July 2018

At its meeting on July 13, 2018, the Ohio Board of Building Standards adopted the rule changes identified as Amendments Group 95. These rule amendments were adopted with an effective date of August 1, 2018.

Amendments Group 95 included the amended Ohio Mechanical Code rules shown below. For your use, the complete text of the final-filed amended rules can be found following this coversheet.

<table>
<thead>
<tr>
<th>Rule Number</th>
<th>Action</th>
<th>Certification Rule Title</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>4101:2-4-01</td>
<td>Amend</td>
<td>Ventilation.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:2-5-01</td>
<td>Amend</td>
<td>Exhaust systems.</td>
<td>August 1, 2018</td>
</tr>
<tr>
<td>4101:2-6-01</td>
<td>Amend</td>
<td>Duct systems.</td>
<td>August 1, 2018</td>
</tr>
</tbody>
</table>

Reason for Changes: The Board amended the Ohio Administrative Code rules as follows: 4101:2-4-01 to incorporate ICC errata, 4101:2-5-01 to incorporate ICC errata and to make general editorial corrections, and 4101:2-6-01 to respond to petition 17-01 to prescribe damper access door requirements and to incorporate ICC errata.

If you should have any questions regarding these rule changes, please call BBS staff at (614)644-2613.
4101:2-4-01 Ventilation.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:2-15-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 401
GENERAL

401.1 Scope. This chapter shall govern the ventilation of spaces within a building intended to be occupied. Mechanical exhaust systems, including exhaust systems serving clothes dryers and cooking appliances; hazardous exhaust systems; dust, stock and refuse conveyor systems; subslab soil exhaust systems; smoke control systems; energy recovery ventilation systems and other systems specified in Section 502 shall comply with Chapter 5.

401.2 Ventilation required. Every occupied space shall be ventilated by natural means in accordance with Section 402 or by mechanical means in accordance with Section 403. When a blower door test is required by the applicable energy conservation code referenced from Chapter 13 of the building code, or when a blower door test is otherwise performed, and where the air infiltration rate in a dwelling unit is less than 5 air changes per hour when tested with a blower door at a pressure of 0.2-inch water column (50 Pa), the dwelling unit shall be ventilated by mechanical means in accordance with Section 403. Ambulatory care facilities and Group I-2 occupancies shall be ventilated by mechanical means in accordance with Section 407.

401.3 When required. Ventilation shall be provided during the periods that the room or space is occupied.

401.4 Intake opening location. Air intake openings shall comply with all of the following:

1. Intake openings shall be located not less than 10 feet (3048 mm) from lot lines or buildings on the same lot.
2. Mechanical and gravity outdoor air intake openings shall be located not less than 10 feet (3048 mm) horizontally from any hazardous or noxious contaminant source, such as vents, streets, alleys, parking lots and loading
docks, except as specified in Item 3 or Section 501.3.1. Outdoor air intake openings shall be permitted to be located less than 10 feet (3048 mm) horizontally from streets, alleys, parking lots and loading docks provided that the openings are located not less than 25 feet (7620 mm) vertically above such locations. Where openings front on a street or public way, the distance shall be measured from the closest edge of the street or public way.

3. Intake openings shall be located not less than 3 feet (914 mm) below contaminant sources where such sources are located within 10 feet (3048 mm) of the opening.

4. Intake openings on structures in flood hazard areas shall be at or above the elevation required by Section 1612 of the building code for utilities and attendant equipment.

401.5 Intake opening protection. Air intake openings that terminate outdoors shall be protected with corrosion-resistant screens, louvers or grilles. Openings in louvers, grilles and screens shall be sized in accordance with Table 401.5, and shall be protected against local weather conditions. Louvers that protect air intake openings in structures located in hurricane-prone regions, as defined in the building code, shall comply with AMCA 550. Outdoor air intake openings located in exterior walls shall meet the provisions for exterior wall opening protectives in accordance with the building code.

<table>
<thead>
<tr>
<th>OUTDOOR OPENING TYPE</th>
<th>MINIMUM AND MAXIMUM OPENING SIZES IN LOUVERS, GRILLES AND SCREENS MEASURED IN ANY DIRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake openings in residential occupancies</td>
<td>Not < 1/4 inch and not > 1/2 inch</td>
</tr>
<tr>
<td>Intake openings in other than residential occupancies</td>
<td>> 1/4 inch and not > 1 inch</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

401.6 Contaminant sources. Stationary local sources producing air-borne particulates, heat, odors, fumes, spray, vapors, smoke or gases in such quantities as to be irritating or injurious to health shall be provided with an exhaust system in accordance with Chapter 5 or a means of collection and removal of the contaminants. Such exhaust shall discharge directly to an approved location at the exterior of the building.
SECTION 402
NATURAL VENTILATION

402.1 Natural ventilation. Natural ventilation of an occupied space shall be through windows, doors, louvers or other openings to the outdoors. The operating mechanism for such openings shall be provided with ready access so that the openings are readily controllable by the building occupants.

402.2 Ventilation area required. The minimum openable area to the outdoors shall be 4 percent of the floor area being ventilated.

402.3 Adjoining spaces. Where rooms and spaces without openings to the outdoors are ventilated through an adjoining room, the opening to the adjoining rooms shall be unobstructed and shall have an area not less than 8 percent of the floor area of the interior room or space, but not less than 25 square feet (2.3 m²). The minimum openable area to the outdoors shall be based on the total floor area being ventilated.

Exception: Exterior openings required for ventilation shall be permitted to open into a thermally isolated sunroom addition or patio cover, provided that the openable area between the sunroom addition or patio cover and the interior room has an area of not less than 8 percent of the floor area of the interior room or space, but not less than 20 square feet (1.86 m²). The minimum openable area to the outdoors shall be based on the total floor area being ventilated.

402.4 Openings below grade. Where openings below grade provide required natural ventilation, the outside horizontal clear space measured perpendicular to the opening shall be one and one-half times the depth of the opening. The depth of the opening shall be measured from the average adjoining ground level to the bottom of the opening.

SECTION 403
MECHANICAL VENTILATION

403.1 Ventilation system. Mechanical ventilation shall be provided by a method of supply air and return or exhaust air except that mechanical ventilation air requirements for Group R-2, R-3 and R-4 occupancies three stories and less in height above grade plane shall be provided by an exhaust system, supply system or combination thereof. The amount of supply air shall be approximately equal to the amount of return and exhaust air. The system shall not be prohibited from
producing negative or positive pressure. The system to convey ventilation air shall be designed and installed in accordance with Chapter 6.

403.2 Outdoor air required. The minimum outdoor airflow rate shall be determined in accordance with Section 403.3.

Exception: The registered design professional may use ASHRAE 62.1 or ASHRAE 62.2, as applicable, as an alternative engineered ventilation system design provided that the registered design professional demonstrates compliance with all applicable sections of the ASHRAE standard.

403.2.1 Recirculation of air. The outdoor air required by Section 403.3 shall not be recirculated. Air in excess of that required by Section 403.3 shall not be prohibited from being recirculated as a component of supply air to building spaces, except that:

1. Ventilation air shall not be recirculated from one dwelling to another or to dissimilar occupancies.
2. Supply air to a swimming pool and associated deck areas shall not be recirculated unless such air is dehumidified to maintain the relative humidity of the area at 60 percent or less. Air from this area shall not be recirculated to other spaces where more than 10 percent of the resulting supply airstream consists of air recirculated from these spaces.
3. Where mechanical exhaust is required by Note b in Table 403.3.1.1, recirculation of air from such spaces shall be prohibited. Recirculation of air that is contained completely within such spaces shall not be prohibited. Where recirculation of air is prohibited, all air supplied to such spaces shall be exhausted, including any air in excess of that required by Table 403.3.1.1.
4. Where mechanical exhaust is required by Note g in Table 403.3.1.1, mechanical exhaust is required and recirculation from such spaces is prohibited where more than 10 percent of the resulting supply airstream consists of air recirculated from these spaces. Recirculation of air that is contained completely within such spaces shall not be prohibited.

403.2.2 Transfer air. Except where recirculation from such spaces is prohibited by Table 403.3.1.1, air transferred from occupiable spaces is not prohibited from serving as makeup air for required exhaust systems in such spaces as kitchens, baths, toilet rooms, elevators and smoking lounges. The amount of transfer air and exhaust air shall be sufficient to provide the flow rates as specified in Section 403.3.1.1. The required outdoor airflow rates
specified in Table 403.3.1.1 shall be introduced directly into such spaces or into the occupied spaces from which air is transferred or a combination of both.

403.3 Outdoor air and local exhaust airflow rates. Group R-2, R-3 and R-4 occupancies three stories and less in height above grade plane shall be provided with outdoor air and local exhaust in accordance with Section 403.3.2. All other buildings intended to be occupied shall be provided with outdoor air and local exhaust in accordance with Section 403.3.1.

403.3.1 Other buildings intended to be occupied. The design of local exhaust systems and ventilation systems for outdoor air for occupancies other than Group R-2, R-3 and R-4 three stories and less above grade plane shall comply with Sections 403.3.1.1 through 403.3.1.5.

403.3.1.1 Outdoor airflow rate. Ventilation systems shall be designed to have the capacity to supply the minimum outdoor airflow rate, determined in accordance with this section. In each occupiable space, the ventilation system shall be designed to deliver the required rate of outdoor airflow to the breathing zone. The occupant load utilized for design of the ventilation system shall be not less than the number determined from the estimated maximum occupant load rate indicated in Table 403.3.1.1. Ventilation rates for occupancies not represented in Table 403.3.1.1 shall be those for a listed occupancy classification that is most similar in terms of occupant density, activities and building construction; or shall be determined by an approved engineering analysis. The ventilation system shall be designed to supply the required rate of ventilation air continuously during the period the building is occupied, except as otherwise stated in other provisions of the code.

With the exception of smoking lounges, the ventilation rates in Table 403.3.1.1 are based on the absence of smoking in occupiable spaces. Where smoking is anticipated in a space other than a smoking lounge, the ventilation system serving the space shall be designed to provide ventilation over and above that required by Table 403.3.1.1 in accordance with accepted engineering practice.

Exception: The occupant load is not required to be determined based on the estimated maximum occupant load rate indicated in Table 403.3.1.1 where approved statistical data document the accuracy of an alternate anticipated occupant density.

403.3.1.1.1 Zone outdoor airflow. The minimum outdoor airflow
required to be supplied to each zone shall be determined as a function of occupancy classification and space air distribution effectiveness in accordance with Sections 403.3.1.1.1 through 403.3.1.1.3.

403.3.1.1.1 Breathing zone outdoor airflow. The outdoor airflow rate required in the breathing zone \(V_{bz} \) of the occupiable space or spaces in a zone shall be determined in accordance with Equation 4-1.

\[
V_{bz} = R_p P_z + R_a A_z
\]

(Equation 4-1)

where:

\(A_z = \) Zone floor area: the net occupiable floor area of the space or spaces in the zone.

\(P_z = \) Zone population: the number of people in the space or spaces in the zone.

\(R_p = \) People outdoor air rate: the outdoor airflow rate required per person from Table 403.3.1.1.

\(R_a = \) Area outdoor air rate: the outdoor airflow rate required per unit area from Table 403.3.1.1.

403.3.1.1.2 Zone air distribution effectiveness. The zone air distribution effectiveness \(E_z \) shall be determined using Table 403.3.1.1.2.

<table>
<thead>
<tr>
<th>AIR DISTRIBUTION CONFIGURATION</th>
<th>(E_z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling or floor supply of cool air</td>
<td>1.0(^c)</td>
</tr>
<tr>
<td>Ceiling or floor supply of warm air and floor return</td>
<td>1.0</td>
</tr>
<tr>
<td>Ceiling supply of warm air and ceiling return</td>
<td>0.8(^f)</td>
</tr>
<tr>
<td>Floor supply of warm air and ceiling return</td>
<td>0.7</td>
</tr>
<tr>
<td>Makeup air drawn in on the opposite side of the room</td>
<td>0.8</td>
</tr>
<tr>
<td>from the exhaust and/or return</td>
<td></td>
</tr>
</tbody>
</table>
For SI: 1 foot = 304.8 mm, 1 foot per minute = 0.00506 m/s, °C = [(°F – 32)/1.8].

a. “Cool air” is air cooler than space temperature.
b. “Warm air” is air warmer than space temperature.
c. “Ceiling” includes any point above the breathing zone.
d. “Floor” includes any point below the breathing zone.
e. Zone air distribution effectiveness of 1.2 shall be permitted for systems with a floor supply of cool air and ceiling return, provided that low velocity displacement ventilation achieves unidirectional flow and thermal stratification.
f. Zone air distribution effectiveness of 1.0 shall be permitted for systems with a ceiling supply of warm air, provided that supply air temperature is less than 15°F above space temperature and provided that the 150-foot-per-minute supply air jet reaches to within 4½ feet of floor level.

403.3.1.1.3 Zone outdoor airflow. The zone outdoor airflow rate (V_oz), shall be determined in accordance with Equation 4-2.

\[V_{oz} = \frac{V_{bz}}{E_z} \quad \text{(Equation 4-2)} \]

403.3.1.1.2 System outdoor airflow. The outdoor air required to be supplied by each ventilation system shall be determined in accordance with Sections 403.3.1.1.2.1 through 403.3.1.1.2.3 as a function of system type and zone outdoor airflow rates.

403.3.1.1.2.1 Single zone systems. Where one air handler supplies a mixture of outdoor air and recirculated return air to only one zone, the system outdoor air intake flow rate (V_ot) shall be determined in accordance with Equation 4-3.

\[V_{ot} = V_{oz} \quad \text{(Equation 4-3)} \]

403.3.1.1.2.2 100-percent outdoor air systems. Where one air handler supplies only outdoor air to one or more zones, the system outdoor air intake flow rate (V_ot) shall be determined using Equation 4-4.

\[V_{ot} = \sum_{\text{all zones}} V_{oz} \quad \text{(Equation 4-4)} \]

403.3.1.1.2.3 Multiple zone recirculating systems. Where one air handler supplies a mixture of outdoor air and recirculated return air
to more than one zone, the system outdoor air intake flow rate \((V_{oa})\) shall be determined in accordance with Sections 403.3.1.1.2.3.1 through 403.3.1.1.2.3.4.

403.3.1.1.2.3.1 Primary outdoor air fraction. The primary outdoor air fraction \((Z_p)\) shall be determined for each zone in accordance with Equation 4-5.

\[
Z_p = \frac{V_{oz}}{V_{pz}} \quad \text{(Equation 4-5)}
\]

where:

- \(V_{pz}\) = Primary airflow: The airflow rate supplied to the zone from the airhandling unit at which the outdoor air intake is located. It includes outdoor intake air and recirculated air from that air-handling unit but does not include air transferred or air recirculated to the zone by other means. For design purposes, \(V_{pz}\) shall be the zone design primary airflow rate, except for zones with variable air volume supply and \(V_{pz}\) shall be the lowest expected primary airflow rate to the zone when it is fully occupied.

403.3.1.1.2.3.2 System ventilation efficiency. The system ventilation efficiency \((E_v)\) shall be determined using Table 403.3.1.1.2.3.2 or Appendix A of ASHRAE 62.1.

<table>
<thead>
<tr>
<th>Max ((Z_p))</th>
<th>(E_v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 0.15)</td>
<td>1</td>
</tr>
<tr>
<td>(\leq 0.25)</td>
<td>0.9</td>
</tr>
<tr>
<td>(\leq 0.35)</td>
<td>0.8</td>
</tr>
<tr>
<td>(\leq 0.45)</td>
<td>0.7</td>
</tr>
<tr>
<td>(\leq 0.55)</td>
<td>0.6</td>
</tr>
<tr>
<td>(\leq 0.65)</td>
<td>0.5</td>
</tr>
<tr>
<td>(\leq 0.75)</td>
<td>0.4</td>
</tr>
<tr>
<td>(> 0.75)</td>
<td>0.3</td>
</tr>
</tbody>
</table>

a. Max \((Z_p)\) is the largest value of \(Z_p\) calculated using Equation 4-5 among all the zones served by the system.

b. Interpolating between table values shall be permitted.

403.3.1.1.2.3.3 Uncorrected outdoor air intake. The
uncorrected outdoor air intake flow rate \((V_{ou})\) shall be determined in accordance with Equation 4-6.

\[
V_{ou} = D \sum_{all\ zones} R_p P_z + \sum_{all\ zones} R_d A_z \quad (Equation\ 4-6)
\]

where:

\[
D = \text{Occupant diversity: the ratio of the system population to the sum of the zone populations, determined in accordance with Equation 4-7.}
\]

\[
D = \frac{P_s}{\sum_{all\ zones} P_z} \quad (Equation\ 4-7)
\]

where:

\[
P_s = \text{System population: The total number of occupants in the area served by the system. For design purposes, } P_s \text{ shall be the maximum number of occupants expected to be concurrently in all zones served by the system.}
\]

403.3.1.2.3.4 Outdoor air intake flow rate. The outdoor air intake flow rate \((V_{ot})\) shall be determined in accordance with Equation 4-8.

\[
V_{ot} = \frac{V_{ou}}{E_v} \quad (Equation\ 4-8)
\]

403.3.1.2 Exhaust ventilation. Exhaust airflow rate shall be provided in accordance with the requirements of Table 403.3.1.1. Outdoor air introduced into a space by an exhaust system shall be considered as contributing to the outdoor airflow required by Table 403.3.1.1.

403.3.1.3 System operation. The minimum flow rate of outdoor air that the ventilation system must be capable of supplying during its operation shall be permitted to be based on the rate per person indicated in Table 403.3.1.1 and the actual number of occupants present.

403.3.1.4 Variable air volume system control. Variable air volume air distribution systems, other than those designed to supply only 100-percent outdoor air, shall be provided with controls to regulate the flow of outdoor air. Such control system shall be designed to maintain the flow rate of outdoor air at a rate of not less than that required by Section 403.3 over the entire range of supply air operating rates.
403.3.1.5 Balancing. The ventilation air distribution system shall be provided with means to adjust the system to achieve not less than the minimum ventilation airflow rate as required by Sections 403.3 and 403.3.1.2. Ventilation systems shall be balanced by an approved method. Such balancing shall verify that the ventilation system is capable of supplying and exhausting the airflow rates required by Sections 403.3 and 403.3.1.2.

403.3.2 Group R-2, R-3 and R-4 occupancies, three stories and less. The design of local exhaust systems and ventilation systems for outdoor air in Group R-2, R-3 and R-4 occupancies three stories and less in height above grade plane shall comply with Sections 403.3.2.1 through 403.3.2.3.

403.3.2.1 Outdoor air for dwelling units. An outdoor air ventilation system consisting of a mechanical exhaust system, supply system or combination thereof shall be installed for each dwelling unit. Local exhaust or supply systems, including outdoor air ducts connected to the return side of an air handler, are permitted to serve as such a system. The outdoor air ventilation system shall be designed to provide the required rate of outdoor air continuously during the period that the building is occupied. The minimum continuous outdoor airflow rate shall be determined in accordance with Equation 4-9.

\[
Q_{OA} = 0.03 \times 0.01A_{floor} + 7.5(N_{br} + 1) \quad \text{(Equation 4-9)}
\]

where:

\(Q_{OA}\) = outdoor airflow rate, cfm
\(A_{floor}\) = floor area, ft²
\(N_{br}\) = number of bedrooms; not to be less than one

Exception: The outdoor air ventilation system is not required to operate continuously where the system has controls that enable operation for not less than 1 hour of each 4-hour period. The average outdoor air flow rate over the 4-hour period shall be not less than that prescribed by Equation 4-9.

403.3.2.2 Outdoor air for other spaces. Corridors and other common areas within the conditioned space shall be provided with outdoor air at a rate of not less than 0.06 cfm per square foot of floor area.
403.3.2.3 **Local exhaust.** Local exhaust systems shall be provided in kitchens, bathrooms and toilet rooms and shall have the capacity to exhaust the minimum airflow rate determined in accordance with Table 403.3.2.3.

TABLE 403.3.2.3

MINIMUM REQUIRED LOCAL EXHAUST RATES FOR GROUP R-2, R-3, AND R-4 OCCUPANCIES

<table>
<thead>
<tr>
<th>AREA TO BE EXHAUSTED</th>
<th>EXHAUST RATE CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitchens</td>
<td>100 cfm intermittent or 25 cfm continuous</td>
</tr>
<tr>
<td>Bathrooms and toilet rooms</td>
<td>50 cfm intermittent or 20 cfm continuous</td>
</tr>
</tbody>
</table>

For SI: 1 cubic foot per minute = 0.0004719 m³/s.

SECTION 404

ENCLOSED PARKING GARAGES

404.1 Enclosed parking garages. Where mechanical ventilation systems for enclosed parking garages operate intermittently, such operation shall be automatic by means of carbon monoxide detectors applied in conjunction with nitrogen dioxide detectors. Such detectors shall be installed in accordance with their manufacturers’ recommendations.

404.2 Minimum ventilation. Automatic operation of the system shall not reduce the ventilation airflow rate below 0.05 cfm per square foot (0.00025 m³/s • m²) of the floor area and the system shall be capable of producing a ventilation airflow rate of 0.75 cfm per square foot (0.0038 m³/s • m²) of floor area.

404.3 Occupied spaces accessory to public garages. Connecting offices, waiting rooms, ticket booths and similar uses that are accessory to a public garage shall be maintained at a positive pressure and shall be provided with ventilation in accordance with Section 403.3 403.3.1.

SECTION 405

SYSTEMS CONTROL

405.1 General. Mechanical ventilation systems shall be provided with manual or automatic controls that will operate such systems whenever the spaces are occupied. Air-conditioning systems that supply required ventilation air shall be provided with controls designed to automatically maintain the required outdoor
SECTION 406
VENTILATION OF UNINHABITED SPACES

406.1 General. Uninhabited spaces, such as crawl spaces and attics, shall be provided with natural ventilation openings as required by the building code or shall be provided with a mechanical exhaust and supply air system. The mechanical exhaust rate shall be not less than 0.02 cfm per square foot (0.00001 m³/s • m²) of horizontal area and shall be automatically controlled to operate when the relative humidity in the space served exceeds 60 percent.

SECTION 407
AMBULATORY CARE FACILITIES AND GROUP I-2 OCCUPANCIES

407.1 General. Mechanical ventilation for ambulatory care facilities and Group I-2 occupancies shall be designed and installed in accordance with this code and ASHRAE 170.

<table>
<thead>
<tr>
<th>OCCUPANCY CLASSIFICATION</th>
<th>OCCUPANT DENSITY #/1000 FT² a</th>
<th>PEOPLE OUTDOOR AIRFLOW RATE IN BREATHING ZONE, Rₚ CFM/PERSON</th>
<th>AREA OUTDOOR AIRFLOW RATE IN BREATHING ZONE, Rₐ CFM/FT² a</th>
<th>EXHAUST AIRFLOW RATE CFM/FT² a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctional facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Booking/waiting</td>
<td>50</td>
<td>7.5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Cells without plumbing fixtures</td>
<td>25</td>
<td>5</td>
<td>0.12</td>
<td>—</td>
</tr>
<tr>
<td>with plumbing fixtures</td>
<td>25</td>
<td>5</td>
<td>0.12</td>
<td>1.0</td>
</tr>
<tr>
<td>Day room</td>
<td>30</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Dining halls (see food and beverage service)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Guard stations</td>
<td>15</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Dry cleaners, laundries</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coin-operated dry cleaner</td>
<td>20</td>
<td>15</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Coin-operated laundries</td>
<td>20</td>
<td>7.5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Commercial dry cleaner</td>
<td>30</td>
<td>30</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Commercial laundry</td>
<td>10</td>
<td>25</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: For air supply rate during occupancy.
TABLE 403.3.1.1—continued

MINIMUM VENTILATION RATES

<table>
<thead>
<tr>
<th>OCCUPANCY CLASSIFICATION</th>
<th>OCCUPANT DENSITY #/1000 FT² ², ³</th>
<th>PEOPLE OUTDOOR AIRFLOW RATE IN BREATHING ZONE, Rₚ CFM/PERSON</th>
<th>AREA OUTDOOR AIRFLOW RATE IN BREATHING ZONE, Rₐ CFM/FT² ²</th>
<th>EXHAUST AIRFLOW RATE CFM/FT² ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hotels, motels, resorts and dormitories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathrooms/toilet—private⁵</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>25/50f</td>
</tr>
<tr>
<td>Bedroom/living room</td>
<td>10</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Conference/meeting</td>
<td>50</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Dormitory sleeping areas</td>
<td>20</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Gambling casinos</td>
<td>120</td>
<td>7.5</td>
<td>0.18</td>
<td>—</td>
</tr>
<tr>
<td>Lobbies/prefunction</td>
<td>30</td>
<td>7.5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Multipurpose assembly</td>
<td>120</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Food and beverage service</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bars, cocktail lounges</td>
<td>100</td>
<td>7.5</td>
<td>0.18</td>
<td>—</td>
</tr>
<tr>
<td>Cafeteria, fast food</td>
<td>100</td>
<td>7.5</td>
<td>0.18</td>
<td>—</td>
</tr>
<tr>
<td>Dining rooms</td>
<td>70</td>
<td>7.5</td>
<td>0.18</td>
<td>—</td>
</tr>
<tr>
<td>Kitchens (cooking)</td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Offices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Conference rooms</td>
<td>50</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Main entry lobbies</td>
<td>10</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Office spaces</td>
<td>5</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Reception areas</td>
<td>30</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Telephone/data entry</td>
<td>60</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Private dwellings, single and multiple</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garages, common for multiple units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitchens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based upon number of bedrooms. First bedroom, 2; each additional bedroom, 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toilet rooms and bathrooms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public spaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corridors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Courtrooms</td>
<td>70</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Elevator car</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legislative chambers</td>
<td>50</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Libraries</td>
<td>10</td>
<td>5</td>
<td>0.12</td>
<td>—</td>
</tr>
<tr>
<td>Museums (children’s)</td>
<td>40</td>
<td>7.5</td>
<td>0.12</td>
<td>—</td>
</tr>
<tr>
<td>Museums/galleries</td>
<td>40</td>
<td>7.5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Places of religious worship</td>
<td>120</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Shower room (per shower head)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking lounges</td>
<td>70</td>
<td>60</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Toilets — public</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail stores, sales floors and showroom floors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dressing rooms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mall common areas</td>
<td>40</td>
<td>7.5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Sales</td>
<td>15</td>
<td>7.5</td>
<td>0.12</td>
<td>—</td>
</tr>
<tr>
<td>Shipping and receiving</td>
<td></td>
<td></td>
<td>0.12</td>
<td>—</td>
</tr>
<tr>
<td>Smoking lounges</td>
<td>70</td>
<td>60</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Storage rooms</td>
<td></td>
<td></td>
<td>0.12</td>
<td>—</td>
</tr>
<tr>
<td>Warehouses (see storage)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(continued)

<table>
<thead>
<tr>
<th>OCCUPANCY CLASSIFICATION</th>
<th>OCCUPANT DENSITY #/1000 FT²</th>
<th>PEOPLE OUTDOOR AIRFLOW RATE IN BREATHING ZONE, R₀ CFM/PERSON</th>
<th>AREA OUTDOOR AIRFLOW RATE IN BREATHING ZONE, Rₐ CFM/FT²</th>
<th>EXHAUST AIRFLOW RATE CFM/FT²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialty shops</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automotive motor-fuel dispensing stations b</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
</tr>
<tr>
<td>Barber</td>
<td>25</td>
<td>7.5</td>
<td>0.06</td>
<td>0.5</td>
</tr>
<tr>
<td>Beauty salons b</td>
<td>25</td>
<td>20</td>
<td>0.12</td>
<td>0.6</td>
</tr>
<tr>
<td>Nail salons b, h</td>
<td>25</td>
<td>20</td>
<td>0.12</td>
<td>0.6</td>
</tr>
<tr>
<td>Embalming room b</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>2.0</td>
</tr>
<tr>
<td>Pet shops (animal areas) b</td>
<td>10</td>
<td>7.5</td>
<td>0.18</td>
<td>0.9</td>
</tr>
<tr>
<td>Supermarkets</td>
<td>8</td>
<td>7.5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Sports and amusement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowling alleys (seating areas)</td>
<td>40</td>
<td>10</td>
<td>0.12</td>
<td>—</td>
</tr>
<tr>
<td>Disco/dance floors</td>
<td>100</td>
<td>20</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Game arcades</td>
<td>20</td>
<td>7.5</td>
<td>0.18</td>
<td>—</td>
</tr>
<tr>
<td>Gym, stadium, arena (play area)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.30</td>
</tr>
<tr>
<td>Health club/aerobics room</td>
<td>40</td>
<td>20</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Health club/weight room</td>
<td>10</td>
<td>20</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Ice arenas without combustion engines</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.30</td>
</tr>
<tr>
<td>Spectator areas</td>
<td>150</td>
<td>7.5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Swimming pools (pool and deck area)</td>
<td>—</td>
<td>—</td>
<td>0.48</td>
<td>—</td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repair garages, enclosed parking garages b, d</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.75</td>
</tr>
<tr>
<td>Warehouses</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Theaters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auditoriums (see education)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Lobbies</td>
<td>150</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Stages, studios</td>
<td>70</td>
<td>10</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Ticket booths</td>
<td>60</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
</tbody>
</table>
TABLE 403.3.1.1—continued MINIMUM VENTILATION RATES

<table>
<thead>
<tr>
<th>OCCUPANCY CLASSIFICATION</th>
<th>OCCUPANT DENSITY #/1000 FT²</th>
<th>PEOPLE OUTDOOR AIRFLOW RATE IN BREATHING ZONE, (R_o) CFM/PERSON</th>
<th>AREA OUTDOOR AIRFLOW RATE IN BREATHING ZONE, (R_a) CFM/FT²</th>
<th>EXHAUST AIRFLOW RATE CFM/FT²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workrooms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank vaults/safe deposit</td>
<td>5</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Computer (without printing)</td>
<td>4</td>
<td>5</td>
<td>0.06</td>
<td>—</td>
</tr>
<tr>
<td>Copy, printing rooms</td>
<td>4</td>
<td>5</td>
<td>0.06</td>
<td>0.5</td>
</tr>
<tr>
<td>Darkrooms</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.0</td>
</tr>
<tr>
<td>Meat processing(^c)</td>
<td>10</td>
<td>15</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pharmacy (prep. area)</td>
<td>10</td>
<td>5</td>
<td>0.18</td>
<td>—</td>
</tr>
<tr>
<td>Photo studios</td>
<td>10</td>
<td>5</td>
<td>0.12</td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 cubic foot per minute = 0.00047719 m³/s, 1 ton = 908 kg, 1 cubic foot per minute per square foot = 0.00508 m³/(s · m²), ³C = [(³F) -32]/1.8, 1 square foot = 0.0929 m².

a. Based upon net occupiable floor area.
b. Mechanical exhaust required and the recirculation of air from such spaces is prohibited. Recirculation of air that is contained completely within such spaces shall not be prohibited (see Section 403.2.1, Item 3).
c. Spaces unheated or maintained below 50°F are not covered by these requirements unless the occupancy is continuous.
d. Ventilation systems in enclosed parking garages shall comply with Section 404.
e. Rates are per water closet or urinal. The higher rate shall be provided where the exhaust system is designed to operate intermittently. The lower rate shall be permitted only where the exhaust system is designed to operate continuously while occupied.
f. Rates are per room unless otherwise indicated. The higher rate shall be provided where the exhaust system is designed to operate intermittently. The lower rate shall be permitted only where the exhaust system is designed to operate continuously while occupied.
g. Mechanical exhaust is required and recirculation from such spaces is prohibited except that recirculation shall be permitted where the resulting supply airstream consists of not more than 10 percent air recirculated from these spaces. Recirculation of air that is contained completely within such spaces shall not be prohibited (see Section 403.2.1, Items 2 and 4).
h. For nail salons, each manicure and pedicure station shall be provided with a source capture system capable of exhausting not less than 50 cfm per station. Exhaust inlets shall be located in accordance with Section 502.20. Where one or more required source capture systems operate continuously during occupancy, the exhaust rate from such systems shall be permitted to be applied to the exhaust flow rate required by Table 403.3.1.1 for the nail salon.
i. The occupant load shall not be greater than that determined by Section 1004 of the building code.
Effective: 8/1/2018

Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
4101:2-5-01 Exhaust systems.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:2-15-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 501
GENERAL

501.1 Scope. This chapter shall govern the design, construction and installation of mechanical exhaust systems, including exhaust systems serving clothes dryers and cooking appliances; hazardous exhaust systems; dust, stock and refuse conveyor systems; subslab soil exhaust systems; smoke control systems; energy recovery ventilation systems and other systems specified in Section 502.

501.2 Independent system required. Single or combined mechanical exhaust systems for environmental air shall be independent of all other exhaust systems. Dryer exhaust shall be independent of all other systems. Type I exhaust systems shall be independent of all other exhaust systems except as provided in Section 506.3.5. Single or combined Type II exhaust systems for food-processing operations shall be independent of all other exhaust systems. Kitchen exhaust systems shall be constructed in accordance with Section 505 for domestic equipment and Sections 506 through 509 for commercial equipment.

501.3 Exhaust discharge. The air removed by every mechanical exhaust system shall be discharged outdoors at a point where it will not cause a public nuisance and not less than the distances specified in Section 501.3.1. The air shall be discharged to a location from which it cannot again be readily drawn in by a ventilating system. Air shall not be exhausted into an attic, crawl space, or be directed onto walkways.

Exceptions:
1. Whole-house ventilation-type attic fans shall be permitted to discharge into the attic space of dwelling units having private attics.
2. Commercial cooking recirculating systems.
3. Where installed in accordance with the manufacturer’s instructions and where mechanical or natural ventilation is otherwise provided in
accordance with Chapter 4, listed and labeled domestic ductless range hoods shall not be required to discharge to the outdoors.

501.3.1 Location of exhaust outlets. The termination point of exhaust outlets and ducts discharging to the outdoors shall be located with the following minimum distances:

1. For ducts conveying explosive or flammable vapors, fumes or dusts:
 - 30 feet (9144 mm) from property lines;
 - 10 feet (3048 mm) from operable openings into buildings;
 - 6 feet (1829 mm) from exterior walls and roofs;
 - 30 feet (9144 mm) from combustible walls and operable openings into buildings which are in the direction of the exhaust discharge;
 - 10 feet (3048 mm) above adjoining grade.

2. For other product-conveying outlets:
 - 10 feet (3048 mm) from the property lines;
 - 3 feet (914 mm) from exterior walls and roofs;
 - 10 feet (3048 mm) from operable openings into buildings;
 - 10 feet (3048 mm) above adjoining grade.

3. For all environmental air exhaust:
 - 3 feet (914 mm) from property lines;
 - 3 feet (914 mm) from operable openings for all occupancies other than Group U, and 10 feet (3048 mm) from mechanical air intakes. Such exhaust shall not be considered hazardous or noxious.

4. Exhaust outlets serving structures in flood hazard areas shall be installed at or above the elevation required by Section 1612 of the building code for utilities and attendant equipment.

5. For specific systems see the following sections:
 - 5.1. Clothes dryer exhaust, Section 504.4.
 - 5.2. Kitchen hoods and other kitchen exhaust equipment, Sections 506.3.13, 506.4 and 506.5.
 - 5.3. Dust stock and refuse conveying systems, Section 511.2.
 - 5.4. Subslab soil exhaust systems, Section 512.4.
 - 5.5. Smoke control systems, Section 513.10.3.
 - 5.6. Refrigerant discharge, Section 1105.7.
 - 5.7. Machinery room discharge, Section 1105.6.1.

501.3.2 Exhaust opening protection. Exhaust openings that terminate outdoors shall be protected with corrosion resistant screens, louvers or grilles. Openings in screens, louvers and grilles shall be sized not less than 1/4 inch (6.4 mm) and not larger than 1/2 inch (12.7 mm). Openings shall be protected against local weather conditions. Louvers that protect exhaust openings in structures located in hurricane-prone regions, as defined in the building code, shall comply with AMCA Standard 550. Outdoor openings located in exterior
walls shall meet the provisions for exterior wall opening protectives in accordance with the building code.

501.4 Pressure equalization. Mechanical exhaust systems shall be sized to remove the quantity of air required by this chapter to be exhausted. The system shall operate when air is required to be exhausted. Where mechanical exhaust is required in a room or space in other than occupancies in R-3 and dwelling units in R-2, such space shall be maintained with a neutral or negative pressure. If a greater quantity of air is supplied by a mechanical ventilating supply system than is removed by a mechanical exhaust for a room, adequate means shall be provided for the natural or mechanical exhaust of the excess air supplied. If only a mechanical exhaust system is installed for a room or if a greater quantity of air is removed by a mechanical exhaust system than is supplied by a mechanical ventilating supply system for a room, adequate makeup air shall be provided to satisfy the deficiency.

501.5 Ducts. Where exhaust duct construction is not specified in this chapter, such construction shall comply with Chapter 6.

SECTION 502
REQUIRED SYSTEMS

502.1 General. An exhaust system shall be provided, maintained and operated as specifically required by this section and for all occupied areas where machines, vats, tanks, furnaces, forges, salamanders and other appliances, equipment and processes in such areas produce or throw off dust or particles sufficiently light to float in the air, or which emit heat, odors, fumes, spray, gas or smoke, in such quantities so as to be irritating or injurious to health or safety.

502.1.1 Exhaust location. The inlet to an exhaust system shall be located in the area of heaviest concentration of contaminants.

502.1.2 Fuel-dispensing areas. The bottom of an air inlet or exhaust opening in fuel-dispensing areas shall be located not more than 18 inches (457 mm) above the floor.

502.1.3 Equipment, appliance and service rooms. Equipment, appliance and system service rooms that house sources of odors, fumes, noxious gases, smoke, steam, dust, spray or other contaminants shall be designed and constructed so as to prevent spreading of such contaminants to other occupied parts of the building.
502.4.1 **Hydrogen limit in rooms.** For flooded lead acid, flooded nickel cadmium and VRLA batteries, the ventilation system shall be designed to limit the maximum concentration of hydrogen to 1.0 percent of the total volume of the room.

502.4.2 **Ventilation rate in rooms.** Continuous ventilation shall be provided at a rate of not less than 1 cubic foot per minute per square foot (cfm/ft²) \(0.00508 \, \text{m}^3/(s \, \text{m}^2)\) of floor area of the room.

502.4.3 **Supervision.** Mechanical ventilation systems required by Section 502.4 shall be supervised by an approved central, proprietary or remote station service or shall initiate an audible and visual signal at a constantly attended on-site location.

502.5 **Valve-regulated lead-acid batteries in cabinets.** Valve-regulated lead-acid (VRLA) batteries installed in cabinets, as regulated by Section 608.6.2 of the fire code, shall be provided with ventilation in accordance with Section 502.5.1 or 502.5.2.

502.5.1 **Hydrogen limit in cabinets.** The cabinet ventilation system shall be
designed to limit the maximum concentration of hydrogen to 1.0 percent of the total volume of the cabinet during the worst-case event of simultaneous boost charging of all batteries in the cabinet.

502.5.2 Ventilation rate in cabinets. Continuous cabinet ventilation shall be provided at a rate of not less than 1 cubic foot per minute per square foot (cfm/ft²) \([0.00508 \text{ m}^3/(s \cdot \text{m}^2)]\) of the floor area covered by the cabinet. The room in which the cabinet is installed shall be ventilated as required by Section 502.4.1 or 502.4.2.

502.5.3 Supervision. Mechanical ventilation systems required by Section 502.5 shall be supervised by an approved central, proprietary or remote station service or shall initiate an audible and visual signal at a constantly attended on-site location.

502.6 Dry cleaning plants. Ventilation in dry cleaning plants shall be adequate to protect employees and the public in accordance with this section and DOL 29 CFR Part 1910.1000, where applicable.

502.6.1 Type II systems. Type II dry cleaning systems shall be provided with a mechanical ventilation system that is designed to exhaust 1 cubic foot of air per minute for each square foot of floor area (1 cfm/ft²) \([0.00508 \text{ m}^3/(s \cdot \text{m}^2)]\) in dry cleaning rooms and in drying rooms. The ventilation system shall operate automatically when the dry cleaning equipment is in operation and shall have manual controls at an approved location.

502.6.2 Type IV and V systems. Type IV and V dry cleaning systems shall be provided with an automatically activated exhaust ventilation system to maintain an air velocity of not less than 100 feet per minute (0.51 m/s) through the loading door when the door is opened.

Exception: Dry cleaning units are not required to be provided with exhaust ventilation where an exhaust hood is installed immediately outside of and above the loading door which operates at an airflow rate as follows:

\[Q = 100 \times A_{LD} \quad \text{(Equation 5-1)} \]

where:

\(Q = \text{Flow rate exhausted through the hood, cubic feet per minute.} \)

\(A_{LD} = \text{Area of the loading door, square feet.} \)

502.6.3 Spotting and pretreating. Scrubbing tubs, scouring, brushing or
spotting operations shall be located such that solvent vapors are captured and exhausted by the ventilating system.

502.7 Application of flammable finishes. Mechanical exhaust as required by this section and the fire code shall be provided for operations involving the application of flammable finishes.

502.7.1 During construction. Ventilation shall be provided for operations involving the application of materials containing flammable solvents in the course of construction, alteration or demolition of a structure.

502.7.2 Limited spraying spaces. Positive mechanical ventilation that provides not less than six complete air changes per hour shall be installed in limited spraying spaces. Such system shall meet the requirements of the fire code for handling flammable vapors. Explosion venting is not required.

502.7.3 Flammable vapor areas. Mechanical ventilation of flammable vapor areas shall be provided in accordance with Sections 502.7.3.1 through 502.7.3.6.

502.7.3.1 Operation. Mechanical ventilation shall be kept in operation at all times while spraying operations are being conducted and for a sufficient time thereafter to allow vapors from drying coated articles and finishing material residue to be exhausted. Spraying equipment shall be interlocked with the ventilation of the flammable vapor area such that spraying operations cannot be conducted unless the ventilation system is in operation.

502.7.3.2 Recirculation. Air exhausted from spraying operations shall not be recirculated.

Exceptions:
1. Air exhausted from spraying operations shall be permitted to be recirculated as makeup air for unmanned spray operations provided that:
 1.1. The solid particulate has been removed.
 1.2. The vapor concentration is less than 25 percent of the lower flammable limit (LFL).
 1.3. Approved equipment is used to monitor the vapor concentration.
 1.4. An alarm is sounded and spray operations are automatically shut down if the vapor concentration exceeds 25 percent of the
LFL.
1.5. In the event of shutdown of the vapor concentration monitor, 100 percent of the air volume specified in Section 510 is automatically exhausted.

2. Air exhausted from spraying operations is allowed to be recirculated as makeup air to manned spraying operations where all of the conditions provided in Exception 1 are included in the installation and documents have been prepared to show that the installation does not pose a life safety hazard to personnel inside the spray booth, spraying space or spray room.

502.7.3.3 Air velocity. The ventilation system shall be designed, installed and maintained so that the flammable contaminants are diluted in noncontaminated air to maintain concentrations in the exhaust air flow below 25 percent of the contaminant’s lower flammable limit (LFL). In addition, the spray booth shall be provided with mechanical ventilation so that the average air velocity through openings is in accordance with Sections 502.7.3.3.1 and 502.7.3.3.2.

502.7.3.3.1 Open face or open front spray booth. For spray application operations conducted in an open face or open front spray booth, the ventilation system shall be designed, installed and maintained so that the average air velocity into the spray booth through all openings is not less than 100 feet per minute (0.51 m/s).

Exception: For fixed or automated electrostatic spray application equipment, the average air velocity into the spray booth through all openings shall be not less than 50 feet per minute (0.25 m/s).

502.7.3.3.2 Enclosed spray booth or spray room with openings for product conveyance. For spray application operations conducted in an enclosed spray booth or spray room with openings for product conveyance, the ventilation system shall be designed, installed and maintained so that the average air velocity into the spray booth through openings is not less than 100 feet per minute (0.51 m/s).

Exceptions:
1. For fixed or automated electrostatic spray application equipment, the average air velocity into the spray booth through all openings shall be not less than 50 feet per minute (0.25 m/s).
2. Where methods are used to reduce cross drafts that can draw vapors and overspray through openings from the spray booth or
spray room, the average air velocity into the spray booth or spray room shall be that necessary to capture and confine vapors and overspray to the spray booth or spray room.

502.7.3.4 Ventilation obstruction. Articles being sprayed shall be positioned in a manner that does not obstruct collection of overspray.

502.7.3.5 Independent ducts. Each spray booth and spray room shall have an independent exhaust duct system discharging to the outdoors.

Exceptions:
1. Multiple spray booths having a combined frontal area of 18 square feet (1.67 m²) or less are allowed to have a common exhaust where identical spray-finishing material is used in each booth. If more than one fan serves one booth, such fans shall be interconnected so that all fans operate simultaneously.
2. Where treatment of exhaust is necessary for air pollution control or energy conservation, ducts shall be allowed to be manifolded if all of the following conditions are met:
 2.1. The sprayed materials used are compatible and will not react or cause ignition of the residue in the ducts.
 2.2. Nitrocellulose-based finishing material shall not be used.
 2.3. A filtering system shall be provided to reduce the amount of overspray carried into the duct manifold.
 2.4. Automatic sprinkler protection shall be provided at the junction of each booth exhaust with the manifold, in addition to the protection required by this chapter.

502.7.3.6 Fan motors and belts. Electric motors driving exhaust fans shall not be placed inside booths or ducts. Fan rotating elements shall be nonferrous or nonsparking or the casing shall consist of, or be lined with, such material. Belts shall not enter the duct or booth unless the belt and pulley within the duct are tightly enclosed.

502.7.4 Dipping operations. Flammable vapor areas of dip tank operations shall be provided with mechanical ventilation adequate to prevent the dangerous accumulation of vapors. Required ventilation systems shall be so arranged that the failure of any ventilating fan will automatically stop the dipping conveyor system.

502.7.5 Electrostatic apparatus. The flammable vapor area in spray-finishing operations involving electrostatic apparatus and devices shall be
ventilated in accordance with Section 502.7.3.

502.7.6 Powder coating. Exhaust ventilation for powder-coating operations shall be sufficient to maintain the atmosphere below one-half of the minimum explosive concentration for the material being applied. Nondeposited, air-suspended powders shall be removed through exhaust ducts to the powder recovery system.

502.7.7 Floor resurfacing operations. To prevent the accumulation of flammable vapors during floor resurfacing operations, mechanical ventilation at a minimum rate of 1 cfm/ft\(^2\) \([0.00508 \text{m}^3/(\text{s} \cdot \text{m}^2)]\) of area being finished shall be provided. Such exhaust shall be by approved temporary or portable means. Vapors shall be exhausted to the exterior of the building.

502.8 Hazardous materials—general requirements. Exhaust ventilation systems for structures containing hazardous materials shall be provided as required in Sections 502.8.1 through 502.8.5.

502.8.1 Storage in excess of the maximum allowable quantities. Indoor storage areas and storage buildings for hazardous materials in amounts exceeding the maximum allowable quantity per control area shall be provided with mechanical exhaust ventilation or natural ventilation where natural ventilation can be shown to be acceptable for the materials as stored.

Exceptions:
1. Storage areas for flammable solids complying with Section 5904 of the fire code.
2. Storage areas and storage buildings for fireworks and explosives complying with Chapter 56 of the fire code.

502.8.1.1 System requirements. Exhaust ventilation systems shall comply with all of the following:
1. The installation shall be in accordance with this code.
2. Mechanical ventilation shall be provided at a rate of not less than 1 cfm per square foot \([0.00508 \text{ m}^3/(\text{s} \cdot \text{m}^2)]\) of floor area over the storage area.
3. The systems shall operate continuously unless alternate designs are approved.
4. A manual shutoff control shall be provided outside of the room in a position adjacent to the access door to the room or in another approved location. The switch shall be a break-glass or other
approved type and shall be labeled: VENTILATION SYSTEM
EMERGENCY SHUTOFF.

5. The exhaust ventilation shall be designed to consider the density of
the potential fumes or vapors released. For fumes or vapors that are
heavier than air, exhaust shall be taken from a point within 12
inches (305 mm) of the floor. For fumes or vapors that are lighter
than air, exhaust shall be taken from a point within 12 inches (305
mm) of the highest point of the room.

6. The location of both the exhaust and inlet air openings shall be
designed to provide air movement across all portions of the floor
or room to prevent the accumulation of vapors.

7. The exhaust air shall not be recirculated to occupied areas if the
materials stored are capable of emitting hazardous vapors and
contaminants have not been removed. Air contaminated with
explosive or flammable vapors, fumes or dusts; flammable, highly
toxic or toxic gases; or radioactive materials shall not be
recirculated.

502.8.2 Gas rooms, exhausted enclosures and gas cabinets. The ventilation
system for gas rooms, exhausted enclosures and gas cabinets for any quantity
of hazardous material shall be designed to operate at a negative pressure in
relation to the surrounding area. Highly toxic and toxic gases shall comply
with Sections 502.9.7.1, 502.9.7.2 and 502.9.8.4.

502.8.3 Indoor dispensing and use. Indoor dispensing and use areas for
hazardous materials in amounts exceeding the maximum allowable quantity
per control area shall be provided with exhaust ventilation in accordance with
Section 502.8.1.

Exception: Ventilation is not required for dispensing and use of
flammable solids other than finely divided particles.

502.8.4 Indoor dispensing and use—point sources. Where gases, liquids or
solids in amounts exceeding the maximum allowable quantity per control area
and having a hazard ranking of 3 or 4 in accordance with NFPA 704 are
dispensed or used, mechanical exhaust ventilation shall be provided to capture
gases, fumes, mists or vapors at the point of generation.

Exception: Where it can be demonstrated that the gases, liquids or solids
do not create harmful gases, fumes, mists or vapors.

502.8.5 Closed systems. Where closed systems for the use of hazardous
materials in amounts exceeding the maximum allowable quantity per control
area are designed to be opened as part of normal operations, ventilation shall be provided in accordance with Section 502.8.4.

502.9 Hazardous materials—requirements for specific materials. Exhaust ventilation systems for specific hazardous materials shall be provided as required in Section 502.8 and Sections 502.9.1 through 502.9.11.

502.9.1 Compressed gases—medical gas systems. Rooms for the storage of compressed medical gases in amounts exceeding the permit amounts for compressed gases in the fire code, and that do not have an exterior wall, shall be exhausted through a duct to the exterior of the building. Both separate airstreams shall be enclosed in a 1-hour-rated shaft enclosure from the room to the exterior. Approved mechanical ventilation shall be provided at a minimum rate of 1 cfm/ft² [0.00508 m³/(s ⋅ m²)] of the area of the room. Gas cabinets for the storage of compressed medical gases in amounts exceeding the permit amounts for compressed gases in the fire code shall be connected to an exhaust system. The average velocity of ventilation at the face of access ports or windows shall be not less than 200 feet per minute (1.02 m/s) with a minimum velocity of 150 feet per minute (0.76 m/s) at any point at the access port or window.

502.9.2 Corrosives. Where corrosive materials in amounts exceeding the maximum allowable quantity per control area are dispensed or used, mechanical exhaust ventilation in accordance with Section 502.8.4 shall be provided.

502.9.3 Cryogenics. Storage areas for stationary or portable containers of cryogenic fluids in any quantity shall be ventilated in accordance with Section 502.8. Indoor areas where cryogenic fluids in any quantity are dispensed shall be ventilated in accordance with the requirements of Section 502.8.4 in a manner that captures any vapor at the point of generation.

Exception: Ventilation for indoor dispensing areas is not required where it can be demonstrated that the cryogenic fluids do not create harmful vapors.

502.9.4 Explosives. Squirrel cage blowers shall not be used for exhausting hazardous fumes, vapors or gases in operating buildings and rooms for the manufacture, assembly or testing of explosives. Only nonferrous fan blades shall be used for fans located within the ductwork and through which hazardous materials are exhausted. Motors shall be located outside the duct.
502.9.5 Flammable and combustible liquids. Exhaust ventilation systems shall be provided as required by Sections 502.9.5.1 through 502.9.5.5 for the storage, use, dispensing, mixing and handling of flammable and combustible liquids. Unless otherwise specified, this section shall apply to any quantity of flammable and combustible liquids.

Exception: This section shall not apply to the following:

1. Specific provisions for flammable liquids in motor fuel-dispensing facilities, airports and marinas as identified in Chapter 23 of the fire code.
2. Medicines, foodstuffs, cosmetics and commercial or institutional products containing not more than fifty percent by volume of water-miscible liquids and with the remainder of the solution not being flammable, provided that such materials are packaged in individual containers not exceeding 1.3 gallons (5 L).
3. Quantities of alcoholic beverages in retail or wholesale sales or storage occupancies, provided that the liquids are packaged in individual containers not exceeding 1.3 gallons (5 L).
4. Fuel oil and diesel oil tanks and containers connected to oil-burning or fuel-burning equipment. Such storage and use shall be in accordance with chapter 13.
5. Refrigerant liquids and oils in refrigeration systems (see chapter 11 of this code).
6. Storage and display of aerosol products complying with chapter 51 of the fire code.
7. Storage and use of liquids that have no fire point when tested in accordance with ASTM D 92.
8. Liquids with a flash point greater than ninety-five degrees Fahrenheit (thirty-five degrees Centigrade) in a water-miscible solution or dispersion with a water and inert (noncombustible) solids content of more than eighty per cent by weight, which do not sustain combustion.
9. Liquids without flash points that can be flammable under some conditions, such as certain halogenated hydrocarbons and mixtures containing halogenated hydrocarbons.
10. The storage of distilled spirits and wines in wooden barrels and casks.
11. Commercial cooking oil storage tank systems located within a building and designed and installed in accordance with Section 610 of the fire code and NFPA 30.
12. Underground storage tanks installed in accordance with the fire code and rules adopted by the state fire marshal and enforced by the fire official, in accordance with section Sections 3737.87 to 3737.89 of the Revised Code.

502.9.5.1 Vaults. Vaults that contain tanks of Class I liquids shall be provided with continuous ventilation at a rate of not less than 1 cfm/ft² of floor area [0.00508 m³/(s m²)], but not less than 150 cfm (4 m³/min).
Failure of the exhaust airflow shall automatically shut down the dispensing system. The exhaust system shall be designed to provide air movement across all parts of the vault floor. Supply and exhaust ducts shall extend to a point not greater than 12 inches (305 mm) and not less than 3 inches (76 mm) above the floor. The exhaust system shall be installed in accordance with the provisions of NFPA 91. Means shall be provided to automatically detect any flammable vapors and to automatically shut down the dispensing system upon detection of such flammable vapors in the exhaust duct at a concentration of 25 percent of the LFL.

502.9.5.2 Storage rooms and warehouses. Liquid storage rooms and liquid storage warehouses for quantities of liquids exceeding those specified in the building code shall be ventilated in accordance with Section 502.8.1.

502.9.5.3 Cleaning machines. Areas containing machines used for parts cleaning in accordance with the fire code shall be adequately ventilated to prevent accumulation of vapors.

502.9.5.4 Use, dispensing and mixing. Continuous mechanical ventilation shall be provided for the use, dispensing and mixing of flammable and combustible liquids in open or closed systems in amounts exceeding the maximum allowable quantity per control area and for bulk transfer and process transfer operations. The ventilation rate shall be not less than 1 cfm/ft² [0.00508 m³/(s • m²)] of floor area over the design area. Provisions shall be made for the introduction of makeup air in a manner that will include all floor areas or pits where vapors can collect. Local or spot ventilation shall be provided where needed to prevent the accumulation of hazardous vapors.

Exception: Where natural ventilation can be shown to be effective for the materials used, dispensed or mixed.

502.9.5.5 Bulk plants or terminals. Ventilation shall be provided for portions of properties where flammable and combustible liquids are received by tank vessels, pipelines, tank cars or tank vehicles and which are stored or blended in bulk for the purpose of distributing such liquids by tank vessels, pipelines, tank cars, tank vehicles or containers as required by Sections 502.9.5.5.1 through 502.9.5.5.3.

502.9.5.5.1 General. Ventilation shall be provided for rooms,
buildings and enclosures in which Class I liquids are pumped, used or transferred. Design of ventilation systems shall consider the relatively high specific gravity of the vapors. Where natural ventilation is used, adequate openings in outside walls at floor level, unobstructed except by louvers or coarse screens, shall be provided. Where natural ventilation is inadequate, mechanical ventilation shall be provided.

502.9.5.5.2 Basements and pits. Class I liquids shall not be stored or used within a building having a basement or pit into which flammable vapors can travel, unless such area is provided with ventilation designed to prevent the accumulation of flammable vapors therein.

502.9.5.5.3 Dispensing of Class I liquids. Containers of Class I liquids shall not be drawn from or filled within buildings unless a provision is made to prevent the accumulation of flammable vapors in hazardous concentrations. Where mechanical ventilation is required, it shall be kept in operation while flammable vapors could be present.

502.9.6 Highly toxic and toxic liquids. Ventilation exhaust shall be provided for highly toxic and toxic liquids as required by Sections 502.9.6.1 and 502.9.6.2.

502.9.6.1 Treatment system. This provision shall apply to indoor and outdoor storage and use of highly toxic and toxic liquids in amounts exceeding the maximum allowable quantities per control area. Exhaust scrubbers or other systems for processing vapors of highly toxic liquids shall be provided where a spill or accidental release of such liquids can be expected to release highly toxic vapors at normal temperature and pressure.

502.9.6.2 Open and closed systems. Mechanical exhaust ventilation shall be provided for highly toxic and toxic liquids used in open systems in accordance with Section 502.8.4. Mechanical exhaust ventilation shall be provided for highly toxic and toxic liquids used in closed systems in accordance with Section 502.8.5.

Exception: Liquids or solids that do not generate highly toxic or toxic fumes, mists or vapors.

502.9.7 Highly toxic and toxic compressed gases— any quantity. Ventilation exhaust shall be provided for highly toxic and toxic compressed gases in any quantity as required by Sections 502.9.7.1 and 502.9.7.2.
502.9.7.1 Gas cabinets. Gas cabinets containing highly toxic or toxic compressed gases in any quantity shall comply with Section 502.8.2 and the following requirements:
1. The average ventilation velocity at the face of gas cabinet access ports or windows shall be not less than 200 feet per minute (1.02 m/s) with a minimum velocity of 150 feet per minute (0.76 m/s) at any point at the access port or window.
2. Gas cabinets shall be connected to an exhaust system.
3. Gas cabinets shall not be used as the sole means of exhaust for any room or area.

502.9.7.2 Exhausted enclosures. Exhausted enclosures containing highly toxic or toxic compressed gases in any quantity shall comply with Section 502.8.2 and the following requirements:
1. The average ventilation velocity at the face of the enclosure shall be not less than 200 feet per minute (1.02 m/s) with a minimum velocity of 150 feet per minute (0.76 m/s).
2. Exhausted enclosures shall be connected to an exhaust system.
3. Exhausted enclosures shall not be used as the sole means of exhaust for any room or area.

502.9.8 Highly toxic and toxic compressed gases—quantities exceeding the maximum allowable quantity per control area. Ventilation exhaust shall be provided for highly toxic and toxic compressed gases in amounts exceeding the maximum allowable quantities per control area as required by Sections 502.9.8.1 through 502.9.8.6.

502.9.8.1 Ventilated areas. The room or area in which indoor gas cabinets or exhausted enclosures are located shall be provided with exhaust ventilation. Gas cabinets or exhausted enclosures shall not be used as the sole means of exhaust for any room or area.

502.9.8.2 Local exhaust for portable tanks. A means of local exhaust shall be provided to capture leakage from indoor and outdoor portable tanks. The local exhaust shall consist of portable ducts or collection systems designed to be applied to the site of a leak in a valve or fitting on the tank. The local exhaust system shall be located in a gas room. Exhaust shall be directed to a treatment system where required by Section 6004.2.2.7 of the fire code.
502.9.8.3 Piping and controls—stationary tanks. Filling or dispensing connections on indoor stationary tanks shall be provided with a means of local exhaust. Such exhaust shall be designed to capture fumes and vapors. The exhaust shall be directed to a treatment system where required by the fire code.

502.9.8.4 Gas rooms. The ventilation system for gas rooms shall be designed to operate at a negative pressure in relation to the surrounding area. The exhaust ventilation from gas rooms shall be directed to an exhaust system.

502.9.8.5 Treatment system. The exhaust ventilation from gas cabinets, exhausted enclosures and gas rooms, and local exhaust systems required in Sections 502.9.8.2 and 502.9.8.3 shall be directed to a treatment system where required by the fire code.

502.9.8.6 Process equipment. Effluent from indoor and outdoor process equipment containing highly toxic or toxic compressed gases which could be discharged to the atmosphere shall be processed through an exhaust scrubber or other processing system. Such systems shall be in accordance with the fire code.

502.9.9 Ozone gas generators. Ozone cabinets and ozone gas-generator rooms for systems having a maximum ozone-generating capacity of \(\frac{1}{2} \) pound (0.23 kg) or more over a 24-hour period shall be mechanically ventilated at a rate of not less than six air changes per hour. For cabinets, the average velocity of ventilation at makeup air openings with cabinet doors closed shall be not less than 200 feet per minute (1.02 m/s).

502.9.10 LP-gas distribution facilities. LP-gas distribution facilities shall be ventilated in accordance with NFPA 58.

502.9.10.1 Portable container use. Above-grade underfloor spaces or basements in which portable LP gas containers are used or are stored awaiting use or resale shall be provided with an approved means of ventilation.

Exception: Department of Transportation (DOT) specification cylinders with a maximum water capacity of 2.5 pounds (1 kg) for use in completely self-contained hand torches and similar applications. The quantity of LP-gas shall not exceed 20 pounds (9 kg).
502.9.11 Silane gas. Exhausted enclosures and gas cabinets for the indoor storage of silane gas in amounts exceeding the maximum allowable quantities per control area shall comply with Chapter 64 of the fire code.

502.10 Hazardous production materials (HPM). Exhaust ventilation systems and materials for ducts utilized for the exhaust of HPM shall comply with this section, other applicable provisions of this code, the building code and the fire code.

502.10.1 Where required. Exhaust ventilation systems shall be provided in the following locations in accordance with the requirements of this section and the building code.

1. Fabrication areas: Exhaust ventilation for fabrication areas shall comply with the building code. Additional manual control switches shall be provided where required by the code official.
2. Workstations: A ventilation system shall be provided to capture and exhaust gases, fumes and vapors at workstations.
3. Liquid storage rooms: Exhaust ventilation for liquid storage rooms shall comply with Section 502.8.1.1 and the building code.
4. HPM rooms: Exhaust ventilation for HPM rooms shall comply with Section 502.8.1.1 and the building code.
5. Gas cabinets: Exhaust ventilation for gas cabinets shall comply with Section 502.8.2. The gas cabinet ventilation system is allowed to connect to a workstation ventilation system. Exhaust ventilation for gas cabinets containing highly toxic or toxic gases shall also comply with Sections 502.9.7 and 502.9.8.
6. Exhausted enclosures: Exhaust ventilation for exhausted enclosures shall comply with Section 502.8.2. Exhaust ventilation for exhausted enclosures containing highly toxic or toxic gases shall also comply with Sections 502.9.7 and 502.9.8.
7. Gas rooms: Exhaust ventilation for gas rooms shall comply with Section 502.8.2. Exhaust ventilation for gas rooms containing highly toxic or toxic gases shall also comply with Sections 502.9.7 and 502.9.8.
8. Cabinets containing pyrophoric liquids or Class 3 water-reactive liquids: Exhaust ventilation for cabinets in fabrication areas containing pyrophoric liquids shall be as required in Section 2705.2.3.4 of the fire code.

502.10.2 Penetrations. Exhaust ducts penetrating fire barriers constructed in accordance with Section 707 of the building code or horizontal assemblies
constructed in accordance with Section 711 of the building code shall be contained in a shaft of equivalent fire-resistance-rated construction. Exhaust ducts shall not penetrate fire walls. Fire dampers shall not be installed in exhaust ducts.

502.10.3 Treatment systems. Treatment systems for highly toxic and toxic gases shall comply with Section 6004.2.2.7 of the fire code.

502.11 Motion picture projectors. Motion picture projectors shall be exhausted in accordance with Section 502.11.1 or 502.11.2.

502.11.1 Projectors with an exhaust discharge. Projectors equipped with an exhaust discharge shall be directly connected to a mechanical exhaust system. The exhaust system shall operate at an exhaust rate as indicated by the manufacturer’s installation instructions.

502.11.2 Projectors without exhaust connection. Projectors without an exhaust connection shall have contaminants exhausted through a mechanical exhaust system. The exhaust rate for electric arc projectors shall be not less than 200 cubic feet per minute (cfm) (0.09 m³/s) per lamp. The exhaust rate for xenon projectors shall be not less than 300 cfm (0.14 m³/s) per lamp. Xenon projector exhaust shall be at a rate such that the exterior temperature of the lamp housing does not exceed 130°F (54°C). The lamp and projection room exhaust systems, whether combined or independent, shall not be interconnected with any other exhaust or return system within the building.

502.12 Organic coating processes. Enclosed structures involving organic coating processes in which Class I liquids are processed or handled shall be ventilated at a rate of not less than 1 cfm/ft² [0.00508 m³/(s • m²)] of solid floor area. Ventilation shall be accomplished by exhaust fans that intake at floor levels and discharge to a safe location outside the structure. Noncontaminated intake air shall be introduced in such a manner that all portions of solid floor areas are provided with continuous uniformly distributed air movement.

502.13 Public garages. Mechanical exhaust systems for public garages, as required in Chapter 4, shall operate continuously or in accordance with Section 404.

502.14 Motor vehicle operation. In areas where motor vehicles operate, mechanical ventilation shall be provided in accordance with Section 403. Additionally, areas in which stationary motor vehicles are operated shall be
provided with a source capture system that connects directly to the motor vehicle exhaust systems. Such system shall be engineered by a registered design professional or shall be factory-built equipment designed and sized for the purpose.

Exceptions:
1. This section shall not apply where the motor vehicles being operated or repaired are electrically powered.
2. Deleted.
3. This section shall not apply to motor vehicle service areas where engines are operated inside the building only for the duration necessary to move the motor vehicles in and out of the building.

502.15 Repair garages. Where Class I liquids or LP-gas are stored or used within a building having a basement or pit wherein flammable vapors could accumulate, the basement or pit shall be provided with ventilation designed to prevent the accumulation of flammable vapors therein.

502.16 Repair garages for natural gas- and hydrogen-fueled vehicles. Repair garages used for the repair of natural gas- or hydrogen-fueled vehicles shall be provided with an approved mechanical ventilation system. The mechanical ventilation system shall be in accordance with Sections 502.16.1 and 502.16.2.

Exception: Where approved by the code official, natural ventilation shall be permitted in lieu of mechanical ventilation.

502.16.1 Design. Indoor locations shall be ventilated utilizing air supply inlets and exhaust outlets arranged to provide uniform air movement to the extent practical. Inlets shall be uniformly arranged on exterior walls near floor level. Outlets shall be located at the high point of the room in exterior walls or the roof.
Ventilation shall be by a continuous mechanical ventilation system or by a mechanical ventilation system activated by a continuously monitoring natural gas detection system, or for hydrogen, a continuously monitoring flammable gas detection system, each activating at a gas concentration of 25 percent of the lower flammable limit (LFL). In all cases, the system shall shut down the fueling system in the event of failure of the ventilation system.
The ventilation rate shall be not less than 1 cubic foot per minute per 12 cubic feet \([0.00138 \text{ m}^3/(s \cdot \text{m}^3)]\) of room volume.

502.16.2 Operation. The mechanical ventilation system shall operate continuously.

Exceptions:
1. Mechanical ventilation systems that are interlocked with a gas detection system designed in accordance with the fire code.
2. Mechanical ventilation systems in garages that are used only for the repair of vehicles fueled by liquid fuels or odorized gases, such as CNG, where the ventilation system is electrically interlocked with the lighting circuit.

502.17 Tire rebuilding or recapping. Each room where rubber cement is used or mixed, or where flammable or combustible solvents are applied, shall be ventilated in accordance with the applicable provisions of NFPA 91.

502.17.1 Buffing machines. Each buffing machine shall be connected to a dust-collecting system that prevents the accumulation of the dust produced by the buffing process.

502.18 Specific rooms. Specific rooms, including bathrooms, locker rooms, smoking lounges and toilet rooms, shall be exhausted in accordance with the ventilation requirements of Chapter 4.

502.19 Indoor firing ranges. Ventilation shall be provided in an approved manner in areas utilized as indoor firing ranges. Ventilation shall be designed to protect employees and the public in accordance with DOL 29 CFR 1910.1025 where applicable.

502.20 Manicure and pedicure stations. Manicure and pedicure stations shall be provided with an exhaust system in accordance with Table 403.3.1.1, Note h. Manicure tables and pedicure stations not provided with factory-installed exhaust inlets shall be provided with exhaust inlets located not more than 12 inches (305 mm) horizontally and vertically from the point of chemical application.

**SECTION 503
MOTORS AND FANS**

503.1 General. Motors and fans shall be sized to provide the required air movement. Motors in areas that contain flammable vapors or dusts shall be of a type approved for such environments. A manually operated remote control installed at an approved location shall be provided to shut off fans or blowers in flammable vapor or dust systems. Electrical equipment and appliances used in operations that generate explosive or flammable vapors, fumes or dusts shall be interlocked with the ventilation system so that the equipment and appliances cannot be operated unless the ventilation fans are in operation. Motors for fans
used to convey flammable vapors or dusts shall be located outside the duct or shall be protected with approved shields and dustproofing. Motors and fans shall be provided with a means of access for servicing and maintenance.

503.2 Fans. Parts of fans in contact with explosive or flammable vapors, fumes or dusts shall be of nonferrous or nonsparking materials, or their casing shall be lined or constructed of such material. Where the size and hardness of materials passing through a fan are capable of producing a spark, both the fan and the casing shall be of nonsparking materials. Where fans are required to be spark resistant, their bearings shall not be within the airstream, and all parts of the fan shall be grounded. Fans in systems-handling materials that are capable of clogging the blades, and fans in buffing or woodworking exhaust systems, shall be of the radial-blade or tube-axial type.

503.3 Equipment and appliance identification plate. Equipment and appliances used to exhaust explosive or flammable vapors, fumes or dusts shall bear an identification plate stating the ventilation rate for which the system was designed.

503.4 Corrosion-resistant fans. Fans located in systems conveying corrosives shall be of materials that are resistant to the corrosive or shall be coated with corrosion-resistant materials.

SECTION 504
CLOTHES DRYER EXHAUST

504.1 Installation. Clothes dryers shall be exhausted in accordance with the manufacturer’s instructions. Dryer exhaust systems shall be independent of all other systems and shall convey the moisture and any products of combustion to the outside of the building.

Exception: This section shall not apply to listed and labeled condensing (ductless) clothes dryers.

504.2 Exhaust penetrations. Where a clothes dryer exhaust duct penetrates a wall or ceiling membrane, the annular space shall be sealed with noncombustible material, approved fire caulking or a noncombustible dryer exhaust duct wall receptacle. Ducts that exhaust clothes dryers shall not penetrate or be located within any fireblocking, draftstopping, or any wall, floor/ceiling or other assembly required by the building code to be fire-resistance rated, unless such duct is constructed of galvanized steel or aluminum of the thickness specified in Section 603.4 and the fire-resistance rating is maintained in accordance with the
building code. Fire dampers, combination fire/smoke dampers and any similar devices that will obstruct the exhaust flow shall be prohibited in clothes dryer exhaust ducts.

504.3 Cleanout. Each vertical riser shall be provided with a means for cleanout.

504.4 Exhaust installation. Dryer exhaust ducts for clothes dryers shall terminate on the outside of the building and shall be equipped with a backdraft damper. Screens shall not be installed at the duct termination. Ducts shall not be connected or installed with sheet metal screws or other fasteners that will obstruct the exhaust flow. Clothes dryer exhaust ducts shall not be connected to a vent connector, vent or chimney. Clothes dryer exhaust ducts shall not extend into or through ducts or plenums.

504.5 Dryer exhaust duct power ventilators. Domestic dryer exhaust duct power ventilators shall be listed and labeled to UL 705 for use in dryer exhaust duct systems. The dryer exhaust duct power ventilator shall be installed in accordance with the manufacturer’s instructions.

504.6 Makeup air. Installations exhausting more than 200 cfm (0.09 m³/s) shall be provided with makeup air. Where a closet is designed for the installation of a clothes dryer, an opening having an area of not less than 100 square inches (0.0645 m²) shall be provided in the closet enclosure or makeup air shall be provided by other approved means.

504.7 Protection required. Protective shield plates shall be placed where nails or screws from finish or other work are likely to penetrate the clothes dryer exhaust duct. Shield plates shall be placed on the finished face of all framing members where there is less than 1 1/4 inches (32 mm) between the duct and the finished face of the framing member. Protective shield plates shall be constructed of steel, have a thickness of 0.062 inch (1.6 mm) and extend not less than 2 inches (51 mm) above sole plates and below top plates.

504.8 Domestic clothes dryer ducts. Exhaust ducts for domestic clothes dryers shall conform to the requirements of Sections 504.8.1 through 504.8.6.

504.8.1 Material and size. Exhaust ducts shall have a smooth interior finish and shall be constructed of metal a minimum 0.016 inch (0.4 mm) thick. The exhaust duct size shall be 4 inches (102 mm) nominal in diameter.

504.8.2 Duct installation. Exhaust ducts shall be supported at 4-foot (1219
mm) intervals and secured in place. The insert end of the duct shall extend into the adjoining duct or fitting in the direction of airflow. Ducts shall not be joined with screws or similar fasteners that protrude more than $\frac{1}{8}$ inch (3.2 mm) into the inside of the duct.

504.8.3 Transition ducts. Transition ducts used to connect the dryer to the exhaust duct system shall be a single length that is listed and labeled in accordance with UL 2158A. Transition ducts shall be not greater than 8 feet (2438 mm) in length and shall not be concealed within construction.

504.8.4 Duct length. The maximum allowable exhaust duct length shall be determined by one of the methods specified in Sections 504.8.4.1 through 504.8.4.3.

504.8.4.1 Specified length. The maximum length of the exhaust duct shall be 35 feet (10 668 mm) from the connection to the transition duct from the dryer to the outlet terminal. Where fittings are used, the maximum length of the exhaust duct shall be reduced in accordance with Table 504.8.4.1.

<table>
<thead>
<tr>
<th>DRYER EXHAUST DUCT FITTING TYPE</th>
<th>EQUIVALENT LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>4” radius mitered 45-degree elbow</td>
<td>2 feet 6 inches</td>
</tr>
<tr>
<td>4” radius mitered 90-degree elbow</td>
<td>5 feet</td>
</tr>
<tr>
<td>6” radius smooth 45-degree elbow</td>
<td>1 foot</td>
</tr>
<tr>
<td>6” radius smooth 90-degree elbow</td>
<td>1 foot 9 inches</td>
</tr>
<tr>
<td>8” radius smooth 45-degree elbow</td>
<td>1 foot</td>
</tr>
<tr>
<td>8” radius smooth 90-degree elbow</td>
<td>1 foot 7 inches</td>
</tr>
<tr>
<td>10” radius smooth 45-degree elbow</td>
<td>9 inches</td>
</tr>
<tr>
<td>10” radius smooth 90-degree elbow</td>
<td>1 foot 6 inches</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 degree = 0.0175 rad.

504.8.4.2 Manufacturer’s instructions. The maximum length of the exhaust duct shall be determined by the dryer manufacturer’s installation instructions. The code official shall be provided with a copy of the installation instructions for the make and model of the dryer. Where the exhaust duct is to be concealed, the installation instructions shall be provided to the code official prior to the concealment inspection. In the absence of fitting equivalent length calculations from the clothes dryer manufacturer, Table 504.8.4.1 shall be used.
504.8.4.3 **Dryer exhaust duct power ventilator length.** The maximum length of the exhaust duct shall be determined by the dryer exhaust duct power ventilator manufacturer’s installation instructions.

504.8.5 **Length identification.** Where the exhaust duct equivalent length exceeds 35 feet (10 668 mm), the equivalent length of the exhaust duct shall be identified on a permanent label or tag. The label or tag shall be located within 6 feet (1829 mm) of the exhaust duct connection.

504.8.6 **Exhaust duct required.** Where space for a clothes dryer is provided, an exhaust duct system shall be installed. Where the clothes dryer is not installed at the time of occupancy, the exhaust duct shall be capped at the location of the future dryer.

Exception: Where a listed condensing clothes dryer is installed prior to occupancy of structure.

504.9 **Commercial clothes dryers.** The installation of dryer exhaust ducts serving commercial clothes dryers shall comply with the appliance manufacturer’s installation instructions. Exhaust fan motors installed in exhaust systems shall be located outside of the airstream. In multiple installations, the fan shall operate continuously or be interlocked to operate when any individual unit is operating. Ducts shall have a minimum clearance of 6 inches (152 mm) to combustible materials. Clothes dryer transition ducts used to connect the appliance to the exhaust duct system shall be limited to single lengths not to exceed 8 feet (2438 mm) in length and shall be listed and labeled for the application. Transition ducts shall not be concealed within construction.

504.10 **Common exhaust systems for clothes dryers located in multistory structures.** Where a common multistory duct system is designed and installed to convey exhaust from multiple clothes dryers, the construction of the system shall be in accordance with all of the following:

1. The shaft in which the duct is installed shall be constructed and fire-resistance rated as required by the building code.
2. Dampers shall be prohibited in the exhaust duct. Penetrations of the shaft and ductwork shall be protected in accordance with Section 607.5.5, Exception 2.
3. Rigid metal ductwork shall be installed within the shaft to convey the exhaust. The ductwork shall be constructed of sheet steel having a minimum thickness of 0.0187 inch (0.4712 mm) (No. 26 gage) and in accordance with SMACNA Duct Construction Standards.
4. The ductwork within the shaft shall be designed and installed without offsets.
5. The exhaust fan motor design shall be in accordance with Section 503.2.
6. The exhaust fan motor shall be located outside of the airstream.
7. The exhaust fan shall run continuously, and shall be connected to a standby power source.
8. Exhaust fan operation shall be monitored in an approved location and shall initiate an audible or visual signal when the fan is not in operation.
9. Makeup air shall be provided for the exhaust system.
10. A cleanout opening shall be located at the base of the shaft to provide access to the duct to allow for cleaning and inspection. The finished opening shall be not less than 12 inches by 12 inches (305 mm by 305 mm).
11. Screens shall not be installed at the termination.
12. The common multistory duct system shall serve only clothes dryers and shall be independent of other exhaust systems.

SECTION 505

DOMESTIC KITCHEN EXHAUST EQUIPMENT

505.1 Domestic systems. *Where domestic cooking appliances are installed within buildings regulated by this code and the appliances are utilized for domestic purposes, such appliances shall be provided with domestic range hoods.*

Where domestic range hoods and domestic cooking appliances equipped with downdraft exhaust are provided, such hoods and appliances shall discharge to the outdoors through sheet metal ducts constructed of galvanized steel, stainless steel, aluminum or copper. Such ducts shall have smooth inner walls, shall be air tight, shall be equipped with a backdraft damper, and shall be independent of all other exhaust systems.

Exceptions:

1. *In Group R dwelling units provided with domestic cooking appliances utilized for domestic purposes, domestic range hoods are optional.*

2. In other than Group I-1 and I-2, where installed in accordance with the manufacturer’s instructions and where mechanical or natural ventilation is otherwise provided in accordance with Chapter 4, listed and labeled ductless range hoods shall not be required to discharge to the outdoors.

3. Ducts for domestic cooking appliances equipped with downdraft exhaust systems shall be permitted to be constructed of Schedule 40 PVC pipe and fittings provided that the installation complies with all of the following:

3.1. The duct shall be installed under a concrete slab poured on grade.
3.2. The underfloor trench in which the duct is installed shall be completely backfilled with sand or gravel.
3.3. The PVC duct shall extend not more than 1 inch (25 mm) above the indoor concrete floor surface.
3.4. The PVC duct shall extend not more than 1 inch (25 mm) above grade outside of the building.
3.5. The PVC ducts shall be solvent cemented.

505.2 Makeup air required. Exhaust hood systems capable of exhausting in excess of 400 cfm (0.19 m³/s) shall be provided with makeup air at a rate approximately equal to the exhaust air rate. Such makeup air systems shall be equipped with a means of closure and shall be automatically controlled to start and operate simultaneously with the exhaust system.

505.3 Common exhaust systems for domestic kitchens located in multistory structures. Where a common multistory duct system is designed and installed to convey exhaust from multiple domestic kitchen exhaust systems, the construction of the system shall be in accordance with all of the following:
1. The shaft in which the duct is installed shall be constructed and fire-resistance rated as required by the building code.
2. Dampers shall be prohibited in the exhaust duct, except as specified in Section 505.1. Penetrations of the shaft and ductwork shall be protected in accordance with Section 607.5.5, Exception 2.
3. Rigid metal ductwork shall be installed within the shaft to convey the exhaust. The ductwork shall be constructed of sheet steel having a minimum thickness of 0.0187 inch (0.4712 mm) (No. 26 gage) and in accordance with SMACNA Duct Construction Standards.
4. The ductwork within the shaft shall be designed and installed without offsets.
5. The exhaust fan motor design shall be in accordance with Section 503.2.
6. The exhaust fan motor shall be located outside of the airstream.
7. The exhaust fan shall run continuously, and shall be connected to a standby power source.
8. Exhaust fan operation shall be monitored in an approved location and shall initiate an audible or visual signal when the fan is not in operation.
9. Where the exhaust rate for an individual kitchen exceeds 400 cfm (0.19 m³/s) makeup air shall be provided in accordance with Section 505.2.
10. A cleanout opening shall be located at the base of the shaft to provide access to the duct to allow for cleanout and inspection. The finished openings shall be not less than 12 inches by 12 inches (305 mm by 305 mm).
11. Screens shall not be installed at the termination.
12. The common multistory duct system shall serve only kitchen exhaust and shall be independent of other exhaust systems.

505.4 Other than Group R. Deleted.

505.5 Group I-2. Where domestic cooking appliances are installed within Group I-2 nursing homes, rooms or spaces and the appliances are utilized for domestic purposes, such appliances shall be provided with domestic range hoods in accordance with this section and Section 407.2.6 of the building code.

SECTION 506
COMMERCIAL KITCHEN HOOD VENTILATION SYSTEM DUCTS AND EXHAUST EQUIPMENT

506.1 General. Commercial kitchen hood ventilation ducts and exhaust equipment shall comply with the requirements of this section. Commercial kitchen grease ducts shall be designed for the type of cooking appliance and hood served.

506.2 Corrosion protection. Ducts exposed to the outside atmosphere or subject to a corrosive environment shall be protected against corrosion in an approved manner.

506.3 Ducts serving Type I hoods. Type I exhaust ducts shall be independent of all other exhaust systems except as provided in Section 506.3.5. Commercial kitchen duct systems serving Type I hoods shall be designed, constructed and installed in accordance with Sections 506.3.1 through 506.3.13.3.

506.3.1 Duct materials. Ducts serving Type I hoods shall be constructed of materials in accordance with Sections 506.3.1.1 and 506.3.1.2.

506.3.1.1 Grease duct materials. Grease ducts serving Type I hoods shall be constructed of steel having a minimum thickness of 0.0575 inch (1.463 mm) (No. 16 gage) or stainless steel not less than 0.0450 inch (1.14 mm) (No. 18 gage) in thickness.
Exception: Factory-built commercial kitchen grease ducts listed and labeled in accordance with UL 1978 and installed in accordance with Section 304.1.

506.3.1.2 Makeup air ducts. Makeup air ducts connecting to or within 18
inches (457 mm) of a Type I hood shall be constructed and installed in accordance with Sections 603.1, 603.3, 603.4, 603.9, 603.10 and 603.12. Duct insulation installed within 18 inches (457 mm) of a Type I hood shall be noncombustible or shall be listed for the application.

506.3.2 Joints, seams and penetrations of grease ducts. Joints, seams and penetrations of grease ducts shall be made with a continuous liquid-tight weld or braze made on the external surface of the duct system.

Exceptions:
1. Penetrations shall not be required to be welded or brazed where sealed by devices that are listed for the application.
2. Internal welding or brazing shall not be prohibited provided that the joint is formed or ground smooth and is provided with ready access for inspection.
3. Factory-built commercial kitchen grease ducts listed and labeled in accordance with UL 1978 and installed in accordance with Section 304.1.

506.3.2.1 Duct joint types. Duct joints shall be butt joints, welded flange joints with a maximum flange depth of \(\frac{1}{2} \) inch (12.7 mm) or overlapping duct joints of either the telescoping or bell type. Overlapping joints shall be installed to prevent ledges and obstructions from collecting grease or interfering with gravity drainage to the intended collection point. The difference between the inside cross-sectional dimensions of overlapping sections of duct shall not exceed \(\frac{1}{4} \) inch (6.4 mm). The length of overlap for overlapping duct joints shall not exceed 2 inches (51 mm).

506.3.2.2 Duct-to-hood joints. Duct-to-hood joints shall be made with continuous internal or external liquid-tight welded or brazed joints. Such joints shall be smooth, accessible for inspection, and without grease traps.

Exceptions: This section shall not apply to:
1. A vertical duct-to-hood collar connection made in the top plane of the hood in accordance with all of the following:
 1.1. The hood duct opening shall have a 1-inch-deep (25 mm), full perimeter, welded flange turned down into the hood interior at an angle of 90 degrees (1.57 rad) from the plane of the opening.
 1.2. The duct shall have a 1-inch-deep (25 mm) flange made by a 1-inch by 1-inch (25 mm by 25 mm) angle iron welded to the full perimeter of the duct not less than 1 inch (25 mm) above the bottom end of the duct.
1.3. A gasket rated for use at not less than 1500°F (816°C) is installed between the duct flange and the top of the hood.

1.4. The duct-to-hood joint shall be secured by stud bolts not less than 1/4 inch (6.4 mm) in diameter welded to the hood with a spacing not greater than 4 inches (102 mm) on center for the full perimeter of the opening. The bolts and nuts shall be secured with lockwashers.

2. Listed and labeled duct-to-hood collar connections installed in accordance with Section 304.1.

506.3.2.3 Duct-to-exhaust fan connections. Duct-to-exhaust fan connections shall be flanged and gasketed at the base of the fan for vertical discharge fans; shall be flanged, gasketed and bolted to the inlet of the fan for side-inlet utility fans; and shall be flanged, gasketed and bolted to the inlet and outlet of the fan for in-line fans. Gasket and sealing materials shall be rated for continuous duty at a temperature of not less than 1500°F (816°C).

506.3.2.4 Vibration isolation. A vibration isolation connector for connecting a duct to a fan shall consist of noncombustible packing in a metal sleeve joint of approved design or shall be a coated-fabric flexible duct connector listed and labeled for the application. Vibration isolation connectors shall be installed only at the connection of a duct to a fan inlet or outlet.

506.3.2.5 Grease duct test. Prior to the use or concealment of any portion of a grease duct system, a leakage test shall be performed. Ducts shall be considered to be concealed where installed in shafts or covered by coatings or wraps that prevent the ductwork from being visually inspected on all sides. The permit holder shall be responsible to provide the necessary equipment and perform the grease duct leakage test. A light test shall be performed to determine that all welded and brazed joints are liquid tight.

A light test shall be performed by passing a lamp having a power rating of not less than 100 watts through the entire section of ductwork to be tested. The lamp shall be open so as to emit light equally in all directions perpendicular to the duct walls. A test shall be performed for the entire duct system, including the hood-to-duct connection. The duct work shall be permitted to be tested in sections, provided that every joint is tested. For listed factory-built grease ducts, this test shall be limited to duct joints assembled in the field and shall exclude factory welds.
506.3.3 **Grease duct supports.** Grease duct bracing and supports shall be of noncombustible material securely attached to the structure and designed to carry gravity and seismic loads within the stress limitations of the building code. Bolts, screws, rivets and other mechanical fasteners shall not penetrate duct walls.

506.3.4 **Air velocity.** Grease duct systems serving a Type I hood shall be designed and installed to provide an air velocity within the duct system of not less than 500 feet per minute (2.5 m/s).

Exception: The velocity limitations shall not apply within duct transitions utilized to connect ducts to differently sized or shaped openings in hoods and fans, provided that such transitions do not exceed 3 feet (914 mm) in length and are designed to prevent the trapping of grease.

506.3.5 **Separation of grease duct system.** A separate grease duct system shall be provided for each Type I hood. A separate grease duct system is not required where all of the following conditions are met:

1. All interconnected hoods are located within the same story.
2. All interconnected hoods are located within the same room or in adjoining rooms.
3. Interconnecting ducts do not penetrate assemblies required to be fire-resistance rated.
4. The grease duct system does not serve solid-fuel fired appliances.

506.3.6 **Grease duct clearances.** Where enclosures are not required, grease duct systems and exhaust equipment serving a Type I hood shall have a clearance to combustible construction of not less than 18 inches (457 mm), and shall have a clearance to noncombustible construction and gypsum wallboard attached to noncombustible structures of not less than 3 inches (76 mm).

Exceptions:

1. Factory-built commercial kitchen grease ducts listed and labeled in accordance with UL 1978.
2. Listed and labeled exhaust equipment installed in accordance with Section 304.1.
3. Where commercial kitchen grease ducts are continuously covered on all sides with a listed and labeled field-applied grease duct enclosure material, system, product or method of construction specifically evaluated for such purpose in accordance with ASTM E 2336, the
required clearance shall be in accordance with the listing of such material, system, product or method.

506.3.7 Prevention of grease accumulation in grease ducts. Duct systems serving a Type I hood shall be constructed and installed so that grease cannot collect in any portion thereof, and the system shall slope not less than one-fourth unit vertical in 12 units horizontal (2-percent slope) toward the hood or toward a grease reservoir designed and installed in accordance with Section 506.3.7.1. Where horizontal ducts exceed 75 feet (22 860 mm) in length, the slope shall be not less than one unit vertical in 12 units horizontal (8.3-percent slope).

506.3.7.1 Grease duct reservoirs. Grease duct reservoirs shall:
1. Be constructed as required for the grease duct they serve.
2. Be located on the bottom of the horizontal duct or the bottommost section of the duct riser.
3. Extend across the full width of the duct and have a length of not less than 12 inches (305 mm).
4. Have a depth of not less than 1 inch (25 mm).
5. Have a bottom that slopes to a drain.
6. Be provided with a cleanout opening constructed in accordance with Section 506.3.8 and installed to provide direct access to the reservoir. The cleanout opening shall be located on a side or on top of the duct so as to permit cleaning of the reservoir.
7. Be installed in accordance with the manufacturer’s instructions where manufactured devices are utilized.

506.3.8 Grease duct cleanouts and openings. Grease duct cleanouts and openings shall comply with all of the following:
1. Grease ducts shall not have openings except where required for the operation and maintenance of the system.
2. Sections of grease ducts that are inaccessible from the hood or discharge openings shall be provided with cleanout openings spaced not more than 20 feet (6096 mm) apart and not more than 10 feet (3048 mm) from changes in direction greater than 45 degrees (0.79 rad).
3. Cleanouts and openings shall be equipped with tight-fitting doors constructed of steel having a thickness not less than that required for the duct.
4. Cleanout doors shall be installed liquid tight.
5. Door assemblies including any frames and gaskets shall be approved for the application and shall not have fasteners that penetrate the duct.
6. Gasket and sealing materials shall be rated for not less than 1500°F (816°C).
7. Listed door assemblies shall be installed in accordance with the manufacturer’s instructions.

506.3.8.1 **Personnel entry.** Where ductwork is large enough to allow entry of personnel, not less than one approved or listed opening having dimensions not less than 22 inches by 20 inches (559 mm by 508 mm) shall be provided in the horizontal sections, and in the top of vertical risers. Where such entry is provided, the duct and its supports shall be capable of supporting the additional load, and the cleanouts specified in Section 506.3.8 are not required.

506.3.8.2 **Cleanouts serving in-line fans.** A cleanout shall be provided for both the inlet side and outlet side of an in-line fan except where a duct does not connect to the fan. Such cleanouts shall be located within 3 feet (914 mm) of the fan duct connections.

506.3.9 **Grease duct horizontal cleanouts.** Cleanouts serving horizontal sections of grease ducts shall:
1. Be spaced not more than 20 feet (6096 mm) apart.
2. Be located not more than 10 feet (3048 mm) from changes in direction that are greater than 45 degrees (0.79 rad).
3. Be located on the bottom only where other locations are not available and shall be provided with internal damming of the opening such that grease will flow past the opening without pooling. Bottom cleanouts and openings shall be approved for the application and installed liquid-tight.
4. Not be closer than 1 inch (25 mm) from the edges of the duct.
5. Have opening dimensions of not less than 12 inches by 12 inches (305 mm by 305 mm). Where such dimensions preclude installation, the opening shall be not less than 12 inches (305 mm) on one side and shall be large enough to provide access for cleaning and maintenance.
6. Shall be located at grease reservoirs.

506.3.10 **Underground grease duct installation.** Underground grease duct installations shall comply with all of the following:
1. Underground grease ducts shall be constructed of steel having a minimum thickness of 0.0575 inch (1.463 mm) (No. 16 gage) and shall
be coated to provide protection from corrosion or shall be constructed of stainless steel having a minimum thickness of 0.0450 inch (1.140 mm) (No. 18 gage).

2. The underground duct system shall be tested and approved in accordance with Section 506.3.2.5 prior to coating or placement in the ground.

3. The underground duct system shall be completely encased in concrete with a minimum thickness of 4 inches (102 mm).

4. Ducts shall slope toward grease reservoirs.

5. A grease reservoir with a cleanout to allow cleaning of the reservoir shall be provided at the base of each vertical duct riser.

6. Cleanouts shall be provided with access to permit cleaning and inspection of the duct in accordance with Section 506.3.

7. Cleanouts in horizontal ducts shall be installed on the topside of the duct.

8. Cleanout locations shall be legibly identified at the point of access from the interior space.

506.3.11 Grease duct enclosures. A commercial kitchen grease duct serving a Type I hood that penetrates a ceiling, wall, floor or any concealed space shall be enclosed from the point of penetration to the outlet terminal. In-line exhaust fans not located outdoors shall be enclosed as required for grease ducts. A duct shall penetrate exterior walls only at locations where unprotected openings are permitted by the building code. The duct enclosure shall serve a single grease duct and shall not contain other ducts, piping or wiring systems. Duct enclosures shall be a shaft enclosure in accordance with Section 506.3.11.1, a field-applied enclosure assembly in accordance with Section 506.3.11.2 or a factory-built enclosure assembly in accordance with Section 506.3.11.3. Duct enclosures shall have a fire-resistance rating of not less than that of the assembly penetrated and not less than 1 hour. Fire dampers and smoke dampers shall not be installed in grease ducts.

Exception: A duct enclosure shall not be required for a grease duct that penetrates only a nonfire-resistance-rated roof/ceiling assembly.

506.3.11.1 Shaft enclosure. Grease ducts constructed in accordance with Section 506.3.1 shall be permitted to be enclosed in accordance with the building code requirements for shaft construction. Such grease duct systems and exhaust equipment shall have a clearance to combustible construction of not less than 18 inches (457 mm), and shall have a clearance to noncombustible construction and gypsum wallboard attached to noncombustible structures of not less than 6 inches (76 mm). Duct
enclosures shall be sealed around the duct at the point of penetration and vented to the outside of the building through the use of weather protected openings.

506.3.11.2 Field-applied grease duct enclosure. Grease ducts constructed in accordance with Section 506.3.1 shall be enclosed by a listed and labeled field applied grease duct enclosure material, systems, product, or method of construction specifically evaluated for such purpose in accordance with ASTM E 2336. The surface of the duct shall be continuously covered on all sides from the point at which the duct originates to the outlet terminal. Duct penetrations shall be protected with a through-penetration firestop system tested and listed in accordance with ASTM E 814 or UL 1479 and having a “F” and “T” rating equal to the fire-resistance rating of the assembly being penetrated. The grease duct enclosure and firestop system shall be installed in accordance with the listing and the manufacturer’s instructions. Partial application of a field applied grease duct enclosure shall not be installed for the sole purpose of reducing clearances to combustibles at isolated sections of grease duct. Exposed duct-wrap systems shall be protected where subject to physical damage.

506.3.11.3 Factory-built grease duct enclosure assemblies. Factory-built grease ducts incorporating integral enclosure materials shall be listed and labeled for use as grease duct enclosure assemblies specifically evaluated for such purpose in accordance with UL 2221. Duct penetrations shall be protected with a through-penetration firestop system tested and listed in accordance with ASTM E 814 or UL 1479 and having an “F” and “T” rating equal to the fire-resistance rating of the assembly being penetrated. The grease duct enclosure assembly and firestop system shall be installed in accordance with the listing and the manufacturer’s instructions.

506.3.12 Grease duct fire-resistive access opening. Where cleanout openings are located in ducts within a fire-resistance-rated enclosure, access openings shall be provided in the enclosure at each cleanout point. Access openings shall be equipped with tight-fitting sliding or hinged doors that are equal in fire-resistive protection to that of the shaft or enclosure. An approved sign shall be placed on access opening panels with wording as follows: “ACCESS PANEL. DO NOT OBSTRUCT.”

506.3.13 Exhaust outlets serving Type I hoods. Exhaust outlets for grease
ducts serving Type I hoods shall conform to the requirements of Sections 506.3.13.1 through 506.3.13.3.

506.3.13.1 Termination above the roof. Exhaust outlets that terminate above the roof shall have the discharge opening located not less than 40 inches (1016 mm) above the roof surface.

506.3.13.2 Termination through an exterior wall. Exhaust outlets shall be permitted to terminate through exterior walls where the smoke, grease, gases, vapors and odors in the discharge from such terminations do not create a public nuisance or a fire hazard. Such terminations shall not be located where protected openings are required by the building code. Other exterior openings shall not be located within 3 feet (914 mm) of such terminations.

506.3.13.3 Termination location. Exhaust outlets shall be located not less than 10 feet (3048 mm) horizontally from parts of the same or contiguous buildings, adjacent buildings and adjacent property lines and shall be located not less than 10 feet (3048 mm) above the adjoining grade level. Exhaust outlets shall be located not less than 10 feet (3048 mm) horizontally from or not less than 3 feet (914 mm) above air intake openings into any building.

Exception: Exhaust outlets shall terminate not less than 5 feet (1524 mm) horizontally from parts of the same or contiguous building, an adjacent building, adjacent property line and air intake openings into a building where air from the exhaust outlet discharges away from such locations.

506.4 Ducts serving Type II hoods. Commercial kitchen exhaust systems serving Type II hoods shall comply with Sections 506.4.1 and 506.4.2.

506.4.1 Ducts. Ducts and plenums serving Type II hoods shall be constructed of rigid metallic materials. Duct construction, installation, bracing and supports shall comply with Chapter 6. Ducts subject to positive pressure and ducts conveying moisture-laden or waste-heat-laden air shall be constructed, joined and sealed in an approved manner.

506.4.2 Type II terminations. Exhaust outlets serving Type II hoods shall terminate in accordance with the hood manufacturer’s installation instructions and shall comply with all of the following:
1. Exhaust outlets shall terminate not less than 3 feet (914 mm) in any direction from openings into the building.
2. Outlets shall terminate not less than 10 feet (3048 mm) from property lines or buildings on the same lot.
3. Outlets shall terminate not less than 10 feet (3048 mm) above grade.
4. Outlets that terminate above a roof shall terminate not less than 30 inches (762 mm) above the roof surface.
5. Outlets shall terminate not less than 30 inches (762 mm) from exterior vertical walls.
6. Outlets shall be protected against local weather conditions.
7. Outlets shall not be directed onto walkways.
8. Outlets shall meet the provisions for exterior wall opening protective in accordance with the building code.

506.5 Exhaust equipment. Exhaust equipment, including fans and grease reservoirs, shall comply with Sections 506.5.1 through 506.5.5 and shall be of an approved design or shall be listed for the application.

506.5.1 Exhaust fans. Exhaust fan housings serving a Type I hood shall be constructed as required for grease ducts in accordance with Section 506.3.1.1. Exception: Fans listed and labeled in accordance with UL 762.

506.5.1.1 Fan motor. Exhaust fan motors shall be located outside of the exhaust airstream.

506.5.1.2 In-line fan location. Where enclosed duct systems are connected to in-line fans not located outdoors, the fan shall be located in a room or space having the same fire-resistance rating as the duct enclosure. Access shall be provided for servicing and cleaning of fan components. Such rooms or spaces shall be ventilated in accordance with the fan manufacturer’s installation instructions.

506.5.2 Exhaust fan discharge. Exhaust fans shall be positioned so that the discharge will not impinge on the roof, other equipment or appliances or parts of the structure. A vertical discharge fan shall be manufactured with an approved drain outlet at the lowest point of the housing to permit drainage of grease to an approved grease reservoir.

506.5.3 Exhaust fan mounting. Up-blast fans serving Type I hoods and installed in a vertical or horizontal position shall be hinged, supplied with a flexible weatherproof electrical cable to permit inspection and cleaning and
shall be equipped with a means of restraint to limit the swing of the fan on its hinge. The ductwork shall extend not less than 18 inches (457 mm) above the roof surface.

506.5.4 Clearances. Exhaust equipment serving a Type I hood shall have a clearance to combustible construction of not less than 18 inches (457 mm).

Exception: Factory-built exhaust equipment installed in accordance with Section 304.1 and listed for a lesser clearance.

506.5.5 Termination location. The outlet of exhaust equipment serving Type I hoods shall be in accordance with Section 506.3.13.

Exception: The minimum horizontal distance between vertical discharge fans and parapet-type building structures shall be 2 feet (610 mm) provided that such structures are not higher than the top of the fan discharge opening.

SECTION 507 COMMERCIAL KITCHEN EXHAUST HOODS

507.1 General. Commercial kitchen exhaust hoods shall comply with the requirements of this section. Hoods shall be Type I or II and shall be designed to capture and confine cooking vapors and residues. A Type I or Type II hood shall be installed at or above all commercial cooking appliances in accordance with Sections 507.2 and 507.3. Where any cooking appliance under a single hood requires a Type I hood, a Type I hood shall be installed. Where a Type II hood is required, a Type I or Type II hood shall be installed. Where a Type I hood is installed, the installation of the entire system, including the hood, ducts, exhaust equipment and makeup air system shall comply with the requirements of Sections 506, 507, 508 and 509.

Exceptions:

1. Factory-built commercial exhaust hoods that are listed and labeled in accordance with UL 710, and installed in accordance with Section 304.1, shall not be required to comply with Sections 507.1.5, 507.2.3, 507.2.5, 507.2.8, 507.3.1, 507.3.3, 507.4 and 507.5.

2. Factory-built commercial cooking recirculating systems that are listed and labeled in accordance with UL 710B, and installed in accordance with Section 304.1, shall not be required to comply with Sections 507.1.5, 507.2.3, 507.2.5, 507.2.8, 507.3.1, 507.3.3, 507.4 and 507.5. Spaces in which such systems are located shall be considered to be kitchens and shall be ventilated in accordance with Table 403.3.1.1. For the purpose of determining the floor area required to be ventilated, each individual
appliance shall be considered as occupying not less than 100 square feet (9.3 m²).

3. Where cooking appliances are equipped with integral down-draft exhaust systems and such appliances and exhaust systems are listed and labeled for the application in accordance with NFPA 96, a hood shall not be required at or above them.

507.1.1 Operation. Commercial kitchen exhaust hood systems shall operate during the cooking operation. The hood exhaust rate shall comply with the listing of the hood or shall comply with Section 507.5. The exhaust fan serving a Type I hood shall have automatic controls that will activate the fan when any appliance that requires such Type I Hood is turned on, or a means of interlock shall be provided that will prevent operation of such appliances when the exhaust fan is not turned on. Where one or more temperature or radiant energy sensors are used to activate a Type I hood exhaust fan, the fan shall activate not more than 15 minutes after the first appliance served by that hood has been turned on. A method of interlock between an exhaust hood system and appliances equipped with standing pilot burners shall not cause the pilot burners to be extinguished. A method of interlock between an exhaust hood system and cooking appliances shall not involve or depend upon any component of a fire-extinguishing system.

The net exhaust volumes for hoods shall be permitted to be reduced during part-load cooking conditions, where engineered or listed multispeed or variable speed controls automatically operate the exhaust system to maintain capture and removal of cooking effluents as required by this section. Reduced volumes shall not be below that required to maintain capture and removal of effluents from the idle cooking appliances that are operating in a standby mode.

507.1.1.1 Multiple hoods utilizing a single exhaust system. Where heat or radiant energy sensors are utilized in hood systems consisting of multiple hoods served by a single exhaust system, such sensors shall be provided in each hood. Sensors shall be capable of being accessed from the hood outlet or from a cleanout location.

507.1.2 Domestic cooking appliances used for commercial purposes. Domestic cooking appliances utilized for commercial purposes shall be provided with Type I or Type II hoods as required for the type of appliances and processes in accordance with Sections 507.2 and 507.3. Domestic cooking appliances utilized for domestic purposes shall comply with Section 505.
507.1.3 **Fuel-burning appliances.** Where vented fuel-burning appliances are located in the same room or space as the hood, provisions shall be made to prevent the hood system from interfering with normal operation of the appliance vents.

507.1.4 **Cleaning.** A hood shall be designed to provide for thorough cleaning of the entire hood.

507.1.5 **Exhaust outlets.** Exhaust outlets located within the hood shall be located so as to optimize the capture of particulate matter. Each outlet shall serve not more than a 12-foot (3658 mm) section of hood.

507.2 **Type I hoods.** Type I hoods shall be installed where commercial cooking appliances produce grease or smoke as a result of the cooking process. Type I hoods shall be installed over medium-duty, heavy-duty and extra-heavy-duty cooking appliances.

Exceptions:
1. A Type I hood shall not be required for an electric cooking appliance where an approved testing agency provides documentation that the appliance effluent contains 5 mg/m³ or less of grease when tested at an exhaust flow rate of 500 cfm (0.236 m³/s) in accordance with UL 710B.
2. A Type II hood shall be permitted to be installed in lieu of a Type I hood over conveyor pizza ovens where grease laden vapors or smoke are generated in quantities that do not constitute a hazard.

507.2.1 **Type I exhaust flow rate label.** Type I hoods shall bear a label indicating the minimum exhaust flow rate in cfm per linear foot (1.55 L/s per linear meter) of hood that provides for capture and containment of the exhaust effluent for the cooking appliances served by the hood, based on the cooking appliance duty classifications defined in this code.

507.2.2 **Type I extra-heavy-duty.** Type I hoods for use over extra-heavy-duty cooking appliances shall not cover heavy-, medium- or light-duty appliances. Such hoods shall discharge to an exhaust system that is independent of other exhaust systems.

507.2.3 **Type I materials.** Type I hoods shall be constructed of steel having a minimum thickness of 0.0466 inch (1.181 mm) (No. 18 gage) or stainless steel not less than 0.0335 inch [0.8525 mm (No. 20 MSG)] in thickness.

507.2.4 **Type I supports.** Type I hoods shall be secured in place by
noncombustible supports. Type I hood supports shall be adequate for the applied load of the hood, the unsupported ductwork, the effluent loading and the possible weight of personnel working in or on the hood.

507.2.5 Type I hoods. External hood joints, seams and penetrations for Type I hoods shall be made with a continuous external liquid-tight weld or braze to the lowest outermost perimeter of the hood. Internal hood joints, seams, penetrations, filter support frames and other appendages attached inside the hood shall not be required to be welded or brazed but shall be otherwise sealed to be grease tight.

Exceptions:
1. Penetrations shall not be required to be welded or brazed where sealed by devices that are listed for the application.
2. Internal welding or brazing of seams, joints and penetrations of the hood shall not be prohibited provided that the joint is formed smooth or ground so as to not trap grease, and is readily cleanable.

507.2.6 Clearances for Type I hood. A Type I hood shall be installed with a clearance to combustibles of not less than 18 inches (457 mm).

Exception: Clearance shall not be required from gypsum wallboard or 1/2-inch (12.7 mm) or thicker cementitious wallboard attached to noncombustible structures provided that a smooth, cleanable, nonabsorbent and noncombustible material is installed between the hood and the gypsum or cementitious wallboard over an area extending not less than 18 inches (457 mm) in all directions from the hood.

507.2.7 Type I hoods penetrating a ceiling. Type I hoods or portions thereof penetrating a ceiling, wall or furred space shall comply with Section 506.3.11. Field-applied grease duct enclosure systems, as addressed in Section 506.3.11.2, shall not be utilized to satisfy the requirements of this section.

507.2.8 Type I grease filters. Type I hoods shall be equipped with grease filters listed and labeled in accordance with UL 1046. Grease filters shall be provided with access for cleaning or replacement. The lowest edge of a grease filter located above the cooking surface shall be not less than the height specified in Table 507.2.8.

TABLE 507.2.8
MINIMUM DISTANCE BETWEEN THE LOWEST EDGE OF A GREASE FILTER AND THE COOKING SURFACE OR THE HEATING SURFACE
<table>
<thead>
<tr>
<th>TYPE OF COOKING APPLIANCES</th>
<th>HEIGHT ABOVE COOKING SURFACE (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without exposed flame</td>
<td>0.5</td>
</tr>
<tr>
<td>Exposed flame and burners</td>
<td>2</td>
</tr>
<tr>
<td>Exposed charcoal and charbroil type</td>
<td>3.5</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.

507.2.8.1 Criteria. Filters shall be of such size, type and arrangement as will permit the required quantity of air to pass through such units at rates not exceeding those for which the filter or unit was designed or approved. Filter units shall be installed in frames or holders so as to be readily removable without the use of separate tools, unless designed and installed to be cleaned in place and the system is equipped for such cleaning in place. Where filters are designed and required to be cleaned, removable filter units shall be of a size that will allow them to be cleaned in a dishwashing machine or pot sink. Filter units shall be arranged in place or provided with drip-intercepting devices to prevent grease or other condensate from dripping into food or on food preparation surfaces.

507.2.8.2 Mounting position of grease filters. Filters shall be installed at an angle of not less than 45 degrees (0.79 rad) from the horizontal and shall be equipped with a drip tray beneath the lower edge of the filters.

507.2.9 Grease gutters for Type I hood. Grease gutters shall drain to an approved collection receptacle that is fabricated, designed and installed to allow access for cleaning.

507.3 Type II hoods. Type II hoods shall be installed above dishwashers and appliances that produce heat or moisture and do not produce grease or smoke as a result of the cooking process, except where the heat and moisture loads from such appliances are incorporated into the HVAC system design or into the design of a separate removal system. Type II hoods shall be installed above all appliances that produce products of combustion and do not produce grease or smoke as a result of the cooking process. Spaces containing cooking appliances that do not require Type II hoods shall be provided with exhaust at a rate of 0.70 cfm per square foot (0.00033 m³/s).

For the purpose of determining the floor area required to be exhausted, each individual appliance that is not required to be installed under a Type II hood shall be considered as occupying not less than 100 square feet (9.3 m²). Such additional square footage shall be provided with exhaust at a rate of 0.70 cfm per square foot.
507.3.1 Type II hood materials. Type II hoods shall be constructed of steel having a minimum thickness of 0.0296 inch (0.7534 mm) (No. 22 gage) or stainless steel not less than 0.0220 inch (0.5550 mm) (No. 24 gage) in thickness, copper sheets weighing not less than 24 ounces per square foot (7.3 kg/m²) or of other approved material and gage.

507.3.2 Type II supports. Type II hood supports shall be adequate for the applied load of the hood, the unsupported ductwork, the effluent loading and the possible weight of personnel working in or on the hood.

507.3.3 Type II hoods joint, seams and penetrations. Joints, seams and penetrations for Type II hoods shall be constructed as set forth in Chapter 6, shall be sealed on the interior of the hood and shall provide a smooth surface that is readily cleanable and water tight.

507.4 Hood size and location. Hoods shall comply with the overhang, setback and height requirements in accordance with Sections 507.4.1 and 507.4.2, based on the type of hood.

507.4.1 Canopy size and location. The inside lower edge of canopy-type Type I and II commercial hoods shall overhang or extend a horizontal distance of not less than 6 inches (152 mm) beyond the edge of the top horizontal surface of the appliance on all open sides. The vertical distance between the front lower lip of the hood and such surface shall not exceed 4 feet (1219 mm).

 Exception: The hood shall be permitted to be flush with the outer edge of the cooking surface where the hood is closed to the appliance side by a noncombustible wall or panel.

507.4.2 Noncanopy size and location. Noncanopy-type hoods shall be located not greater than 3 feet (914 mm) above the cooking surface. The edge of the hood shall be set back not greater than 1 foot (305 mm) from the edge of the cooking surface.

507.5 Capacity of hoods. Commercial food service hoods shall exhaust a minimum net quantity of air determined in accordance with this section and Sections 507.5.1 through 507.5.5. The net quantity of exhaust air shall be calculated by subtracting any airflow supplied directly to a hood cavity from the total exhaust flow rate of a hood. Where any combination of heavy-duty, medium-
duty and light-duty cooking appliances are utilized under a single hood, the
exhaust rate required by this section for the heaviest duty appliance covered by
the hood shall be used for the entire hood. See Chapter 2 of this code for the
definitions of light-duty, medium-duty, heavy-duty, and extra-heavy-duty cooking
appliances.

507.5.1 Extra-heavy-duty cooking appliances. The minimum net airflow for
hoods, as determined by Section 507.1, used for extra-heavy-duty cooking
appliances shall be determined as follows:

<table>
<thead>
<tr>
<th>Type of Hood</th>
<th>CFM per linear foot of hood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backshelf/pass-over</td>
<td>Not allowed</td>
</tr>
<tr>
<td>Double island canopy (per side)</td>
<td>550</td>
</tr>
<tr>
<td>Eyebrow</td>
<td>Not allowed</td>
</tr>
<tr>
<td>Single island canopy</td>
<td>700</td>
</tr>
<tr>
<td>Wall-mounted canopy</td>
<td>550</td>
</tr>
</tbody>
</table>

For SI: 1 cfm per linear foot = 1.55 L/s per linear meter.

507.5.2 Heavy-duty cooking appliances. The minimum net airflow for
hoods, as determined by Section 507.1, used for heavy-duty cooking
appliances shall be determined as follows:

<table>
<thead>
<tr>
<th>Type of Hood</th>
<th>CFM per linear foot of hood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backshelf/pass-over</td>
<td>400</td>
</tr>
<tr>
<td>Double island canopy (per side)</td>
<td>400</td>
</tr>
<tr>
<td>Eyebrow</td>
<td>Not allowed</td>
</tr>
<tr>
<td>Single island canopy</td>
<td>600</td>
</tr>
<tr>
<td>Wall-mounted canopy</td>
<td>400</td>
</tr>
</tbody>
</table>

For SI: 1 cfm per linear foot = 1.55 L/s per linear meter.

507.5.3 Medium-duty cooking appliances. The minimum net airflow for
hoods, as determined by Section 507.1, used for medium-duty cooking
appliances shall be determined as follows:

<table>
<thead>
<tr>
<th>Type of Hood</th>
<th>CFM per linear foot of hood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backshelf/pass-over</td>
<td>300</td>
</tr>
<tr>
<td>Double island canopy (per side)</td>
<td>300</td>
</tr>
</tbody>
</table>
507.5.4 Light-duty cooking appliances. The minimum net airflow for hoods, as determined by Section 507.1, used for light-duty cooking appliances and food service preparation shall be determined as follows:

<table>
<thead>
<tr>
<th>Type of Hood</th>
<th>CFM per linear foot of hood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backshelf/pass-over</td>
<td>250</td>
</tr>
<tr>
<td>Double island canopy (per side)</td>
<td>250</td>
</tr>
<tr>
<td>Eyebrow</td>
<td>250</td>
</tr>
<tr>
<td>Single island canopy</td>
<td>400</td>
</tr>
<tr>
<td>Wall-mounted canopy</td>
<td>200</td>
</tr>
</tbody>
</table>

For SI: 1 cfm per linear foot = 1.55 L/s per linear meter.

507.5.5 Dishwashing appliances. The minimum net airflow for Type II hoods used for dishwashing appliances shall be 100 cfm per linear foot (155 L/s per linear meter) of hood length.

Exception: Dishwashing appliances and equipment installed in accordance with Section 507.3.

507.6 Performance test. A performance test shall be conducted upon completion and before final approval of the installation of a ventilation system serving commercial cooking appliances. The test shall verify the rate of exhaust airflow required by Section 507.5, makeup airflow required by Section 508 and proper operation as specified in this chapter. The permit holder shall furnish the necessary test equipment and devices required to perform the tests.

507.6.1 Capture and containment test. The permit holder shall verify capture and containment performance of the exhaust system. This field test shall be conducted with all appliances under the hood at operating temperatures, with all sources of outdoor air providing makeup air for the hood operating and with all sources of recirculated air providing conditioning for the space in which the hood is located operating. Capture and containment shall be verified visually by observing smoke or steam produced by actual or simulated cooking, such as with smoke candles, smoke puffers, and similar means.
SECTION 508
COMMERCIAL KITCHEN MAKEUP AIR

508.1 Makeup air. Makeup air shall be supplied during the operation of commercial kitchen exhaust systems that are provided for commercial cooking appliances. The amount of makeup air supplied to the building from all sources shall be approximately equal to the amount of exhaust air for all exhaust systems for the building. The makeup air shall not reduce the effectiveness of the exhaust system. Makeup air shall be provided by gravity or mechanical means or both. Mechanical makeup air systems shall be automatically controlled to start and operate simultaneously with the exhaust system. Makeup air intake opening locations shall comply with Section 401.4.

508.1.1 Makeup air temperature. The temperature differential between makeup air and the air in the conditioned space shall not exceed 10°F (6°C).

 Exceptions:
 1. Makeup air that is part of the air-conditioning system.
 2. Makeup air that does not decrease the comfort conditions of the occupied space.

508.1.2 Air balance. Design plans for a facility with a commercial kitchen ventilation system shall include a schedule or diagram indicating the design outdoor air balance. The design outdoor air balance shall indicate all exhaust and replacement air for the facility, plus the net exfiltration if applicable. The total replacement air airflow rate shall equal the total exhaust airflow rate plus the net exfiltration.

508.2 Compensating hoods. Manufacturers of compensating hoods shall provide a label indicating minimum exhaust flow and/or maximum makeup airflow that provides capture and containment of the exhaust effluent.

 Exception: Compensating hoods with makeup air supplied only from the front face discharge and side face discharge openings shall not be required to be labeled with the maximum makeup airflow.

SECTION 509
FIRE SUPPRESSION SYSTEMS

509.1 Where required. Commercial cooking appliances required by Section 507.2 to have a Type I hood shall be provided with an approved automatic fire suppression system complying with the building code and the fire code.
SECTION 510
HAZARDOUS EXHAUST SYSTEMS

510.1 General. This section shall govern the design and construction of duct systems for hazardous exhaust and shall determine where such systems are required. Hazardous exhaust systems are systems designed to capture and control hazardous emissions generated from product handling or processes, and convey those emissions to the outdoors. Hazardous emissions include flammable vapors, gases, fumes, mists or dusts, and volatile or airborne materials posing a health hazard, such as toxic or corrosive materials. For the purposes of this section, the health-hazard rating of materials shall be as specified in NFPA 704.

For the purposes of the provisions of Section 510, a laboratory shall be defined as a facility where the use of chemicals is related to testing, analysis, teaching, research or developmental activities. Chemicals are used or synthesized on a nonproduction basis, rather than in a manufacturing process.

510.2 Where required. A hazardous exhaust system shall be required wherever operations involving the handling or processing of hazardous materials, in the absence of such exhaust systems and under normal operating conditions, have the potential to create one of the following conditions:

1. A flammable vapor, gas, fume, mist or dust is present in concentrations exceeding 25 percent of the lower flammability limit of the substance for the expected room temperature.
2. A vapor, gas, fume, mist or dust with a health-hazard rating of 4 is present in any concentration.
3. A vapor, gas, fume, mist or dust with a health-hazard rating of 1, 2 or 3 is present in concentrations exceeding 1 percent of the median lethal concentration of the substance for acute inhalation toxicity.

Exception: Laboratories, as defined in Section 510.1, except where the concentrations listed in Item 1 are exceeded or a vapor, gas, fume, mist or dust with a health hazard rating of 1, 2, 3 or 4 is present in concentrations exceeding 1 percent of the median lethal concentration of the substance for acute inhalation toxicity.

510.2.1 Lumber yards and woodworking facilities. Equipment or machinery located inside buildings at lumber yards and woodworking facilities which generates or emits combustible dust shall be provided with an approved dust-collection and exhaust system installed in accordance with this section and the fire code. Equipment and systems that are used to collect, process or convey combustible dusts shall be provided with an approved explosion-control system.
510.2.2 Combustible fibers. Equipment or machinery within a building which generates or emits combustible fibers shall be provided with an approved dust-collecting and exhaust system. Such systems shall comply with this code and the fire code.

510.3 Design and operation. The design and operation of the exhaust system shall be such that flammable contaminants are diluted in noncontaminated air to maintain concentrations in the exhaust flow below 25 percent of the contaminant’s lower flammability limit.

510.4 Independent system. Hazardous exhaust systems shall be independent of other types of exhaust systems.

510.5 Incompatible materials and common shafts. Incompatible materials, as defined in the fire code, shall not be exhausted through the same hazardous exhaust system. Hazardous exhaust systems shall not share common shafts with other duct systems, except where such systems are hazardous exhaust systems originating in the same fire area.

Exception: The provisions of this section shall not apply to laboratory exhaust systems where all of the following conditions apply:

1. All of the hazardous exhaust ductwork and other laboratory exhaust within both the occupied space and the shafts are under negative pressure while in operation.
2. The hazardous exhaust ductwork manifolded together within the occupied space must originate within the same fire area.
3. Hazardous exhaust ductwork originating in different fire areas and manifolded together in a common shaft shall meet the provisions of Section 717.5.3, Exception 1, Item 1.1 of the building code.
4. Each control branch has a flow regulating device.
5. Perchloric acid hoods and connected exhaust shall be prohibited from manifolding.
6. Radioisotope hoods are equipped with filtration, carbon beds or both where required by the registered design professional.
7. Biological safety cabinets are filtered.
8. Each hazardous exhaust duct system shall be served by redundant exhaust fans that comply with either of the following:
 8.1. The fans shall operate simultaneously in parallel and each fan shall be individually capable of providing the required exhaust rate.
 8.2. Each of the redundant fans is controlled so as to operate when the other fan has failed or is shut down for servicing.
510.6 **Design.** Systems for removal of vapors, gases and smoke shall be designed by the constant velocity or equal friction methods. Systems conveying particulate matter shall be designed employing the constant velocity method.

510.6.1 **Balancing.** Systems conveying explosive or radioactive materials shall be prebalanced by duct sizing. Other systems shall be balanced by duct sizing with balancing devices, such as dampers. Dampers provided to balance airflow shall be provided with securely fixed minimum-position blocking devices to prevent restricting flow below the required volume or velocity.

510.6.2 **Emission control.** The design of the system shall be such that the emissions are confined to the area in which they are generated by air currents, hoods or enclosures and shall be exhausted by a duct system to a safe location or treated by removing contaminants.

510.6.3 **Hoods required.** Hoods or enclosures shall be used where contaminants originate in a limited area of a space. The design of the hood or enclosure shall be such that air currents created by the exhaust systems will capture the contaminants and transport them directly to the exhaust duct.

510.6.4 **Contaminant capture and dilution.** The velocity and circulation of air in work areas shall be such that contaminants are captured by an airstream at the area where the emissions are generated and conveyed into a product-conveying duct system. Contaminated air from work areas where hazardous contaminants are generated shall be diluted below the thresholds specified in Section 510.2 with air that does not contain other hazardous contaminants.

510.6.5 **Makeup air.** Makeup air shall be provided at a rate approximately equal to the rate that air is exhausted by the hazardous exhaust system. Makeup air intakes shall be located in accordance with Section 401.4.

510.6.6 **Clearances.** The minimum clearance between hoods and combustible construction shall be the clearance required by the duct system.

510.6.7 **Ducts.** Hazardous exhaust duct systems shall extend directly to the exterior of the building and shall not extend into or through ducts and plenums.

510.7 **Penetrations.** Penetrations of structural elements by a hazardous exhaust system shall conform to Sections 510.7.1 through 510.7.4.
Exception: Duct penetrations within Group H-5 occupancies as allowed by the building code.

510.7.1 Fire dampers and smoke dampers. Fire dampers and smoke dampers are prohibited in hazardous exhaust ducts.

510.7.1.1 Shaft penetrations. Hazardous exhaust ducts that penetrate fire-resistance-rated shafts shall comply with Section 714.3.1 or 714.3.1.2 of the building code.

510.7.2 Floors. Hazardous exhaust systems that penetrate a floor/ceiling assembly shall be enclosed in a fire-resistance-rated shaft constructed in accordance with the building code.

510.7.3 Wall assemblies. Hazardous exhaust duct systems that penetrate fire-resistance-rated wall assemblies shall be enclosed in fire-resistance-rated construction from the point of penetration to the outlet terminal, except where the interior of the duct is equipped with an approved automatic fire suppression system. Ducts shall be enclosed in accordance with the building code requirements for shaft construction and such enclosure shall have a minimum fire-resistance rating of not less than the highest fire-resistance-rated wall assembly penetrated.

510.7.4 Fire walls. Ducts shall not penetrate a fire wall.

510.8 Suppression required. Ducts shall be protected with an approved automatic fire suppression system installed in accordance with the building code.

Exceptions:
1. An approved automatic fire suppression system shall not be required in ducts conveying materials, fumes, mists and vapors that are nonflammable and noncombustible under all conditions and at any concentrations.
2. Automatic fire suppression systems shall not be required in metallic and noncombustible, nonmetallic exhaust ducts in semiconductor fabrication facilities.
3. An approved automatic fire suppression system shall not be required in ducts where the largest cross-sectional diameter of the duct is less than 10 inches (254 mm).
4. For laboratories, as defined in Section 510.1, automatic fire protection systems shall not be required in laboratory hoods or exhaust systems.

510.9 Duct construction. Ducts used to convey hazardous exhaust shall be
constructed of materials approved for installation in such an exhaust system and shall comply with one of the following:

1. Ducts shall be constructed of approved G90 galvanized sheet steel, with a minimum nominal thickness as specified in Table 510.9.

2. Ducts used in systems exhausting nonflammable corrosive fumes or vapors shall be constructed of nonmetallic materials that exhibit a flame spread index of 25 or less and a smoke-developed index of 50 or less when tested in accordance with ASTM E 84 or UL 723 and that are listed and labeled for the application.

Where the products being exhausted are detrimental to the duct material, the ducts shall be constructed of alternative materials that are compatible with the exhaust.

<table>
<thead>
<tr>
<th>TABLE 510.9</th>
<th>MINIMUM DUCT THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAMETER OF DUCT OR MAXIMUM SIDE DIMENSION</td>
<td>MINIMUM NOMINAL THICKNESS</td>
</tr>
<tr>
<td></td>
<td>Nonabrasive materials</td>
</tr>
<tr>
<td>0-8 inches</td>
<td>0.028 inch (No. 24 gage)</td>
</tr>
<tr>
<td>9-18 inches</td>
<td>0.034 inch (No. 22 gage)</td>
</tr>
<tr>
<td>19-30 inches</td>
<td>0.040 inch (No. 20 gage)</td>
</tr>
<tr>
<td>Over 30 inches</td>
<td>0.052 inch (No. 18 gage)</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

510.9.1 Duct joints. Ducts shall be made tight with lap joints having a minimum lap of 1 inch (25 mm). Joints used in ANSI/SMACNA Round Industrial Duct Construction Standards and ANSI/SMACNA Rectangular Industrial Duct Construction Standards are also acceptable.

510.9.2 Clearance to combustibles. Ducts shall have a clearance to combustibles in accordance with Table 510.9.2. Exhaust gases having temperatures in excess of 600°F (316°C) shall be exhausted to a chimney in accordance with Section 511.2.

<table>
<thead>
<tr>
<th>TABLE 510.9.2</th>
<th>CLEARANCE TO COMBUSTIBLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE OF EXHAUST OR TEMPERATURE OF</td>
<td>CLEARANCE TO COMBUSTIBLES</td>
</tr>
</tbody>
</table>
510.9.3 Explosion relief. Systems exhausting potentially explosive mixtures shall be protected with an approved explosion relief system or by an approved explosion prevention system designed and installed in accordance with NFPA 69. An explosion relief system shall be designed to minimize the structural and mechanical damage resulting from an explosion or deflagration within the exhaust system. An explosion prevention system shall be designed to prevent an explosion or deflagration from occurring.

510.10 Supports. Ducts shall be supported at intervals not exceeding 10 feet (3048 mm). Supports shall be constructed of noncombustible material.

SECTION 511
DUST, STOCK AND REFUSE CONVEYING SYSTEMS

511.1 Dust, stock and refuse conveying systems. Dust, stock and refuse conveying systems shall comply with the provisions of Section 510 and Sections 511.1.1 through 511.2.

511.1.1 Collectors and separators. Collectors and separators involving such systems as centrifugal separators, bag filter systems and similar devices, and associated supports shall be constructed of noncombustible materials and shall be located on the exterior of the building or structure. A collector or separator shall not be located nearer than 10 feet (3048 mm) to combustible construction or to an unprotected wall or floor opening, unless the collector is provided with a metal vent pipe that extends above the highest part of any roof with a distance of 30 feet (9144 mm).

Exceptions:
1. Collectors such as “Point of Use” collectors, close extraction weld fume collectors, spray finishing booths, stationary grinding tables, sanding booths, and integrated or machine-mounted collectors shall be permitted to be installed indoors provided the installation is in accordance with the fire code and NFPA 70.
2. Collectors in independent exhaust systems handling combustible dusts shall be permitted to be installed indoors provided that such collectors are installed in compliance with the fire code and NFPA 70.
511.1.2 Discharge pipe. Discharge piping shall conform to the requirements for ducts, including clearances required for high-heat appliances, as contained in this code. A delivery pipe from a cyclone collector shall not convey refuse directly into the firebox of a boiler, furnace, dutch oven, refuse burner, incinerator or other appliance.

511.1.3 Conveying systems exhaust discharge. An exhaust system shall discharge to the outside of the building either directly by flue or indirectly through the bin or vault into which the system discharges except where the contaminants have been removed. Exhaust system discharge shall be permitted to be recirculated provided that the solid particulate has been removed at a minimum efficiency of 99.9 percent at 10 microns (10.01 mm), vapor concentrations are less than 25 percent of the LFL, and approved equipment is used to monitor the vapor concentration.

511.1.4 Spark protection. The outlet of an open-air exhaust terminal shall be protected with an approved metal or other noncombustible screen to prevent the entry of sparks.

511.1.5 Explosion relief vents. A safety or explosion relief vent shall be provided on all systems that convey combustible refuse or stock of an explosive nature, in accordance with the requirements of the building code.

511.1.5.1 Screens. Where a screen is installed in a safety relief vent, the screen shall be attached so as to permit ready release under the explosion pressure.

511.1.5.2 Hoods. The relief vent shall be provided with an approved noncombustible cowl or hood, or with a counterbalanced relief valve or cover arranged to prevent the escape of hazardous materials, gases or liquids.

511.2 Exhaust outlets. Outlets for exhaust that exceed 600°F (315°C) shall be designed as a chimney in accordance with Table 511.2.

SECTION 512
SUBSLAB SOIL EXHAUST SYSTEMS

512.1 General. Where a subslab soil exhaust system is provided, the duct shall conform to the requirements of this section.
512.2 Materials. Subslab soil exhaust system duct material shall be air duct material listed and labeled to the requirements of UL 181 for Class 0 air ducts, or any of the following piping materials that comply with the plumbing code as building sanitary drainage and vent pipe: cast iron; galvanized steel; brass or copper pipe; copper tube of a weight not less than that of copper drainage tube, Type DWV; and plastic piping.

<table>
<thead>
<tr>
<th>TABLE 511.2</th>
<th>CONSTRUCTION, CLEARANCE AND TERMINATION REQUIREMENTS FOR SINGLE-WALL METAL CHIMNEYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIMNEYS SERVING</td>
<td>MINIMUM THICKNESS</td>
</tr>
<tr>
<td></td>
<td>Walls (inch)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>High-heat appliances</td>
<td>0.127 (No. 10 MSG)</td>
</tr>
<tr>
<td>Low-heat appliances</td>
<td>0.127 (No. 10 MSG)</td>
</tr>
<tr>
<td>Medium-heat appliances</td>
<td>0.127 (No. 10 MSG)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, °C = [(°F)-32]/1.8.

a. Lining shall extend from bottom to top of outlet.
b. Lining shall extend from 24 inches below connector to 24 feet above.
c. Clearance shall be as specified by the design engineer and shall have sufficient clearance from buildings and structures to avoid overheating combustible materials (maximum 160°F).

512.3 Grade. Exhaust system ducts shall not be trapped and shall have a minimum slope of one-eighth unit vertical in 12 units horizontal (1-percent slope).

512.4 Termination. Subslab soil exhaust system ducts shall extend through the roof and terminate not less than 6 inches (152 mm) above the roof and not less than 10 feet (3048 mm) from any operable openings or air intake.

512.5 Identification. Subslab soil exhaust ducts shall be permanently identified within each floor level by means of a tag, stencil or other approved marking.

SECTION 513
SMOKE CONTROL SYSTEMS
513.1 Scope and purpose. This section applies to mechanical and passive smoke control systems that are required by the building code. The purpose of this section is to establish minimum requirements for the design, installation and acceptance testing of smoke control systems that are intended to provide a tenable environment for the evacuation or relocation of occupants. These provisions are not intended for the preservation of contents, the timely restoration of operations, or for assistance in fire suppression or overhaul activities. Smoke control systems regulated by this section serve a different purpose than the smoke- and heat-venting provisions found in Section 910 of the building code.

513.2 General design requirements. Buildings, structures, or parts thereof required by this code to have a smoke control system or systems shall have such systems designed in accordance with the applicable requirements of Section 909 of the building code and the generally accepted and well-established principles of engineering relevant to the design. The construction documents shall include sufficient information and detail to describe adequately the elements of the design necessary for the proper implementation of the smoke control systems. These documents shall be accompanied with sufficient information and analysis to demonstrate compliance with these provisions.

513.3 Special inspection and test requirements. In addition to the ordinary inspection and test requirements that buildings, structures and parts thereof are required to undergo, smoke control systems subject to the provisions of Section 909 of the building code shall undergo special inspections and tests sufficient to verify the proper commissioning of the smoke control design in its final installed condition. The design submission accompanying the construction documents shall clearly detail procedures and methods to be used and the items subject to such inspections and tests. Such commissioning shall be in accordance with generally accepted engineering practice and, where possible, based on published standards for the particular testing involved. The special inspections and tests required by this section shall be conducted under the same terms as found in Section 1704 of the building code.

513.4 Analysis. A rational analysis supporting the types of smoke control systems to be employed, their methods of operation, the systems supporting them and the methods of construction to be utilized shall accompany the submitted construction documents and shall include, but not be limited to, the items indicated in Sections 513.4.1 through 513.4.7.

513.4.1 Stack effect. The system shall be designed such that the maximum probable normal or reverse stack effects will not adversely interfere with the
system’s capabilities. In determining the maximum probable stack effects, altitude, elevation, weather history and interior temperatures shall be used.

513.4.2 Temperature effect of fire. Buoyancy and expansion caused by the design fire in accordance with Section 513.9 shall be analyzed. The system shall be designed such that these effects do not adversely interfere with its capabilities.

513.4.3 Wind effect. The design shall consider the adverse effects of wind. Such consideration shall be consistent with the wind-loading provisions of the building code.

513.4.4 HVAC systems. The design shall consider the effects of the heating, ventilating and air-conditioning (HVAC) systems on both smoke and fire transport. The analysis shall include all permutations of systems’ status. The design shall consider the effects of fire on the HVAC systems.

513.4.5 Climate. The design shall consider the effects of low temperatures on systems, property and occupants. Air inlets and exhausts shall be located so as to prevent snow or ice blockage.

513.4.6 Duration of operation. All portions of active or engineered smoke control systems shall be capable of continued operation after detection of the fire event for a period of not less than either 20 minutes or 1.5 times the calculated egress time, whichever is greater.

513.4.7 Smoke control system interaction. The design shall consider the interaction effects of the operation of multiple smoke control systems for all design scenarios.

513.5 Smoke barrier construction. Where provided, smoke barriers required for passive smoke control and a smoke control system using the pressurization method shall comply with Section 709 of the building code. Smoke barriers shall be constructed and sealed to limit leakage areas exclusive of protected openings. The maximum allowable leakage area shall be the aggregate area calculated using the following leakage area ratios:

1. Walls: \(\frac{A}{A_w} = 0.00100 \)
2. Interior exit stairways and ramps and exit passageways:
 \[\frac{A}{A_w} = 0.00035 \]
3. Enclosed exit access stairways and ramps and all other shafts:
 \[\frac{A}{A_w} = 0.00150 \]
Floors and roofs: \(A/A_F = 0.00050 \)

where:
\(A \) = Total leakage area, square feet (\(m^2 \)).
\(A_F \) = Unit floor or roof area of barrier, square feet (\(m^2 \)).
\(A_w \) = Unit wall area of barrier, square feet (\(m^2 \)).

The leakage area ratios shown do not include openings created by gaps around doors and operable windows. The total leakage area of the smoke barrier shall be determined in accordance with Section 513.5.1 and tested in accordance with Section 513.5.2.

513.5.1 Total leakage area. Total leakage area of the barrier is the product of the smoke barrier gross area times the allowable leakage area ratio, plus the area of other openings such as gaps around doors and operable windows.

513.5.2 Testing of leakage area. Compliance with the maximum total leakage area shall be determined by achieving the minimum air pressure difference across the barrier with the system in the smoke control mode for mechanical smoke control systems utilizing the pressurization method. Compliance with the maximum total leakage area of passive smoke control systems shall be verified through methods such as door fan testing or other methods, as approved by the building official.

513.5.3 Opening protection. Openings in smoke barriers shall be protected by automatic-closing devices actuated by the required controls for the mechanical smoke control system. Door openings shall be protected by door assemblies complying with the requirements of the building code for doors in smoke barriers.

Exceptions:
1. Passive smoke control systems with automatic closing devices actuated by spot-type smoke detectors listed for releasing service installed in accordance with the building code.
2. Fixed openings between smoke zones which are protected utilizing the airflow method.
3. In Group I-1 Condition 2, Group I-2 and ambulatory care facilities, where a pair of opposite swinging doors are installed across a corridor in accordance with Section 513.5.3.1, the doors shall not be required to be protected in accordance with Section 716 of the building code. The doors shall be close-fitting within operational tolerances and shall not have a center mullion or undercuts in excess of \(3/4 \) inch (19.1 mm),
louvers or grilles. The doors shall have head and jamb stops and astragals or rabbets at meeting edges and, where permitted by the door manufacturer’s listing, positive-latching devices are not required.

4. In Group I-2 and ambulatory care facilities, where such doors are special-purpose horizontal sliding, accordion or folding door assemblies installed in accordance with Section 1010.1.4.3 of the building code and are automatic closing by smoke detection in accordance with Section 716.5.9.3 of the building code.

5. Group I-3.

6. Openings between smoke zones with clear ceiling heights of 14 feet (4267 mm) or greater and bank down capacity of greater than 20 minutes as determined by the design fire size.

513.5.3.1 Group I-1 Condition 2; Group I-2 and ambulatory care facilities. In Group I-1 Condition 2; Group I-2 and ambulatory care facilities, where doors are installed across a corridor, the doors shall be automatic closing by smoke detection in accordance with Section 716.5.9.3 of the building code and shall have a vision panel with fire-protection-rated glazing materials in fire-protection-rated frames, the area of which shall not exceed that tested.

513.5.3.2 Ducts and air transfer openings. Ducts and air transfer openings are required to be protected with a minimum Class II, 250°F (121°C) smoke damper complying with the building code.

513.6 Pressurization method. The primary mechanical means of controlling smoke shall be by pressure differences across smoke barriers. Maintenance of a tenable environment is not required in the smoke control zone of fire origin.

513.6.1 Minimum pressure difference. The minimum pressure difference across a smoke barrier shall be 0.05 inch water gage (12.4 Pa) in fully sprinklered buildings.

In buildings permitted to be other than fully sprinklered, the smoke control system shall be designed to achieve pressure differences not less than two times the maximum calculated pressure difference produced by the design fire.

513.6.2 Maximum pressure difference. The maximum air pressure difference across a smoke barrier shall be determined by required door-opening or closing forces. The actual force required to open exit doors when the system is in the smoke control mode shall be in accordance with the
Opening and closing forces for other doors shall be determined by standard engineering methods for the resolution of forces and reactions. The calculated force to set a side-hinged, swinging door in motion shall be determined by:

\[F = F_{dc} + K(WA\Delta P)/(2(W-d)) \]

(Equation 5-2 5-1)

where:
- \(A \) = Door area, square feet (m²).
- \(d \) = Distance from door handle to latch edge of door, feet (m).
- \(F \) = Total door opening force, pounds (N).
- \(F_{dc} \) = Force required to overcome closing device, pounds (N).
- \(K \) = Coefficient 5.2 (1.0).
- \(W \) = Door width, feet (m).
- \(\Delta P \) = Design pressure difference, inches (Pa) water gage.

513.6.3 Pressurized stairways and elevator hoistways. Where stairways or elevator hoistways are pressurized, such pressurization systems shall comply with Section 513 as smoke control systems, in addition to the requirements of Sections 909.20 and 909.21 of the building code.

513.7 Airflow design method. Where approved by the code official, smoke migration through openings fixed in a permanently open position, which are located between smoke control zones by the use of the airflow method, shall be permitted. The design airflows shall be in accordance with this section. Airflow shall be directed to limit smoke migration from the fire zone. The geometry of openings shall be considered to prevent flow reversal from turbulent effects. Smoke control systems using the airflow method shall be designed in accordance with NFPA 92.

513.7.1 Prohibited conditions. This method shall not be employed where either the quantity of air or the velocity of the airflow will adversely affect other portions of the smoke control system, unduly intensify the fire, disrupt plume dynamics or interfere with exiting. Airflow toward the fire shall not exceed 200 feet per minute (1.02 m/s). Where the calculated airflow exceeds this limit, the airflow method shall not be used.

513.8 Exhaust method. Where approved by the building official, mechanical smoke control for large enclosed volumes, such as in atriums or malls, shall be permitted to utilize the exhaust method. Smoke control systems using the exhaust method shall be designed in accordance with NFPA 92.
513.8.1 Exhaust rate. The height of the lowest horizontal surface of the accumulating smoke layer shall be maintained not less than 6 feet (1829 mm) above any walking surface which forms a portion of a required egress system within the smoke zone.

513.9 Design fire. The design fire shall be based on a rational analysis performed by the registered design professional and approved by the code official. The design fire shall be based on the analysis in accordance with Section 513.4 and this section.

513.9.1 Factors considered. The engineering analysis shall include the characteristics of the fuel, fuel load, effects included by the fire and whether the fire is likely to be steady or unsteady.

513.9.2 Design fire fuel. Determination of the design fire shall include consideration of the type of fuel, fuel spacing and configuration.

513.9.3 Heat-release assumptions. The analysis shall make use of the best available data from approved sources and shall not be based on excessively stringent limitations of combustible material.

513.9.4 Sprinkler effectiveness assumptions. A documented engineering analysis shall be provided for conditions that assume fire growth is halted at the time of sprinkler activation.

513.10 Equipment. Equipment such as, but not limited to, fans, ducts, automatic dampers and balance dampers shall be suitable for their intended use, suitable for the probable exposure temperatures that the rational analysis indicates, and as approved by the building official.

513.10.1 Exhaust fans. Components of exhaust fans shall be rated and certified by the manufacturer for the probable temperature rise to which the components will be exposed. This temperature rise shall be computed by:

\[T_s = \left(\frac{Q_c}{mc} \right) + T_a \] \hspace{1cm} (Equation 5-4 5-2)

where:
- \(c \) = Specific heat of smoke at smoke-layer temperature, Btu/lb°F (kJ/kg · K).
- \(m \) = Exhaust rate, pounds per second (kg/s).
- \(Q_c \) = Convective heat output of fire, Btu/s (kW).
\(T_a = \) Ambient temperature, °F (K).
\(T_s = \) Smoke temperature, °F (K).

Exception: Reduced \(T_s \) as calculated based on the assurance of adequate dilution air.

513.10.2 Ducts. Duct materials and joints shall be capable of withstanding the probable temperatures and pressures to which they are exposed as determined in accordance with Section 513.10.1. Ducts shall be constructed and supported in accordance with Chapter 6. Ducts shall be leak tested to 1.5 times the maximum design pressure in accordance with nationally accepted practices. Measured leakage shall not exceed 5 percent of design flow. Results of such testing shall be a part of the documentation procedure. Ducts shall be supported directly from fire-resistance-rated structural elements of the building by substantial, noncombustible supports.

Exception: Flexible connections, for the purpose of vibration isolation, that are constructed of approved fire-resistance-rated materials.

513.10.3 Equipment, inlets and outlets. Equipment shall be located so as to not expose uninvolved portions of the building to an additional fire hazard. Outdoor air inlets shall be located so as to minimize the potential for introducing smoke or flame into the building. Exhaust outlets shall be so located as to minimize reintroduction of smoke into the building and to limit exposure of the building or adjacent buildings to an additional fire hazard.

513.10.4 Automatic dampers. Automatic dampers, regardless of the purpose for which they are installed within the smoke control system, shall be listed and conform to the requirements of Section 607.3.

513.10.5 Fans. In addition to other requirements, belt-driven fans shall have 1.5 times the number of belts required for the design duty with the minimum number of belts being two. Fans shall be selected for stable performance based on normal temperature and, where applicable, elevated temperature. Calculations and manufacturer’s fan curves shall be part of the documentation procedures. Fans shall be supported and restrained by noncombustible devices in accordance with the structural design requirements of the building code. Motors driving fans shall not be operating beyond their nameplate horsepower (kilowatts) as determined from measurement of actual current draw. Motors driving fans shall have a minimum service factor of 1.15.

513.11 Standby power. The smoke control system shall be supplied with standby power in accordance with Section 2702 of the building code.
513.11.1 **Equipment room.** The standby power source and its transfer switches shall be in a room separate from the normal power transformers and switch gear and ventilated directly to and from the exterior. The room shall be enclosed with not less than 1-hour fire-resistance-rated fire barriers constructed in accordance with Section 707 of the *building code* or horizontal assemblies constructed in accordance with Section 711 of the *building code*, or both. Power distribution from the two sources shall be by independent routes.

513.11.2 **Power sources and power surges.** Elements of the smoke management system relying on volatile memories or the like shall be supplied with uninterruptible power sources of sufficient duration to span 15-minute primary power interruption. Elements of the smoke management system susceptible to power surges shall be suitably protected by conditioners, suppressors or other approved means.

513.12 **Detection and control systems.** Fire detection systems providing control input or output signals to mechanical smoke control systems or elements thereof shall comply with the requirements of Section 907 of the *building code*. Such systems shall be equipped with a control unit complying with UL 864 and listed as smoke control equipment.

513.12.1 **Verification.** Control systems for mechanical smoke control systems shall include provisions for verification. Verification shall include positive confirmation of actuation, testing, manual override and the presence of power downstream of all disconnects. A preprogrammed weekly test sequence shall report abnormal conditions audibly, visually and by printed report. The preprogrammed weekly test shall operate all devices, equipment and components used for smoke control.

Exception: Where verification of individual components tested through the preprogrammed weekly testing sequence will interfere with, and produce unwanted effects to, normal building operation, such individual components are permitted to be bypassed from the preprogrammed weekly testing, where approved by the building official and in accordance with both of the following:

1. Where the operation of components is bypassed from the preprogrammed weekly test, presence of power downstream of all disconnects shall be verified weekly by a listed control unit.
2. Testing of all components bypassed from the preprogrammed weekly test shall be in accordance with Section 909.20.6 of the *fire code*.
513.12.2 Wiring. In addition to meeting the requirements of NFPA 70, all wiring, regardless of voltage, shall be fully enclosed within continuous raceways.

513.12.3 Activation. Smoke control systems shall be activated in accordance with the building code.

513.12.4 Automatic control. Where complete automatic control is required or used, the automatic control sequences shall be initiated from an appropriately zoned automatic sprinkler system complying with Section 903.3.1.1 of the building code, from manual controls that are readily accessible to the fire department, and any smoke detectors required by engineering analysis.

513.13 Control-air tubing. Control-air tubing shall be of sufficient size to meet the required response times. Tubing shall be flushed clean and dry prior to final connections. Tubing shall be adequately supported and protected from damage. Tubing passing through concrete or masonry shall be sleeved and protected from abrasion and electrolytic action.

513.13.1 Materials. Control-air tubing shall be hard-drawn copper, Type L, ACR in accordance with ASTM B 42, ASTM B 43, ASTM B 68, ASTM B 88, ASTM B 251 and ASTM B 280. Fittings shall be wrought copper or brass, solder type in accordance with ASME B 16.18 or ASME B 16.22. Changes in direction shall be made with appropriate tool bends. Brass compression-type fittings shall be used at final connection to devices; other joints shall be brazed using a BCuP5 brazing alloy with solidus above 1,100ºF (593ºC) and liquids below 1,500ºF (816ºC). Brazing flux shall be used on copper-to-brass joints only.

Exception: Nonmetallic tubing used within control panels and at the final connection to devices provided all of the following conditions are met:
1. Tubing shall comply with the requirements of Section 602.2.1.3.
2. Tubing and connected device shall be completely enclosed within a galvanized or paint-grade steel enclosure having a minimum thickness of 0.0296 inch (0.7534 mm) (No. 22 gage). Entry to the enclosure shall be by copper tubing with a protective grommet of Neoprene or Teflon or by suitable brass compression to male barbed adapter.
3. Tubing shall be identified by appropriately documented coding.
4. Tubing shall be neatly tied and supported within the enclosure. Tubing bridging cabinets and doors or moveable devices shall be of sufficient length to avoid tension and excessive stress. Tubing shall be protected
against abrasion. Tubing serving devices on doors shall be fastened along hinges.

513.13.2 Isolation from other functions. Control tubing serving other than smoke control functions shall be isolated by automatic isolation valves or shall be an independent system.

513.13.3 Testing. Control-air tubing shall be tested at three times the operating pressure for not less than 30 minutes without any noticeable loss in gauge pressure prior to final connection to devices.

513.14 Marking and identification. The detection and control systems shall be clearly marked at all junctions, accesses and terminations.

513.15 Control diagrams. Identical control diagrams shall be provided and maintained as required by the building code.

513.16 Fire fighter’s smoke control panel. A fire fighter’s smoke control panel for fire department emergency response purposes only shall be provided in accordance with the building code.

513.17 System response time. Smoke control system activation shall comply with the building code.

513.18 Acceptance testing. Devices, equipment, components and sequences shall be tested in accordance with the building code.

513.19 System acceptance. Acceptance of the smoke control system shall be in accordance with the building code.

SECTION 514
ENERGY RECOVERY VENTILATION SYSTEMS

514.1 General. Energy recovery ventilation systems shall be installed in accordance with this section. Where required for purposes of energy conservation, energy recovery ventilation systems shall comply with the applicable energy conservation code referenced from Chapter 13 of the building code. Ducted heat recovery ventilators shall be listed and labeled in accordance with UL 1812. Nonducted heat recovery ventilators shall be listed and labeled in accordance with UL 1815.
514.2 Prohibited applications. Energy recovery ventilation systems shall not be used in the following systems:
1. Hazardous exhaust systems covered in Section 510.
2. Dust, stock and refuse systems that convey explosive or flammable vapors, fumes or dust.
3. Smoke control systems covered in Section 513.
4. Commercial kitchen exhaust systems serving Type I or Type II hoods.
5. Clothes dryer exhaust systems covered in Section 504.
 Exception: The application of ERV equipment that recovers sensible heat only utilizing coil-type heat exchangers shall not be limited by this section.

514.3 Access. A means of access shall be provided to the heat exchanger and other components of the system as required for service, maintenance, repair or replacement.

514.4 Recirculated air. Air conveyed within energy recovery systems shall not be considered as recirculated air where the energy recovery ventilation system is constructed to limit cross-leakage between air streams to less than 10 percent of the total airflow design capacity.
Effective: 8/1/2018

Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.11, 3791.04, 3781.10
4101:2-6-01 Duct systems.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:2-15-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 601
GENERAL

601.1 Scope. Duct systems used for the movement of air in air-conditioning, heating, ventilating and exhaust systems shall conform to the provisions of this chapter except as otherwise specified in Chapters 5 and 7.

Exception: Ducts discharging combustible material directly into any combustion chamber shall conform to the requirements of NFPA 82.

601.2 Air movement in egress elements. Corridors shall not serve as supply, return, exhaust, relief or ventilation air ducts.

Exceptions:
1. Use of a corridor as a source of makeup air for exhaust systems in rooms that open directly onto such corridors, including toilet rooms, bathrooms, dressing rooms, smoking lounges and janitor closets, shall be permitted, provided that each such corridor is directly supplied with outdoor air at a rate greater than the rate of makeup air taken from the corridor.
2. Where located within a dwelling unit, the use of corridors for conveying return air shall not be prohibited.
3. Where located within tenant spaces of 1,000 square feet (93 m²) or less in area, use of corridors for conveying return air is permitted.
4. Incidental air movement from pressurized rooms within health care facilities, provided that the corridor is not the primary source of supply or return to the room.

601.2.1 Corridor ceiling. Use of the space between the corridor ceiling and the floor or roof structure above as a return air plenum is permitted for one or more of the following conditions:
1. The corridor is not required to be of fire-resistance-rated construction.
2. The corridor is separated from the plenum by fire-resistance-rated construction.
3. The air-handling system serving the corridor is shut down upon activation of the air-handling unit smoke detectors required by this code.

4. The air-handling system serving the corridor is shut down upon detection of sprinkler waterflow where the building is equipped throughout with an automatic sprinkler system.

5. The space between the corridor ceiling and the floor or roof structure above the corridor is used as a component of an approved engineered smoke control system.

601.3 Exits. Equipment and ductwork for exit enclosure ventilation shall comply with one of the following items:

1. Such equipment and ductwork shall be located exterior to the building and shall be directly connected to the exit enclosure by ductwork enclosed in construction as required by the building code for shafts.

2. Where such equipment and ductwork is located within the exit enclosure, the intake air shall be taken directly from the outdoors and the exhaust air shall be discharged directly to the outdoors, or such air shall be conveyed through ducts enclosed in construction as required by the building code for shafts.

3. Where located within the building, such equipment and ductwork shall be separated from the remainder of the building, including other mechanical equipment, with construction as required by the building code for shafts.

In each case, openings into fire-resistance-rated construction shall be limited to those needed for maintenance and operation and shall be protected by self-closing fire-resistance-rated devices in accordance with the building code for enclosure wall opening protectives. Exit enclosure ventilation systems shall be independent of other building ventilation systems.

601.4 Contamination prevention. Exhaust ducts under positive pressure, chimneys and vents shall not extend into or pass through ducts or plenums.

Exceptions:

1. Exhaust systems located in ceiling return air plenums over spaces that are permitted to have 10 percent recirculation in accordance with Section 403.2.1, Item 4. The exhaust duct joints, seams and connections shall comply with Section 603.9.

2. This section shall not apply to chimneys and vents that pass through plenums where such venting systems comply with one of the following requirements:
2.1. The venting system shall be listed for positive pressure applications and shall be sealed in accordance with the vent manufacturer’s instructions.
2.2. The venting system shall be installed such that fittings and joints between sections are not installed in the above ceiling space.
2.3. The venting system shall be installed in a conduit or enclosure with sealed joints separating the interior of the conduit or enclosure from the ceiling space.

601.5 Return air openings. Return air openings for heating, ventilation and air-conditioning systems shall comply with all of the following:

1. Openings shall not be located less than 10 feet (3048 mm) measured in any direction from an open combustion chamber or draft hood of another appliance located in the same room or space.
2. Return air shall not be taken from a hazardous or insanitary location or a refrigeration room as defined in this code.
3. The amount of return air taken from any room or space shall be not greater than the flow rate of supply air delivered to such room or space.
4. Return and transfer openings shall be sized in accordance with the appliance or equipment manufacturer’s installation instructions, ACCA Manual D or the design of the registered design professional.
5. Return air taken from one dwelling unit shall not be discharged into another dwelling unit.
6. Taking return air from a crawl space shall not be accomplished through a direct connection to the return side of a forced air furnace. Transfer openings in the crawl space enclosure shall not be prohibited.
7. Return air shall not be taken from a closet, bathroom, toilet room, kitchen, garage, boiler room, furnace room or unconditioned attic.

Exceptions:

1. Taking return air from a kitchen is not prohibited where such return air openings serve the kitchen and are located not less than 10 feet (3048 mm) from the cooking appliances.
2. Dedicated forced air systems serving only the garage shall not be prohibited from obtaining return air from the garage.

**SECTION 602
PLENUMS**

602.1 General. Supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a ceiling or below the floor, attic spaces and mechanical equipment rooms. Plenums shall be limited to one fire
area. Air systems shall be ducted from the boundary of the fire area served directly to the air-handling equipment. Fuel-fired appliances shall not be installed within a plenum.

602.2 Construction. Plenum enclosure construction materials that are exposed to the airflow shall comply with the requirements of Section 703.5 of the building code or such materials shall have a flame spread index of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E 84 or UL 723.

The use of gypsum boards to form plenums shall be limited to systems where the air temperatures do not exceed 125°F (52°C) and the building and mechanical system design conditions are such that the gypsum board surface temperature will be maintained above the airstream dew-point temperature. Air plenums formed by gypsum boards shall not be incorporated in air-handling systems utilizing evaporative coolers.

602.2.1 Materials within plenums. Except as required by Sections 602.2.1.1 through 602.2.1.7, materials within plenums shall be noncombustible or shall be listed and labeled as having a flame spread index of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E 84 or UL 723.

Exceptions:
1. Rigid and flexible ducts and connectors shall conform to Section 603.
2. Duct coverings, linings, tape and connectors shall conform to Sections 603 and 604.
3. This section shall not apply to materials exposed within plenums in one- and two-family dwellings.
4. This section shall not apply to smoke detectors.
5. Combustible materials fully enclosed within one of the following:
 5.1. Continuous noncombustible raceways or enclosures.
 5.2. Approved gypsum board assemblies.
 5.3. Materials listed and labeled for installation within a plenum.
6. Materials in Group H, Division 5 fabrication areas and the areas above and below the fabrication area that share a common air recirculation path with the fabrication area.

602.2.1.1 Wiring. Combustible electrical wires and cables and optical fiber cables exposed within a plenum shall be listed as having a maximum peak optical density of 0.50 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 5 feet (1524 mm) or less when tested in accordance with NFPA 262 or shall be installed in metal
raceways or metal sheathed cable. Combustible optical fiber and communication raceways exposed within a plenum shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 5 feet (1524 mm) or less when tested in accordance with ANSI/UL 2024. Only plenum-rated wires and cables shall be installed in plenum-rated raceways. Electrical wires and cables, optical fiber cables and raceways addressed in this section shall be listed and labeled and shall be installed in accordance with NFPA 70.

Exception: Wiring methods installed in accordance with section 645.5 of NFPA 70 are permitted for electrical installations in plenums of information technology equipment areas and information technology equipment rooms that comply with the construction requirements of NFPA 75 and Article 645 of NFPA 70. The information technology equipment area shall be separated from other areas of the building by a minimum of a one-hour fire barrier constructed in accordance with the building code. The information technology equipment room shall be separated from other areas of the building and the information technology equipment area by a minimum of a one-hour fire barrier constructed in accordance with the building code.

602.2.1.2 Fire sprinkler piping. Plastic fire sprinkler piping exposed within a plenum shall be used only in wet pipe systems and shall have a peak optical density not greater than 0.50, an average optical density not greater than 0.15, and a flame spread of not greater than 5 feet (1524 mm) when tested in accordance with UL 1887. Piping shall be listed and labeled.

602.2.1.3 Pneumatic tubing. Combustible pneumatic tubing exposed within a plenum shall have a peak optical density not greater than 0.50, an average optical density not greater than 0.15, and a flame spread of not greater than 5 feet (1524 mm) when tested in accordance with UL 1820. Combustible pneumatic tubing shall be listed and labeled.

602.2.1.4 Electrical equipment in plenums. Electrical equipment exposed within a plenum shall comply with Sections 602.2.1.4.1 and 602.2.1.4.2.

602.2.1.4.1 Equipment in metallic enclosures. Electrical equipment with metallic enclosures exposed within a plenum shall be permitted.
602.2.1.4.2 Equipment in combustible enclosures. Electrical equipment with combustible enclosures exposed within a plenum shall be listed and labeled for such use in accordance with UL 2043.

602.2.1.5 Discrete plumbing and mechanical products in plenums. Where discrete plumbing and mechanical products and appurtenances are located in a plenum and have exposed combustible material, they shall be listed and labeled for such use in accordance with UL 2043.

602.2.1.6 Foam plastic insulation. Foam plastic insulation used in plenums as interior wall or ceiling finish or as interior trim shall exhibit a flame spread index of 75 or less and a smoke-developed index of 450 or less when tested in accordance with ASTM E 84 or UL 723 and shall also comply with one or more of Sections 602.2.1.6.1, 602.2.1.6.2 and 602.2.1.6.3.

602.2.1.6.1 Separation required. The foam plastic insulation shall be separated from the plenum by a thermal barrier complying with Section 2603.4 of the building code and shall exhibit a flame spread index of 75 or less and a smoke-developed index of 450 or less when tested in accordance with ASTM E 84 or UL 723 at the thickness and density intended for use.

602.2.1.6.2 Approval. The foam plastic insulation shall exhibit a flame spread index of 25 or less and a smoke-developed index of 50 or less when tested in accordance with ASTM E 84 or UL 723 at the thickness and density intended for use and shall meet the acceptance criteria of Section 803.1.2 of the building code when tested in accordance with NFPA 286.

The foam plastic insulation shall be approved based on tests conducted in accordance with Section 2603.9 of the building code.

602.2.1.6.3 Covering. The foam plastic insulation shall be covered by corrosion-resistant steel having a base metal thickness of not less than 0.0160 inch (0.4 mm) and shall exhibit a flame spread index of 75 or less and a smoke-developed index of 450 or less when tested in accordance with ASTM E 84 or UL 723 at the thickness and density intended for use.

602.2.1.7 Plastic plumbing pipe and tube. Plastic piping and tubing used in plumbing systems shall be listed and shall exhibit a flame spread index
of not more than 25 and a smoke-developed index of not more than 50
when tested in accordance with ASTM E 84 or UL 723.

602.3 Stud cavity and joist space plenums. Stud wall cavities and the spaces
between solid floor joists to be utilized as air plenums shall comply with the
following conditions:

1. Such cavities or spaces shall not be utilized as a plenum for supply air.
2. Such cavities or spaces shall not be part of a required fire-resistance-rated
assembly.
3. Stud wall cavities shall not convey air from more than one floor level.
4. Stud wall cavities and joist space plenums shall comply with the floor
penetration protection requirements of the building code.
5. Stud wall cavities and joist space plenums shall be isolated from adjacent
concealed spaces by approved fireblocking as required in the building
code.
6. Stud wall cavities in the outside walls of building envelope assemblies
shall not be utilized as air plenums.

602.4 Flood hazard. For structures located in flood hazard areas, plenum spaces
shall be located above the elevation required by Section 1612 of the building code
for utilities and attendant equipment or shall be designed and constructed to
prevent water from entering or accumulating within the plenum spaces during
floods up to such elevation. If the plenum spaces are located below the elevation
required by Section 1612 of the building code for utilities and attendant
equipment, they shall be capable of resisting hydrostatic and hydrodynamic loads
and stresses, including the effects of buoyancy, during the occurrence of flooding
up to such elevation.

SECTION 603
DUCT CONSTRUCTION AND INSTALLATION

603.1 General. An air distribution system shall be designed and installed to
supply the required distribution of air. The installation of an air distribution
system shall not affect the fire protection requirements specified in the building
code. Ducts shall be constructed, braced, reinforced and installed to provide
structural strength and durability.

603.2 Duct sizing. Ducts installed within a single dwelling unit shall be sized in
accordance with “ACCA Manual D”, the appliance manufacturer’s installation
instructions or other approved methods. Ducts installed within all other buildings
shall be sized in accordance with the “ASHRAE Handbook of Fundamentals” or
other equivalent computation procedure.

603.3 Duct classification. Ducts shall be classified based on the maximum operating pressure of the duct at pressures of positive or negative 0.5, 1.0, 2.0, 3.0, 4.0, 6.0 or 10.0 inches (1 inch w.c. = 248.7 Pa) of water column. The pressure classification of ducts shall equal or exceed the design pressure of the air distribution in which the ducts are utilized.

603.4 Metallic ducts. Metallic ducts shall be constructed as specified in the “SMACNA HVAC Duct Construction Standards—Metal and Flexible.”

Exception: Ducts installed within single dwelling units shall have a minimum thickness as specified in Table 603.4.

603.4.1 Minimum fasteners. Round metallic ducts shall be mechanically fastened by means of not less than three sheet metal screws or rivets spaced equally around the joint.

Exception: Where a duct connection is made that is partially inaccessible, three screws or rivets shall be equally spaced on the exposed portion so as to prevent a hinge effect.

603.4.2 Duct lap. Crimp joints for round and oval metal ducts shall be lapped not less than 1 inch (25 mm) and the male end of the duct shall extend into the adjoining duct in the direction of airflow.

603.5 Nonmetallic ducts. Nonmetallic ducts shall be constructed with Class 0 or Class 1 duct material and shall comply with UL 181. Fibrous duct construction shall conform to the “SMACNA Fibrous Glass Duct Construction Standards” or “NAIMA Fibrous Glass Duct Construction Standards.” The air temperature within nonmetallic ducts shall not exceed 250°F (121°C).

603.5.1 Gypsum ducts. The use of gypsum boards to form air shafts (ducts) shall be limited to return air systems where the air temperatures do not exceed 125°F (52°C) and the gypsum board surface temperature is maintained above the airstream dew-point temperature. Air ducts formed by gypsum boards shall not be incorporated in air-handling systems utilizing evaporative coolers.

603.6 Flexible air ducts and flexible air connectors. Flexible air ducts, both metallic and nonmetallic, shall comply with Sections 603.6.1, 603.6.1.1, 603.6.3 and 603.6.4. Flexible air connectors, both metallic and nonmetallic, shall comply with Sections 603.6.2 through 603.6.4.
603.6.1 **Flexible air ducts.** Flexible air ducts, both metallic and nonmetallic, shall be tested in accordance with UL 181. Such ducts shall be listed and labeled as Class 0 or Class 1 flexible air ducts and shall be installed in accordance with Section 304.1.

603.6.1.1 **Duct length.** Flexible air ducts shall not be limited in length.

603.6.2 **Flexible air connectors.** Flexible air connectors, both metallic and nonmetallic, shall be tested in accordance with UL 181. Such connectors shall be listed and labeled as Class 0 or Class 1 flexible air connectors and shall be installed in accordance with Section 304.1.

603.6.2.1 **Connector length.** Flexible air connectors shall be limited in length to 14 feet (4267 mm).

603.6.2.2 **Connector penetration limitations.** Flexible air connectors shall not pass through any wall, floor or ceiling.

603.6.3 **Air temperature.** The design temperature of air to be conveyed in flexible air ducts and flexible air connectors shall be less than 250ºF (121ºC).

603.6.4 **Flexible air duct and air connector clearance.** Flexible air ducts and air connectors shall be installed with a minimum clearance to an appliance as specified in the appliance manufacturer’s installation instructions.
603.4 Table 603.4

DUCT CONSTRUCTION MINIMUM SHEET METAL THICKNESS FOR SINGLE DWELLING UNITS

<table>
<thead>
<tr>
<th>ROUND DUCT DIAMETER (inches)</th>
<th>STATIC PRESSURE</th>
<th>1/2-inch water gage</th>
<th>1-inch water gage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thickness (inches)</td>
<td>Galvanized</td>
<td>Aluminum</td>
</tr>
<tr>
<td>< 12</td>
<td>0.013</td>
<td>0.018</td>
<td>0.013</td>
</tr>
<tr>
<td>12 to 14</td>
<td>0.013</td>
<td>0.018</td>
<td>0.016</td>
</tr>
<tr>
<td>15 to 17</td>
<td>0.016</td>
<td>0.023</td>
<td>0.019</td>
</tr>
<tr>
<td>18</td>
<td>0.016</td>
<td>0.023</td>
<td>0.024</td>
</tr>
<tr>
<td>19 to 20</td>
<td>0.019</td>
<td>0.027</td>
<td>0.024</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RECTANGULAR DUCT DIMENSION (inches)</th>
<th>STATIC PRESSURE</th>
<th>1/2-inch water gage</th>
<th>1-inch water gage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thickness (inches)</td>
<td>Galvanized</td>
<td>Aluminum</td>
</tr>
<tr>
<td>≤ 8</td>
<td>0.013</td>
<td>0.018</td>
<td>0.013</td>
</tr>
<tr>
<td>9 to 10</td>
<td>0.013</td>
<td>0.018</td>
<td>0.016</td>
</tr>
<tr>
<td>11 to 12</td>
<td>0.016</td>
<td>0.023</td>
<td>0.019</td>
</tr>
<tr>
<td>13 to 16</td>
<td>0.019</td>
<td>0.027</td>
<td>0.019</td>
</tr>
<tr>
<td>17 to 18</td>
<td>0.019</td>
<td>0.027</td>
<td>0.024</td>
</tr>
<tr>
<td>19 to 20</td>
<td>0.024</td>
<td>0.034</td>
<td>0.024</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1-inch water gage = 249 Pa.

a. Ductwork that exceeds 20 inches by dimension or exceeds a pressure of 1-inch water gage shall be constructed in accordance with “SMACNA HVAC Duct Construction Standards—Metal and Flexible.”

603.7 Rigid duct penetrations. Duct system penetrations of walls, floors, ceilings and roofs and air transfer openings in such building components shall be protected as required by Section 607. Ducts in a private garage that penetrate a wall or ceiling that separates a dwelling from a private garage shall be continuous, shall be constructed of sheet steel having a thickness of not less than 0.0187 inch (0.4712 mm) (No. 26 gage) and shall not have openings into the garage. Fire and smoke dampers are not required in such ducts passing through the wall or ceiling separating a dwelling from a private garage except where required by Chapter 7 of the building code.

603.8 Underground ducts. Ducts shall be approved for underground installation. Metallic ducts not having an approved protective coating shall be completely encased in not less than 2 inches (51 mm) of concrete.
603.8.1 **Slope.** Ducts shall have a minimum slope of $\frac{1}{8}$ inch per foot (10.4 mm/m) to allow drainage to a point provided with access.

603.8.2 **Sealing.** Ducts shall be sealed and secured prior to pouring the concrete encasement.

603.8.3 **Plastic ducts and fittings.** Plastic ducts shall be constructed of PVC having a minimum pipe stiffness of 8 psi (55 kPa) at 5-percent deflection when tested in accordance with ASTM D 2412. Plastic duct fittings shall be constructed of either PVC or high-density polyethylene. Plastic duct and fittings shall be utilized in underground installations only. The maximum design temperature for systems utilizing plastic duct and fittings shall be 150°F (66°C).

603.9 **Joints, seams and connections.** All longitudinal and transverse joints, seams and connections in metallic and nonmetallic ducts shall be constructed as specified in “SMACNA HVAC Duct Construction Standards—Metal and Flexible” and “NAIMA Fibrous Glass Duct Construction Standards.” All joints, longitudinal and transverse seams and connections in ductwork shall be securely fastened and sealed with welds, gaskets, mastics (adhesives), mastic-plus-embedded-fabric systems, liquid sealants or tapes. Tapes and mastics used to seal fibrous glass ductwork shall be listed and labeled in accordance with UL 181A and shall be marked “181 A-P” for pressure-sensitive tape, “181 A-M” for mastic or “181 A-H” for heat-sensitive tape. Tapes and mastics used to seal metallic and flexible air ducts and flexible air connectors shall comply with UL 181B and shall be marked “181 B-FX” for pressure-sensitive tape or “181 B-M” for mastic. Duct connections to flanges of air distribution system equipment shall be sealed and mechanically fastened. Mechanical fasteners for use with flexible nonmetallic air ducts shall comply with UL 181B and shall be marked “181 B-C.” Closure systems used to seal all ductwork shall be installed in accordance with the manufacturer's instructions.

Exception: For ducts having a static pressure classification of less than 2 inches of water column (500 Pa), additional closure systems shall not be required for continuously welded joints and seams and locking-type joints and seams of other than the snap-lock and button-lock types.

603.10 **Supports.** Ducts shall be supported in accordance with “SMACNA HVAC Duct Construction Standards—Metal and Flexible.” Flexible and other factory-made ducts shall be supported in accordance with the manufacturer’s instructions.
603.11 **Furnace connections.** Ducts connecting to a furnace shall have a clearance to combustibles in accordance with the furnace manufacturer’s installation instructions.

603.12 **Condensation.** Provisions shall be made to prevent the formation of condensation on the exterior of any duct.

603.13 **Flood hazard areas.** For structures in flood hazard areas, ducts shall be located above the elevation required by Section 1612 of the building code for utilities and attendant equipment or shall be designed and constructed to prevent water from entering or accumulating within the ducts during floods up to such elevation. If the ducts are located below the elevation required by Section 1612 of the building code for utilities and attendant equipment, the ducts shall be capable of resisting hydrostatic and hydrodynamic loads and stresses, including the effects of buoyancy, during the occurrence of flooding up to such elevation.

603.14 **Location.** Ducts shall not be installed in or within 4 inches (102 mm) of the earth, except where such ducts comply with Section 603.8.

603.15 **Mechanical protection.** Ducts installed in locations where they are exposed to mechanical damage by vehicles or from other causes shall be protected by approved barriers.

603.16 **Weather protection.** Ducts including linings, coverings and vibration isolation connectors installed on the exterior of the building shall be protected against the elements.

603.17 **Air dispersion systems.** Air dispersion systems shall:
 1. Be installed entirely in exposed locations.
 2. Be utilized in systems under positive pressure.
 3. Not pass through or penetrate fire-resistant-rated construction.
 4. Be listed and labeled in compliance with UL 2518.

603.18 **Registers, grilles and diffusers.** Duct registers, grilles and diffusers shall be installed in accordance with the manufacturer’s instructions. Volume dampers or other means of supply air adjustment shall be provided in the branch ducts or at each individual duct register, grille or diffuser. Each volume damper or other means of supply air adjustment used in balancing shall be provided with access.
603.18.1 **Floor registers.** Floor registers shall resist, without structural failure, a 200-pound (90.8 kg) concentrated load on a 2-inch-diameter (51 mm) disc applied to the most critical area of the exposed face.

603.18.2 **Prohibited locations.** Diffusers, registers and grilles shall be prohibited in the floor or its upward extension within toilet and bathing rooms required by the *building code* to have smooth, hard, nonabsorbent surfaces.

Exception: Dwelling units.

SECTION 604

INSULATION

604.1 **General.** Duct insulation shall conform to the requirements of Sections 604.2 through 604.13 and the applicable energy conservation code referenced from Chapter 13 of the building code.

604.2 **Surface temperature.** Ducts that operate at temperatures exceeding 120°F (49°C) shall have sufficient thermal insulation to limit the exposed surface temperature to 120°F (49°C).

604.3 **Coverings and linings.** Coverings and linings, including adhesives where used, shall have a flame spread index not more than 25 and a smoke-developed index not more than 50, when tested in accordance with ASTM E 84 or UL 723, using the specimen preparation and mounting procedures of ASTM E 2231. Duct coverings and linings shall not flame, glow, smolder or smoke when tested in accordance with ASTM C 411 at the temperature to which they are exposed in service. The test temperature shall not fall below 250°F (121°C). Coverings and linings shall be listed and labeled.

604.4 **Foam plastic insulation.** Foam plastic used as duct coverings and linings shall conform to the requirements of Section 604.

604.5 **Appliance insulation.** Listed and labeled appliances that are internally insulated shall be considered as conforming to the requirements of Section 604.

604.6 **Penetration of assemblies.** Duct coverings shall not penetrate a wall or floor required to have a fire-resistance rating or required to be fireblocked.

604.7 **Identification.** External duct insulation, except spray polyurethane foam, and factory-insulated flexible duct shall be legibly printed or identified at intervals not greater than 36 inches (914 mm) with the name of the manufacturer,
the thermal resistance R-value at the specified installed thickness and the flame spread and smoke-developed indexes of the composite materials. Duct insulation product R-values shall be based on insulation only, excluding air films, vapor retarders or other duct components, and shall be based on tested C-values at 75°F (24°C) mean temperature at the installed thickness, in accordance with recognized industry procedures. The installed thickness of duct insulation used to determine its R-value shall be determined as follows:

1. For duct board, duct liner and factory-made rigid ducts not normally subjected to compression, the nominal insulation thickness shall be used.
2. For duct wrap, the installed thickness shall be assumed to be 75 percent (25 percent compression) of nominal thickness.
3. For factory-made flexible air ducts, the installed thickness shall be determined by dividing the difference between the actual outside diameter and nominal inside diameter by two.
4. For spray polyurethane foam, the aged R-value per inch, measured in accordance with recognized industry standards, shall be provided to the customer in writing at the time of foam application.

604.8 Lining installation. Linings shall be interrupted at the area of operation of a fire damper and at not less than 6 inches (152 mm) upstream of and 6 inches (152 mm) downstream of electric-resistance and fuel-burning heaters in a duct system. Metal nosings or sleeves shall be installed over exposed duct liner edges that face opposite the direction of airflow.

604.9 Thermal continuity. Where a duct liner has been interrupted, a duct covering of equal thermal performance shall be installed.

604.10 Service openings. Service openings shall not be concealed by duct coverings unless the exact location of the opening is properly identified.

604.11 Vapor retarders. Where ducts used for cooling are externally insulated, the insulation shall be covered with a vapor retarder having a maximum permeance of 0.05 perm [2.87 ng/(Pa · s · m²)] or aluminum foil having a minimum thickness of 2 mils (0.051 mm). Insulations having a permeance of 0.05 perm [2.87 ng/(Pa · s · m²)] or less shall not be required to be covered. All joints and seams shall be sealed to maintain the continuity of the vapor retarder.

604.12 Weatherproof barriers. Insulated exterior ducts shall be protected with an approved weatherproof barrier.
604.13 **Internal insulation.** Materials used as internal insulation and exposed to the airstream in ducts shall be shown to be durable when tested in accordance with UL 181. Exposed internal insulation that is not impermeable to water shall not be used to line ducts or plenums from the exit of a cooling coil to the downstream end of the drain pan.

SECTION 605
AIR FILTERS

605.1 **General.** Heating and air-conditioning systems shall be provided with approved air filters. Filters shall be installed such that all return air, outdoor air and makeup air is filtered upstream from any heat exchanger or coil. Filters shall be installed in an approved convenient location. Liquid adhesive coatings used on filters shall have a flash point not lower than 325ºF (163ºC).

605.2 **Approval.** Media-type and electrostatic-type air filters shall be listed and labeled. Media-type air filters shall comply with UL 900. High efficiency particulate air filters shall comply with UL 586. Electrostatic-type air filters shall comply with UL 867. Air filters utilized within dwelling units shall be designed for the intended application and shall not be required to be listed and labeled.

605.3 **Airflow over the filter.** Ducts shall be constructed to allow an even distribution of air over the entire filter.

SECTION 606
SMOKE DETECTION SYSTEMS CONTROL

606.1 **Controls required.** Air distribution systems shall be equipped with smoke detectors listed and labeled for installation in air distribution systems, as required by this section. Duct smoke detectors shall comply with UL 268A. Other smoke detectors shall comply with UL 268.

606.2 **Where required.** Smoke detectors shall be installed where indicated in Sections 606.2.1 through 606.2.3.

Exception: Smoke detectors shall not be required where air distribution systems are incapable of spreading smoke beyond the enclosing walls, floors and ceilings of the room or space in which the smoke is generated.

606.2.1 **Return air systems.** Smoke detectors shall be installed in return air systems with a design capacity greater than 2,000 cfm (0.9 m³/s), in the return air duct or plenum upstream of any filters, exhaust air connections, outdoor air
connections, or decontamination equipment and appliances.

Exception: Smoke detectors are not required in the return air system where all portions of the building served by the air distribution system are protected by area smoke detectors connected to a fire alarm system in accordance with the *building code*. The area smoke detection system shall comply with Section 606.4.

606.2.2 Common supply and return air systems. Where multiple air-handling systems share common supply or return air ducts or plenums with a combined design capacity greater than 2,000 cfm (0.9 m³/s), the return air system shall be provided with smoke detectors in accordance with Section 606.2.1.

Exception: Individual smoke detectors shall not be required for each fan-powered terminal unit, provided that such units do not have an individual design capacity greater than 2,000 cfm (0.9 m³/s) and will be shut down by activation of one of the following:
1. Smoke detectors required by Sections 606.2.1 and 606.2.3.
2. An approved area smoke detector system located in the return air plenum serving such units.
3. An area smoke detector system as prescribed in the exception to Section 606.2.1.

In all cases, the smoke detectors shall comply with Sections 606.4 and 606.4.1.

606.2.3 Return air risers. Where return air risers serve two or more stories and serve any portion of a return air system having a design capacity greater than 15,000 cfm (7.1 m³/s), smoke detectors shall be installed at each story. Such smoke detectors shall be located upstream of the connection between the return air riser and any air ducts or plenums.

606.3 Installation. Smoke detectors required by this section shall be installed in accordance with NFPA 72. The required smoke detectors shall be installed to monitor the entire airflow conveyed by the system including return air and exhaust or relief air. Access shall be provided to smoke detectors for inspection and maintenance.

606.4 Controls operation. Upon activation, the smoke detectors shall shut down all operational capabilities of the air distribution system in accordance with the listing and labeling of appliances used in the system. Air distribution systems that are part of a smoke control system shall switch to the smoke control mode upon activation of a detector.
606.4.1 **Supervision.** The duct smoke detectors shall be connected to a fire alarm system where a fire alarm system is required by Section 907.2 of the building code. The actuation of a duct smoke detector shall activate a visible and audible supervisory signal at a constantly attended location. In facilities that are required to be monitored by a supervising station, duct smoke detectors shall report only as a supervisory signal, not as a fire alarm.

Exceptions:
1. The supervisory signal at a constantly attended location is not required where the duct smoke detector activates the building’s alarm-indicating appliances.
2. In occupancies not required to be equipped with a fire alarm system, actuation of a smoke detector shall activate a visible and audible signal in an approved location. Duct smoke detector trouble conditions shall activate a visible or audible signal in an approved location and shall be identified as air duct detector trouble.

SECTION 607
DUCT AND TRANSFER OPENINGS

607.1 **General.** The provisions of this section shall govern the protection of duct penetrations and air transfer openings in assemblies required to be protected.

607.1.1 **Ducts and air transfer openings between shafts.** Ducts transitioning horizontally between shafts shall not require a shaft enclosure provided that the duct penetration into each associated shaft is protected with dampers complying with this section.

607.1.2 **Ducts that penetrate fire-resistance-rated assemblies without dampers.** Ducts that penetrate fire-resistance-rated assemblies and are not required by this section to have dampers shall comply with the requirements of Sections 714.2 through 714.3.3 of the building code. Ducts that penetrate horizontal assemblies not required to be contained within a shaft and not required by this section to have dampers shall comply with the requirements of Sections 714.4 of the building code.

607.1.2.1 **Ducts that penetrate nonfire-resistance-rated assemblies.** The space around a duct penetrating a nonfire-resistance-rated floor assembly shall comply with Section 717.6.3 of the building code.

607.2 **Installation.** Fire dampers, smoke dampers, combination fire/smoke dampers and ceiling radiation dampers located within air distribution and smoke
control systems shall be installed in accordance with the requirements of this section, and the manufacturer’s instructions and listing.

607.2.1 Smoke control system. Where the installation of a fire damper will interfere with the operation of a required smoke control system in accordance with Section 909 of the building code, approved alternative protection shall be used. Where mechanical systems including ducts and dampers used for normal building ventilation serve as part of the smoke control system, the expected performance of these systems in smoke control mode shall be addressed in the rational analysis required by Section 909.4 of the building code.

607.2.2 Hazardous exhaust ducts. Fire dampers for hazardous exhaust duct systems shall comply with Section 510.

607.3 Damper testing, ratings and actuation. Damper testing, ratings and actuation shall be in accordance with Sections 607.3.1 through 607.3.3.

607.3.1 Damper testing. Dampers shall be listed and labeled in accordance with the standards in this section. Fire dampers shall comply with the requirements of UL 555. Only fire dampers and ceiling radiation dampers labeled for use in dynamic systems shall be installed in heating, ventilating and air-conditioning systems designed to operate with fans on during a fire. Smoke dampers shall comply with the requirements of UL 555S. Combination fire/smoke dampers shall comply with the requirements of both UL 555 and UL 555S. Ceiling radiation dampers shall comply with the requirements of UL 555C or shall be tested as part of a fire-resistance-rated floor/ceiling or roof/ceiling assembly in accordance with ASTM E 119 or UL 263. Corridor dampers shall comply with requirements of both UL 555 and UL 555S. Corridor dampers shall demonstrate acceptable closure performance when subjected to 150 feet per minute (0.76 mps) velocity across the face of the damper using the UL 555 fire exposure test.

607.3.2 Damper rating. Damper ratings shall be in accordance with Sections 607.3.2.1 through 607.3.2.4.

607.3.2.1 Fire damper ratings. Fire dampers shall have the minimum fire protection rating specified in Table 607.3.2.1 for the type of penetration.

<table>
<thead>
<tr>
<th>TABLE 607.3.2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE DAMPER RATING</td>
</tr>
</tbody>
</table>
TYPE OF PENETRATION | MINIMUM DAMPER RATING (hour)
---|---
Less than 3-hour fire-resistance-rated assemblies | 11/2
3-hour or greater fire-resistance-rated assemblies | 3

607.3.2.2 Smoke damper ratings. Smoke damper leakage ratings shall be Class I or II. Elevated temperature ratings shall be not less than 250°F (121°C).

607.3.2.3 Combination fire/smoke damper ratings. Combination fire/smoke dampers shall have the minimum fire protection rating specified for fire dampers in Table 607.3.2.1 for the type of penetration and shall have a minimum smoke damper rating as specified in Section 607.3.2.2.

607.3.2.4 Corridor damper ratings. Corridor dampers shall have the following minimum ratings.
1. One hour fire-resistance rating.
2. Class I or II leakage rating as specified in Section 607.3.2.2.

607.3.3 Damper actuation. Damper actuation shall be in accordance with Sections 607.3.3.1 through 607.3.3.4 as applicable.

607.3.3.1 Fire damper actuation device. The fire damper actuation device shall meet one of the following requirements:
1. The operating temperature shall be approximately 50°F (28°C) above the normal temperature within the duct system, but not less than 160°F (71°C).
2. The operating temperature shall be not more than 350°F (177°C) where located in a smoke control system complying with Section 909 of the building code.

607.3.3.2 Smoke damper actuation. The smoke damper shall close upon actuation of a listed smoke detector or detectors installed in accordance with Section 907.3 of the building code and one of the following methods, as applicable:
1. Where a smoke damper is installed within a duct, a smoke detector shall be installed inside the duct or outside the duct with sampling tubes protruding into the duct. The detector or tubes within the...
duct shall be within 5 feet (1524 mm) of the damper. Air outlets and inlets shall not be located between the detector or tubes and the damper. The detector shall be listed for the air velocity, temperature and humidity anticipated at the point where it is installed. Other than in mechanical smoke control systems, dampers shall be closed upon fan shutdown where local smoke detectors require a minimum velocity to operate.

2. Where a smoke damper is installed above smoke barrier doors in a smoke barrier, a spot-type detector shall be installed on either side of the smoke barrier door opening. The detector shall be listed for releasing service if used for direct interface with the damper.

3. Where a smoke damper is installed within an unducted opening in a wall, a spot-type detector shall be installed within 5 feet (1524 mm) horizontally of the damper. The detector shall be listed for releasing service if used for direct interface with the damper.

4. Where a smoke damper is installed in a corridor wall or ceiling, the damper shall be permitted to be controlled by a smoke detection system installed in the corridor.

5. Where a smoke detection system is installed in all areas served by the duct in which the damper will be located, the smoke dampers shall be permitted to be controlled by the smoke detection system.

607.3.3 Combination fire/smoke damper actuation. Combination fire/smoke damper actuation shall be in accordance with Sections 607.3.3.1 and 607.3.3.2. Combination fire/smoke dampers installed in smoke control system shaft penetrations shall not be activated by local area smoke detection unless it is secondary to the smoke management system controls.

607.3.4 Ceiling radiation damper actuation. The operating temperature of a ceiling radiation damper actuation device shall be 50°F (28°C) above the normal temperature within the duct system, but not less than 160°F (71°C).

607.3.5 Corridor damper actuation. Corridor damper actuation shall be in accordance with Sections 607.3.3.1 and 607.3.3.2.

607.4 Access and identification. Fire and smoke dampers shall be provided with an approved means of access, large enough to permit inspection and maintenance of the damper and its operating parts. Dampers equipped with fusible links, internal operators, or both shall be provided with an access door that is not less
than 12 in. (305 mm) square or provided with a removable duct section in accordance with NFPA 80. The access shall not affect the integrity of fire-resistance-rated assemblies. The access openings shall not reduce the fire-resistance rating of the assembly. Access points shall be permanently identified on the exterior by a label having letters not less than 0.5 inch (12.7 mm) in height reading: FIRE/SMOKE DAMPER, SMOKE DAMPER or FIRE DAMPER. Access doors in ducts shall be tight fitting and suitable for the required duct construction.

607.5 Where required. Fire dampers, smoke dampers, combination fire/smoke dampers, ceiling radiation dampers and corridor dampers shall be provided at the locations prescribed in Sections 607.5.1 through 607.5.7. Where an assembly is required to have both fire dampers and smoke dampers, combination fire/smoke dampers or a fire damper and smoke damper shall be provided.

607.5.1 Fire walls. Ducts and air transfer openings permitted in fire walls in accordance with Section 706.11 of the building code shall be protected with listed fire dampers installed in accordance with their listing.

607.5.1.1 Horizontal exits. A listed smoke damper designed to resist the passage of smoke shall be provided at each point that a duct or air transfer opening penetrates a fire wall that serves as a horizontal exit.

607.5.2 Fire barriers. Ducts and air transfer openings that penetrate fire barriers shall be protected with listed fire dampers installed in accordance with their listing. Ducts and air transfer openings shall not penetrate enclosures for interior exit stairways and ramps and exit passageways except as permitted by Sections 1023.5 and 1023.6, respectively, of the building code.

Exception: Fire dampers are not required at penetrations of fire barriers where any of the following apply:
1. Penetrations are tested in accordance with ASTM E 119 or UL 263 as part of the fire-resistance-rated assembly.
2. Ducts are used as part of an approved smoke control system in accordance with Section 513 and where the fire damper would interfere with the operation of the smoke control system.
3. Such walls are penetrated by ducted HVAC systems, have a required fire-resistance rating of 1 hour or less, are in areas of other than Group H and are in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2 of the building code. For the purposes of this exception, a ducted HVAC
system shall be a duct system for the structure’s HVAC system shall be constructed of sheet steel not less than No. 26 gage thickness and shall be continuous from the air-handling appliance or equipment to the air outlet and inlet terminals. Flexible air connectors shall not be prohibited in fully ducted sheet steel duct systems where the installation meets either of the following:

1. Flexible air connectors are installed to connect ducts to air handling equipment and such connectors are located entirely within the mechanical room that contains the air handling equipment.

2. Flexible air connectors are installed to connect an overhead metal duct to a ceiling diffuser and such connector is located entirely within the same room as the ceiling diffuser. The flexible air connectors shall not pass through any walls, floors or ceilings.

607.5.2.1 Horizontal exits. A listed smoke damper designed to resist the passage of smoke shall be provided at each point that a duct or air transfer opening penetrates a fire barrier that serves as a horizontal exit.

607.5.3 Fire partitions. Ducts and air transfer openings that penetrate fire partitions shall be protected with listed fire dampers installed in accordance with their listing.

 Exception: In occupancies other than Group H, fire dampers are not required where any of the following apply:

1. Corridor walls in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2 of the building code and the duct is protected as a through penetration in accordance with Section 714 of the building code.

2. The partitions are tenant partitions in covered and open mall buildings where the walls are not required by provisions elsewhere in the building code to extend to the underside of the floor or roof sheathing, slab or deck above.

3. The duct system is constructed of approved materials in accordance with Section 603 and the duct penetrating the wall complies with all of the following requirements:

 3.1. The duct shall not exceed 100 square inches (0.06 m²).
 3.2. The duct shall be constructed of steel not less than 0.0217 inch (0.55 mm) in thickness.
 3.3. The duct shall not have openings that communicate the corridor with adjacent spaces or rooms.
3.4. The duct shall be installed above a ceiling.
3.5. The duct shall not terminate at a wall register in the fire-resistance-rated wall.
3.6. A minimum 12-inch-long (305 mm) by 0.060-inch-thick (1.52 mm) steel sleeve shall be centered in each duct opening. The sleeve shall be secured to both sides of the wall and all four sides of the sleeve with minimum 1 1/2-inch by 1 1/2-inch by 0.060-inch (38 mm by 38 mm by 1.52 mm) steel retaining angles. The retaining angles shall be secured to the sleeve and the wall with No. 10 (M5) screws. The annular space between the steel sleeve and the wall opening shall be filled with rock (mineral) wool batting on all sides.

4. Such walls are penetrated by ducted HVAC systems, have a required fire-resistance rating of 1 hour or less, and are in areas of other than Group H and are in buildings equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 or 903.3.1.2 of the building code. For the purposes of this exception, a ducted HVAC system shall be a duct system for the structure’s HVAC system shall be constructed of sheet steel not less than No. 26 gage thickness and shall be continuous from the air-handling appliance or equipment to the air outlet and inlet terminals. Flexible air connectors shall not be prohibited in fully ducted sheet steel duct systems where the installation meets either of the following:

1. Flexible air connectors are installed to connect ducts to air handling equipment and such connectors are located entirely within the mechanical room that contains the air handling equipment.

2. Flexible air connectors are installed to connect an overhead metal duct to a ceiling diffuser and such connector is located entirely within the same room as the ceiling diffuser. The flexible air connectors shall not pass through any walls, floors or ceilings.

607.5.4 Corridors/smoke barriers. A listed smoke damper designed to resist the passage of smoke shall be provided at each point a duct or air transfer opening penetrates a smoke barrier wall or a corridor enclosure required to have smoke and draft control doors in accordance with the building code. A corridor damper shall be provided where corridor ceilings, constructed as required for the corridor walls as permitted in Section 708.4, Exception 3, of the building code, are penetrated.
A ceiling radiation damper shall be provided where the ceiling membrane of a
fire-resistance-rated floor/ceiling or roof/ceiling assembly, constructed as permitted in Section 708.4, Exception 2, of the building code, is penetrated. Smoke dampers and smoke damper actuation methods shall comply with Section 607.5.4.1.

Exceptions:

1. Smoke dampers are not required in corridor penetrations where the building is equipped throughout with an approved smoke control system in accordance with Section 513 and smoke dampers are not necessary for the operation and control of the system.
2. Smoke dampers are not required in smoke barrier penetrations where the openings in ducts are limited to a single smoke compartment and the ducts are constructed of steel.
3. Smoke dampers are not required in corridor penetrations where the duct is constructed of steel not less than 0.019 inch (0.48 mm) in thickness and there are no openings serving the corridor.
4. Smoke dampers are not required in smoke barriers required by Section 407.5 of the building code for Group I-2 Condition 2 where the HVAC system is fully ducted in accordance with Section 603 and where buildings are equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 of the building code and equipped with quick-response sprinklers in accordance with Section 903.3.2 of the building code.

607.5.4.1 Smoke damper. Smoke dampers shall close as required by Section 607.3.3.2.

607.5.5 Shaft enclosures. Shaft enclosures that are permitted to be penetrated by ducts and air transfer openings shall be protected with approved fire and smoke dampers installed in accordance with their listing.

Exceptions:

1. Fire dampers are not required at penetrations of shafts where any of the following apply:
 1.1. Steel exhaust subducts extend not less than 22 inches (559 mm) vertically in exhaust shafts provided that there is a continuous airflow upward to the outdoors.
 1.2. Penetrations are tested in accordance with ASTM E 119 or UL 263 as part of the fire-resistance-rated assembly.
 1.3. Ducts are used as part of an approved smoke control system in accordance with Section 909 of the building code, and where the fire damper will interfere with the operation of the smoke control system.
1.4. The penetrations are in parking garage exhaust or supply shafts that are separated from other building shafts by not less than 2-hour fire-resistance-rated construction.

2. In Group B and R occupancies equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 of the building code, smoke dampers are not required at penetrations of shafts where kitchen, clothes dryer, bathroom and toilet room exhaust openings with steel exhaust subducts, having a minimum thickness of 0.0187 inch (0.4712 mm) (No. 26 gage), extend not less than 22 inches (559 mm) vertically and the exhaust fan at the upper terminus is powered continuously and maintains airflow upward to the outdoors Deleted.

3. Smoke dampers are not required at penetrations of exhaust or supply shafts in parking garages that are separated from other building shafts by not less than 2-hour fire-resistance-rated construction.

4. Smoke dampers are not required at penetrations of shafts where ducts are used as part of an approved mechanical smoke control system designed in accordance with Section 909 of the building code and where the smoke damper will interfere with the operation of the smoke control system.

5. Fire dampers and combination fire/smoke dampers are not required in kitchen and clothes dryer exhaust systems installed in accordance with this code.

6. *Smoke dampers are not required where the building is equipped throughout with an automatic sprinkler system in accordance with Section 903.3.1.1 of the building code.*

607.5.5.1 Enclosure at the bottom. Shaft enclosures that do not extend to the bottom of the building or structure shall be protected in accordance with Section 713.11 of the building code.

607.5.6 Exterior walls. Ducts and air transfer openings in fire-resistance-rated exterior walls required to have protected openings in accordance with Section 705.10 of the building code shall be protected with listed fire dampers installed in accordance with their listing.

607.5.7 Smoke partitions. A listed smoke damper designed to resist the passage of smoke shall be provided at each point where an air transfer opening penetrates a smoke partition. Smoke dampers and smoke damper actuation methods shall comply with Section 607.3.3.2.

Exception: Where the installation of a smoke damper will interfere with the operation of a required smoke control system in accordance with
Section 513, approved alternate protection shall be used.

607.6 Horizontal assemblies. Penetrations by air ducts of a floor, floor/ceiling assembly or the ceiling membrane of a roof/ceiling assembly shall be protected by a shaft enclosure that complies with Section 713 and Sections 717.6.1 through 717.6.3 of the building code or shall comply with Sections 607.6.1 through 607.6.3.

607.6.1 Through penetrations. In occupancies other than Groups I-2 and I-3, a duct constructed of approved materials in accordance with Section 603 that penetrates a fire-resistance-rated floor/ceiling assembly that connects not more than two stories is permitted without shaft enclosure protection provided that a listed fire damper is installed at the floor line or the duct is protected in accordance with Section 714.4 of the building code. For air transfer openings, see Item 6, Section 712.1.9 of the building code.

Exception: A duct is permitted to penetrate three floors or less without a fire damper at each floor provided it meets all of the following requirements.
1. The duct shall be contained and located within the cavity of a wall and shall be constructed of steel having a minimum thickness of 0.0187 inch (0.4712 mm) (No. 26 gage).
2. The duct shall open into only one dwelling unit or sleeping unit and the duct system shall be continuous from the unit to the exterior of the building.
3. The duct shall not exceed a 4-inch (102 mm) nominal diameter and the total area of such ducts shall not exceed 100 square inches for any 100 square feet (64 516 mm² per 9.3 m²) of the floor area.
4. The annular space around the duct is protected with materials that prevent the passage of flame and hot gases sufficient to ignite cotton waste when subjected to ASTM E 119 or UL 263 time temperature conditions under a minimum positive pressure differential of 0.01 inch (2.49 Pa) of water at the location of the penetration for the time period equivalent to the fire-resistance rating of the construction penetrated.
5. Grille openings located in a ceiling of a fire-resistance-rated floor/ceiling or roof/ceiling assembly shall be protected with a listed ceiling radiation damper installed in accordance with Section 607.6.2.1.

607.6.2 Membrane penetrations. Ducts and air transfer openings constructed of approved materials, in accordance with Section 603, that penetrate the ceiling membrane of a fire-resistance-rated floor/ceiling or roof/ceiling
assembly shall be protected with one of the following:
1. A shaft enclosure in accordance with Section 713 of the building code.
2. A listed ceiling radiation damper installed at the ceiling line where a duct penetrates the ceiling of a fire-resistance-rated floor/ceiling or roof/ceiling assembly.
3. A listed ceiling radiation damper installed at the ceiling line where a diffuser with no duct attached penetrates the ceiling of a fire-resistance-rated floor/ceiling or roof/ceiling assembly.

607.6.2.1 Ceiling radiation dampers. Ceiling radiation dampers shall be tested in accordance with Section 607.3.1. Ceiling radiation dampers shall be installed in accordance with the details listed in the fire-resistance-rated assembly and the manufacturer’s installation instructions and the listing. Ceiling radiation dampers are not required where any of the following apply:
1. Tests in accordance with ASTM E 119 or UL 263 have shown that ceiling radiation dampers are not necessary to maintain the fire-resistance rating of the assembly.
2. Where exhaust duct penetrations are protected in accordance with Section 714.4.1.2 of the building code, are located within the cavity of a wall, and do not pass through another dwelling unit or tenant space.
3. Where duct and air transfer openings are protected with a duct outlet protection system tested as part of a fire-resistance-rated assembly in accordance with ASTM E 119 or UL 263.

607.6.3 Nonfire-resistance-rated floor assemblies. Duct systems constructed of approved materials in accordance with Section 603 that penetrate nonfire-resistance-rated floor assemblies shall be protected by any of the following methods:
1. A shaft enclosure in accordance with Section 713 of the building code.
2. The duct connects not more than two stories, and the annular space around the penetrating duct is protected with an approved noncombustible material that resists the free passage of flame and the products of combustion.
3. In floor assemblies composed of noncombustible materials, a shaft shall not be required where the duct connects not more than three stories, and the annular space around the penetrating duct is protected with an approved noncombustible material that resists the free passage of flame and the products of combustion and a fire damper is installed at each floor line.
Exception: Fire dampers are not required in ducts within individual residential dwelling units.

607.7 Flexible ducts and air connectors. Flexible ducts and air connectors shall not pass through any fire-resistance-rated assembly.
Effective: 8/1/2018
Five Year Review (FYR) Dates: 11/1/2022

CERTIFIED ELECTRONICALLY

Certification

07/13/2018

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04