignition.** Exterior walls shall not exhibit sustained flaming where tested in accordance with NFPA 268. Where a material is intended to be installed in more than one thickness, tests of the minimum and maximum thickness intended for use shall be performed.

Exception: Assemblies protected on the outside with one of the following:
1. A thermal barrier complying with Section 2603.4.
2. A minimum 1-inch (25 mm) thickness of concrete or masonry.
4. Metal-faced panels having minimum 0.019-inch thick (0.48 mm) aluminum or 0.016-inch-thick (0.41 mm) corrosion-resistant steel outer facings.
5. A minimum 7/8-inch (22.2 mm) thickness of stucco complying with Section 2510.
6. A minimum $\frac{1}{4}$-inch (6.4 mm) thickness of fiber-cement lap, panel or shingle siding complying with Sections 1405.16 and 1405.16.1 or 1405.16.2.

2603.6 Roofing. Foam plastic insulation meeting the requirements of Sections 2603.2, 2603.3 and 2603.4 shall be permitted as part of a roof-covering assembly, provided the assembly with the foam plastic insulation is a Class A, B or C roofing assembly where tested in accordance with ASTM E 108 or UL 790.

2603.7 Foam plastic insulation used as interior finish or interior trim in plenums. Foam plastic insulation used as interior wall or ceiling finish or as interior trim in plenums shall exhibit a flame spread index of 75 or less and a smoke-developed index of 450 or less when tested in accordance with ASTM E 84 or UL 723 and shall comply with one or more of Sections 2603.7.1, 2603.7.2 and 2607.3.

2603.7.1 Separation required. The foam plastic insulation shall be separated from the plenum by a thermal barrier complying with Section 2603.4 and shall exhibit a flame spread index of 75 or less and a smoke-developed index of 450 or less when tested in accordance with ASTM E 84 or UL 723 at the thickness
and density intended for use.

FIGURE 2603.8
TERMITE INFESTATION PROBABILITY MAP

2603.7.2 Approval. The foam plastic insulation shall exhibit a flame spread index of 25 or less and a smoke-developed index of 50 or less when tested in accordance with ASTM E 84 or UL 723 at the thickness and density intended for use and shall meet the acceptance criteria of Section 803.1.2 when tested in accordance with NFPA 286. The foam plastic insulation shall be approved based on tests conducted in accordance with Section 2603.9.

2603.7.3 Covering. The foam plastic insulation shall be covered by corrosion-resistant steel having a base metal thickness of not less than 0.0160 inch (0.4 mm) and shall exhibit a flame spread index of 75 or less and a smoke-developed index of 450 or less when tested in accordance with ASTM E 84 or UL 723 at the thickness and density intended for use.

2603.8 Protection against termites. In areas where the probability of termite infestation is very heavy in accordance with Figure 2603.8, extruded and expanded polystyrene, polyisocyanurate and other foam plastics shall not be installed on the exterior face or under interior or exterior foundation walls or slab foundations located below grade. The clearance between foam plastics installed above grade and exposed earth shall be not less than 6 inches (152 mm).

Exceptions:
1. Buildings where the structural members of walls, floors, ceilings and roofs are entirely of noncombustible materials or preservative-treated wood.
2. An approved method of protecting the foam plastic and structure from subterranean termite damage is provided.
3. On the interior side of basement walls.

2603.9 Special approval. Foam plastic shall not be required to comply with the requirements of Section 2603.4 or those of Section 2603.6 where specifically approved based on largescale tests such as, but not limited to, NFPA 286 (with the acceptance criteria of Section 803.803.1.2.1), FM 4880, UL 1040 or UL 1715. Such testing shall be related to the actual end-use configuration and be performed on the finished manufactured foam plastic assembly in the maximum thickness intended for use. Foam plastics that are used as interior finish on the basis of special tests shall also conform to the flame spread and smoke-developed requirements of Chapter 8. Assemblies tested shall include seams, joints and other typical details.
used in the installation of the assembly and shall be tested in the manner intended for use.

2603.10 Wind resistance. Foam plastic insulation complying with ASTM C 578 and ASTM C 1289 and used as exterior wall sheathing on framed wall assemblies shall comply with ANSI/FS 100 for wind pressure resistance.

2603.11 Cladding attachment over foam sheathing to masonry or concrete wall construction. Cladding shall be specified and installed in accordance with Chapter 14 and the cladding manufacturer’s installation instructions or an approved design. Foam sheathing shall be attached to masonry or concrete construction in accordance with the insulation manufacturer’s installation instructions or an approved design. Furring and furring attachments through foam sheathing shall be designed to resist design loads determined in accordance with Chapter 16, including support of cladding weight as applicable. Fasteners used to attach cladding or furring through foam sheathing to masonry or concrete substrates shall be approved for application into masonry or concrete material and shall be installed in accordance with the fastener manufacturer’s installation instructions.

Exceptions:
1. Where the cladding manufacturer has provided approved installation instructions for application over foam sheathing and connection to a masonry or concrete substrate, those requirements shall apply.
2. For exterior insulation and finish systems, refer to Section 1408.
3. For anchored masonry or stone veneer installed over foam sheathing, refer to Section 1405.

2603.12 Cladding attachment over foam sheathing to cold-formed steel framing. Cladding shall be specified and installed in accordance with Chapter 14 and the cladding manufacturer’s approved installation instructions, including any limitations for use over foam plastic sheathing, or an approved design. Where used, furring and furring attachments shall be designed to resist design loads determined in accordance with Chapter 16. In addition, the cladding or furring attachments through foam sheathing to framing shall meet or exceed the minimum fastening requirements of Sections 2603.12.1 and 2603.12.2, or an approved design for support of cladding weight.

Exceptions:
1. Where the cladding manufacturer has provided approved installation instructions for application over foam sheathing, those requirements shall apply.
2. For exterior insulation and finish systems, refer to Section 1408.
3. For anchored masonry or stone veneer installed over foam sheathing, refer to Section 1405.

TABLE 2603.12.1

<table>
<thead>
<tr>
<th>CLADDING FASTENER THROUGH FOAM SHEATHING INTO:</th>
<th>CLADDING FASTENER TYPE AND MINIMUM SIZEb</th>
<th>CLADDING FASTENER VERTICAL SPACING (inches)</th>
<th>MAXIMUM THICKNESS OF FOAM SHEATHINGc (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel framing (minimum penetration of steel thickness plus 3 threads)</td>
<td>#8 screw into 33 mil steel or thicker</td>
<td>6</td>
<td>3 psf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>#10 screw into 33 mil steel</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>#10 screw into 43 mil steel or thicker</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm; 1 pound per square foot (psf) = 0.0479 kPa, 1 pound per square inch = 0.00689 MPa.
DR = design required; o.c. = on center.

a. Steel framing shall be minimum 33 ksi steel for 33 mil and 43 mil steel and 50 ksi steel for 54 mil steel or thicker.
b. Screws shall comply with the requirements of AISI S200.
c. Foam sheathing shall have a minimum compressive strength of 15 pounds per square inch in accordance with ASTM C 578 or ASTM C 1289.

2603.12.1 Direct attachment. Where cladding is installed directly over foam sheathing without the use of furring, cladding minimum fastening requirements to support the cladding weight shall be as specified in Table 2603.12.1.

2603.12.2 Furred cladding attachment. Where steel or wood furring is used to attach cladding over foam sheathing, furring minimum fastening requirements to support the cladding weight shall be as specified in Table 2603.12.2. Where placed horizontally, wood furring shall be preservative-treated wood in accordance with Section 2303.1.9 or naturally durable wood and fasteners shall be corrosion resistant in accordance Section 2304.10.5. Steel furring shall have a minimum G60 galvanized coating.
SECTION 2604
INTERIOR FINISH AND TRIM

2604.1 General. Plastic materials installed as interior finish or trim shall comply with Chapter 8. Foam plastics shall only be installed as interior finish where approved in accordance with the special provisions of Section 2603.9. Foam plastics that are used as interior finish shall also meet the flame spread and smoke-developed index requirements for interior finish in accordance with Chapter 8. Foam plastics installed as interior trim shall comply with Section 2604.2.

2604.2 Interior trim. Foam plastic used as interior trim shall comply with Sections 2604.2.1 through 2604.2.4.

2604.2.1 Density. The minimum density of the interior trim shall be 20 pcf (320 kg/m³).

2604.2.2 Thickness. The maximum thickness of the interior trim shall be 1/2 inch (12.7 mm) and the maximum width shall be 8 inches (204 mm).

2604.2.3 Area limitation. The interior trim shall not constitute more than 10 percent of the specific wall or ceiling areas to which it is attached.

2604.2.4 Flame spread. The flame spread index shall not exceed 75 where tested in accordance with ASTM E 84 or UL 723. The smoke-developed index shall not be limited.

Exception: When the interior trim material has been tested as an interior finish in accordance with NFPA 286 and complies with the acceptance criteria in Section 803.1.2.1, it shall not be required to be tested for flame spread index in accordance with ASTM E 84 or UL 723.
TABLE 2603.12.2

FURRING MINIMUM FASTENING REQUIREMENTS FOR APPLICATION OVER FOAM PLASTIC SHEATHING TO SUPPORT CLADDING WEIGHT

<table>
<thead>
<tr>
<th>Furring Material</th>
<th>Framing Member</th>
<th>Fastener Type And Minimum Size</th>
<th>Minimum Penetration Into Wall Framing (inches)</th>
<th>Fastener Spacing In Furring (inches)</th>
<th>Maximum Thickness Of Foam Sheathing (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33 mil steel stud</td>
<td>#8 screw</td>
<td>Steel thickness plus 3 threads</td>
<td>12 3 1.5 DR 3 0.5 DR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#10 screw</td>
<td>Steel thickness plus 3 threads</td>
<td>16 3 1 DR 2 DR DR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#8 Screw</td>
<td>Steel thickness plus 3 threads</td>
<td>24 2 DR DR 2 DR DR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 mil or thicker steel stud</td>
<td>#10 screw</td>
<td>Steel thickness plus 3 threads</td>
<td>12 4 3 1.5 4 3 DR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#8 Screw</td>
<td>Steel thickness plus 3 threads</td>
<td>16 4 3 0.5 4 2 DR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>#10 screw</td>
<td>Steel thickness plus 3 threads</td>
<td>24 4 2 DR 4 0.5 DR</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm; 1 pound per square foot (psf) = 0.0479 kPa, 1 pound per square inch = 0.00689 MPa.

DR = design required; o.c. = on center.

a. Wood furring shall be Spruce-Pine fir or any softwood species with a specific gravity of 0.42 or greater. Steel furring shall be minimum 33 ksi steel. Steel studs shall be minimum 33 ksi steel for 33 mil and 43 mil thickness and 50 ksi steel for 54 mil steel or thicker.

b. Screws shall comply with the requirements of AISI S200.

c. Where the required cladding fastener penetration into wood material exceeds \(\frac{3}{4} \) inch and is not more than \(1\frac{1}{2} \) inches, a minimum 2-inch nominal wood furring shall be used or an approved design.

d. Foam sheathing shall have a minimum compressive strength of 15 pounds per square inch in accordance with ASTM C 578 or ASTM C 1289.

e. Furring shall be spaced not more than 24 inches on center, in a vertical or horizontal orientation. In a vertical orientation, furring shall be located over wall studs and attached with the required fastener spacing. In a horizontal orientation, the indicated 8-inch and 12-inch fastener spacing in furring shall be achieved by use of two fasteners into studs at 16 inches and 24 inches on center, respectively.
SECTION 2605
PLASTIC VENEER

2605.1 Interior use. Where used within a building, plastic veneer shall comply with the interior finish requirements of Chapter 8.

2605.2 Exterior use. Exterior plastic veneer, other than plastic siding, shall be permitted to be installed on the exterior walls of buildings of any type of construction in accordance with all of the following requirements:
 1. Plastic veneer shall comply with Section 2606.4.
 2. Plastic veneer shall not be attached to any exterior wall to a height greater than 50 feet (15 240 mm) above grade.
 3. Sections of plastic veneer shall not exceed 300 square feet (27.9 m²) in area and shall be separated by not less than 4 feet (1219 mm) vertically.
 Exception: The area and separation requirements and the smoke-density limitation are not applicable to plastic veneer applied to buildings constructed of Type VB construction, provided the walls are not required to have a fire-resistance rating.

2605.3 Plastic siding. Plastic siding shall comply with the requirements of Sections 1404 and 1405.

SECTION 2606
LIGHT-TRANSMITTING PLASTICS

2606.1 General. The provisions of this section and Sections 2607 through 2611 shall govern the quality and methods of application of light-transmitting plastics for use as light-transmitting materials in buildings and structures. Foam plastics shall comply with Section 2603. Light-transmitting plastic materials that meet the other code requirements for walls and roofs shall be permitted to be used in accordance with the other applicable chapters of the code.

2606.2 Approval for use. Sufficient technical data shall be submitted to substantiate the proposed use of any light-transmitting material, as approved by the building official and subject to the requirements of this section.

2606.3 Identification. Each unit or package of light-transmitting plastic shall be identified with a mark or decal satisfactory to the building official, which includes identification as to the material classification.
2606.4 Specifications. Light-transmitting plastics, including thermoplastic, thermosetting or reinforced thermosetting plastic material, shall have a self-ignition temperature of 650°F (343°C) or greater where tested in accordance with ASTM D 1929; a smoke-developed index not greater than 450 where tested in the manner intended for use in accordance with ASTM E 84 or UL 723, or a maximum average smoke density rating not greater than 75 where tested in the thickness intended for use in accordance with ASTM D 2843 and shall conform to one of the following combustibility classifications:

Class CC1: Plastic materials that have a burning extent of 1 inch (25 mm) or less where tested at a nominal thickness of 0.060 inch (1.5 mm), or in the thickness intended for use, in accordance with ASTM D 635.

Class CC2: Plastic materials that have a burning rate of 2 1/2 inches per minute (1.06 mm/s) or less where tested at a nominal thickness of 0.060 inch (1.5 mm), or in the thickness intended for use, in accordance with ASTM D 635.

2606.5 Structural requirements. Light-transmitting plastic materials in their assembly shall be of adequate strength and durability to withstand the loads indicated in Chapter 16. Technical data shall be submitted to establish stresses, maximum unsupported spans and such other information for the various thicknesses and forms used as deemed necessary by the building official.

2606.6 Fastening. Fastening shall be adequate to withstand the loads in Chapter 16. Proper allowance shall be made for expansion and contraction of light-transmitting plastic materials in accordance with accepted data on the coefficient of expansion of the material and other material in conjunction with which it is employed.

2606.7 Light-diffusing systems. Unless the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, light-diffusing systems shall not be installed in the following occupancies and locations:

1. Group A with an occupant load of 1,000 or more.
2. Theaters with a stage and proscenium opening and an occupant load of 700 or more.
5. Interior exit stairways and ramps and exit passageways.

2606.7.1 Support. Light-transmitting plastic diffusers shall be supported directly or indirectly from ceiling or roof construction by use of noncombustible hangers. Hangers shall be not less than No. 12 steel-wire gage
(0.106 inch) galvanized wire or equivalent.

2606.7.2 Installation. Light-transmitting plastic diffusers shall comply with Chapter 8 unless the light-transmitting plastic diffusers will fall from the mountings before igniting, at an ambient temperature of not less than 200°F (111°C) below the ignition temperature of the panels. The panels shall remain in place at an ambient room temperature of 175°F (79°C) for a period of not less than 15 minutes.

2606.7.3 Size limitations. Individual panels or units shall not exceed 10 feet (3048 mm) in length nor 30 square feet (2.79 m²) in area.

2606.7.4 Fire suppression system. In buildings that are equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, plastic light-diffusing systems shall be protected both above and below unless the sprinkler system has been specifically approved for installation only above the light-diffusing system. Areas of light-diffusing systems that are protected in accordance with this section shall not be limited.

2606.7.5 Electrical luminaires. Light-transmitting plastic panels and light-diffuser panels that are installed in approved electrical luminaires shall comply with the requirements of Chapter 8 unless the light-transmitting plastic panels conform to the requirements of Section 2606.7.2. The area of approved light-transmitting plastic materials that is used in required exits or corridors shall not exceed 30 percent of the aggregate area of the ceiling in which such panels are installed, unless the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

2606.8 Partitions. Light-transmitting plastics used in or as partitions shall comply with the requirements of Chapters 6 and 8.

2606.9 Bathroom accessories. Light-transmitting plastics shall be permitted as glazing in shower stalls, shower doors, bathtub enclosures and similar accessory units. Safety glazing shall be provided in accordance with Chapter 24.

2606.10 Awnings, patio covers and similar structures. Awnings constructed of light-transmitting plastics shall be constructed in accordance with the provisions specified in Section 3105 and Chapter 32 for projections. Patio covers constructed of light-transmitting plastics shall comply with Section 2606. Light-transmitting plastics used in canopies at motor fuel-dispensing facilities shall comply with Section 2606, except as modified by Section 406.7.2.
2606.11 Greenhouses. Light-transmitting plastics shall be permitted in lieu of plain glass in greenhouses.

2606.12 Solar collectors. Light-transmitting plastic covers on solar collectors having noncombustible sides and bottoms shall be permitted on buildings not over three stories above grade plane or 9,000 square feet (836.1 m²) in total floor area, provided the light-transmitting plastic cover does not exceed 33.33 percent of the roof area for CC1 materials or 25 percent of the roof area for CC2 materials.

Exception: Light-transmitting plastic covers having a thickness of 0.010 inch (0.3 mm) or less shall be permitted to be of any plastic material provided the area of the solar collectors does not exceed 33.33 percent of the roof area.

SECTION 2607
LIGHT-TRANSMITTING PLASTIC WALL PANELS

2607.1 General. Light-transmitting plastics shall not be used as wall panels in exterior walls in occupancies in Groups A-1, A-2, H, I-2 and I-3. In other groups, light-transmitting plastics shall be permitted to be used as wall panels in exterior walls, provided that the walls are not required to have a fireresistance rating and the installation conforms to the requirements of this section. Such panels shall be erected and anchored on a foundation, waterproofed or otherwise protected from moisture absorption and sealed with a coat of mastic or other approved waterproof coating. Light-transmitting plastic wall panels shall comply with Section 2606.

2607.2 Installation. Exterior wall panels installed as provided for herein shall not alter the type of construction classification of the building.

2607.3 Height limitation. Light-transmitting plastics shall not be installed more than 75 feet (22 860 mm) above grade plane, except as allowed by Section 2607.5.

2607.4 Area limitation and separation. The maximum area of a single wall panel and minimum vertical and horizontal separation requirements for exterior light-transmitting plastic wall panels shall be as provided for in Table 2607.4. The maximum percentage of wall area of any story in light-transmitting plastic wall panels shall not exceed that indicated in Table 2607.4 or the percentage of unprotected openings permitted by Section 705.8, whichever is smaller.

Exceptions:
1. In structures provided with approved flame barriers extending 30 inches (760 mm) beyond the exterior wall in the plane of the floor, a vertical
separation is not required at the floor except that provided by the vertical thickness of the flame barrier projection.

2. Veneers of approved weather-resistant light-transmitting plastics used as exterior siding in buildings of Type V construction in compliance with Section 1406.

3. The area of light-transmitting plastic wall panels in exterior walls of greenhouses shall be exempt from the area limitations of Table 2607.4 but shall be limited as required for unprotected openings in accordance with Section 704.8.

TABLE 2607.4

AREA LIMITATION AND SEPARATION REQUIREMENTS FOR LIGHT-TRANSMITTING PLASTIC WALL PANELS

<table>
<thead>
<tr>
<th>FIRE SEPARATION DISTANCE (feet)</th>
<th>CLASS OF PLASTIC</th>
<th>MAXIMUM PERCENTAGE AREA OF EXTERIOR WALL IN PLASTIC WALL PANELS</th>
<th>MAXIMUM SINGLE AREA OF PLASTIC WALL PANELS (square feet)</th>
<th>MINIMUM SEPARATION OF PLASTIC WALL PANELS (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 6</td>
<td>—</td>
<td>Not Permitted</td>
<td>Not Permitted</td>
<td>—</td>
</tr>
<tr>
<td>6 or more but less than 11</td>
<td>CC1</td>
<td>10</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>CC2</td>
<td>Not Permitted</td>
<td>Not Permitted</td>
<td>—</td>
</tr>
<tr>
<td>11 or more but less than or equal to 30</td>
<td>CC1</td>
<td>25</td>
<td>90</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CC2</td>
<td>15</td>
<td>70</td>
<td>8</td>
</tr>
<tr>
<td>Over 30</td>
<td>CC1</td>
<td>50</td>
<td>Not Limited</td>
<td>3b</td>
</tr>
<tr>
<td></td>
<td>CC2</td>
<td>50</td>
<td>100</td>
<td>6b</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm, 1 square foot = 0.0929 m².

a. For combinations of plastic glazing and plastic wall panel areas permitted, see Section 2607.6.
b. For reductions in vertical separation allowed, see Section 2607.4.

2607.5 **Automatic sprinkler system.** Where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1, the maximum percentage area of exterior wall in any story in light-transmitting plastic wall panels and the maximum square footage of a single area given in Table 2607.4 shall be increased 100 percent, but the area of light-transmitting plastic wall panels shall not exceed 50 percent of the wall area in any story, or the area permitted by Section 705.8 for unprotected openings, whichever is smaller. These installations shall be exempt from height limitations.

2607.6 **Combinations of glazing and wall panels.** Combinations of light-transmitting plastic glazing and light-transmitting plastic wall panels shall be subject to the area, height and percentage limitations and the separation requirements applicable to the class of light-transmitting plastic as prescribed for
light-transmitting plastic wall panel installations.

SECTION 2608
LIGHT-TRANSMITTING PLASTIC GLAZING

2608.1 Buildings of Type VB construction. Openings in the exterior walls of buildings of Type VB construction, where not required to be protected by Section 705, shall be permitted to be glazed or equipped with light-transmitting plastic. Light-transmitting plastic glazing shall comply with Section 2606.

2608.2 Buildings of other types of construction. Openings in the exterior walls of buildings of types of construction other than Type VB, where not required to be protected by Section 705, shall be permitted to be glazed or equipped with light-transmitting plastic in accordance with Section 2606 and all of the following:

1. The aggregate area of light-transmitting plastic glazing shall not exceed 25 percent of the area of any wall face of the story in which it is installed. The area of a single pane of glazing installed above the first story above grade plane shall not exceed 16 square feet (1.5 m²) and the vertical dimension of a single pane shall not exceed 4 feet (1219 mm).

 Exception: Where an automatic sprinkler system is provided throughout in accordance with Section 903.3.1.1, the area of allowable glazing shall be increased to not more than 50 percent of the wall face of the story in which it is installed with no limit on the maximum dimension or area of a single pane of glazing.

2. Approved flame barriers extending 30 inches (762 mm) beyond the exterior wall in the plane of the floor, or vertical panels not less than 4 feet (1219 mm) in height, shall be installed between glazed units located in adjacent stories.

 Exception: Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

3. Light-transmitting plastics shall not be installed more than 75 feet (22 860 mm) above grade level.

 Exception: Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

SECTION 2609
LIGHT-TRANSMITTING PLASTIC ROOF PANELS
2609.1 General. Light-transmitting plastic roof panels shall comply with this section and Section 2606. Light-transmitting plastic roof panels shall not be installed in Groups H, I-2 and I-3. In all other groups, light-transmitting plastic roof panels shall comply with any one of the following conditions:

1. The building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.
2. The roof construction is not required to have a fireresistance rating by Table 601.
3. The roof panels meet the requirements for roof coverings in accordance with Chapter 15.

2609.2 Separation. Individual roof panels shall be separated from each other by a distance of not less than 4 feet (1219 mm) measured in a horizontal plane.

Exceptions:
1. The separation between roof panels is not required in a building equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.
2. The separation between roof panels is not required in low-hazard occupancy buildings complying with the conditions of Section 2609.4, Exception 2 or 3.

2609.3 Location. Where exterior wall openings are required to be protected by Section 705.8, a roof panel shall not be installed within 6 feet (1829 mm) of such exterior wall.

2609.4 Area limitations. Roof panels shall be limited in area and the aggregate area of panels shall be limited by a percentage of the floor area of the room or space sheltered in accordance with Table 2609.4.

Exceptions:
1. The area limitations of Table 2609.4 shall be permitted to be increased by 100 percent in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.
2. Low-hazard occupancy buildings, such as swimming pool shelters, shall be exempt from the area limitations of Table 2609.4, provided that the buildings do not exceed 5,000 square feet (465 m²) in area and have a minimum fire separation distance of 10 feet (3048 mm).
3. Greenhouses that are occupied for growing plants on a production or research basis, without public access, shall be exempt from the area
limitations of Table 2609.4 provided they have a minimum fire separation distance of 4 feet (1220 mm).

4. Roof coverings over terraces and patios in occupancies in Group R-3 shall be exempt from the area limitations of Table 2609.4 and shall be permitted with light-transmitting plastics.

TABLE 2609.4

<table>
<thead>
<tr>
<th>CLASS OF PLASTIC</th>
<th>MAXIMUM AREA OF INDIVIDUAL ROOF PANELS (square feet)</th>
<th>MAXIMUM AGGREGATE AREA OF ROOF PANELS (percent of floor area)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC1</td>
<td>300</td>
<td>30</td>
</tr>
<tr>
<td>CC2</td>
<td>100</td>
<td>25</td>
</tr>
</tbody>
</table>

For SI: 1 square foot = 0.0929 m².

SECTION 2610

LIGHT-TRANSMITTING PLASTIC SKYLIGHT GLAZING

2610.1 **Light-transmitting plastic glazing of skylight assemblies.** Skylight assemblies glazed with light-transmitting plastic shall conform to the provisions of this section and Section 2606. Unit skylights glazed with light-transmitting plastic shall comply with Section 2405.5.

Exception: Skylights in which the light-transmitting plastic conforms to the required roof-covering class in accordance with Section 1505.

2610.2 **Mounting.** The light-transmitting plastic shall be mounted above the plane of the roof on a curb constructed in accordance with the requirements for the type of construction classification, but not less than 4 inches (102 mm) above the plane of the roof. Edges of the light-transmitting plastic skylights or domes shall be protected by metal or other approved noncombustible material, or the light transmitting plastic dome or skylight shall be shown to be able to resist ignition where exposed at the edge to a flame from a Class B brand as described in ASTM E 108 or UL 790. The Class B brand test shall be conducted on a skylight that is elevated to a height as specified in the manufacturer’s installation instructions, but not less than 4 inches (102 mm).

Exceptions:
1. Curbs shall not be required for skylights used on roofs having a minimum slope of three units vertical in 12 units horizontal (25-percent slope) in
occupancies in Group R-3 and on buildings with a nonclassified roof covering.

2. The metal or noncombustible edge material is not required where nonclassified roof coverings are permitted.

2610.3 Slope. Flat or corrugated light-transmitting plastic skylights shall slope not less than four units vertical in 12 units horizontal (4:12). Dome-shaped skylights shall rise above the mounting flange a minimum distance equal to 10 percent of the maximum width of the dome but not less than 3 inches (76 mm).

Exception: Skylights that pass the Class B Burning Brand Test specified in ASTM E 108 or UL 790.

2610.4 Maximum area of skylights. Each skylight shall have a maximum area within the curb of 100 square feet (9.3 m²).

Exception: The area limitation shall not apply where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or the building is equipped with smoke and heat vents in accordance with Section 910.

2610.5 Aggregate area of skylights. The aggregate area of skylights shall not exceed 33 1/3 percent of the floor area of the room or space sheltered by the roof in which such skylights are installed where Class CC1 materials are utilized, and 25 percent where Class CC2 materials are utilized.

Exception: The aggregate area limitations of light-transmitting plastic skylights shall be increased 100 percent beyond the limitations set forth in this section where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or the building is equipped with smoke and heat vents in accordance with Section 910.

2610.6 Separation. Skylights shall be separated from each other by a distance of not less than 4 feet (1219 mm) measured in a horizontal plane.

Exceptions:
1. Buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

2. In Group R-3, multiple skylights located above the same room or space with a combined area not exceeding the limits set forth in Section 2610.4.

2610.7 Location. Where exterior wall openings are required to be protected in accordance with Section 705, a skylight shall not be installed within 6 feet (1829
mm) of such exterior wall.

2610.8 Combinations of roof panels and skylights. Combinations of light-transmitting plastic roof panels and skylights shall be subject to the area and percentage limitations and separation requirements applicable to roof panel installations.

SECTION 2611
LIGHT-TRANSMITTING PLASTIC INTERIOR SIGNS

2611.1 General. Light-transmitting plastic interior wall signs shall be limited as specified in Sections 2611.2 through 2611.4. Light-transmitting plastic interior wall signs in covered and open mall buildings shall comply with Section 402.6.4. Light-transmitting plastic interior signs shall also comply with Section 2606.

2611.2 Aggregate area. The sign shall not exceed 20 percent of the wall area.

2611.3 Maximum area. The sign shall not exceed 24 square feet (2.23 m²).

2611.4 Encasement. Edges and backs of the sign shall be fully encased in metal.

SECTION 2612
PLASTIC COMPOSITES

2612.1 General. Plastic composites shall consist of either wood/plastic composites or plastic lumber. Plastic composites shall comply with the provisions of this code and with the additional requirements of Section 2612.

2612.2 Labeling and identification. Packages and containers of plastic composites used in exterior applications shall bear a label showing the manufacturer’s name, product identification and information sufficient to determine that the end use will comply with code requirements.

2612.2.1 Performance levels. The label for plastic composites used in exterior applications as deck boards, stair treads, handrails and guards shall indicate the required performance levels and demonstrate compliance with the provisions of ASTM D 7032.
2612.2.2 **Loading.** The label for plastic composites used in exterior applications as deck boards, stair treads, handrails and guards shall indicate the type and magnitude of the load determined in accordance with ASTM D 7032.

2612.3 **Flame spread index.** Plastic composites shall exhibit a flame spread index not exceeding 200 when tested in accordance with ASTM E 84 or UL 723 with the test specimen remaining in place during the test.

 Exception: Materials determined to be noncombustible in accordance with Section 703.5.

2612.4 **Termite and decay resistance.** Plastic composites containing wood, cellulosic or any other biodegradable materials shall be termite and decay resistant as determined in accordance with ASTM D 7032.

2612.5 **Construction requirements.** Plastic composites shall be permitted to be used as exterior deck boards, stair treads, handrails and guards in buildings of Type VB construction.

 2612.5.1 **Span rating.** Plastic composites used as exterior deck boards shall have a span rating determined in accordance with ASTM D 7032.

2612.6 **Plastic composite decking, handrails and guards.** Plastic composite decking, handrails and guards shall be installed in accordance with this code and the manufacturer’s instructions.

**SECTION 2613
FIBER-REINFORCED POLYMER**

2613.1 **General.** The provisions of this section shall govern the requirements and uses of fiber-reinforced polymer in and on buildings and structures.

2613.2 **Labeling and identification.** Packages and containers of fiber-reinforced polymer and their components delivered to the job site shall bear the label of an approved agency showing the manufacturer’s name, product listing, product identification and information sufficient to determine that the end use will comply with the code requirements.

2613.3 **Interior finishes.** Fiber-reinforced polymer used as interior finishes, decorative materials or trim shall comply with Chapter 8.

 2613.3.1 **Foam plastic cores.** Fiber-reinforced polymer used as interior finish
and which contains foam plastic cores shall comply with Chapter 8 and this chapter.

2613.4 Light-transmitting materials. Fiber-reinforced polymer used as light-transmitting materials shall comply with Sections 2606 through 2611 as required for the specific application.

2613.5 Exterior use. Fiber-reinforced polymer shall be permitted to be installed on the exterior walls of buildings of any type of construction when such polymers meet the requirements of Section 2603.5. Fireblocking shall be installed in accordance with Section 718.

Exceptions:

1. Compliance with Section 2603.5 is not required when all of the following conditions are met:
 1.1. The fiber-reinforced polymer shall not exceed an aggregate total of 20 percent of the area of the specific wall to which it is attached, and no single architectural element shall exceed 10 percent of the area of the specific wall to which it is attached, and no contiguous set of architectural elements shall exceed 10 percent of the area of the specific wall to which they are attached.
 1.2. The fiber-reinforced polymer shall have a flame spread index of 25 or less. The flame spread index requirement shall not be required for coatings or paints having a thickness of less than 0.036 inch (0.9 mm) that are applied directly to the surface of the fiber-reinforced polymer.
 1.3. Fireblocking complying with Section 718.2.6 shall be installed.
 1.4. The fiber-reinforced polymer shall be installed directly to a noncombustible substrate or be separated from the exterior wall by one of the following materials: corrosion-resistant steel having a minimum base metal thickness of 0.016 inch (0.41 mm) at any point, aluminum having a minimum thickness of 0.019 inch (0.5 mm) or other approved noncombustible material.

2. Compliance with Section 2603.5 is not required when the fiber-reinforced polymer is installed on buildings that are 40 feet (12 190 mm) or less above grade when all of the following conditions are met:
 2.1. The fiber-reinforced polymer shall meet the requirements of Section 1406.2.
 2.2. Where the fire separation distance is 5 feet (1524 mm) or less, the area of the fiber-reinforced polymer shall not exceed 10 percent of the wall area. Where the fire separation distance is greater than 5 feet (1524 mm), there shall be no limit on the area of the exterior wall coverage using fiber-reinforced polymer.
2.3. The fiber-reinforced polymer shall have a flame spread index of 200 or less. The flame spread index requirements do not apply to coatings or paints having a thickness of less than 0.036 inch (0.9 mm) that are applied directly to the surface of the fiber-reinforced polymer.

2.4. Fireblocking complying with Section 718.2.6 shall be installed.

SECTION 2614
REFLECTIVE PLASTIC CORE INSULATION

2614.1 General. The provisions of this section shall govern the requirements and uses of reflective plastic core insulation in buildings and structures. Reflective plastic core insulation shall comply with the requirements of Section 2614 and of one of the following: Section 2614.3 or 2614.4.

2614.2 Identification. Packages and containers of reflective plastic core insulation delivered to the job site shall show the manufacturer’s or supplier’s name, product identification and information sufficient to determine that the end use will comply with the code requirements.

2614.3 Surface-burning characteristics. Reflective plastic core insulation shall have a flame spread index of not more than 25 and a smoke-developed index of not more than 450 when tested in accordance with ASTM E 84 or UL 723. The reflective plastic core insulation shall be tested at the maximum thickness intended for use. Test specimen preparation and mounting shall be in accordance with ASTM E 2599.

2614.4 Room corner test heat release. Reflective plastic core insulation shall comply with the acceptance criteria of Section 803.1.2.1 when tested in accordance with NFPA 286 or UL 1715 in the manner intended for use and at the maximum thickness intended for use.
Effective: 8/1/2018
Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
Prior Effective Dates: 01/01/2002, 03/01/2005, 07/01/2007, 11/01/2011, 11/01/2017
4101:1-34-01 Existing buildings and structures.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:1-35-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 3401
GENERAL

3401.1 Scope. The provisions of this chapter shall control the maintenance, alteration, repair, addition and change of occupancy of existing structures.

3401.1.1 Compliance. Compliance shall be demonstrated by meeting the requirements of one of the following options:

1. Chapters 2 through 33 of this code; or
2. Sections 3403 through 3411; or
3. Section 3412 Compliance Alternatives.

3401.1.1.1 Energy Code Compliance. Alterations, repairs, additions and changes of occupancy to, or relocation of, existing buildings and structures shall also comply with the provisions for alterations, repairs, additions and changes of occupancy or relocation in the International Energy Conservation Code, and the ASHRAE 90.1 as referenced in Chapter 35. Where provisions of the other codes conflict with provisions of this chapter, the provisions of this chapter shall take precedence.

3401.1.2 Occupancy and use. When determining the appropriate application of the referenced sections of this code, the occupancy and use of a building shall be determined in accordance with Chapter 3.

3401.1.3 General Requirements. Section 3406 Fire Escapes, 3407 Glass Replacement, and 3411 Accessibility for Existing Buildings shall apply to all buildings within the scope of Chapter 34.

3401.2 Maintenance. Buildings, structures, equipment and parts thereof, shall be maintained in a safe and sanitary condition and in accordance with the condition(s) established in current and any previous plan approvals and certificates of occupancy. Devices or safeguards which are required by this code
shall be maintained in conformance with the code edition under which installed. The owner or the owner's designated agent shall be responsible for the maintenance of buildings and structures. To determine compliance with this subsection, the building official shall have the authority to require a building or structure to be inspected. The requirements of this chapter shall not provide the basis for removal or abrogation of fire protection and safety systems and devices in existing structures without approval of the building official.

3401.4 3401.3 Building materials and systems. Building materials and systems shall comply with the requirements of this section.

3401.4.1 3401.3.1 Existing materials. Materials already in use in a building in compliance with requirements or approvals in effect at the time of their erection or installation shall be permitted to remain in use unless determined by the building code official to be dangerous to life, health or safety per Section 109. Where such conditions are determined to be dangerous to life, health or safety, they shall be mitigated or made safe.

3401.4.2 3401.3.2 New and replacement materials. Except as otherwise required or permitted by this code, materials permitted by the applicable code for new construction shall be used. Like materials shall be permitted for repairs and alterations, provided no hazard to life, health or property is created. Hazardous materials shall not be used where the code for new construction would not permit their use in buildings of similar occupancy, purpose and location.

3401.4.3 3401.3.3 Used materials and products. The use of used materials and products which meet the requirements of this code for new materials and products is permitted. Used products and materials shall not be reused unless approved by the building official.

3401.4.4 3401.3.4 Renovation, repair, and paint certification requirements and asbestos abatement. The contractor requirements for the “Renovation, Repair, and Paint” certification program and the contractor requirements for asbestos abatement are within the jurisdiction of the rules of the Ohio Department of Health and the Ohio Environmental Protection Agency respectively.

3401.4.5 3401.3.5 Fire resistance determination for existing assemblies and materials. When this chapter requires a fire resistive assembly or component, and there is no available evidence matching the assembly or component to a
tested, rated assembly or component, the fire resistance rating of the existing assembly or component shall be evaluated by using Section 721 or “Resource A, Guidelines on Fire Ratings of Archaic Materials and Assemblies” in the “International Existing Buildings Code”.

3401.5 3401.4 Compliance with seismic forces. Where compliance with the seismic design provisions of this code is required, the procedures shall be in accordance with the following:

3401.5.1 3401.4.1 Existing seismic force-resisting systems. Values of R, Ω_0, and C_d for the existing seismic force-resisting system shall be those specified by this code for an ordinary system unless it is demonstrated that the existing system will provide performance equivalent to that of a detailed, intermediate or special system. Seismic systems not having an ASCE 7 category of ordinary shall be analyzed using ASCE 7 values for the respective system.

3401.5.2 3401.4.2 Seismic Evaluation and Design Procedures. The seismic evaluation and design shall be based on the procedures specified in Chapter 16 or ASCE 41 per this section.

1. Chapter 16 of this code using one hundred per cent of the prescribed forces, or,

2. Compliance with ASCE 41 based on the applicable performance level as shown in Table 3401.5.2 3401.4.2. It shall be permitted to use the “BSE-1E” earthquake hazard level as defined in ASCE 41.

3401.5.3 3401.4.3 Compliance with reduced seismic forces. Where seismic evaluation and design is permitted to meet reduced seismic force levels in accordance with Section 3405, the procedures used shall be in accordance with this code using seventy-five per cent of the prescribed forces. Values of R, Ω_0, and C_d used for analysis shall be as specified in Section 3401.5.1 3401.4.1 of this code.

TABLE 3401.5.2-3401.4.2

<table>
<thead>
<tr>
<th>RISK CATEGORY (BASED ON OBC TABLE 1604.5)</th>
<th>STRUCTURAL PERFORMANCE LEVEL FOR USE WITH BSE-1E EARTHQUAKE HAZARD LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Life Safety (3-C)</td>
</tr>
<tr>
<td>II</td>
<td>Life Safety (3-C)</td>
</tr>
<tr>
<td>III</td>
<td>Damage Control (2-B)</td>
</tr>
<tr>
<td>IV</td>
<td>Immediate Occupancy (1-B)</td>
</tr>
</tbody>
</table>
3401.6 3401.5 Dangerous conditions. The building official shall have the authority to require the elimination of conditions deemed dangerous in accordance with Section 109.

3401.6 Concrete evaluation and design procedures. Evaluation and design of structural concrete repairs and rehabilitation shall be in compliance with Chapter 34 and ACI 562.

SECTION 3402
DEFINITIONS

3402.1 Definitions. The following words and terms shall, for the purposes of this chapter and as used elsewhere in the code, have the meanings shown herein.

The following terms are defined in Chapter 2.
- ADDITION
- ALTERATION
- CHANGE OF OCCUPANCY
- DANGEROUS
- EXISTING STRUCTURE
- HISTORIC BUILDING
- MAINTENANCE
- PRIMARY FUNCTION
- SUBSTANTIAL STRUCTURAL DAMAGE
- TECHNICALLY INFEASIBLE

SECTION 3403
ADDITIONS

3403.1 General. Additions to any building or structure shall comply with the requirements of this code for new construction. Alterations to the existing building or structure shall be made to ensure that the existing building or structure together with the addition are no less conforming with the provisions of this code than the existing building or structure was prior to the addition. An existing building together with its additions shall comply with the requirements of 3403.1.1 or 3403.1.2 depending on the occupancy of the building.

3403.1.1 Additions to buildings of Groups R and I occupancies. The combined height and area of the existing building and the addition shall not
exceed the height and area allowed by chapter 5. Where a fire wall that complies with section 706 is provided between the addition and the existing building, the addition shall be considered a separate building.

3403.1.2 Additions to buildings of Groups other than R and I occupancies.

When the combined height and area of the existing building and the addition exceeds the height or area allowed by Chapter 5 including any area increases permitted, the following shall be permitted:

1. A fire wall that complies with Section 706 shall be constructed between the existing building and the addition. When a fire wall is constructed to separate the existing building from the addition, the addition shall be considered a separate building.

2. A fire barrier that complies with Section 707 as required for separating fire areas shall be provided between the addition and the existing building. When a fire barrier is constructed to separate the existing building from the addition, all the following shall apply.
 a. The combined height and area of the addition and existing building shall be used to determine the construction type and fire protection requirements for the addition.
 b. The construction type of the existing building and the addition may differ.
 c. Fire protection system is not required in the existing building when a fire protection system is required in the addition.
 d. When calculating the allowable combined height and area of the existing building and the addition in accordance with Chapter 5, the tabular values corresponding to a building equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 shall be used whether or not the existing building is provided throughout with an automatic sprinkler system in accordance with Section 903.3.1.1.

3. When the combined height and area of the existing building and the addition does not exceed the height and area allowed by Chapter 5, but the area of the existing building plus the new addition creates a fire area greater than the threshold limits of Chapter 9, one of the following shall be provided:
 1. A fire barrier to limit the fire area; or
 2. An automatic sprinkler system in the addition extends into the existing building to a barrier or partition.

3403.2 Flood hazard areas. For buildings and structures in flood hazard areas
established in Section 1612.3, any addition that constitutes substantial improvement of the existing structure, as defined in Section 1612.2 Chapter 2, shall comply with the flood design requirements for new construction, and all aspects of the existing structure shall be brought into compliance with the requirements for new construction for flood design.

For buildings and structures in flood hazard areas established in Section 1612.3, any additions that do not constitute substantial improvement or substantial damage of the existing structure, as defined in Section 1612.2 Chapter 2, are not required to comply with the flood design requirements for new construction.

3403.3 Existing structural elements carrying gravity load. Any existing gravity load-carrying structural element for which an addition and its related alterations cause an increase in design gravity load of more than 5 percent shall be strengthened, supplemented, replaced or otherwise altered as needed to carry the increased load required by this code for new structures. Any existing gravity load carrying structural element whose gravity load-carrying capacity is decreased shall be considered an altered element subject to the requirements of Section 3404.3. Any existing element that will form part of the lateral load path for any part of the addition shall be considered an existing lateral load-carrying structural element subject to the requirements of Section 3403.4.

3403.3.1 Design live load. Where the addition does not result in increased design live load, existing gravity load-carrying structural elements shall be permitted to be evaluated and designed for live loads approved prior to the addition. If the approved live load is less than that required by Section 1607, the area designed for the nonconforming live load shall be posted with placards of approved design indicating the approved live load. Where the addition does result in increased design live load, the live load required by Section 1607 shall be used.

3403.3.2 Snow load. Any structural element of an existing building subjected to additional loads from the effects of snow drift as a result of an addition shall comply with the building code.

Exceptions:
1. Structural elements whose stress is not increased by more than 5 percent.
2. Buildings of Group R occupancy with no more than five dwelling units or sleeping units used solely for residential purposes where the existing building and the addition comply with the conventional light-frame construction methods of the building code or the provisions of the residential code of Ohio.
3403.4 Existing structural elements carrying lateral load. Where the addition is structurally independent of the existing structure, existing lateral load-carrying structural elements shall be permitted to remain unaltered. Where the addition is not structurally independent of the existing structure, the existing structure and its addition acting together as a single structure shall be shown to meet the requirements of Sections 1609 and 3401.5.2 3401.4.2.

Exception: Any existing lateral load-carrying structural element whose demand-capacity ratio with the addition considered is no more than 10 percent greater than its demand-capacity ratio with the addition ignored shall be permitted to remain unaltered. For purposes of calculating demand-capacity ratios, the demand shall consider applicable load combinations with design lateral loads or forces in accordance with Sections 1609 and 3401.5.2 3401.4.2. For purposes of this exception, comparisons of demand-capacity ratios and calculation of design lateral loads, forces and capacities shall account for the cumulative effects of additions and alterations since original construction.

3403.5 Smoke alarms. When additions are made to sleeping rooms or in the immediate vicinity of the sleeping rooms in Group R or I-1 occupancies, smoke alarms shall be installed in accordance with the provisions of this code, the household fire warning equipment provisions of NFPA 72, and shall be listed in accordance with UL 217.

Exceptions:
1. Work involving the exterior surfaces, such as the replacement of roofing or siding, or the addition or replacement of windows or doors, or the addition of a porch or deck are exempt from the requirements of this section.
2. Installation or alteration of plumbing or mechanical systems are exempt from the requirements of this section.

3403.5.1 Power source. Required smoke alarms shall receive their primary power from the building wiring when such wiring is served from a commercial source for the following conditions:
1. In new dwelling units or sleeping areas.
2. In existing dwelling units or sleeping areas where there is an attic, crawl space, or basement available which could provide access for hard-wiring.
3. In existing dwelling units or sleeping areas where the existing interior finishes are removed, exposing the structure.

Exceptions:
1. Smoke alarms shall be permitted to be battery operated when installed in buildings without commercial power.

2. Hard-wiring of new smoke alarms installed in existing finished areas shall not be required where there is not access to an attic, crawl space, or basement, as described above, and where the removal of interior wall or ceiling finishes exposing the structure is not otherwise proposed. Listed conventional battery operated smoke alarms or listed battery operated low-power radio (wireless) alarms are permitted to be installed in these existing finished areas.

3403.5.2 Interconnection. Where more than one smoke alarm is required to be installed within an individual dwelling unit in accordance with Section 3403.5.1, the alarm devices shall be interconnected in such a manner that the actuation of one alarm will activate all of the alarms in the individual dwelling unit. Physical interconnection of smoke alarms shall not be required where listed low-power radio (wireless) alarms are installed and all alarms sound upon activation of one alarm.

Exceptions:
1. Interconnection is not required in buildings that are not undergoing alterations, repairs, or construction of any kind.
2. Interconnection of smoke alarms in existing areas shall not be required where alterations or repairs do not result in removal of interior wall or ceiling finishes exposing the structure, unless there is an attic, crawl space or basement available which could provide access for interconnection without the removal of interior finishes.

SECTION 3404
ALTERATIONS

3404.1 General. Except as provided by Section 3401.4 or this section, alterations to any building, structure, or system (egress, fire protection, smoke control, mechanical, plumbing, etc.) shall comply with the requirements of the code for new construction to the extent of the alteration. Portions of the structure not altered and not affected by the alteration are not required to comply with the code requirements for a new structure. Alterations shall be such that the existing building, structure, or system is no less complying with the provisions of this code than the existing building or structure was prior to the alteration.

Exceptions:
1. An existing stairway shall not be required to comply with the requirements of Chapter 10 where the stairs conform to the criteria of a prior edition of
the OBC.
2. A new stair shall not be required to comply with the required tread and
risers if replacing an existing stair where the existing space and
construction does not allow a reduction in pitch or slope.
3. Handrails shall not be required to comply with the requirements of Section
1012.6 regarding full extension of the handrails where such extensions
would be hazardous due to plan configuration.

3404.1.1 Alterations to systems, components and materials. When alterations
are proposed to existing systems, the existing systems, materials, or
components shall not be required to comply with all of the requirements of
this code for new construction except to the extent that they are affected by the
alteration. Additions or alterations to existing systems, materials, or
components shall not cause them to become unsafe, hazardous, overloaded, or
become less effective than when originally installed, constructed and/or
approved. Existing systems that are proposed to be modified shall not require
resizing as long as the load on the system is not increased and the system
length is not increased, even if the existing system does not meet current code
minimums.

3404.2 Flood hazard areas. For buildings and structures in flood hazard areas
established in Section 1612.3, any alteration that constitutes substantial
improvement of the existing structure, as defined in Section 1612.2 Chapter 2,
shall comply with the flood design requirements for new construction, and all
aspects of the existing structure shall be brought into compliance with the
requirements for new construction for flood design.
For buildings and structures in flood hazard areas established in Section 1612.3,
any alterations that do not constitute substantial improvement or substantial
damage of the existing structure, as defined in Section 1612.2 Chapter 2, are not
required to comply with the flood design requirements for new construction.

3404.3 Existing structural elements carrying gravity load. Any existing gravity
load-carrying structural element for which an alteration causes an increase in
design gravity load of more than 5 percent shall be strengthened, supplemented,
replaced or otherwise altered as needed to carry the increased gravity load
required by this code for new structures. Any existing gravity load-carrying
structural element whose gravity load-carrying capacity is decreased as part of
the alteration shall be shown to have the capacity to resist the applicable design
gravity loads required by this code for new structures.

3404.3.1 Design live load. Where the alteration does not result in increased
design live load, existing gravity load-carrying structural elements shall be permitted to be evaluated and designed for live loads approved prior to the alteration. If the approved live load is less than that required by Section 1607, the area designed for the nonconforming live load shall be posted with placards of approved design indicating the approved live load. Where the alteration does result in increased design live load, the live load required by Section 1607 shall be used.

3404.4 Existing structural elements carrying lateral load. Except as permitted by Section 3404.5, where the alteration increases design lateral loads in accordance with Sections 1609 or 3401.5.2 3401.4.2, or where the alteration results in a structural irregularity as defined in ASCE 7, or where the alteration decreases the capacity of any existing lateral load-carrying structural element, the structure of the altered building or structure shall be shown to meet the requirements of Sections 1609 or 3401.5.2 3401.4.2.

Exception: Any existing lateral load-carrying structural element whose demand-capacity ratio with the alteration considered is no more than 10 percent greater than its demand-capacity ratio with the alteration ignored shall be permitted to remain unaltered. For purposes of calculating demand-capacity ratios, the demand shall consider applicable load combinations with design lateral loads or forces per Sections 1609 and 3401.5.2 3401.4.2. For purposes of this exception, comparisons of demand-capacity ratios and calculation of design lateral loads, forces, and capacities shall account for the cumulative effects of additions and alterations since original construction.

3404.5 Voluntary seismic improvements. Alterations to existing structural elements or additions of new structural elements that are not otherwise required by this chapter and are initiated for the purpose of improving the performance of the seismic force-resisting system of an existing structure or the performance of seismic bracing or anchorage of existing nonstructural elements shall be permitted, provided that an engineering analysis is submitted demonstrating the following:

1. The altered structure and the altered nonstructural elements are no less in compliance with the provisions of this code with respect to earthquake design than they were prior to the alteration.
2. New structural elements are detailed and connected to the existing structural elements as required by Chapter 16.
3. New or relocated nonstructural elements are detailed and connected to existing or new structural elements as required by Chapter 16.
4. The alterations do not create a structural irregularity as defined in ASCE 7
or make an existing structural irregularity more severe.

3404.6 Smoke alarms. When alterations are made to sleeping rooms or in the immediate vicinity of the sleeping rooms in Group R or I-1 occupancies, smoke alarms shall be installed in accordance with the provisions of this code, the household fire warning equipment provisions of NFPA 72, and shall be listed in accordance with UL 217.

Exceptions:
1. Work involving the exterior surfaces, such as the replacement of roofing or siding, or the addition or replacement of windows or doors, or the addition of a porch or deck are exempt from the requirements of this section.
2. Installation or alteration of plumbing or mechanical systems are exempt from the requirements of this section.

3404.6.1 Power source. Required smoke alarms shall receive their primary power from the building wiring when such wiring is served from a commercial source for the following conditions:
1. In new dwelling units or sleeping areas.
2. In existing dwelling units or sleeping areas where there is an attic, crawl space, or basement available which could provide access for hard-wiring.
3. In existing dwelling units or sleeping areas where the existing interior finishes are removed, exposing the structure.

Exceptions:
1. Smoke alarms shall be permitted to be battery operated when installed in buildings without commercial power.
2. Hard-wiring of new smoke alarms installed in existing finished areas shall not be required where there is not access to an attic, crawl space, or basement, as described above, and where the removal of interior wall or ceiling finishes exposing the structure is not otherwise proposed. Listed conventional battery operated smoke alarms or listed battery operated low-power radio (wireless) alarms are permitted to be installed in these existing finished areas.

3404.6.2 Interconnection. Where more than one smoke alarm is required to be installed within an individual dwelling unit in accordance with Section 3403.5.1, the alarm devices shall be interconnected in such a manner that the actuation of one alarm will activate all of the alarms in the individual dwelling unit. Physical interconnection of smoke alarms shall not be required
where listed low-power radio (wireless) alarms are installed and all alarms sound upon activation of one alarm.

Exceptions:
1. Interconnection is not required in buildings that are not undergoing alterations, repairs, or construction of any kind.
2. Interconnection of smoke alarms in existing areas shall not be required where alterations or repairs do not result in removal of interior wall or ceiling finishes exposing the structure, unless there is an attic, crawl space or basement available which could provide access for interconnection without the removal of interior finishes.

SECTION 3405

REPAIRS

3405.1 General. Building and structures, and parts thereof, shall be repaired in compliance with Section 3405 and 3401.2. Work on nondamaged components shall be considered part of the repair and shall not be subject to the requirements for alterations in this chapter. Routine maintenance required by Section 3401.2, minor repairs exempt from approval in accordance with Section 102.10.2, and abatement of wear due to normal service conditions shall not be subject to the requirements for repairs in this section.

3405.2 Substantial structural damage to vertical elements of the lateral force resisting system. A building that has sustained substantial structural damage to the vertical elements of its lateral force-resisting system shall be evaluated and repaired in accordance with the applicable provisions of Sections 3405.2.1 through 3405.2.3.

Exception: Buildings assigned to Seismic Design Category A, B, or C whose substantial damage was not caused by earthquake need not be evaluated or rehabilitated for load combinations that include earthquake effects.

3405.2.1 Evaluation. The building shall be evaluated by a registered design professional, and the evaluation findings shall be submitted to the building official. The evaluation shall establish whether the damaged building, if repaired to its pre-damage state, would comply with the provisions of this code for wind and earthquake loads.

Wind loads for this evaluation shall be those prescribed in Section 1609. Earthquake loads for this evaluation, if required, shall be those prescribed in Section 3401.5.3 3401.4.3.

3405.2.2 Extent of repair for compliant buildings. If the evaluation
establishes compliance of the pre-damage building in accordance with Section 3405.2.1, then repairs shall be permitted that restore the building to its pre-damage state based on material properties and design strengths applicable at the time of original construction.

3405.2.3 Extent of repair for noncompliant buildings. If the evaluation does not establish compliance of the pre-damage building in accordance with Section 3405.2.1, then the building shall be rehabilitated to comply with applicable provisions of this code for load combinations, including wind or seismic loads. The wind loads for the repair shall be as required by the building code in effect at the time of original construction, unless the damage was caused by wind, in which case the wind loads shall be as required by the code. Earthquake loads for this rehabilitation design shall be those required for the design of the pre-damage building, but not less than 75 percent of those prescribed in Section 1613. New structural members and connections required by this rehabilitation design shall comply with the detailing provisions of this code for new buildings of similar structure, purpose and location.

3405.3 Substantial structural damage to gravity load-carrying components. Gravity load-carrying components that have sustained substantial structural damage shall be rehabilitated to comply with the applicable provisions of this code for dead and live loads. Snow loads shall be considered if substantial structural damage was caused by or related to snow load effects. Existing gravity load-carrying structural elements shall be permitted to be designed for live loads approved prior to the damage. Existing gravity load-carrying structural elements that were damaged due to snow loading shall be rehabilitated to comply with snow load requirements of this code for new buildings. Non-damaged gravity load-carrying components that receive dead, live or snow loads from rehabilitated components shall also be rehabilitated or shown to have the capacity to carry the design loads of the rehabilitation design. New structural members and connections required by this rehabilitation design shall comply with the detailing provisions of this code for new buildings of similar structure, purpose and location.

3405.3.1 Lateral force-resisting elements. Regardless of the level of damage to vertical elements of the lateral force-resisting system, if substantial structural damage to gravity load-carrying components was caused primarily by wind or earthquake effects, then the building shall be evaluated in accordance with Section 3405.2.1 and, if noncompliant, rehabilitated in accordance with Section 3405.2.3.
Exception: Buildings assigned to Seismic Design Category A, B, or C whose substantial structural damage was not caused by earthquake need not be evaluated or rehabilitated for load combinations that include earthquake effects.

3405.4 Less than substantial structural damage
For damage less than substantial structural damage, repairs shall be allowed that restore the building to its pre-damage state based on material properties and design strengths applicable at the time of the original construction. New structural members and connections used for this repair shall comply with the detailing provisions of this code for new buildings of similar structure, purpose and location.

3405.5 Flood hazard areas
For buildings and structures in flood hazard areas as established in Section 1612.3, any repair that constitutes substantial improvement of the existing structure, as defined in Section 1612.2, shall comply with the flood design requirements for new construction, and all aspects of the existing structure shall be brought into compliance with the requirements for new construction for flood design.

For buildings and structures in flood hazard areas established in Section 1612.3, any repairs that do not constitute substantial improvement or repair of substantial damage of the existing structure, as defined in Section 1612.2, are not required to comply with the flood design requirements for new construction.

SECTION 3406
FIRE ESCAPES

3406.1 Where permitted
Fire escapes shall be permitted only as provided for in Sections 3406.1.1 through 3406.1.4 3406.1.3.

3406.1.1 Existing fire escapes
Existing fire escapes shall be continued to be accepted as a component in the means of egress in existing buildings only.

3406.1.2 New fire escapes
New fire escapes for existing buildings shall be permitted only where exterior stairs cannot be utilized due to lot lines limiting stair size or due to the sidewalks, alleys or roads at grade level. New fire escapes shall not incorporate ladders or access by windows.

Exception: In existing adult group homes and when an existing building is proposed to be used for a change of occupancy to an adult group home, new fire escapes shall be permitted as a means of Emergency escape/fire department access.
3406.1.3 Limitations. Fire escapes shall comply with this section and shall not constitute more than 50 percent of the required number of exits nor more than 50 percent of the required exit capacity.

3406.2 Location. Where located on the front of the building and where projecting beyond the building line, the lowest landing shall not be less than 7 feet (2134 mm) or more than 12 feet (3658 mm) above grade, and shall be equipped with a counterbalanced stairway to the street. In alleyways and thoroughfares less than 30 feet (9144 mm) wide, the clearance under the lowest landing shall not be less than 12 feet (3658 mm).

3406.3 Construction. The fire escape shall be designed to support a live load of 100 pounds per square foot (4788 Pa) and shall be constructed of steel or other approved noncombustible materials. Fire escapes constructed of wood not less than nominal 2 inches (51 mm) thick are permitted on buildings of Type 5 construction. Walkways and railings located over or supported by combustible roofs in buildings of Type 3 and 4 construction are permitted to be of wood not less than nominal 2 inches (51 mm) thick.

3406.4 Dimensions. Stairs shall be at least 22 inches (559 mm) wide with risers not more than, and treads not less than, 8 inches (203 mm) and landings at the foot of stairs not less than 40 inches (1016 mm) wide by 36 inches (914 mm) long, located not more than 8 inches (203 mm) below the door.

3406.5 Opening protectives. Doors and windows along the fire escape shall be protected with ¾ hour opening protectives.

SECTION 3407
GLASS REPLACEMENT

3407.1 Conformance. The installation or replacement of glass shall be as required for new installations.

SECTION 3408
CHANGE OF OCCUPANCY

3408.1 Conformance. A change of occupancy of an existing building or space shall be permitted without conforming to all the requirements of this code, provided the proposed use is not more hazardous than the existing use, based on an analysis of life and fire risk. Such analysis is permitted to be based upon the provisions of section 3412. If the proposed use is more hazardous than the
existing use, such building shall be made to comply with the requirements of chapters 3 through 12 and 14 through 33 or with section 3412 of this chapter.

3408.2 Certificate of occupancy. A certificate of occupancy shall be issued where it has been determined that the requirements of section 3408 have been met, there are no outstanding orders and it has been determined that no serious hazards exist.

3408.3 Stairways. Existing stairways in an existing structure shall not be required to comply with the requirements of a new stairway as outlined in Sections 1011, 1014, and 1015.

3408.4 Snow, Wind, and Seismic Design. When a change of occupancy results in a structure being reclassified to a higher risk category, the structure shall conform to the snow, wind, and seismic requirements for a new structure of the higher risk category.

 Exceptions:
 1. Specific seismic detailing requirements of Section 1613 for a new structure shall not be required to be met where the seismic performance is shown to be equivalent to that of a new structure. A demonstration of equivalence shall consider the regularity, over strength, redundancy and ductility of the structure.
 2. When a change of use results in a structure being reclassified from Risk Category I or II to Risk Category III and the structure is located where the seismic coefficient, SDS, is less than 0.33, compliance with the seismic requirements of Section 1613 are not required.
 3. When a change of use results in a building being reclassified from Risk Category I or II to Risk Category III, work is not required to upgrade the roof snow load capacity or building capacity to resist wind loading, provided the building meets industry standards in place at the time of original construction for snow and wind loading.

SECTION 3409
HISTORIC BUILDINGS

3409.1 Historic buildings. The provisions of this code relating to the construction, repair, alteration, addition, restoration and movement of structures, and change of occupancy shall not be mandatory for historic buildings where such buildings are judged by the building official to not constitute a distinct life safety hazard.
SECTION 3410
MOVED STRUCTURES

3410.1 Conformance. Structures moved shall be safe and sanitary and any
repair, alteration, or change in occupancy shall comply with the provisions of this
code for new structures. Field work, building location, foundations and
foundation connections, wind loads, seismic loads, snow loads, and flood loads,
shall comply with the requirements of this code.
The building official shall be authorized to inspect, or require inspection at the
expense of the owner, the various components of a relocated building to verify
that they have not sustained damage. Building service equipment, mechanical,
plumbing, and fire protection systems shall be tested to assure that they are in
operating condition. Any repairs or alterations required as a result of such
inspections shall be approved and completed prior to issuance of the certificate of
occupancy.
Buildings previously approved as industrialized units, when moved after first
occupancy are to be evaluated for conformance in accordance with this section by
the building official in the jurisdiction where the building is intended to be
relocated.

SECTION 3411
ACCESSIBILITY FOR EXISTING BUILDINGS

3411.1 Scope. The provisions of Sections 3411.1 through 3411.9 apply to
maintenance, change of occupancy, additions and alterations to existing
buildings, including those identified as historic buildings.

Exception: Type B dwelling or sleeping units required by Section 1107 of this
code are not required to be provided in existing buildings and facilities being
altered or undergoing a change of occupancy.

3411.2 Maintenance of facilities. A building, facility or element that is
constructed or altered to be accessible shall be maintained accessible during
occupancy.

3411.3 Extent of application. An alteration of an existing element, space or area
of a building or facility shall not impose a requirement for greater accessibility
than that which would be required for new construction. Alterations shall not
reduce or have the effect of reducing accessibility of a building, portion of a
building or facility.
3411.4 Change of occupancy. Existing buildings that undergo a change of group or occupancy shall comply with this section.

Exception: Type B dwelling units or sleeping units required by Section 1107 of this code are not required to be provided in existing buildings and facilities undergoing a change of occupancy in conjunction with alterations where the area being altered is 50 percent or less of the aggregate area of the building.

3411.4.1 Partial change in occupancy. Where a portion of the building is changed to a new occupancy classification, any alterations shall comply with Sections 3411.6, 3411.7 and 3411.8.

3411.4.2 Complete change of occupancy. Where an entire building undergoes a change of occupancy, it shall comply with Section 3411.4.1 and shall have all of the following accessible features:

1. At least one accessible building entrance.
2. At least one accessible route from an accessible building entrance to primary function areas.
3. Signage complying with Section 1110.1111.
4. Accessible parking, where parking is being provided.
5. At least one accessible passenger loading zone, when loading zones are provided.
6. At least one accessible route connecting accessible parking and accessible passenger loading zones to an accessible entrance.

Where it is technically infeasible to comply with the new construction standards for any of these requirements for a change of group or occupancy, the above items shall conform to the requirements to the maximum extent technically feasible.

Exception: The accessible features listed in Items 1 through 6 are not required for an accessible route to Type B units.

3411.5 Additions. Provisions for new construction shall apply to additions. An addition that affects the accessibility to, or contains an area of, a primary function shall comply with the requirements in Section 3411.7.

3411.6 Alterations. A building, facility or element that is altered shall comply with the applicable provisions in Chapter 11 of this code, unless technically infeasible. Where compliance with this section is technically infeasible, the alteration shall provide access to the maximum extent technically feasible.

Exceptions:
1. The altered element or space is not required to be on an accessible route, unless required by Section 3411.7.
2. Accessible means of egress required by Chapter 10 are not required to be provided in existing buildings and facilities.

3. The alteration to Type A individually owned dwelling units within a Group R-2 occupancy shall meet the provision for a Type B dwelling unit shall be permitted to meet the provision for a Type B dwelling unit.

4. Type B dwelling or sleeping units required by Section 1107 of this code are not required to be provided in existing buildings and facilities undergoing a change of occupancy in conjunction with alterations where the area of the alteration is 50 percent or less of the aggregate area of the building.

3411.7 Alterations affecting an area containing a primary function. Where an alteration affects the accessibility to, or contains an area of primary function, the route to the primary function area and the amenities serving the area shall be accessible. The accessible route to the primary function area shall include toilet facilities or drinking fountains serving the area of primary function.

Exceptions:
1. The costs of providing the accessible route are not required to exceed 20 percent of the costs of the alterations affecting the area of primary function. The determination of disproportionality and the conditions for applying this exception shall be in accordance with section 3411.7.1.
2. This provision does not apply to alterations limited solely to windows, hardware, operating controls, electrical outlets and signs.
3. This provision does not apply to alterations limited solely to mechanical systems, electrical systems, installation or alteration of fire protection systems and abatement of hazardous materials.
4. This provision does not apply to alterations undertaken for the primary purpose of increasing the accessibility of an existing building, facility or element.
5. This provision does not apply to altered areas limited to Type B dwelling and sleeping units.

3411.7.1 Disproportionate costs and alternative compliance. Alterations required to be made to provide an accessible path of travel to the altered area will be deemed disproportionate to the overall alteration when the cost exceeds twenty per cent of the cost of the alteration to the primary function area. The determination of disproportionate costs shall be made and applied in accordance with the following:
1. Costs that may be counted as expenditures required to provide an accessible path of travel may include:
 1.1 Costs associated with providing an accessible entrance and an
accessible route to the altered area, for example, the cost of widening doorways or installing ramps;

1.2 Costs associated with making restrooms accessible, such as installing grab bars, enlarging toilet stalls, insulating pipes, or installing accessible faucet controls;

1.3 Costs associated with providing accessible telephones, such as relocating the telephone to an accessible height, installing amplification devices, or installing a telecommunications device for deaf persons (TDD);

1.4 Costs associated with relocating an inaccessible drinking fountain.

2. Required accessible features in the event of disproportionality.

2.1 When the cost of alterations necessary to make the path travel to the altered area fully accessible is disproportionate to the cost of the overall alteration, the path of travel shall be made accessible to the extent that it can be made accessible without incurring disproportionate costs.

2.2 In choosing which accessible elements to provide, priority should be given to those elements that will provide the greatest access, in the following order:

2.2.1. An accessible entrance;

2.2.2. An accessible route to the altered area;

2.2.3. At least one accessible restroom for each sex or a single unisex restroom;

2.2.4. Accessible telephones;

2.2.5. Accessible drinking fountains;

2.2.6. When possible, additional accessible elements such as parking, storage, and alarms.

3. Series of smaller alterations. The obligation to provide an accessible path of travel may not be evaded by performing a series of small alterations to the area served by a single path of travel if those alterations could have been performed as a single undertaking.

3.1 If an area containing a primary function has been altered without providing an accessible path of travel to that area, and subsequent alterations of that area, or a different area on the same path of travel, are undertaken within three years of the original alteration, the total cost of alterations to the primary function areas on that path of travel during the preceding three year period shall be considered in determining whether the cost of making that path of travel accessible is disproportionate.

3411.8 Scoping for alterations. The provisions of Sections 3411.8.1 through
3411.8.15 shall apply to alterations to existing buildings and facilities.

3411.8.1 Entrances. Accessible entrances shall be provided in accordance with Section 1105.

Exception: Where an alteration includes alterations to an entrance, and the building or facility has an accessible entrance, the altered entrance is not required to be accessible, unless required by Section 3411.7. Signs complying with Section 1111 shall be provided.

3411.8.2 Elevators. Altered elements of existing elevators shall comply with ASME A17.1 and Chapter 11. Such elements shall also be altered in elevators programmed to respond to the same hall call control as the altered elevator.

3411.8.3 Platform lifts. Platform (wheelchair) lifts complying with Chapter 11 and installed in accordance with ASME A18.1 shall be permitted as a component of an accessible route.

3411.8.4 Stairs and escalators in existing buildings. In alterations, change of occupancy or additions where an escalator or stair is added where none existed previously and major structural modifications are necessary for installation, an inaccessible route shall be provided between the levels served by the escalator or stairs in accordance with Sections 1104.4 and 1104.5.

3411.8.5 Ramps. Where slopes steeper than allowed by Section 4010.2 1012.2 are necessitated by space limitations, the slope of ramps in or providing access to existing buildings or facilities shall comply with Table 3411.8.5.

<table>
<thead>
<tr>
<th>TABLE 3411.8.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAMPS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SLOPE</th>
<th>MAXIMUM RISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steeper than 1:10 but not steeper than 1:8</td>
<td>3 inches</td>
</tr>
<tr>
<td>Steeper than 1:12 but not steeper than 1:10</td>
<td>6 inches</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

3411.8.6 Performance areas. Where it is technically infeasible to alter performance areas to be on an accessible route, at least one of each type of performance area shall be made accessible.
3411.8.7 Accessible dwelling or sleeping units. Where Group I-1, I-2, I-3, R-1, R-2 or R-4 dwelling or sleeping units are being altered or added, the requirements of Section 1107 for Accessible units apply only to the quantity of spaces being altered or added.

3411.8.8 Type A dwelling or sleeping units. Where more than 20 Group R-2 dwelling or sleeping units are being added, the requirements of Section 1107 for Type A units apply only to the quantity of the spaces being altered or added. The requirements of Section 1107 for Accessible units apply only to the quantity of spaces being altered or added.

3411.8.9 Type B dwelling or sleeping units. Where four or more Group I-1, I-2, R-1, R-2, R-3 or R-4 dwelling or sleeping units are being added, the requirements of Section 1107 for Type B units apply only to the quantity of the spaces being added. Where Group I-1, I-2, R-1, R-2, R-3 or R-4 dwelling or sleeping units are being altered and where the area of the alteration is greater than 50 percent of the aggregate area of the building, the requirements of Section 1107 for Type B units apply only to the quantity of the spaces being altered.

3411.8.10 Jury boxes and witness stands. In alterations, accessible wheelchair spaces are not required to be located within the defined area of raised jury boxes or witness stands and shall be permitted to be located outside these spaces where the ramp or lift access restricts or projects into the means of egress.

3411.8.11 Toilet rooms. Where it is technically infeasible to alter existing toilet and bathing facilities to be accessible, an accessible family or assisted use toilet or bathing facility constructed in accordance with Section 1109.2.1 is permitted. The family or assisted-use facility shall be located on the same floor and in the same area as the existing facilities.

3411.8.12 Dressing, fitting and locker rooms. Where it is technically infeasible to provide accessible dressing, fitting or locker rooms at the same location as similar types of rooms, one accessible room on the same level shall be provided. Where separate-sex facilities are provided, accessible rooms for each sex shall be provided. Separate-sex facilities are not required where only unisex rooms are provided.

3411.8.13 Fuel dispensers. Operable parts of replacement fuel dispensers shall be permitted to be 54 inches (1370 mm) maximum measured from the
surface of the vehicular way where fuel dispensers are installed on existing curbs.

3411.8.14 Thresholds. The maximum height of thresholds at doorways shall be ¾ inch (19.1 mm). Such thresholds shall have beveled edges on each side.

3411.9 Historic buildings. These provisions shall apply to buildings and facilities designated as historic structures that undergo alterations or a change of occupancy, unless technically infeasible. Where compliance with the requirements for accessible routes, entrances or toilet facilities would threaten or destroy the historic significance of the building or facility, as determined by the applicable governing authority, the alternative requirements of Sections 3411.9.1 through 3411.9.4 for that element shall be permitted.

Exception: Type B dwelling or sleeping units required by Section 1107 are not required to be provided in historic buildings.

3411.9.1 Site arrival points. At least one accessible route from a site arrival point to an accessible entrance shall be provided.

3411.9.2 Multilevel buildings and facilities. An accessible route from an accessible entrance to public spaces on the level of the accessible entrance shall be provided.

3411.9.3 Entrances. At least one main entrance shall be accessible.

Exceptions:
1. If a main entrance cannot be made accessible, an accessible nonpublic entrance that is unlocked while the building is occupied shall be provided; or
2. If a main entrance cannot be made accessible, a locked accessible entrance with a notification system or remote monitoring shall be provided.

Signs complying with Section 1111 shall be provided at the primary entrance and the accessible entrance.

3411.9.4 Toilet and bathing facilities. Where toilet rooms are provided, at least one accessible family or assisted-use toilet room complying with Section 1109.2.1 shall be provided.

SECTION 3412
COMPLIANCE ALTERNATIVES
3412.1 Compliance. The provisions of this section are intended to maintain or increase the current degree of public safety, health and general welfare in existing buildings while permitting repair, alteration, addition and change of occupancy without requiring full compliance with Chapters 2 through 33, or Sections 3401-3 3401.1.1, and 3403 through 3409, except where compliance with other provisions of this code is specifically required in this section.

3412.2 Applicability. Structures existing prior to July 1, 1979, in which there is work involving additions, alterations or changes of occupancy shall be made to comply with the requirements of this section or the provisions of Sections 3403 through 3409. The provisions in Sections 3412.2.1 through 3412.2.5 shall apply to existing occupancies that will continue to be, or are proposed to be, in Groups A, B, E, F, I-2, M, R, S. These provisions shall not apply to buildings with occupancies in Group H or I-1, I-3, or I-4.

Exception: As described in Section 3408.1, the methodology used in this section is permitted to be used as a comparative risk analysis tool when evaluating an existing structure for a proposed change of occupancy on existing structures that were approved for construction on or after July 1, 1979.

3412.2.1 Change in occupancy. Where an existing building is changed to a new occupancy classification and this section is applicable, the provisions of this section for the new occupancy shall be used to determine compliance with this code.

3412.2.2 Partial change in occupancy. Where a portion of the building is changed to a new occupancy classification, and that portion is separated from the remainder of the building with fire barriers or horizontal assemblies having a fire-resistance rating as required by Table 508.4 for the separate occupancies, or with approved compliance alternatives, the portion changed shall be made to comply with the provisions of this section. Where a portion of the building is changed to a new occupancy classification, and that portion is not separated from the remainder of the building with fire barriers or horizontal assemblies having a fire-resistance rating as required by Table 508.4 for the separate occupancies, or with approved compliance alternatives, the provisions of this section which apply to each occupancy shall apply to the entire building. Where there are conflicting provisions, those requirements which secure the greater public safety shall apply to the entire building or structure.

3412.2.3 Additions. Additions to existing buildings shall comply with the
3412.2.3.1 Additions to buildings of Groups R and I occupancies. The combined height and area of the existing building and the addition shall not exceed the height and area allowed by chapter 5. Where a fire wall that complies with section 706 is provided between the addition and the existing building, the addition shall be considered a separate building.

3412.2.3.2 Additions to buildings of Groups other than R and I occupancies. When the combined height and area of the existing building and the addition exceeds the height or area allowed by Chapter 5 including any area increases permitted, the following shall be permitted:

1. A fire wall that complies with Section 706 shall be constructed between the existing building and the addition. When a fire wall is constructed to separate the existing building from the addition, the addition shall be considered a separate building.

2. A fire barrier that complies with Section 707 as required for separating fire areas shall be provided between the addition and the existing building. When a fire barrier is constructed to separate the existing building from the addition, all the following shall apply.
 a. The combined height and area of the addition and existing building shall be used to determine the construction type and fire protection requirements for the addition.
 b. The construction type of the existing building and the addition may differ.
 c. Fire protection system is not required in the existing building when a fire protection system is required in the addition.
 d. When calculating the allowable combined height and area of the existing building and the addition in accordance with Chapter 5, the tabular values corresponding to a building equipped throughout with an automatic sprinkler system installed in accordance with Section 903.3.1.1 shall be used whether or not the existing building is provided throughout with an automatic sprinkler system in accordance with Section 903.1.1.

3. When the combined height and area of the existing building and the addition does not exceed the height and area allowed by Chapter 5, but the area of the existing building plus the new addition creates a fire area greater than the threshold limits of Chapter 9, one of the following shall be provided:
 1. A fire barrier to limit the fire area; or
2. An automatic sprinkler system in the addition extends into the existing building to a barrier or partition.

3412.2.4 Alterations and repairs. An existing building or portion thereof, which does not comply with the requirements of this code for new construction, shall not be altered or repaired in such a manner that results in the building being less safe or sanitary than such building is currently. If, in the alteration or repair, the current level of safety or sanitation is to be reduced, the portion altered or repaired shall conform to the requirements of Chapters 2 through 12 and Chapters 14 through 33.

3412.2.4.1 Flood hazard areas. For existing buildings located in flood hazard areas established in Section 1612.3, if the alterations and repairs constitute substantial improvement of the existing building, the existing building shall be brought into compliance with the requirements for new construction for flood design.

As used in this section, a substantial improvement shall mean any reconstruction, rehabilitation, addition, or other improvement of a structure, the cost of which equals or exceeds 50 percent of the pre-improvement market value.

3412.2.5 Accessibility requirements. All portions of the buildings proposed for change of occupancy shall conform to the accessibility provisions of Section 3411.

3412.3 Acceptance. For repairs, alterations, additions and changes of occupancy to existing buildings that are evaluated in accordance with this section, compliance with this section shall be accepted by the building official.

3412.3.1 Hazards. Where the building official determines that an unsafe condition exists, as provided for in Section 109, such unsafe condition shall be abated in accordance with Section 109.

3412.4 Investigation and evaluation. For proposed work covered by this section, the building owner shall cause the existing building to be investigated and evaluated in accordance with the provisions of this section.

3412.4.1 Structural analysis. The owner shall have a structural analysis of the existing building made to determine adequacy of structural systems for the proposed alteration, addition or change of occupancy. The analysis shall demonstrate that the building with the work completed is capable of resisting
the loads specified in Chapter 16.

3412.4.2 Submittal. The results of the investigation and evaluation as required in Section 3412.4, along with proposed compliance alternatives, shall be submitted to the building official.

3412.4.3 Determination of compliance. The building official shall determine whether the existing building, with the proposed addition, alteration or change of occupancy, complies with the provisions of this section in accordance with the evaluation process in Sections 3412.5 through 3412.9.

3412.5 Evaluation. The evaluation shall be comprised of three categories: fire safety, means of egress and general safety, as defined in Sections 3412.5.1 through 3412.5.3.

3412.5.1 Fire safety. Included within the fire safety category are the structural fire resistance, automatic fire detection, fire alarm and fire suppression system features of the facility.

3412.5.2 Means of egress. Included within the means of egress category are the configuration, characteristics and support features for means of egress in the facility.

3412.5.3 General safety. Included within the general safety category are the fire safety parameters and the means of egress parameters.

3412.6 Evaluation process. The evaluation process specified herein shall be followed in its entirety to evaluate existing buildings in Groups A, B, E, F, M, R, S, and U. For existing buildings in Group I-2, the evaluation process specified herein shall be followed and applied to each and every individual smoke compartment. Table 3412.7 shall be utilized for tabulating the results of the evaluation. References to other sections of this code indicate that compliance with those sections is required in order to gain credit in the evaluation herein outlined. In applying this section to a building with mixed occupancies, where the separation between the mixed occupancies does not qualify for any category indicated in Section 3412.6.16, the score for each occupancy shall be determined, and the lower score determined for each section of the evaluation process shall apply to the entire building, or to each smoke compartment for Group I-2 occupancies. Where the separation between mixed occupancies qualifies for any category indicated in Section 3412.6.16, the score for each occupancy shall apply to each
portion or smoke compartment of the building based on the occupancy of the space.

3412.6.1 Building height and number of stories. The value for building height and number of stories shall be the lesser value determined by the formula in Section 3412.6.1.1. Chapter 5 shall be used to determine the allowable height and number of stories of the building, including allowable increases due to automatic sprinklers as provided for in Section 504.2. Subtract the actual building height in feet from the allowable and divide by 12 ½ feet. Enter the height value and its sign (positive or negative) in Table 3412.7 under Safety Parameter 3412.6.1, Building Height, for fire safety, means of egress and general safety. The maximum score for a building shall be 10.

3412.6.1.1 Height formula. The following formulas shall be used in computing the building height value.

\[
\text{Height value, feet} = \frac{(AH) - (EBH)}{12.5} \times CF \quad (Equation \ 34-1)
\]

where:
- \(AH\) = Allowable height in feet from Section 504.
- \(EBH\) = Existing building height in feet.
- \(AS\) = Allowable height in stories from Section 504.
- \(EBS\) = Existing building height in stories.
- \(CF\) = 1 if \((AH) - (EBH)\) is positive.
- \(CF\) = Construction-type factor shown in Table 3412.6.6(2) if \((AH) - (EBH)\) is negative.

Note: Where mixed occupancies are separated and individually evaluated as indicated in Section 3412.6, the values \(AH\), \(AS\), \(EBH\) and \(EBS\) shall be based on the height of the occupancy being evaluated.

3412.6.2 Building area. The value for building area shall be determined by the formula in Section 3412.6.2.2. Section 506 and the formula in Section 3412.6.2.1 shall be used to determine the allowable area of the building. Subtract the actual building area in square feet from the allowable area and divide by 1,200 square feet. Enter the area value and its sign (positive or negative) in Table 3412.7 under Safety Parameter 3412.6.2, Building Area, for fire safety, means of egress and general safety. In determining the area value, the maximum permitted
positive value for area is 50 percent of the fire safety score as listed in Table 3412.8, Mandatory Safety Scores. Group I-2 occupancies shall be scored zero.

3412.6.2.1 Allowable area formula. The following formula shall be used in computing allowable area:

\[A_a = [A_t + (NS \times l_f)] \]
(Equation 34-3)

where:
- \(A_a \) = Allowable building area per story (square feet).
- \(A_t \) = Tabular allowable area factor (NS, S1, S13R, S13D or SM value), as applicable in accordance with Table 506.2.
- \(NS \) = Tabular allowable area factor in accordance with Table 506.2 or nonsprinklered building (regardless of whether the building is sprinklered).
- \(l_f \) = Area factor increase due to frontage as calculated in accordance with Section 506.3.

3412.6.2.2 Area formula. The following formula shall be used in computing the area value. Determine the area value for each occupancy floor area on a floor-by-floor basis. For each occupancy, choose the minimum area value of the set of values obtained for the particular occupancy.

\[i = \frac{\text{Allowable area}_i}{1,200 \text{ square feet}} \left[1 - \left(\frac{\text{Actual area}_i}{\text{Allowable area}_i} + \cdots + \frac{\text{Actual area}_n}{\text{Allowable area}_n} \right) \right] \]
(Equation 34-4)

where:
- \(i \) = Value for an individual separated occupancy on a floor.
- \(n \) = Number of separated occupancies on a floor.

3412.6.3 Compartmentation. Evaluate the compartments created by fire barriers or horizontal assemblies which comply with Sections 3412.6.3.1 and 3412.6.3.2 and which are exclusive of the wall elements considered under Sections 3412.6.4 and 3412.6.5. Conforming compartments shall be figured as the net area and do not include shafts, chases, stairways, walls or columns. Using Table 3412.6.3, determine the appropriate compartmentation value(CV) and enter that value into Table 3412.7 under Safety Parameter 3412.6.3, Compartmentation, for fire safety, means of egress and general
safety.

TABLE 3412.6.3

COMPARTMENTATION VALUES

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>a Compartment size equal to or greater than 15,000 square feet</th>
<th>b Compartment size of 10,000 square feet</th>
<th>c Compartment size of 7,500 square feet</th>
<th>d Compartment size of 5,000 square feet</th>
<th>e Compartment size of 2,500 square feet or less</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1, A-3</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>A-2</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>A-4, B, E, S-2</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>F, M, R, S-1</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>16</td>
<td>22</td>
</tr>
</tbody>
</table>

For SI: 1 square foot = 0.093 m.

a. For areas between categories, the compartmentation value shall be obtained by linear interpolation.

3412.6.3.1 Wall construction

A wall used to create separate compartments shall be a fire barrier conforming to Section 707 with a fire-resistance rating of not less than 2 hours. Where the building is not divided into more than one compartment, the compartment size shall be taken as the total floor area on all floors. Where there is more than one compartment within a story, each compartmented area on such story shall be provided with a horizontal exit conforming to Section 1025 1026. The fire door serving as the horizontal exit between compartments shall be so installed, fitted and gasketed that such fire door will provide a substantial barrier to the passage of smoke.

3412.6.3.2 Floor/ceiling construction

A floor/ceiling assembly used to create compartments shall conform to Section 712 711 and shall have a fire-resistance rating of not less than 2 hours.

3412.6.4 Dwelling Tenant and dwelling unit separations

Evaluate the fire-resistance rating of floors and walls separating tenants, including dwelling units, and not evaluated under Sections 3412.6.3 and 3412.6.5. Group I-2 occupancies shall evaluate the rating of the separation between patient sleeping rooms.

Under the categories and occupancies in Table 3412.6.4, determine the appropriate value and enter that value in Table 3412.7 under Safety.
Parameter 3412.6.4, Dwelling Unit Separations, for fire safety, means of egress and general safety.

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>CATEGORIES</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>-5</td>
<td>-3</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>A-3, A-4, B, E, F, M, S-1</td>
<td>-4</td>
<td>-3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>I-2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-4</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>S-2</td>
<td>-5</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

3412.6.4.1 Categories

The categories for tenant and dwelling unit separations are:

1. Category a—No fire partitions; incomplete fire partitions; no doors; doors not self-closing or automatic-closing.
2. Category b—Fire partitions or floor assemblies with less than a 1-hour fire-resistance rating or not constructed in accordance with Sections 707 or 712, respectively.
3. Category c—Fire partitions with a 1-hour or greater fire-resistance rating constructed in accordance with Section 707 and floor assemblies with a 1-hour but less than 2-hour fire-resistance rating constructed in accordance with Section 712, or with only one tenant within the floor area.
4. Category d—Fire barriers with a 1-hour but less than 2-hour fire-resistance rating constructed in accordance with Section 707 and floor assemblies with a 2-hour or greater fire-resistance rating constructed in accordance with Section 712.
5. Category e—Fire barriers and floor assemblies with a 2-hour or greater fire-resistance rating and constructed in accordance with Sections 707 and 712, respectively.

3412.6.5 Corridor walls

Evaluate the fire-resistance rating and degree of completeness of walls which create corridors serving the floor, and constructed in accordance with Section 4048 or 1020. This evaluation shall not include the wall elements considered under Sections 3412.6.3 and 3412.6.4.

Under the categories and groups in Table 3412.6.5, determine the appropriate value and enter that value into Table 3412.7 under Safety.
Parameter 3412.6.5, Corridor Walls, for fire safety, means of egress and general safety.

TABLE 3412.6.5

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>CATEGORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>-10 -4 0 2</td>
</tr>
<tr>
<td>A-2</td>
<td>-30 -12 0 2</td>
</tr>
<tr>
<td>A-3, F, M, R, S-1</td>
<td>-7 -3 0 2</td>
</tr>
<tr>
<td>A-4, B, E, S-2</td>
<td>-5 -2 0 5</td>
</tr>
<tr>
<td>I-2</td>
<td>-10 0 1 2</td>
</tr>
</tbody>
</table>

a. Corridors not providing at least one-half the exit access travel distance for all occupants on a floor shall use Category b.

3412.6.5.1 Categories. The categories for Corridor walls are:

1. Category a—No fire partitions; incomplete fire partitions; no doors; or doors not self-closing.
2. Category b—Less than 1-hour fire-resistance rating or not constructed in accordance with Section 708.4.
3. Category c—1 hour to less than 2 hour fire-resistance rating, with complying opening protectives or with doors conforming to Section 716 or without corridors as permitted without a fire-resistance rating as permitted by Section 1020.
4. Category d—2-hour or greater fire-resistance rating, with doors conforming to Section 716.

3412.6.6 Vertical openings. Evaluate the fire-resistance rating of interior exit stairways or ramps, hoistways, escalator openings and other shaft enclosures within the building, and openings between two or more floors. Table 3412.6.6(1) contains the appropriate protection values. Multiply that value by the construction type factor found in Table 3412.6.6(2). Enter the vertical opening value and its sign (positive or negative) in Table 3412.7 under Safety Parameter 3412.6.6, Vertical Openings, for fire safety, means of egress, and general safety. If the structure is a one-story building or if all the unenclosed vertical openings within the building conform to the requirements of Section 708.12 and Section 713, enter a value of 2 without multiplying by the construction factor. The maximum positive value for this requirement is \((VO)\) shall be 2 regardless of construction factor.
3412.6.6.1 **Vertical opening formula.** The following formula shall be used in computing vertical opening value.

\[VO = PV \times CF \]

(Equation 34-4)

Where:
- \(VO \) = Vertical opening value. The calculated value shall not be greater than positive 2.0.
- \(PV \) = Protection value [from Table 3412.6.6(1)].
- \(CF \) = Construction type factor [from Table 3412.6.6(2)].

TABLE 3412.6.6(1)

<table>
<thead>
<tr>
<th>PROTECTION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (unprotected opening)</td>
<td>-2 times number floors connected</td>
</tr>
<tr>
<td>Less than 1 hour</td>
<td>-1 times number floors connected</td>
</tr>
<tr>
<td>1 to less than 2 hours</td>
<td>1</td>
</tr>
<tr>
<td>2 hours or more</td>
<td>2</td>
</tr>
</tbody>
</table>

TABLE 3412.6.6(2)

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>IA</th>
<th>IB</th>
<th>IIA</th>
<th>IIIB</th>
<th>IIIA</th>
<th>IIIIB</th>
<th>IV</th>
<th>VA</th>
<th>VB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2</td>
<td>1.5</td>
<td>2.2</td>
<td>3.5</td>
<td>2.5</td>
<td>3.5</td>
<td>2.3</td>
<td>3.3</td>
<td>7</td>
</tr>
</tbody>
</table>

3412.6.7 **HVAC systems.** Evaluate the ability of the HVAC system to resist the movement of smoke and fire beyond the point of origin. Under the categories in Section 3412.6.7.1, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.7, HVAC Systems, for fire safety, means of egress and general safety. Facilities in Group I-2 occupancies meeting Categories a, b, or c shall be considered to fail the evaluation.

3412.6.7.1 **Categories.** The categories for HVAC systems are:
1. Category a - Plenums not in accordance with Section 602 of the mechanical code. -10 points.
2. Category b - Air movement in egress elements not in accordance with Section 4018.5 1020.5. -5 points.
3. Category c - Both categories a and b are applicable. -15 points.
4. Category d - Compliance of the HVAC system with Section 4018.5
5. **Category e** - Systems serving one story; or a central boiler/chiller system without ductwork connecting two or more stories. ±5 points.

3412.6.8 Automatic fire detection

Evaluate the smoke detection capability based on the location and operation of automatic fire detectors in accordance with Section 907 and the mechanical code. Under the categories and occupancies in Table 3412.6.8, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.8, Automatic Fire Detection, for fire safety, means of egress and general safety. Facilities in Group I-2 occupancies meeting Category a, b, or c shall be considered to fail the evaluation.

TABLE 3412.6.8

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>CATEGORIES</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1, A-3, F, M, R, S-1</td>
<td>-10</td>
<td>-5</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>-25</td>
<td>-5</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>A-4, B, E, S-2</td>
<td>-4</td>
<td>-2</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

I-2

NP | NP | NP | 4 | 2 | 2

NA = Not applicable.

NP = Not Permitted.

3412.6.8.1 Categories

1. Category a—None.
2. Category b—Existing smoke detectors in HVAC systems and maintained in accordance with the fire code.
3. Category c—Smoke detectors in HVAC systems. The detectors are installed in accordance with the requirements for new buildings in the mechanical code.
4. Category d—Smoke detectors throughout all floor areas other than individual sleeping units, tenant spaces and dwelling units.
5. Category e—Smoke detectors installed throughout the floor area.
6. Category f—Smoke detectors in corridors only.

3412.6.9 Fire alarm systems

Evaluate the capability of the fire alarm system in accordance with Section 907. Under the categories and occupancies in Table 3412.6.9, determine the appropriate value and enter that value into
Table 3412.7 under Safety Parameter 3412.6.9, Fire Alarm Systems, for fire safety, means of egress and general safety.

TABLE 3412.6.9

FIRE ALARM SYSTEM VALUES

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1, A-2, A-3, A-4, B, E, R</td>
<td>-10</td>
<td>-5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>F, M, S</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>I-2</td>
<td>-4</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

*a. For buildings equipped throughout with an automatic sprinkler system, add 2 points for activation by a sprinkler waterflow device.

3412.6.9.1 Categories

The categories for fire alarm systems are:

1. Category a—None.
2. Category b—Fire alarm system with manual fire alarm boxes in accordance with Section 907.3 907.4 and alarm notification appliances in accordance with Section 907.9 907.5.2.
3. Category c—Fire alarm system in accordance with Section 907.
4. Category d—Category c plus a required emergency voice/alarm communications system and a fire command center that conforms to Section 403.4.5911 and contains the emergency voice/alarm communications system controls, fire department communication system controls and any other controls specified in Section 911 where those systems are provided.

3412.6.10 Smoke control

Evaluate the ability of a natural or mechanical venting, exhaust or pressurization system to control the movement of smoke from a fire. Under the categories and occupancies in Table 3412.6.10, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.10, Smoke Control, for means of egress and general safety.

TABLE 3412.6.10

SMOKE CONTROL VALUES

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1, A-2, A-3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>A-4, E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B, M, R</td>
<td>0</td>
<td>2(^{a})</td>
<td>3(^{a})</td>
<td>3(^{a})</td>
<td>4(^{a})</td>
<td></td>
</tr>
<tr>
<td>F, S</td>
<td>0</td>
<td>2(^{a})</td>
<td>3(^{a})</td>
<td>3(^{a})</td>
<td>3(^{a})</td>
<td>3(^{a})</td>
</tr>
</tbody>
</table>
3412.6.10.1 Categories. The categories for smoke control are:

1. Category a—None.
2. Category b—The building is equipped throughout with an automatic sprinkler system. Openings are provided in exterior walls at the rate of 20 square feet (1.86 m²) per 50 linear feet (15 240 mm) of exterior wall in each story and distributed around the building perimeter at intervals not exceeding 50 feet (15 240 mm). Such openings shall be readily openable from the inside without a key or separate tool and shall be provided with ready access thereto. In lieu of operable openings, clearly and permanently marked tempered glass panels shall be used.
3. Category c—One enclosed exit stairway, with ready access thereto, from each occupied floor of the building. The stairway has operable exterior windows and the building has openings in accordance with Category b.
4. Category d—One smokeproof enclosure and the building has openings in accordance with Category b.
5. Category e—The building is equipped throughout with an automatic sprinkler system. Each floor area is provided with a mechanical air-handling system designed to accomplish smoke containment. Return and exhaust air shall be moved directly to the outside without recirculation to other floor areas of the building under fire conditions. The system shall exhaust not less than six air changes per hour from the floor area. Supply air by mechanical means to the floor area is not required. Containment of smoke shall be considered as confining smoke to the fire area involved without migration to other floor areas. Any other tested and approved design which will adequately accomplish smoke containment is permitted.
6. Category f—Each stairway shall be one of the following: a smokeproof enclosure in accordance with Section 1022.91023.11; pressurized in accordance with Section 909.20.5 or shall have operable exterior windows.

3412.6.11 Means of egress capacity and number. Evaluate the means of egress capacity and the number of exits available to the building occupants. In applying this section, the means of egress are required to conform to the
following sections of this code: 1003.7, 1004, 1005.1, 1014.2, 1014.3, 1015.2, 1021, 1005, 1006, 1007, 1016.2, 1025.11026.1, 1027.21028.2, 1027.61028.5, 1028.21029.2, 1028.31029.3, 1028.41029.4, and 10291030. The number of exits credited is the number that is available to each occupant of the area being evaluated. Existing fire escapes shall be accepted as a component in the means of egress when conforming to Section 3406. Under the categories and occupancies in Table 3412.6.11, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.11, Means of Egress Capacity, for means of egress and general safety.

TABLE 3412.6.11
MEANS OF EGRESS VALUES

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>CATEGORIES</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1, A-2, A-3, A-4, E</td>
<td>-10</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>B, F, S</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>-3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* The values indicated are for buildings six stories or less in height. For buildings over six stories above grade plane, add an additional -10 points.

3412.6.11.1 Categories

The categories for Means of Egress Capacity and number of exits are:

1. Category a—Compliance with the minimum required means of egress capacity or number of exits is achieved through the use of a fire escape in accordance with Section 3406.
2. Category b—Capacity of the means of egress complies with Section 40041005 and the number of exits complies with the minimum number required by Section 40241006.
3. Category c—Capacity of the means of egress is equal to or exceeds 125 percent of the required means of egress capacity, the means of egress complies with the minimum required width dimensions specified in the code and the number of exits complies with the minimum number required by Section 40241006.
4. Category d—The number of exits provided exceeds the number of exits required by Section 40241006. Exits shall be located a distance apart from each other equal to not less than that specified in Section 4015.21007.
5. Category e—The area being evaluated meets both Categories c and d.
3412.6.12 Dead ends. In spaces required to be served by more than one means of egress, evaluate the length of the exit access travel path in which the building occupants are confined to a single path of travel. Under the categories and occupancies in Table 3412.6.12, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.12, Dead Ends, for means of egress and general safety.

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>CATEGORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1, A-3, A-4, B, E, F, M, R, S</td>
<td>a b c d</td>
</tr>
<tr>
<td>-2 0 2 -4</td>
<td></td>
</tr>
<tr>
<td>A-1 A-2, E</td>
<td>-2 0 2 -4</td>
</tr>
<tr>
<td>I-2</td>
<td>-2 0 2 -6</td>
</tr>
</tbody>
</table>

a. For dead-end distances between categories, the dead-end value shall be obtained by linear interpolation.

3412.6.12.1 Categories. The categories for dead ends are:
1. Category a—Dead end of 35 feet (10 670 mm) in nonsprinklered buildings or 70 feet (21 340 mm) in sprinklered buildings.
2. Category b—Dead end of 20 feet (6096 mm); or 50 feet (15 240 mm) in Group B in accordance with Section 4018.41020.4, exception 2.
3. Category c — No dead ends; or ratio of length to width (l/w) is less than 2.5:1.

3412.6.13 Maximum exit access travel distance. Evaluate the length of exit access travel to an approved exit. Determine the appropriate points in accordance with the following equation and enter that value into Table 3412.7 under Safety Parameter 3412.6.13, Maximum Exit Access Travel Distance, for means of egress and general safety. The maximum allowable exit access travel distance shall be determined in accordance with Section 4016.41017.1.

\[
\text{Points} = 20 \times \frac{\text{Maximum Allowable travel distance} - \text{Maximum actual travel distance}}{\text{Maximum allowable travel distance}}
\]

3412.6.14 Elevator control. Evaluate the passenger elevator equipment and controls that are available to the fire department to reach all occupied floors. Elevator recall controls shall be provided
in accordance with the fire code. Under the categories and occupancies in Table 3412.6.14, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.14, Elevator Control, for fire safety, means of egress and general safety. The values shall be zero for a single-story building.

TABLE 3412.6.14

<table>
<thead>
<tr>
<th>ELEVATOR TRAVEL</th>
<th>CATEGORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>Less than 25 feet of travel above or below the primary level of elevator access for emergency fire-fighting or rescue personnel</td>
<td>-2</td>
</tr>
<tr>
<td>Travel of 25 feet or more above or below the primary level of elevator access for emergency fire-fighting or rescue personnel</td>
<td>-4</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.

NP = Not Permitted.

3412.6.14.1 Categories. The categories for elevator controls are:

1. Category a—No elevator.
2. Category b—Any elevator without Phase I emergency recall operation and Phase II recall emergency in-car operation.
3. Category c—All elevators with Phase I emergency recall operation and Phase II recall emergency in-car operation as required by the fire code.
4. Category d—All meet Category c; or Category b where permitted to be without Phase I emergency recall operation and Phase II emergency in-car operation; and at least one elevator that complies with new construction requirements serves all occupied floors.

3412.6.15 Means of egress emergency lighting. Evaluate the presence of and reliability of means of egress emergency lighting. Under the categories and occupancies in Table 3412.6.15, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.15, Means of Egress Emergency Lighting, for means of egress and general safety.

TABLE 3412.6.15

<table>
<thead>
<tr>
<th>NUMBER OF EXITS REQUIRED BY SECTION 1410.6</th>
<th>CATEGORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td>Two or more exits</td>
<td>NP</td>
</tr>
</tbody>
</table>
3412.6.15.1 Categories. The categories for means of egress emergency lighting are:

1. **Category a**—Means of egress lighting and exit signs not provided with emergency power in accordance with Chapter 27.
2. **Category b**—Means of egress lighting and exit signs provided with emergency power in accordance with Chapter 27.
3. **Category c**—Emergency power provided to means of egress lighting and exit signs, which provides protection in the event of power failure to the site or building.

3412.6.16 Mixed occupancies. Where a building has two or more occupancies that are not in the same occupancy classification, the separation between the mixed occupancies shall be evaluated in accordance with this section. Where there is no separation between the mixed occupancies or the separation between mixed occupancies does not qualify for any of the categories indicated in Section 3412.6.16.1, the building shall be evaluated as indicated in Section 3412.6 and the value for mixed occupancies shall be zero. Under the categories and occupancies in Table 3410.6.16 3412.6.16, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.16, Mixed Occupancies, for fire safety and general safety. For buildings without mixed occupancies, the value shall be zero. Facilities in Group I-2 occupancies meeting Category a shall be considered to fail the evaluation.

Table 3412.6.16

MIXED OCCUPANCY VALUES

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1, A-2, R</td>
<td>-10</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>A-3, A-4, B, E, F, M, S</td>
<td>-5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>I-2</td>
<td>NP</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

NP = Not permitted.

a. For fire-resistance ratings between categories, the value shall be obtained by linear interpolation.

3412.6.16.1 Categories. The categories for mixed occupancies are:

1. **Category a**—Occupancies separated by minimum 1-hour fire barriers or minimum 1-hour horizontal assemblies, or both.
2. Category b—Separations between occupancies in accordance with Section 508.4.
3. Category c—Separations between occupancies having a fire-resistance rating of not less than twice that required by Section 508.3.3508.4.

3412.6.17 Automatic sprinklers
Evaluate the ability to suppress a fire based on the installation of an automatic sprinkler system in accordance with Section 903.3.1.1. "Required sprinklers" shall be based on the requirements of this code. Under the categories and occupancies in Table 3412.6.17, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.17, Automatic Sprinklers, for fire safety, means of egress divided by 2 and general safety. High-rise buildings defined in Chapter 2 that undergo a change of occupancy to Group R shall be equipped throughout with an automatic sprinkler system in accordance with Section 403 and Chapter 9. Facilities in Group I-2 occupancies meeting Category a, b, c or f shall be considered to fail the evaluation.

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>CATEGORIES</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1, A-3, F, M, R, S-1</td>
<td></td>
<td>-6</td>
<td>-3</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>A-2</td>
<td></td>
<td>-4</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>A-4, B, E, S-2</td>
<td></td>
<td>-12</td>
<td>-6</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>I-2</td>
<td>NP</td>
<td></td>
<td>NP</td>
<td>NP</td>
<td>8</td>
<td>10</td>
<td>NP</td>
</tr>
</tbody>
</table>

NP = Not Permitted.

These options cannot be taken if Category a in Section 3412.6.18 is used.

3412.6.17.1 Categories
The categories for automatic sprinkler system protection are:
1. Category a—Sprinklers are required throughout; sprinkler protection is not provided or the sprinkler system design is not adequate for the hazard protected in accordance with Section 903.
2. Category b—Sprinklers are required in a portion of the building; sprinkler protection is not provided or the sprinkler system design is not adequate for the hazard protected in accordance with Section 903.
3. Category c—Sprinklers are not required; none are provided.
4. Category d—Sprinklers are required in a portion of the building;
sprinklers are provided in such portion; the system is one which complied with the code at the time of installation and is maintained and supervised in accordance with Section 903.

5. Category e—Sprinklers are required throughout; sprinklers are provided throughout in accordance with Chapter 9.

6. Category f—Sprinklers are not required throughout; sprinklers are provided throughout in accordance with Chapter 9.

3412.6.18 Standpipes. Evaluate the ability to initiate attack on a fire by making a supply of water available readily through the installation of standpipes in accordance with Section 905. “Required standpipes” shall be based on the requirements of this code. Under the categories and occupancies in Table 3412.6.18, determine the appropriate value and enter that value into Table 3412.7 under Safety Parameter 3412.6.18, Standpipes, for fire safety, means of egress and general safety.

<table>
<thead>
<tr>
<th>STANDPIPE SYSTEM VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCCUPANCY</td>
</tr>
<tr>
<td>A-1, A-3, F, M, R, S-1</td>
</tr>
<tr>
<td>A-2</td>
</tr>
<tr>
<td>A-4, B, E, S-2</td>
</tr>
<tr>
<td>I-2</td>
</tr>
</tbody>
</table>

a. This option cannot be taken if Category a or Category b in Section 3412.6.17 issued is used.

3412.6.18.1 Standpipe. The categories for standpipe systems are:

1. Category a—Standpipes are required; standpipe is not provided or the standpipe system design is not in compliance with Section 905.3.
2. Category b—Standpipes are not required; none are provided.
3. Category c—Standpipes are required; standpipes are provided in accordance with Section 905.
4. Category d—Standpipes are not required; standpipes are provided in accordance with Section 905.

TABLE 3412.6.19

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>PROTECTION</th>
<th>PROTECTION PROVIDED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3412.6.19 Incidental accessory occupancy uses.
Evaluate the protection of incidental accessory occupancy uses in accordance with Section 508.2.5509.4.2. Do not include those where this code requires suppression throughout the buildings, including covered and open mall buildings, high-rise buildings, public garages and unlimited area buildings. Assign the lowest score from Table 3412.6.19 for the building or floor area being evaluated and enter that value into Table 3412.7 under Safety Parameter 3412.6.19, Incidental Accessory Occupancy Uses, for fire safety, means of egress and general safety. If there are no specific occupancy areas in the building or floor area being evaluated, the value shall be zero.

3412.6.20 Smoke compartmentation.
Evaluate the smoke compartments for compliance with Section 407.5. Under the categories and occupancies in Table 3412.6.20, determine the appropriate smoke compartmentation value (SCV) and enter that value into Table 3412.7 under Safety Parameter 3412.6.20, Smoke Compartmentation, for fire safety, means of egress and general safety. Facilities in Group I-2 occupancies meeting Category b or c shall be considered to fail the evaluation.

TABLE 3412.6.19

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>Categories*</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

TABLE 3412.6.20

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>CATEGORIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

*AFSS AS = Automatic fire suppression sprinkler system; SP = Smoke partitions (See Section 508.2.5). CRS = Construction capable of resisting the passage of smoke (see Section 509.4.2) Note: For Table 3412.7, see next page.
A. B. E. F. M, R, and S

I-2

0

0

0

For SI: 1 square foot = 0.093 m².
NP = Not permitted.
a. For areas between categories, the smoke compartmentation value shall be obtained by linear interpolation.

3412.6.20.1 Categories. Categories for smoke compartment size are:
1. Category a – Smoke compartment size is equal to or less than 22,500 square feet (2092 m²).
2. Category b – Smoke compartment size is greater than 22,500 square feet (2092 m²).
3. Category c – Smoke compartments are not provided.

3412.6.21 Patient ability, concentration, smoke compartment location and ratio to attendant. In I-2 occupancies, the ability of patients, their concentration and ratio to attendants shall be evaluated and applied in accordance with this section. Evaluate each smoke compartment using the categories in Section 3412.6.21.1, 3412.6.21.2, and 3412.6.21.3 and enter the value in Table 3412.8. To determine the safety factor, multiply the three values together, if the sum is 9 or greater, compliance has failed.

3412.6.21.1 Patient ability for self-preservation. Evaluate the ability of the patients for self-preservation in each smoke compartment in an emergency. Under the categories and occupancies in Table 3412.6.21.1 determine the appropriated value and enter that value in Table 3412.7 under Safety Parameter 3412.6.21.1, Patient Ability for Self-preservation, for means of egress and fire safety.

TABLE 3412.6.21.1

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>PATIENT ABILITY VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-2</td>
<td>a b c</td>
</tr>
</tbody>
</table>

3412.6.21.1.1 Categories. The categories for patient ability for self-preservation are:
1. Category a – (mobile) Patients are capable of self-preservation without assistance.
2. Category b – (not mobile) Patients rely on assistance for evacuation or relocation.
3. Category c – (not movable) Patients cannot be evacuated or relocated.
3412.6.21.2 Patient concentration. Evaluate the concentration of patients in each smoke compartment under Section 3412.6.21.2. Under the categories and occupancies in Table 3412.6.21.2 determine the appropriate value and enter that value in Table 3412.7 under Safety Parameter 3412.6.21.2, Patient Concentration, for means of egress and general safety.

TABLE 3412.6.21.2
PATIENT CONCENTRATION VALUES

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

3412.6.21.2.1 Categories: The categories for patient concentration are:
1. Category a – smoke compartment has 1 to 10 patients.
2. Category b – smoke compartment has more than 10 to 40 patients.
3. Category c – smoke compartment has more than 40 patients.

3412.6.21.3 Attendant-to-patient ratio. Evaluate the attendant-to-patient ratio for each compartment under Section 3412.6.21.3. Under the categories and occupancies in Table 3412.6.21.3 determine the appropriate value and enter that value in Table 3412.7 under Safety Parameter 3412.6.21.3, Attendant-to-patient Ratio, for means of egress and general safety.

TABLE 3412.6.21.3
ATTENDANT-TO-PATIENT RATIO VALUES

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

3412.6.21.3.1 Categories. The categories for attendant-to-patient concentrations are:
1. Category a – attendant-to-patient concentration is 1:5.
2. Category b – attendant-to-patient concentration is 1:6 to 1:10.
3. Category c – attendant-to-patient concentration is greater than 1:10 or no patients.

3412.7 Building score. After determining the appropriate data from Section 3412.6, enter those data in Table 3412.7 and total the building score.

412.8 3412.8 Safety scores. The values in Table 3412.8 are the required mandatory safety scores for the evaluation process listed in Section 3412.6.
3412.9 **Evaluation of building safety.** The mandatory safety score in Table 3412.8 shall be subtracted from the building score in Table 3412.7 for each category. Where the final score for any category equals zero or more, the building is in compliance with the requirements of this section for that category. Where the final score for any category is less than zero, the building is not in compliance with the requirements of this section.

TABLE 3412.7

SUMMARY SHEET - BUILDING CODE

<table>
<thead>
<tr>
<th>Existing occupancy:</th>
<th>Proposed occupancy:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year building was constructed:</td>
<td>Number of stories:</td>
</tr>
<tr>
<td>Type of construction:</td>
<td>Height in feet:</td>
</tr>
<tr>
<td>Percentage of open perimeter increase: ___ %</td>
<td>Area per floor:</td>
</tr>
<tr>
<td>Completely suppressed: Yes No</td>
<td>Corridor wall rating:</td>
</tr>
<tr>
<td>Compartmentation: Yes No</td>
<td>Required door closers: Yes No</td>
</tr>
<tr>
<td>Fire-resistance rating of vertical opening enclosures:</td>
<td>Type:</td>
</tr>
<tr>
<td>Type of HVAC system:</td>
<td>, serving number of floors:</td>
</tr>
<tr>
<td>Automatic fire detection: Yes No</td>
<td>Type and location:</td>
</tr>
<tr>
<td>Fire alarm system: Yes No</td>
<td>Type:</td>
</tr>
<tr>
<td>Smoke control: Yes No</td>
<td>Type:</td>
</tr>
<tr>
<td>Adequate exit routes: Yes No</td>
<td>Dead ends: Yes No</td>
</tr>
<tr>
<td>Maximum exit access travel distance:</td>
<td>Elevator controls: Yes No</td>
</tr>
<tr>
<td>Means of egress emergency lighting: Yes No</td>
<td>Mixed occupancies: Yes No</td>
</tr>
<tr>
<td>Standpipes: Yes No</td>
<td>Patient ability for self-preservation</td>
</tr>
<tr>
<td>Incidental use: Yes No</td>
<td>Patient concentration</td>
</tr>
<tr>
<td>Smoke compartmentation less than 22,500 sq. ft. (2092 m²): Yes No</td>
<td>Attendant-to-patient ratio</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAFETY PARAMETERS</th>
<th>FIRE SAFETY (FS)</th>
<th>MEANS OF EGRESS (ME)</th>
<th>GENERAL SAFETY (GS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3412.6.1 Building Height</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3412.6.2 Building Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3412.6.3 Compartmentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3412.6.4 Tenant and Dwelling Unit Separations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3412.6.5 Corridor Walls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3412.6.6 Vertical Openings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3412.6.7 HVAC Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3412.6.8 Automatic Fire Detection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3412.6.9 Fire Alarm Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3412.8
MANDATORY SAFETY SCORES

<table>
<thead>
<tr>
<th>OCCUPANCY</th>
<th>FIRE SAFETY (MFS)</th>
<th>MEANS OF EGRESS (MME)</th>
<th>GENERAL SAFETY (MGS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>16</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>A-2</td>
<td>19</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>A-3</td>
<td>18</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>A-4, E</td>
<td>23</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>B</td>
<td>24</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>F</td>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>I-2</td>
<td>19</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>M</td>
<td>19</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>R</td>
<td>17</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>S-1</td>
<td>15</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>S-2</td>
<td>23</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

a. MFS = Mandatory Fire Safety;
MME = Mandatory Means of Egress;
MGS = Mandatory General Safety.

TABLE 3412.9
EVALUATION FORMULAS

<table>
<thead>
<tr>
<th>FORMULA</th>
<th>T.3410.7</th>
<th>T.3410.8</th>
<th>SCORE</th>
<th>PASS</th>
<th>FAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS-MFS ≥ 0</td>
<td>(FS)</td>
<td>(MFS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME-MME ≥ 0</td>
<td>(ME)</td>
<td>(MME)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS-MGS ≥ 0</td>
<td>(GS)</td>
<td>(MGS)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. FS = Fire Safety
ME = Means of Egress
GS = General Safety
MFS = Mandatory Fire Safety
MME = Mandatory Means of Egress
MGS = Mandatory General Safety

3412.9.1 Mixed occupancies. For mixed occupancies, the following provisions shall apply:
1. Where the separation between mixed occupancies does not qualify for any category indicated in Section 3412.6.16, the mandatory safety scores for the occupancy with the lowest general safety score in Table 3412.8 shall be utilized (see Section 3412.6.)
2. Where the separation between mixed occupancies qualifies for any category indicated in Section 3412.6.16, the mandatory safety scores for each occupancy shall be placed against the evaluation scores for the appropriate occupancy.
Effective: 8/1/2018
Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
4101:1-35-01 Referenced standards.

3501.1 General. This chapter lists the standards that are referenced in various sections of the building code. The standards are listed herein by the promulgating agency of the standard, the standard identification, the effective date and title. The application of the referenced standards shall be as specified in Section 102.5.

3501.2 Referenced codes. When indicated in this code, the following codes refer to provisions in the listed chapters of the administrative code:

<table>
<thead>
<tr>
<th>Referenced Code</th>
<th>Ohio Administrative Code Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Code</td>
<td>4101:1-1 to 4101:1-35</td>
</tr>
<tr>
<td>Energy Code</td>
<td>4101:1-13</td>
</tr>
<tr>
<td>Fire Code</td>
<td>1301:7-1 to 1301:7-7</td>
</tr>
<tr>
<td>Mechanical Code</td>
<td>4101:2-1 to 4101:2-15</td>
</tr>
<tr>
<td>Ohio Boiler and Pressure Vessel Rules</td>
<td>4101:4-1 to 4101:4-10</td>
</tr>
<tr>
<td>Ohio Elevator Code</td>
<td>4101:5-1 to 4101:5-3</td>
</tr>
<tr>
<td>Residential Code of Ohio for One, Two and Three Family Dwellings</td>
<td>4101:8-1 to 4101:8-44</td>
</tr>
<tr>
<td>Plumbing Code</td>
<td>4101:3-1 to 4101:3-15</td>
</tr>
</tbody>
</table>

3501.3 Building Code Referenced Standards.

AA Aluminum Association
1525 Wilson Boulevard, Suite 600
Arlington, VA 22209

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
</table>
ASM 35—00 Aluminum Sheet Metal Work in Building Construction (Fourth Edition)

AAMA American Architectural Manufacturers Association
1827 Waldon Office Square, Suite 550
Schaumburg, IL 60173

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1402—09</td>
<td>Standard Specifications for Aluminum Siding, Soffit and Fascia</td>
</tr>
</tbody>
</table>

ACI American Concrete Institute
38800 Country Club Drive
Farmington Hills, MI 48331

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>216.1—14</td>
<td>Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies</td>
</tr>
<tr>
<td>318—14</td>
<td>Building Code Requirements for Structural Concrete</td>
</tr>
<tr>
<td>530—13</td>
<td>Building Code Requirements for Masonry Structures</td>
</tr>
<tr>
<td>530.1—13</td>
<td>Specifications for Masonry Structures</td>
</tr>
<tr>
<td>562 - 16</td>
<td>Code Requirements for Assessment, Repair, and Rehabilitation of Existing Concrete Structures</td>
</tr>
</tbody>
</table>

AISC American Institute of Steel
Construction One East Wacker Drive, Suite 700
Chicago, IL 60601-18021

Standard Referenced	**Title**
341—10 | Seismic Provisions for Structural Steel Buildings
360—10 | Specification for Structural Steel Buildings

AISI American Iron and Steel Institute
25 Massachusetts Avenue, NW Suite 800
Washington, DC 20001

Standard Referenced	**Title**
AISI S100—12 | North American Specification for the Design of Cold-formed Steel Structural Members, 2012
AISI S200—12 | North American Standard for Cold-Formed Steel Framing-General Provisions
AISI S210—07(2012) | North American Standard for Cold-Formed Steel Framing-Floor and Roof System Design (Reaffirmed 2012)
S214—12 | North American Standard for Cold-formed
<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI S220—15</td>
<td>North American Standard for Cold-formed Steel Framing-Nonstructural Members</td>
</tr>
<tr>
<td>ALI ALCTV—2013</td>
<td>Standard for Automotive Lifts—Safety Requirements for Construction, Testing and Validation (ANSI)</td>
</tr>
<tr>
<td>AMCA 540—13</td>
<td>Test Method for Louvers Impacted by Wind Borne Debris</td>
</tr>
<tr>
<td>ANSI A13.1—2015</td>
<td>Scheme for the Identification of Piping Systems</td>
</tr>
<tr>
<td>ANSI A108.1A—14</td>
<td>Installation of Ceramic Tile in the Wet-set</td>
</tr>
</tbody>
</table>
A108.1B—14 Method, with Portland Cement Mortar
Installation of Ceramic Tile, quarry Tile on a Cured Portland Cement Mortar Setting Bed with Dry-set or Latex-Portland Mortar

A108.4—14 Installation of Ceramic Tile with Organic Adhesives or Water-cleanable Tile-setting Epoxy Adhesive

A108.5—14 Installation of Ceramic Tile with Dry-set Portland Cement Mortar or Latex-Portland Cement Mortar

A108.6—14 Installation of Ceramic Tile with Chemical-resistant, Water Cleanable Tile-setting and -grouting Epoxy

A108.8—14 Installation of Ceramic Tile with Chemical-resistant Furan Resin Mortar and Grout

A108.9—14 Installation of Ceramic Tile with Modified Epoxy Emulsion Mortar/Grout

A108.10—14 Installation of Grout in Tilework

A118.1—14 American National Standard Specifications for Dry-set Portland Cement Mortar

A118.3—14 American National Standard Specifications for Chemical-resistant, Water-cleanable Tile-setting and -grouting Epoxy and Water Cleanable Tile-setting Epoxy Adhesive

A118.4—14 American National Standard Specifications for Latex-Portland Cement Mortar

A118.5—14 American National Standard Specifications for Chemical Resistant Furan Mortar and Grouts for Tile Installation

A118.6—14 American National Standard Specifications for Cement Grouts for Tile Installation

A118.8—14 American National Standard Specifications for Modified Epoxy Emulsion Mortar/Grout

A136.1—14 American National Standard Specifications for Organic Adhesives for Installation of Ceramic Tile

A137.1—12 American National Standard Specifications for Ceramic Tile

ANSI/A 190.1—12 Structural Glued Laminated Timber

Z 97.1—15 Safety Glazing Materials Used in Buildings—Safety Performance
Specifications and Methods of Test

APA APA - Engineered Wood Association
7011 South 19th
Tacoma, WA 98466

<table>
<thead>
<tr>
<th>Standard Units (Reference)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/A 190.1—12</td>
<td>Structural Glued Laminated Timber</td>
</tr>
<tr>
<td>ANSI/APA PRP 210—14</td>
<td>Standard for Performance-Rated Engineered Wood Siding</td>
</tr>
<tr>
<td>ANSI/APA PRR 410—11</td>
<td>Standard for Performance-Rated Engineered Wood Rim Boards</td>
</tr>
<tr>
<td>APA PDS—12</td>
<td>Panel Design Specification</td>
</tr>
<tr>
<td>APA PDS</td>
<td>Design and Fabrication of Plywood Curved Panels (revised 2013)</td>
</tr>
<tr>
<td>APA PDS Supplement 1—12</td>
<td>Design and Fabrication of Plywood-lumber Beams (revised 2013)</td>
</tr>
<tr>
<td>APA PDS Supplement 3—12</td>
<td>Design and Fabrication of Plywood Stressed-skin Panels (revised 2013)</td>
</tr>
<tr>
<td>APA PDS Supplement 4—12</td>
<td>Design and Fabrication of Plywood Sandwich Panels (revised 2013)</td>
</tr>
<tr>
<td>APA PDS Supplement 5—12</td>
<td>Design and Fabrication of All-plywood Beams (revised 2013)</td>
</tr>
<tr>
<td>APA PRG 320—12</td>
<td>Standard for Performance-Rated Cross-Laminated Timber</td>
</tr>
<tr>
<td>EWS R540—13</td>
<td>Builders Tips: Proper Storage and Handling of Glulam Beams</td>
</tr>
<tr>
<td>EWS S475—07</td>
<td>Glued Laminated Beam Design Tables</td>
</tr>
<tr>
<td>EWS S560—14</td>
<td>Field Notching and Drilling of Glued Laminated Timber Beams</td>
</tr>
<tr>
<td>EWS T300—16</td>
<td>Glulam Connection Details</td>
</tr>
<tr>
<td>EWS X440—08</td>
<td>Product Guide-Glulam</td>
</tr>
<tr>
<td>EWS X450—01</td>
<td>Glulam in Residential Construction-Western Edition</td>
</tr>
</tbody>
</table>

APSP The Association of Pool & Spa Professionals
2111 Eisenhower Avenue
Alexandria, VA 22314

Standard Referenced

Title

ANSI/APSP 7—2013

ASABE American Society of Agricultural and Biological Engineers

2950 Niles Road
St. Joseph, MI 49085

Standard Referenced

Title

EP 484.2 June 1998 (R2008)

Diaphragm Design of Metal-clad, Wood-frame Rectangular Buildings

EP 486.2 OCT 2012

hallow-post and Pier Foundation Design

EP 559.1 W/Corr.1 AUG 2010

Design Requirements and Bending Properties for Mechanically Laminated Wood Assemblies

ASCE/SEI American Society of Civil Engineers

Structural Engineering Institute

1801 Alexander Bell Drive

Reston, VA 20191-4400

Standard Referenced

Title

5—13

Building Code Requirements for Masonry Structures

6—13

Specification for Masonry Structures

7—10

Minimum Design Loads for Buildings and Other Structures with supplement No. 1

8—14

Standard Specification for the Design of Cold-formed Stainless Steel Structural Members
19—10 Structural Applications of Steel Cables for Buildings
24—14 Flood Resistant Design and Construction
29—14 Standard Calculation Methods for Structural Fire Protection
32—01 Design and Construction of Frost Protected Shallow Foundations
41-13 Seismic Evaluation and Retrofit of Existing Buildings
49—12 Wind Tunnel Testing for Buildings and Other Structures
55—10 Tensile Membrane Structures

ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc.
1791 Tullie Circle, NE
Atlanta, GA 30329-2305

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.1-2010</td>
<td>Energy Standard for Buildings Except Low-Rise Residential Buildings (as modified in chapter 13 of this code including Addenda ap, cj, and de applicable to computer rooms and data centers and Addenda dd)</td>
</tr>
</tbody>
</table>

ASME American Society of Mechanical Engineers
Two Park Avenue
New York, NY 10016-5990

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A17.1/ CSA B44-the edition referenced in rule 4101:5-3-01 of the Administrative Code</td>
<td>Safety Code for Elevators and Escalators</td>
</tr>
<tr>
<td>A17.7/ CSA B44-the edition referenced in rule 4101:5-3-01 of the Administrative Code</td>
<td>Performance-Based Safety Code for Elevators and Escalators</td>
</tr>
</tbody>
</table>
A18.1—*the edition referenced in rule 4101:5-3-01 of the Administrative Code* Safety Standard for Platform Lifts and Stairway Chairlifts

A90.1—*the edition referenced in rule 4101:5-3-01 of the Administrative Code* Safety Standard for Belt Manlifts

B16.18—2012 Cast Copper Alloy Solder Joint Pressure Fittings

B16.22—2013 Wrought Copper and Copper Alloy Solder Joint Pressure Fittings

B20.1—2015 Safety Standard for Conveyors and Related Equipment

B31.3—2016 Process Piping

ASSE American Society of Safety Engineers
1800 East Oakton Street
Des Plaines, IL 60018

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/ASSE Z359.1-2007</td>
<td>Safety Requirements for Personal Fall Arrest Systems, Subsystems and Components, Part of the Fall Protection Code</td>
</tr>
</tbody>
</table>

ASTM ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 6/A 6M—16</td>
<td>Standard Specification for General Requirements for Rolled Structural Steel Bars, Plates, Shapes and Sheet</td>
</tr>
<tr>
<td>A 36/A 36M—14</td>
<td>Specification for Carbon Structural Steel</td>
</tr>
<tr>
<td>A 153/A 153M—16</td>
<td>Specification for Zinc Coating (Hot-dip) on Iron and Steel Hardware</td>
</tr>
<tr>
<td>A 240/A 240M—16</td>
<td>Standard Specification for Chromium and</td>
</tr>
</tbody>
</table>
Chromium-nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications

A 252—10 Specification for Welded and Seamless Steel Pipe Piles

A 283/A 283M—13 Specification for Low and Intermediate Tensile Strength Carbon Steel Plates

A 416/A 416M—16 Specification for Steel Strand, Uncoated Seven-wire for Prestressed Concrete

A 463/A 463M—15 Standard Specification for Steel Sheet, Aluminum-coated, by the Hot-dip Process

A 572/A 572M—15 Specification for High-strength Low-alloy Columbium-Vanadium Structural Steel

A 588/A 588M—15 Specification for High-strength Low-alloy Structural Steel with 50 ksi (345 MPa) Minimum Yield Point with Atmospheric Corrosion Resistance

A 615/A 615M—16 Specification for Deformed and Plain Billet-steel Bars for Concrete Reinforcement

A 653/A 653M—2015e1 Specification for Steel Sheet, Zinc-coated Galvanized or Zinc-iron Alloy-coated Galvannealed by the Hot-dip Process

A 690/A 690M—2013a Standard Specification for High-strength Low-alloy Nickel, Copper, Phosphorus Steel H-piles and Sheet Piling with Atmospheric Corrosion Resistance for Use in Marine Environments

A 706/A 706M—16 Specification for Low-alloy Steel Deformed and Plain Bars for Concrete Reinforcement

A 722/A 722M—15 Specification for Uncoated High-strength Steel Bar for Prestressing Concrete

A 755/A 755M—2016e1 Specification for Steel Sheet, Metallic-coated by the Hot-dip Process and Prepainted by the Coil-coating Process for Exterior Exposed Building Products

A 875/A 875M—13 Standard Specification for Steel Sheet Zinc-5 percent, Aluminum Alloy-coated by the Hot-dip Process
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 924/A 924M—2016ae1</td>
<td>Standard Specification for General Requirements for Steel Sheet, Metallic-coated by the Hot-dip Process</td>
</tr>
<tr>
<td>B 42—2015a</td>
<td>Specification for Seamless Copper Pipe, Standard Sizes</td>
</tr>
<tr>
<td>B 43—15</td>
<td>Specification for Seamless Red Brass Pipe, Standard Sizes</td>
</tr>
<tr>
<td>B 68—11</td>
<td>Specification for Seamless Copper Tube, Bright Annealed (Metric)</td>
</tr>
<tr>
<td>B 88—14</td>
<td>Specification for Seamless Copper Water Tube</td>
</tr>
<tr>
<td>B 101—12</td>
<td>Specification for Lead-coated Copper Sheet and Strip for Building Construction</td>
</tr>
<tr>
<td>B 209—14</td>
<td>Specification for Aluminum and Aluminum Alloy Steel and Plate</td>
</tr>
<tr>
<td>B 251—10</td>
<td>Specification for General Requirements for wrought Seamless Copper and Copper-alloy Tube</td>
</tr>
<tr>
<td>B 280—16</td>
<td>Specification for Seamless Copper Tube for Air Conditioning and Refrigeration Field Service</td>
</tr>
<tr>
<td>B 370—12</td>
<td>Specification for Copper Sheet and Strip for Building Construction</td>
</tr>
<tr>
<td>C 5—10</td>
<td>Specification for Quicklime for Structural Purposes</td>
</tr>
<tr>
<td>C 22/C 22M-00 (2015)</td>
<td>Specification for Gypsum</td>
</tr>
<tr>
<td>C 27—98(2013)</td>
<td>Specification for Classification of Fireclay and High-alumina Refractory Brick</td>
</tr>
<tr>
<td>C 31/C 31M—2015ae1</td>
<td>Practice for Making and Curing Concrete Test Specimens in the Field</td>
</tr>
<tr>
<td>C 33/C 33M—2016</td>
<td>Specification for Concrete Aggregates</td>
</tr>
<tr>
<td>C 55—2014a</td>
<td>Specification for Concrete Building Brick</td>
</tr>
<tr>
<td>C 59/C 59M—00 (2015)</td>
<td>Specification for Gypsum Casting Plaster and Molding Plaster</td>
</tr>
<tr>
<td>Standard Specification for Building Brick (Solid Masonry Units Made from Clay or Shale)</td>
<td></td>
</tr>
<tr>
<td>Test Methods of Sampling and Testing Brick and Structural Clay Tile</td>
<td></td>
</tr>
<tr>
<td>Specification for Calcium Silicate Brick (Sand-lime Brick)</td>
<td></td>
</tr>
<tr>
<td>Specification for Loadbearing Concrete Masonry Units</td>
<td></td>
</tr>
<tr>
<td>Specification for Masonry Cement</td>
<td></td>
</tr>
<tr>
<td>Specification for Ready-Mixed Concrete</td>
<td></td>
</tr>
<tr>
<td>Test Method Sampling and Testing Concrete Masonry Units and Related Units</td>
<td></td>
</tr>
<tr>
<td>Specification for Portland Cement</td>
<td></td>
</tr>
<tr>
<td>Practice for Sampling Freshly Mixed Concrete</td>
<td></td>
</tr>
<tr>
<td>Test Method for Pier Test for Refractory Mortars</td>
<td></td>
</tr>
<tr>
<td>Specification for Finishing Hydrated Lime</td>
<td></td>
</tr>
<tr>
<td>Specification for Cellulosic Fiber Insulating Board</td>
<td></td>
</tr>
<tr>
<td>Specification for Facing Brick (Solid Masonry Units Made from Clay or Shale)</td>
<td></td>
</tr>
<tr>
<td>Specification for Mortar for Unit Masonry</td>
<td></td>
</tr>
<tr>
<td>Specification for Clay Flue Liners and Chimney Pots</td>
<td></td>
</tr>
<tr>
<td>Specification for Gypsum Concrete</td>
<td></td>
</tr>
<tr>
<td>Specification for Lightweight Aggregates for Structural Concrete</td>
<td></td>
</tr>
<tr>
<td>Specification for Lightweight Aggregates for Concrete Masonry Units</td>
<td></td>
</tr>
<tr>
<td>Specification for Roofing Slate</td>
<td></td>
</tr>
<tr>
<td>Test Method for Physical Testing of Gypsum Panel Products</td>
<td></td>
</tr>
<tr>
<td>Test Methods for Joint Treatment Materials for Gypsum Board Construction</td>
<td></td>
</tr>
<tr>
<td>Specification for Joint Compound and Joint Tape for Finishing Gypsum Board</td>
<td></td>
</tr>
</tbody>
</table>
C 516—08 (2013)el Specifications for Vermiculite Loose Fill Thermal Insulation
C 547—15 Specification for Mineral Fiber Pipe Insulation
C 549—06(2012) Specification for Perlite Loose Fill Insulation
C 552—16a Standard Specification for Cellular Glass Thermal Insulation
C 557—03(2009)e01 Specification for Adhesives for Fastening Gypsum Wallboard to Wood Framing
C 578—15b Standard Specification for Rigid, Cellular Polystyrene Thermal Insulation
C 595/C 595M-16 Specification for Blended Hydraulic Cements
C 635/C 635M—13 Specification for the Manufacture, Performance and Testing of Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings
C 636/C 636M—13 Practice for Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels
C 645—14e1 Specification for Nonstructural Steel Framing Members
C 652—15 Specification for Hollow Brick (Hollow Masonry Units Made from Clay or Shale)
C 744—16 Specification for Prefaced Concrete and Calcium Silicate Masonry Units
C 754—15 Specification for Installation of Steel Framing Members to Receive Screw-attached Gypsum Panel Products
C 836/C 836M—15 Specification for High-solids Content, Cold Liquid-applied Elastomeric Waterproofing Membrane for Use with Separate Wearing
Course

C 840—13 Specification for Application and Finishing of Gypsum Board
C 841—03(2013) Specification for Installation of Interior Lathing and Furring
C 847—14a Specification for Metal Lath
C 887—13 Specification for Packaged, Dry Combined Materials for Surface Bonding Mortar
C 897—15 Specification for Aggregate for Job-Mixed Portland Cement-based Plaster
C 920—14a Standard for Specification for Elastomeric Joint Sealants
C 926—16a Specification for Application of Portland Cement-based Plaster
C 933—14 Specification for Welded Wire Lath
C 946—10 Specification for Construction of Dry-stacked, Surface-bonded Walls
C 954—15 Specification for Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 inch (0.84 mm) to 0.112 inch (2.84 mm) in Thickness
C 955—15e1 Standard Specification for Load-bearing Transverse and Axial Steel Studs, Runners Tracks, and Bracing or Bridging, for Screw Application of Gypsum Panel Products and Metal Plaster Bases
C 957/C 957M—15 Specification for High-solids Content, Cold Liquid-applied Elastomeric Waterproofing Membrane with Integral Wearing Surface
C 1002—14 Specification for Steel Self-piercing Tapping
C 1007—11a(2015) Specification for Installation of Load Bearing (Transverse and Axial) Steel Studs and Related Accessories

C 1029—15 Specification for Spray-applied Rigid Cellular Polyurethane Thermal Insulation

C 1032—14 Specification for Woven Wire Plaster Base

C 1047—14a Specification for Accessories for Gypsum Wallboard and Gypsum Veneer Base

C 1063—16a Specification for Installation of Lathing and Furring to Receive Interior and Exterior Portland Cement-based Plaster

C 1088—14 Specification for Thin Veneer Brick Units Made from Clay or Shale

C 1167—11 Specification for Clay Roof Tiles

C 1177/C 1177M—13 Specification for Glass Mat Gypsum Substrate for Use as Sheathing

C 1178/C 1178M—13 Specification for Coated Mat Water-resistant Gypsum Backing Panel

C 1261—13 Specification for Firebox Brick for Residential Fireplaces

C 1280—13 Specification for Application of Exterior Gypsum Panel Products for Use as Sheathing

C 1283—15 Practice for Installing Clay Flue Lining

C 1289—16 Standard Specification for Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board

C 1325—14 Standard Specification for Nonasbestos Fiber-mat Reinforced Cement Backer Units

C 1386—07 Specification for Precast Autoclaved Aerated Concrete (AAC) Wall Construction Units

C 1396M/C 1396M—14 Specification for Gypsum Board

C 1600/C 1600M—11 Standard Specification for Rapid Hardening Hydraulic Cement

C 1629/1629M—15 Standard Classification for Abuse-resistant Nondecorated Interior Gypsum Panel Products and Fiber-reinforced Cement Panels

C 1658/C 1658M—13 Standard Specification for Glass Mat Gypsum Panels

D 25—12 Specification for Round Timber Piles

C 41—16 Specification for Asphalt Primer Used in Roofing, Dampproofing and Waterproofing

D 43—12 Specification for Coal Tar Primer Used in Roofing, Dampproofing and Waterproofing

D 56—16 Test Method for Flash Point By Tag Closed Tester

D 86—16 Test Method for Distillation of Petroleum Products at Atmospheric Pressure

D 93—16 Test Method for Flash Point By Pensky-Martens Closed Cup Tester

D 225—07 Specification for Asphalt Shingles (Organic Felt) Surfaced with Mineral Granules

D 226/D 226M—11 Specification for Asphalt-saturated Organic Felt Used in Roofing and Waterproofing

D 227/D 227M—03(2011)E1 Specification for Coal-tar-saturated Organic Felt Used in Roofing and Waterproofing

D 312—16 Specification for Asphalt Used in Roofing

D 448—12 Standard Classification for Sizes of Aggregate for Road and Bridge Construction

D 450—13 Specification for Coal-tar Pitch Used in Roofing, Dampproofing and Waterproofing
<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 635—14</td>
<td>Test Method for Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position</td>
</tr>
<tr>
<td>D 1143/D 1143M—13</td>
<td>Test Method for Piles Under Static Axial Compressive Load</td>
</tr>
<tr>
<td>D 1227—13</td>
<td>Specification for Emulsified Asphalt Used as a Protective Coating for Roofing</td>
</tr>
<tr>
<td>D 1557—12e1</td>
<td>Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort ([56,000 \text{ ft-lb/ft}^3 (2,700 \text{ KN m/m}^3)])</td>
</tr>
<tr>
<td>D 1929—16</td>
<td>Test Method for Determining Ignition Temperature of Plastics</td>
</tr>
<tr>
<td>D 2178—15</td>
<td>Specification for Asphalt Glass Felt Used in Roofing and Waterproofing</td>
</tr>
<tr>
<td>D 2487—2011</td>
<td>Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)</td>
</tr>
<tr>
<td>D 2822/D 2822M-05(2011)E1</td>
<td>Specification for Asphalt Roof Cement, Asbestos Containing</td>
</tr>
<tr>
<td>D 2823/D 2823M—05(2011)E1</td>
<td>Specification for Asphalt Roof Coatings, Asbestos Containing</td>
</tr>
<tr>
<td>D 2843—16</td>
<td>Test for Density of Smoke from the Burning or Decomposition of Plastics</td>
</tr>
<tr>
<td>D 2859—16</td>
<td>Standard Test Method for Ignition Characteristics of Finished Textile Floor Covering Materials</td>
</tr>
<tr>
<td>D 2898—10</td>
<td>Test Methods for Accelerated Weathering of</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>D 3019—08</td>
<td>Fire-retardant-treated Wood for Fire Testing</td>
</tr>
<tr>
<td></td>
<td>Specification for Lap Cement Used with</td>
</tr>
<tr>
<td></td>
<td>Asphalt Roll Roofing, Nonfibered, Asbestos Fibered and Nonasbestos Fibered</td>
</tr>
<tr>
<td>D 3161/D 3161M—16</td>
<td>Test Method for a Wind Resistance of</td>
</tr>
<tr>
<td></td>
<td>Asphalt Shingles (Fan Induced Method)</td>
</tr>
<tr>
<td></td>
<td>Establishing Recommended Design Stresses for Round Timber Construction Poles</td>
</tr>
<tr>
<td>D 3201—2013</td>
<td>Test Method for Hygroscopic Properties of</td>
</tr>
<tr>
<td></td>
<td>Fire-retardant-treated Wood and Wood-based Products</td>
</tr>
<tr>
<td></td>
<td>Small Scale Closed-cup Apparatus</td>
</tr>
<tr>
<td>D 3462/D 3462M—16</td>
<td>Specification for Asphalt Shingles Made</td>
</tr>
<tr>
<td></td>
<td>from Glass Felt and Surfaced with Mineral Granules</td>
</tr>
<tr>
<td>D 3468—13</td>
<td>Specification for Liquid-applied Neoprene</td>
</tr>
<tr>
<td></td>
<td>and Chlorosulfonated Polyethylene Used in Roofing and Waterproofing</td>
</tr>
<tr>
<td>D 3679—13</td>
<td>Specification for Rigid Poly (Vinyl Chloride) (PVC) Siding</td>
</tr>
<tr>
<td>D 3689—2013E1</td>
<td>Test Methods for Deep Foundations Under</td>
</tr>
<tr>
<td></td>
<td>Static Axial Tensile Load</td>
</tr>
<tr>
<td>D 3737—2012</td>
<td>Practice for Establishing Allowable</td>
</tr>
<tr>
<td></td>
<td>Properties for Structural Glued Laminated Timber (Glulam)</td>
</tr>
<tr>
<td>D 3746—15</td>
<td>Test Method for Impact Resistance of</td>
</tr>
<tr>
<td></td>
<td>Bituminous Roofing Systems</td>
</tr>
<tr>
<td></td>
<td>Adhesive for Adhering Roof Insulation</td>
</tr>
<tr>
<td>D 3909/D 3909M—14</td>
<td>Specification for Asphalt Roll Roofing</td>
</tr>
<tr>
<td></td>
<td>(Glass Felt) Surfaced with Mineral Granules</td>
</tr>
<tr>
<td>D 3957—15</td>
<td>Standard Practices for Establishing Stress</td>
</tr>
<tr>
<td></td>
<td>Grades for Structural Members Used in Log Buildings</td>
</tr>
<tr>
<td></td>
<td>Asbestos Containing</td>
</tr>
<tr>
<td>D 4272—15</td>
<td>Test Method for Total Energy Impact of</td>
</tr>
<tr>
<td></td>
<td>Plastic Films by Dart Drop</td>
</tr>
<tr>
<td>D 4318—10e1</td>
<td>Test Methods for Liquid Limit, Plastic Limit</td>
</tr>
</tbody>
</table>
and Plasticity Index of Soils

D 4434/D 4434M—15 Specification for Poly (Vinyl Chloride) Sheet Roofing

D 4637/D 4637M—13 Specification for EPDM Sheet Used in Single-ply Roof Membrane

D 4829—11 Test Method for Expansion Index of Soils

D 4869/D 4869M—16 Specification for Asphalt-saturated (Organic Felt) Underlayment Used in Steep Slope Roofing

D 4945—12 Test Method for High-strain Dynamic Testing of Piles

D 4897/D 4897M—16 Specification for Asphalt-coated Glass Fiber Venting Base Sheet Used in Roofing

D 4990—13 Specification for Coal Tar Glass Felt Used in Roofing and Waterproofing

D 5019—07a Specification for Reinforced Nonvulcanized Polymeric Sheet Used in Roofing Membrane

D 5055—16 Specification for Establishing and Monitoring Structural Capacities of Prefabricated Wood I-joists

D 5456—14 Specification for Evaluation of Structural Composite Lumber Products

D 5516—09 Test Method of Evaluating the Flexural Properties of Fire-retardant-treated Softwood Plywood Exposed to the Elevated Temperatures

D 5664—10 Test Methods for Evaluating the Effects of Fire-retardant Treatment and Elevated Temperatures on Strength Properties of Fire-retardant-treated Lumber

D 5665—14 Specification for Thermoplastic Fabrics Used in Cold-applied Roofing and Waterproofing

D 5726—13 Specification for Thermoplastic Fabrics Used
D 6083—05e01 Specification for Liquid Applied Acrylic Coating Used in Roofing
D 6162—15 Specification for Styrene-butadiene-styrene (SBS) Modified Bituminous Sheet Materials Using a Combination of Polyester and Glass Fiber Reinforcements
D 6223/D 6223M—02(2011)E1 Specification for Atactic Polypropylene (APP) Modified Bituminous Sheet Materials Using a Combination of Polyester and Glass Fiber Reinforcements
D 6298—13 Specification for Fiberglass Reinforced Styrene-butadiene-styrene (SBS) Modified Bituminous Sheets with a Factory Applied Metal Surface
D 6305—15 Practice for Calculating Bending Strength Design Adjustment Factors for Fire-retardant-treated Plywood Roof Sheathing
D 6380—13 Standard Specification for Asphalt Roll Roofing (Organic) Felt
D 6694—15 Standard Specification for Liquid-applied Silicone Coating Used in Spray Polyurethane Foam Roofing Systems
D 6754/D 6745M—15 Standard Specification for Ketone Ethylene Ester Based Sheet Roofing
D 6757—16 Standard Specification for Underlayment for Use with Steep Slope Roofing
D 6841—16 Standard Practice for Calculating Design Value Treatment Adjustment Factors for Fire-retardant-treated Lumber

D 6878/D 6878M—13 Standard Specification for Thermoplastic Polyolefin Based Sheet Roofing

D 7254—15 Standard Specification for polypropylene (PP) siding

D 7655—12 Standard Classification for Size of Aggregate Used as Ballast for Roof Membrane Systems

D 7672—14 Standard Specification for Evaluating Structural Capacities of Rim Board Products and Assemblies

E 84—16 Test Methods for Surface Burning Characteristics of Building Materials

E 90—09 Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements

E 96/E 96M—16 Test Method for Water Vapor Transmission of Materials

E 136—2012 Test Method for Behavior of Materials in a Vertical Tube Furnace at 750°C

E 283—12 Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows Curtain Walls, and Doors Under Specified Pressure Difference Across the Specimen
E 330—14 Test Method for Structural Performance of Exterior Windows, Curtain Walls and Doors by Uniform Static Air Pressure Difference
E 331—16 Test Method for Water Penetration of Exterior Windows, Skylights, Doors and Curtain Walls by Uniform Static Air Pressure Difference
E 605—15 Test Method for Thickness and Density of Sprayed Fire-resistive Material (SFRM) Applied to Structural Members
E 681—15 Test Methods for Concentration Limits of Flammability of Chemical Vapors and Gases
E 736—15 Test Method for Cohesion/Adhesion of Sprayed Fire-resistive Materials Applied to Structural Members
E 814—2013 Test Method of Fire Tests of Through-penetration Firestops
E 970—14 Test Method for Critical Radiant Flux of Exposed Attic Floor Insulation Using a Radiant Heat Energy Source
E 1300—16 Practice for Determining Load Resistance of Glass in Buildings
E 1886—05 Test Method for Performance of Exterior Windows, Curtain Walls, Doors and Storm Shutters Impacted by Missiles and Exposed to Cyclic Pressure Differentials
E 1966—15 Test Method for Fire-resistant Joint Systems
E 1996—14 Specification for Performance of Exterior
Windows, Curtain Walls, Doors and Impact Protective Systems Impacted by Windborne Debris in Hurricanes

E 2072—14
Standard Specification for Photoluminescent (Phosphorescent) Safety Markings

E 2174—14
Standard Practice for On-Site Inspection of Installed Fire Stops

E 2178—13
Standard Test Method for Air Permeance of Building Materials

E 2273—03(2011)

E 2307—15
Standard Test Method for Determining Fire Resistance of a Perimeter Joint System Between an Exterior Wall Assembly and Floor Assembly Using the Intermediate-scale, Multistory Test Apparatus

E 2393—15
Standard Practice for On-Site Inspection of Installed Fire Resistive Joint Systems and Perimeter Fire Barrier

E 2397—15
Standard Practice for Determination of Dead Loads and Live Loads Associated with Green Roof Systems

E 2404—15
Standard Practice for Specimen Preparation and Mounting of Textile, Paper or Vinyl Wall or Ceiling Coverings to Assess Surface Burning Characteristics

E 2556—10
Standard Specification for Vapor Permeable Flexible Sheet Water-Resistive Barriers Intended for Mechanical Attachment

E 2568—09e1

E 2570—14

E 2573—12
Standard Practice for Specimen Preparation and Mounting of Site-fabricated Stretch Systems to Assess Surface Burning Characteristics
E 2599—16
Standard Practice for Specimen Preparation and Mounting of Reflective Insulation Materials and Vinyl Stretch Ceiling Materials for Building Applications to Assess Surface Burning Characteristics

E 2634—15
Standard Specification for Flat Wall Insulating Concrete Form (ICF) Systems

F E 2751—13
Standard Practice for Design and Performance of Supported Glass Walkways

F 547—(2012)
Terminology of Nails for Use with Wood and Wood-based Materials

G F 1346—91 (2010)
Performance Specification for Safety Covers and Labeling Requirements for All Covers for Swimming Pools, Spas and Hot Tubs

F 1667—15
Specification for Driven Fasteners: Nails, Spikes and Staples

F 2006—10
Standard/Safety Specification for Window Fall Prevention Devices for Nonemergency Escape (Egress) and Rescue (Ingress) Windows

F 2090—13
Specification for Window Fall Prevention Devices with Emergency Escape (Egress) Release Mechanisms

F 2200—2014
Standard Specification for Automated Vehicular Gate Construction

G 152—13
Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Nonmetallic Materials

G 154—12
Practice for Operating Fluorescent Light Apparatus for UV Exposure of Nonmetallic Materials

G 155—13
Practice for Operating Xenon Arc Light Apparatus for Exposure of Nonmetallic Materials

AWC American Wood Council
222 Catoctin Cir SE, Suite 201
Leesburg, VA 20175

Standard
<table>
<thead>
<tr>
<th>Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWC WCD No. 4—2003</td>
<td>Wood Construction Data—Plank and Beam Framing for Residential Buildings</td>
</tr>
<tr>
<td>AWC WFCM—2015</td>
<td>Wood Frame Construction Manual for One- and Two-Family Dwellings</td>
</tr>
<tr>
<td>AWC STJR—2015</td>
<td>Span Tables for Joists and Rafters</td>
</tr>
<tr>
<td>ANSI/AWC PWF—2015</td>
<td>Permanent Wood Foundation Design Specification</td>
</tr>
<tr>
<td>AWC SDPWS—2015</td>
<td>Special Design Provisions for Wind and Seismic</td>
</tr>
</tbody>
</table>

AWCI Association of the Wall and Ceiling Industry
513 West Broad Street, Suite 210
Falls Church, VA 22046

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
</table>

AWPA American Wood Protection Association
P.O. Box 361784
Birmingham, AL 35236-1784

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1—03</td>
<td>All Timber Products-Preservative Treatment by Pressure Processes</td>
</tr>
<tr>
<td>M4—15</td>
<td>Standard for the Care of Preservative-treated</td>
</tr>
</tbody>
</table>
USE CATEGORY SYSTEM: User Specification for Treated Wood Except Section 6, Commodity Specification H

AWS American Welding Society
8669 NW 36 Street, #130
Doral, FL 33166

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1.4/D1.4M—2011</td>
<td>Structural Welding Code-Reinforcing Steel Including Metal Inserts and Connections In Reinforced Concrete Construction</td>
</tr>
</tbody>
</table>

BHMA Builders Hardware Manufacturers’ Association
355 Lexington Avenue, 17th Floor
New York, NY 10017-6603

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 156.10—2011</td>
<td>Power Operated Pedestrian Doors</td>
</tr>
<tr>
<td>A 156.19—2013</td>
<td>Standard for Power Assist and Low Energy Operated Doors</td>
</tr>
<tr>
<td>A 156.27—11</td>
<td>Power and Manual Operated Revolving Pedestrian Doors</td>
</tr>
</tbody>
</table>

CEN European Committee for Standardization (CEN)
Central Secretariat
Rue de Stassart 36
B-10 50 Brussels

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 1081—98</td>
<td>Resilient Floor Coverings—Determination of</td>
</tr>
</tbody>
</table>
BS EN 15250—2007
Slow Heat Release Appliances Fired By Solid Fuel Requirements and Test Methods

CGSB Canadian General Standards Board
Place du Portage 111, 6B1
11 Laurier Street
Gatineau, Quebec, Canada K1A 1G6

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN/CGSB 37.54—95</td>
<td>Polyvinyl Chloride Roofing and Waterproofing Membrane</td>
</tr>
</tbody>
</table>

CPA Composite Panel Association
19465 Deerfield Avenue, Suite 306
Leesburg, VA 20176

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI A135.4—2012</td>
<td>Basic Hardboard</td>
</tr>
<tr>
<td>ANSI A135.5—2012</td>
<td>Prefinished Hardboard Paneling</td>
</tr>
<tr>
<td>ANSI A135.6—2012</td>
<td>Engineered Wood Siding</td>
</tr>
<tr>
<td>A208.1—09</td>
<td>Particleboard</td>
</tr>
</tbody>
</table>

CPSC Consumer Product Safety Commission
4330 East West Highway
Bethesda, MD 20814-4408

About this page: This page outlines standards referenced from various organizations, including electrical resistance requirements and methods for slow heat release appliances fired by solid fuel. It also lists standards for roofing and waterproofing membranes, as well as various types of hardboard and engineered wood siding. The text is structured in tables and paragraphs for clarity and organization.
<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAMA/WDMA/CSA 101/I.S.2/A440—14</td>
<td>Specifications for Windows, Doors and Unit Skylights</td>
</tr>
</tbody>
</table>

CSSB Cedar Shake and Shingle Bureau
P. O. Box 1178
Sumas, WA 98295-1178

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSSB—97</td>
<td>Grading and Packing Rules for Western Red Cedar Shakes and Western Red Shingles of the Cedar Shake and Shingle Bureau</td>
</tr>
</tbody>
</table>

DASMA Door and Access Systems Manufacturers Association International
1300 Summer Avenue
Cleveland, OH 44115-2851

<table>
<thead>
<tr>
<th>Standard Referred</th>
<th>Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>115—12</td>
<td>Standard Method for Testing Sectional Garage Doors and Rolling Doors: Determination of Structural Performance Under Missile Impact and Cyclic Wind Pressure</td>
<td></td>
</tr>
</tbody>
</table>

DOC U.S. Department of Commerce
National Institute of Standards and Technology
1401 Constitution Avenue NW
Washington, DC 20230

<table>
<thead>
<tr>
<th>Standard Referred</th>
<th>Title</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-1—10</td>
<td>Structural Plywood.</td>
<td></td>
</tr>
<tr>
<td>PS-2—14</td>
<td>Performance Standard for Wood-based Structural-use Panels</td>
<td></td>
</tr>
<tr>
<td>PS 20—15</td>
<td>American Softwood Lumber Standard</td>
<td></td>
</tr>
</tbody>
</table>

DOL U.S. Department of Labor
Frances Perkins Building
200 Constitution Avenue NW
Washington, DC 20210

| Standard Referred | Title | |

DOTn U.S. Department of Transportation
c/o Superintendent of Documents
East Building, 2nd floor
Washington, DC 20590

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>49 CFR Parts 100—185 2015</td>
<td>Hazardous Materials Regulations</td>
</tr>
<tr>
<td>49 CFR—1998</td>
<td>Specification of Transportation of Explosive and Other Dangerous Articles, UN 0335, UN 0336 Shipping Containers</td>
</tr>
</tbody>
</table>

FEMA Federal Emergency Management Agency
Federal Center Plaza 500 C Street S.W.
Washington, DC 20472

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEMA-TB-11—01</td>
<td>Crawlspace Construction for Buildings Located in Special Flood Hazard Areas.</td>
</tr>
</tbody>
</table>

FM Factory Mutual Global Research
Standards Laboratories Department
1301 Atwood Avenue, P.O. Box 7500
Johnston, RI 02919

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4430 (2012)</td>
<td>Approval Standard for Heat and Smoke</td>
</tr>
</tbody>
</table>
Vents

4880-2010 Approval Standard for Class 1 Fire Rating of Insulated Wall or Wall and Roof/Ceiling Panels, Interior Finish Materials or Coatings and Exterior Wall Systems

GA Gypsum Association
6525 Belcrest Road, Suite 480
Hyattsville, MD 20782

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA 216—16</td>
<td>Application and Finishing of Gypsum Panel Products</td>
</tr>
</tbody>
</table>

HPVA Hardwood Plywood Veneer Association
1825 Michael Faraday Drive
Reston, VA 20190

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP-1—2016</td>
<td>Standard for Hardwood and Decorative Plywood</td>
</tr>
</tbody>
</table>

HUD U.S. Department of Housing and Urban Development
451 7th Street, SW
Washington, DC 20410

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
</table>

ICC International Code Council, Inc.
500 New Jersey Ave, NW
6th Floor
Washington, DC 20001

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC A117.1—09</td>
<td>Accessible and Usable Buildings and Facilities</td>
</tr>
<tr>
<td>ICC 300—12</td>
<td>ICC Standard on Bleachers, Folding and Telescopic Seating and Grandstands</td>
</tr>
<tr>
<td>ICC 400—12</td>
<td>Standard on Design and Construction of Log Structures</td>
</tr>
<tr>
<td>ICC 500—14</td>
<td>ICC/NSSA Standard on the Design and Construction of Storm Shelters</td>
</tr>
<tr>
<td>ICC 600—14</td>
<td>Standard for Residential Construction in High-wind Regions</td>
</tr>
<tr>
<td>IEBC—15</td>
<td>International Existing Building Code®</td>
</tr>
<tr>
<td>IECC—12</td>
<td>International Energy Conservation Code® (adoption includes chapters 2 through 5 of both the commercial provisions and the residential provisions, but only section 101 of chapters 1 and as further modified in chapter 13 of this code)</td>
</tr>
<tr>
<td>IFGC—15</td>
<td>International Fuel Gas Code®</td>
</tr>
<tr>
<td>SBCCI SSTD 11—13</td>
<td>Test Standard for Determining Wind Resistance of Concrete or Clay Roof Tiles</td>
</tr>
</tbody>
</table>

ISO International Organization for Standardization
ISO Central Secretariat
1 ch, de la Voie-Creuse, Case Postale 56
CH-1211 Geneva 20, Switzerland

<table>
<thead>
<tr>
<th>Standard</th>
<th>title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 8115—86</td>
<td>Cotton Bales—Dimensions and Density</td>
</tr>
<tr>
<td>ISO 8336—09</td>
<td>Fiber-Cement Flat Sheets - Product Specification and Test Methods</td>
</tr>
</tbody>
</table>

MHI Material Handling Institute
8720 Red Oak Blvd. Suite 201
Charlotte, NC 28217

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI MH29.1—08</td>
<td>Safety Requirements for Industrial Scissors Lifts</td>
</tr>
</tbody>
</table>

NAAMMM National Association of Architectural Metal Manufacturers
800 Roosevelt Road, Bldg. C, Suite 312
Glen Ellyn, IL 60137

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP 1001—07</td>
<td>Guide Specifications for Design of Metal Flag Poles</td>
</tr>
</tbody>
</table>

NCMA National Concrete Masonry Association
13750 Sunrise Valley
Herndon, VA 22071-4662

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEK 5—84 (1996)</td>
<td>Details for Concrete Masonry Fire Walls</td>
</tr>
<tr>
<td>Standard</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>10—13</td>
<td>Standard for Portable Fire Extinguishers</td>
</tr>
<tr>
<td>11—16</td>
<td>Standard for Low Expansion Foam</td>
</tr>
<tr>
<td>12—15</td>
<td>Standard on Carbon Dioxide Extinguishing Systems</td>
</tr>
<tr>
<td>12A—15</td>
<td>Standard on Halon 1301 Fire Extinguishing Systems</td>
</tr>
<tr>
<td>13—16</td>
<td>Installation of Sprinkler Systems (including TIA 16-6, TIA 16-7, and TIA 16-8)</td>
</tr>
<tr>
<td>13D—16</td>
<td>Standard for the Installation of Sprinkler Systems in One- and Two-family Dwellings and Manufactured Homes</td>
</tr>
<tr>
<td>13R—16</td>
<td>Standard for the Installation of Sprinkler Systems in Low Rise Residential Occupancies</td>
</tr>
<tr>
<td>14—16</td>
<td>Standard for the Installation of Standpipe and Hose System</td>
</tr>
<tr>
<td>16—15</td>
<td>Standard for the Installation of Foam-water Sprinkler and Foam-water Spray Systems</td>
</tr>
<tr>
<td>17—17</td>
<td>Standard for Dry Chemical Extinguishing Systems</td>
</tr>
<tr>
<td>17A—17</td>
<td>Standard for Wet Chemical Extinguishing Systems</td>
</tr>
<tr>
<td>20—16</td>
<td>Standard for the Installation of Stationary Pumps for Fire Protection</td>
</tr>
<tr>
<td>30—15</td>
<td>Flammable and Combustible Liquids Code</td>
</tr>
<tr>
<td>31—16</td>
<td>Standard for the Installation of Oil-burning Equipment</td>
</tr>
<tr>
<td>32—16</td>
<td>Standard for Dry Cleaning Plants</td>
</tr>
<tr>
<td>37-40 15</td>
<td>Installation and Use of Stationary Combustion Engines and Gas Turbines</td>
</tr>
<tr>
<td>40—16</td>
<td>Standard for the Storage and Handling of Cellulose Nitrate Film</td>
</tr>
</tbody>
</table>
58—14 Liquefied Petroleum Gas Code
61—17 Standard for the Prevention of Fires and Dust Explosions in Agricultural and Food Product Facilities
70—17 National Electrical Code
72—16 National Fire Alarm and Signaling Code
80—16 Standard for Fire Doors and Other Opening Protectives
82—14 Standard on Incinerators and Waste and Linen Handling Systems and Equipment
85—15 the edition referenced in rule 4101:4-3-01 of the Administrative Code
92—15 Standard for Smoke Control Systems
99—15 Health Care Facilities Code
101—15 Life Safety Code (only applies for Section 1029.6.2)
105—16 Standard for Smoke Door Assemblies and Other Opening Protectives
110—16 Standard for Emergency and Standby Power Systems
111—16 Standard on Stored Electrical Energy Emergency and Standby Power Systems
120—15 Standard for Fire Prevention and Control in Coal Mines
170—15 Standard for Fire Safety and Emergency Symbols
211—16 Standard for Chimneys, Fireplaces, Vents and Solid Fuel-burning Appliances
221—15 Standard for High Challenge Fire Walls, Fire Walls, and Fire Barrier Walls
252—12 Standard Methods of Fire Tests of Door Assemblies
253—15 Standard Method of Test for Critical Radiant Flux of Floor Covering Systems Using a Radiant Heat Energy Source
257—12 Standard for Fire Test for Window and Glass Block Assemblies
259—13 Standard Test Method for Potential Heat of Building Materials
265—15 Standard Methods of Fire Tests for
Evaluating Room Fire Growth Contribution of Textile Wall Coverings on Full Height Panels and Walls

275—13 Standard Method of Fire Tests for the Evaluation of Thermal Barriers

276—15 Standard Method of Fire Tests for Determining the Heat Release Rate of Roofing Assemblies With Combustible Above-Deck Roofing Components

286—15 Standard Methods of Fire Test for Evaluating Contribution of Wall and Ceiling Interior Finish to Room Fire Growth

288—12 Standard Methods of Fire Tests of Horizontal Fire Door Assemblies Installed in Horizontal in Fire-resistance-rated Floor Systems

289—13 Standard Method of Fire Test for Individual Fuel Packages

409—16 Standard for Aircraft Hangars

418—16 Standard for Heliports

484—15 Standard for Combustible Metals

654—17 Standard for the Prevention of Fire & Dust Explosions from the Manufacturing, Processing and Handling of Combustible Particulate Solids

655—12 Standard for the Prevention of Sulfur Fires and Explosions

664—17 Standard for the Prevention of Fires and Explosions in Wood Processing and Woodworking Facilities

701—15 Standard Method of Fire Tests for Flame-Propagation of Textiles and Films

704—17 Standard System for the Identification of the Hazards of Materials for Emergency Response
720—15 Standard for the Installation of Carbon Monoxide (CO) Detection and Warning Equipment
750—15 Standard on Water Mist Fire Protection Systems
2001—15 Standard on Clean Agent Fire Extinguishing Systems
2010-15 Standard for Fixed Aerosol Fire Extinguishing Systems

PCI Precast Prestressed Concrete Institute
200 West Adams Street, Suite 2100
Chicago, IL 60606-6938

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNL 124—11</td>
<td>Design for Fire Resistance of Precast Prestressed Concrete</td>
</tr>
<tr>
<td>MNL 128—01</td>
<td>Recommended Practice for Glass Fiber Reinforced Concrete Panels.</td>
</tr>
</tbody>
</table>

PTI Post-Tensioning Institute
38800 Country Club Drive
Farmington Hills, MI 48331

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTI DC—10.5-12</td>
<td>Standard Requirements for Design and Analysis of Shallow Concrete Foundations on Expansive Soils</td>
</tr>
</tbody>
</table>

RMI Rack Manufacturers Institute
8720 Red Oak Boulevard, Suite 201
Charlotte, NC 28217

Standard
<table>
<thead>
<tr>
<th>Referenced Title</th>
<th>Standard Referenced Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/MH16.1—12 Specification for Design, Testing and</td>
<td></td>
</tr>
<tr>
<td>Utilization of Industrial Steel Storage Racks</td>
<td>SBCA Structural Building Components Association</td>
</tr>
<tr>
<td></td>
<td>6300 Enterprise Lane</td>
</tr>
<tr>
<td></td>
<td>Madison, WI 53719</td>
</tr>
<tr>
<td>ANSI/FS 100-12 Standard Requirements for Wind Pressure</td>
<td>SDI Steel Deck Institute</td>
</tr>
<tr>
<td>Resistance of Foam Plastic Insulating Sheathing Used</td>
<td>P. O. Box 426</td>
</tr>
<tr>
<td>in Exterior Wall Covering Assemblies</td>
<td>Glenshaw, PA 15116</td>
</tr>
<tr>
<td></td>
<td>SJI Steel Joist Institute</td>
</tr>
<tr>
<td></td>
<td>1173B London Links Drive</td>
</tr>
<tr>
<td></td>
<td>Forest, VA 24551</td>
</tr>
<tr>
<td>ANSI/NC1.0—10 Standard for Noncomposite Steel Floor</td>
<td>SJI</td>
</tr>
<tr>
<td>Deck</td>
<td>1173B London Links Drive</td>
</tr>
<tr>
<td>ANSI/RD1.0—10 Standard for Steel Roof Deck</td>
<td>Forest, VA 24551</td>
</tr>
<tr>
<td>SDI-C—2011 Standard for Composite Steel Floor Deck</td>
<td></td>
</tr>
<tr>
<td>Slabs</td>
<td></td>
</tr>
<tr>
<td>SDI-QA/QC—2011 Standard for Quality Control and</td>
<td></td>
</tr>
<tr>
<td>Quality Assurance for Installation of Steel Deck</td>
<td></td>
</tr>
</tbody>
</table>
CJ—10 Standard Specification for Composite Steel Joists, CJ-series
JG—10 Standard Specification for Joist Girders
K—10 Standard Specification for Open Web Steel Joists, K-series

SPRI Single-Ply Roofing Institute
411 Waverly Oaks Road, Suite 331B
Waltham, MA 02452

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/SPRI/FM4435-ES-1—11</td>
<td>Wind Design Standard for Edge Systems Used with Low Slope Roofing Systems</td>
</tr>
<tr>
<td>ANSI/SPRI VF1—10</td>
<td>External Fire Design Standard for Vegetative Roofs</td>
</tr>
</tbody>
</table>

TIA Telecommunications Industry Association
1320 N. Courthouse Road
Arlington, VA 22201-3834

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>222-G—05</td>
<td>Structural Standards for Antenna Supporting Structures and Antennas, including—Addendum 1, 222-G-1, Dated 2007, Addendum 2, 222-G-2 Dated 2009 Addendum 3, 222-3 dated 2013 and Addendum 4, 222-G-4 dated 2014</td>
</tr>
</tbody>
</table>

TMS The Masonry Society
105 South Sunset Street, Suite Q
Standard Referenced

<table>
<thead>
<tr>
<th>Number</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>302—2012</td>
<td></td>
<td>Standard Method for Determining the Sound Transmission Class Rating for Masonry Walls</td>
</tr>
<tr>
<td>402—2013</td>
<td></td>
<td>Building Code for Masonry Structures</td>
</tr>
<tr>
<td>403-2013</td>
<td></td>
<td>Direct Design Handbook for Masonry Structures</td>
</tr>
<tr>
<td>602—2013</td>
<td></td>
<td>Specification for Masonry Structures</td>
</tr>
</tbody>
</table>

TPI Truss Plate Institute
218 N. Lee Street, Suite 312
Alexandria, VA 22314

<table>
<thead>
<tr>
<th>Number</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPI 1—2014</td>
<td></td>
<td>National Design Standard for Metal-plate-connected Wood Truss Construction</td>
</tr>
</tbody>
</table>

UL Underwriters Laboratories, LLC
333 Pfingsten Road
Northbrook, IL 60062-2096

<table>
<thead>
<tr>
<th>Number</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>9—2009</td>
<td></td>
<td>Fire Tests of Window Assemblies</td>
</tr>
<tr>
<td>10A—2009</td>
<td></td>
<td>Tin Clad Fire Doors</td>
</tr>
<tr>
<td>10B—2008</td>
<td></td>
<td>Fire Tests of Door Assemblies—with Revisions through April 2009</td>
</tr>
<tr>
<td>10C—2016</td>
<td></td>
<td>Positive Pressure Fire Tests of Door Assemblies</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>14C—06</td>
<td>Swinging Hardware for Standard Tin Clad Fire Doors Mounted Singly and in Pairs—with Revisions through May 2013</td>
<td></td>
</tr>
<tr>
<td>55A—04</td>
<td>Materials for Built-Up Roof Coverings</td>
<td></td>
</tr>
<tr>
<td>103—2010</td>
<td>Factory-built Chimneys, for Residential Type and Building Heating Appliances—with Revisions through July 2012</td>
<td></td>
</tr>
<tr>
<td>127—2011</td>
<td>Factory-built Fireplaces</td>
<td></td>
</tr>
<tr>
<td>199E—04</td>
<td>Outline of Investigation for Fire Testing of Sprinklers and Water Spray Nozzles for Protection of Deep Fat Fryers</td>
<td></td>
</tr>
<tr>
<td>217—15</td>
<td>Single and Multiple Station Smoke Alarms—with Revisions through April 2012</td>
<td></td>
</tr>
<tr>
<td>263—11</td>
<td>Standard for Fire Tests of Building Construction and Materials</td>
<td></td>
</tr>
<tr>
<td>268—16</td>
<td>Smoke Detectors for Fire Alarm Systems</td>
<td></td>
</tr>
<tr>
<td>294—2013</td>
<td>Access Control System Units—with Revisions through September 2010</td>
<td></td>
</tr>
<tr>
<td>300A—06</td>
<td>Outline of Investigation for Extinguishing System Units for Residential Range Top Cooking Surfaces</td>
<td></td>
</tr>
<tr>
<td>305—2012</td>
<td>Panic Hardware</td>
<td></td>
</tr>
<tr>
<td>325—13</td>
<td>Door, Drapery, Gate, Louver and Window Operations and Systems—with Revisions through June 2013</td>
<td></td>
</tr>
<tr>
<td>555—2006</td>
<td>Fire Dampers—with Revisions through May 2012</td>
<td></td>
</tr>
<tr>
<td>555C—2014</td>
<td>Ceiling Dampers—with Revisions through May 2010</td>
<td></td>
</tr>
<tr>
<td>555S—14</td>
<td>Smoke Dampers—with Revisions through May 2012</td>
<td></td>
</tr>
<tr>
<td>580—2006</td>
<td>Test for Uplift Resistance of Roof Assemblies—with Revisions through July 2009</td>
<td></td>
</tr>
<tr>
<td>Standard Number</td>
<td>Standard Title and Description</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>641—2010</td>
<td>Type L Low-temperature Venting Systems— with Revisions through May 2013</td>
<td></td>
</tr>
<tr>
<td>710B—2011</td>
<td>Recirculating Systems</td>
<td></td>
</tr>
<tr>
<td>723—2008</td>
<td>Standard Test for Surface Burning Characteristics of Building Materials— with Revisions through September 2010</td>
<td></td>
</tr>
<tr>
<td>793—08</td>
<td>Standards for Automatically Operated Roof Vents for Smoke and Heat— with Revisions through September 2011</td>
<td></td>
</tr>
<tr>
<td>864—14</td>
<td>Standards for Control Units and Accessories for Fire Alarm Systems— with Revisions through August 2012</td>
<td></td>
</tr>
<tr>
<td>924—16</td>
<td>Standard for Safety Emergency Lighting and Power Equipment— with Revisions through February 2011</td>
<td></td>
</tr>
<tr>
<td>1040—96</td>
<td>Fire Test of Insulated Wall Construction— with Revisions through October 2012</td>
<td></td>
</tr>
<tr>
<td>1256—02</td>
<td>Fire Test of Roof Deck Construction— with Revisions through January 2007</td>
<td></td>
</tr>
<tr>
<td>1479—15</td>
<td>Fire Tests of Through-penetration Firestops— with Revisions through October 2012</td>
<td></td>
</tr>
<tr>
<td>1482—2011</td>
<td>Solid-Fuel-type Room Heaters</td>
<td></td>
</tr>
<tr>
<td>1703—02</td>
<td>Flat-Plate Photovoltaic Modules and Panels— with Revisions through November 2014</td>
<td></td>
</tr>
<tr>
<td>1715—97</td>
<td>Fire Test of Interior Finish Material— with Revisions through January 2013</td>
<td></td>
</tr>
<tr>
<td>1777—2015</td>
<td>Chimney Liners— with Revisions through July 2009</td>
<td></td>
</tr>
<tr>
<td>1784—15</td>
<td>Air Leakage Tests of Door Assemblies— with Revisions through July 2009</td>
<td></td>
</tr>
<tr>
<td>1897—15</td>
<td>Uplift Tests for Roof Covering Systems</td>
<td></td>
</tr>
<tr>
<td>1975—06</td>
<td>Fire Test of Foamed Plastics Used for Decorative Purposes</td>
<td></td>
</tr>
<tr>
<td>1994—15</td>
<td>Luminous Egress Path Marking Systems— with Revisions through November 2010</td>
<td></td>
</tr>
<tr>
<td>2017—2008</td>
<td>Standards for General-purpose Signaling</td>
<td></td>
</tr>
<tr>
<td>Standard Referenced</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>CAN/ULC S 102.2—2010</td>
<td>Standard Method of Test for Surface Burning Characteristics of Flooring, Floor Coverings and Miscellaneous Materials and Assemblies—with 2000 Revisions</td>
<td></td>
</tr>
</tbody>
</table>

ULC Underwriters Laboratories of Canada
7 Underwriters Road
Toronto, Ontario, Canada M1R3B4

USC United States Code c/o Superintendent of Documents
U.S. Government Printing Office
732 North Capitol Street NW
Washington, DC 20401

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 USC Part 1, Ch.40</td>
<td>Importation, Manufacture, Distribution and Storage of Explosive Materials</td>
</tr>
</tbody>
</table>

WCLIB West Coast Lumber Inspection Bureau
<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AITC Technical Note 7—96</td>
<td>Calculation of Fire Resistance of Glued Laminated Timbers</td>
</tr>
<tr>
<td>AITC 104—03</td>
<td>Typical Construction Details</td>
</tr>
<tr>
<td>AITC 110—01</td>
<td>Standard Appearance Grades for Structural Glued Laminated Timber</td>
</tr>
<tr>
<td>AITC 113—10</td>
<td>Standard for Dimensions of Structural Glued Laminated Timber</td>
</tr>
<tr>
<td>AITC 117—10</td>
<td>Standard Specifications for Structural Glued Laminated Timber of Softwood Species</td>
</tr>
<tr>
<td>AITC 119—96</td>
<td>Standard Specifications for Structural Glued Laminated Timber of Hardwood Species</td>
</tr>
<tr>
<td>AITC 200—09</td>
<td>Manufacturing Quality Control Systems Manual for Structural Glued Laminated Timber</td>
</tr>
</tbody>
</table>

WDMA Window and Door Manufacturers Association
2025 M Street, NW Suite 800
Washington, DC 20036-3309

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAMA/WDMA/CSA 101/IS.2/A440—11</td>
<td>Specifications for Windows, Doors and Unit Skylights</td>
</tr>
</tbody>
</table>

WRI Wire Reinforcement Institute, Inc.
942 Main Street, Suite 300
Hartford, CT 06103

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRI/CRSI—81</td>
<td>Design of Slab-on-ground Foundations—</td>
</tr>
</tbody>
</table>
with 1996 Update
Effective: 8/1/2018

Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3481.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
Prior Effective Dates: 09/01/1992, 02/01/1993, 07/01/1995, 07/01/1997,
03/01/1998, 07/01/1998, 01/01/1999, 12/01/2000,
01/01/2002, 03/01/2005, 09/06/2005, 03/01/2006,
07/01/2007, 01/01/2008, 03/31/2008 (Emer.),
06/24/2008, 01/01/2009, 11/01/2011, 03/15/2012,
03/01/2013, 01/01/2015, 01/01/2016, 01/01/2017,
11/01/2017