December 2015

At its meeting on December 4, 2015, the Ohio Board of Building Standards adopted the rule changes identified as Amendments Group 90. These rule amendments were adopted for an effective date of January 1, 2016.

Amendments Group 90 included the following amended Ohio Plumbing Code (OPC) rules. For your use, a summary of the changes is provided below and the text of the rule can be found immediately following this coversheet:

<table>
<thead>
<tr>
<th>Rule Number</th>
<th>OPC Chapter</th>
<th>Chapter Title</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>4101:3-2-01</td>
<td>2</td>
<td>Definitions.</td>
<td>January 1, 2016</td>
</tr>
<tr>
<td>4101:3-3-01</td>
<td>3</td>
<td>General regulations.</td>
<td>January 1, 2016</td>
</tr>
<tr>
<td>4101:3-4-01</td>
<td>4</td>
<td>Fixtures, faucets and fixture fittings.</td>
<td>January 1, 2016</td>
</tr>
<tr>
<td>4101:3-6-01</td>
<td>6</td>
<td>Water supply and distribution.</td>
<td>January 1, 2016</td>
</tr>
<tr>
<td>4101:3-9-01</td>
<td>9</td>
<td>Vents.</td>
<td>January 1, 2016</td>
</tr>
</tbody>
</table>

Reason for Amendments: 4101:3-2-01 to add definitions for above-ground storage tank, building service equipment, containment backflow prevention device, engine-mounted tank, fuel tank, isolation backflow prevention device, to modify definitions for combination waste and vent system, listed, plumbing appliance, and plumbing fixture and to delete definitions for third party certification agency, third party certified and third party tested; 4101:3-3-01 to clarify that materials should include markings required by the referenced standards, to change ‘third party’ to ‘approved agency’ and clarifying language, to delete third party requirements in Table 303.4, to clarify that insulation is required for each hot water pipe when bundled, to reference § 1612 of the building code for flood resistance, to clarify plastic pipe testing procedure, to clarify plastic pipe testing procedure as a result of coordination with OEPA, to modify the language requiring tempered water for public hand-washing facilities, to add standard for liquid-type, trowel-applied, load-bearing, bonded waterproof materials, to add...
requirements for water closet personal hygiene devices and to make general editorial corrections; 4101:3-6-01 to modify reference standards, add pipe as well as tubing, and add polyethylene of raised temperature (PE-RT) plastic tubing in Table 605.3, to add polyethylene of raised temperature (PE-RT) plastic tubing and reference standard in Table 605.4, to modify reference standards and to add polyethylene of raised temperature (PE-RT) plastic tubing and reference standard in Table 605.5, to add polyethylene of raised temperature plastic requirements, to add PE-RT flared joints and mechanical joints requirements, to add variable speed suction limiting controls to booster pump requirements and to clarify jurisdiction as a result of coordination with OEPA, to add temperature limiting means to hot water supply system requirements, to specify installation of temperature-actuated mixing valves and to make general editorial corrections; 4101:3-9-01 to clarify the length of a combination drain and vent system shall be unlimited and to add § 920 Single Stack Vent System; 4101:3-13-01 to add ASME standards A112.4.2-2008, ASTM standards F2735-09 and F2769-09, WWA standards C901-08 and C904-08, CSA standards B45.10, B45.15, B125.1, B125.2, B125.6, B356-05, and B483.1-07, to update ASME standards A112.18.1, A112.18.2, A112.18.3, A112.18.6, A112.19.1, A112.19.2, A112.19.3, A112.19.5, A112.19.7, CSA standards B45.1, B45.2, B45.4, and to remove ASME standards A112.19.6, A112.19.8M, A112.19.9M, and A112.19.13 and ASSE standards 1009-90.

If you should have any questions regarding these rule changes, please call BBS staff at (614)644-2613.
4101:3-2-01 Definitions.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 201
GENERAL

201.1 Scope. Unless otherwise expressly stated, the following words and terms shall, for the purposes of this code, have the meanings shown in this chapter.

201.2 Interchangeability. Words stated in the present tense include the future; words stated in the masculine gender include the feminine and neuter; the singular number includes the plural and the plural the singular.

201.3 Terms defined in other codes. Where terms are not defined in this code and are defined in the building code, fire code, “International Fuel Gas Code” or the mechanical code, such terms shall have the meanings ascribed to them as in those codes.

201.4 Terms not defined. Where terms are not defined through the methods authorized by this section, such terms shall have ordinarily accepted meanings such as the context implies.

SECTION 202
GENERAL DEFINITIONS

ABOVE-GROUND STORAGE TANK. A vessel, intended for fixed installation above grade, at grade, or below grade without backfill, used for the purpose of bulk storage, dispensing, handling or processing of hazardous, flammable or combustible liquids or gases and not connected to and utilized for the operation of building service equipment.

ACCEPTED ENGINEERING PRACTICE. That which conforms to accepted principles, tests or standards of nationally recognized technical or scientific authorities. Where a standard is referred to in Chapter 4101:3-13 of the
Administrative Code relative to “accepted engineering practice,” conformity to the applicable technical provisions, requirements, recommendations, and determinations in the standard or other publications is prima-fascia evidence of conformity with accepted engineering practice.

ACCESS (TO). That which enables a fixture, appliance or equipment to be reached by ready access or by a means that first requires the removal or movement of a panel, door or similar obstruction (see “Ready access”).

ACCESS COVER. A removable plate, usually secured by bolts or screws, to permit access to a pipe or pipe fitting for the purposes of inspection, repair or cleaning.

ADAPTER FITTING. An approved connecting device that suitably and properly joins or adjusts pipes and fittings which do not otherwise fit together.

AIR ADMITTANCE VALVE. One-way valve designed to allow air to enter the plumbing drainage system when negative pressures develop in the piping system. The device shall close by gravity and seal the vent terminal at zero differential pressure (no flow conditions) and under positive internal pressures. The purpose of an air admittance valve is to provide a method of allowing air to enter the plumbing drainage system without the use of a vent extended to open air and to prevent sewer gases from escaping into a building.

AIR BREAK (Drainage System). A piping arrangement in which a drain from a fixture, appliance or device discharges indirectly into another fixture, receptacle or interceptor at a point below the flood level rim and above the trap seal.

AIR GAP (Drainage System). The unobstructed vertical distance through the free atmosphere between the outlet of the waste pipe and the flood level rim of the receptacle into which the waste pipe is discharging.

AIR GAP (Water Distribution System). The unobstructed vertical distance through the free atmosphere between the lowest opening from any pipe or faucet supplying water to a tank, plumbing fixture or other device and the flood level rim of the receptacle.

ALTERNATIVE ENGINEERED DESIGN. A plumbing system that performs in accordance with the intent of Chapters 3 through 12 and provides an equivalent level of performance for the protection of public health, safety and welfare. The system design is not specifically regulated by Chapters 3 through 12 in accordance with the requirements of section 106 of the building code.

ANCHORS. See “Supports.”

ANTISIPHON. A term applied to valves or mechanical devices that eliminate siphonage.
APPROVED. Determined to be in compliance by the authority having jurisdiction in accordance with the rules of the board.

APPROVED AGENCY. An established and accredited testing laboratory, listing agency, inspection body, or field evaluation body recognized by the board of building standards providing services consistent with their accreditation and the code section requiring the approved agency service.

AREA DRAIN. A receptacle designed to collect surface or storm water from an open area.

ASPIRATOR. A fitting or device supplied with water or other fluid under positive pressure that passes through an integral orifice or constriction, causing a vacuum. Aspirators are also referred to as suction apparatus, and are similar in operation to an ejector.

BACKFLOW. Pressure created by any means in the water distribution system, which by being in excess of the pressure in the water supply mains causes a potential backflow condition.

Backpressure, low head. A pressure less than or equal to 4.33 psi (29.88 kPa) or the pressure exerted by a 10-foot (3048 mm) column of water.

Backsiphonage. The backflow of potentially contaminated water into the potable water system as a result of the pressure in the potable water system falling below atmospheric pressure of the plumbing fixtures, pools, tanks or vats connected to the potable water distribution piping.

Drainage. A reversal of flow in the drainage system.

Water supply system. The flow of water or other liquids, mixtures or substances into the distribution pipes of a potable water supply from any source except the intended source.

BACKFLOW CONNECTION. Any arrangement whereby backflow is possible.

BACKFLOW PREVENTER. A device or means to prevent backflow.

BACKWATER VALVE. A device or valve installed in the building drain or sewer pipe where a sewer is subject to backflow, and which prevents drainage or waste from backing up into a lower level or fixtures and causing a flooding condition.

BASE FLOOD ELEVATION. A reference point, determined in accordance with the building code, based on the depth or peak elevation of flooding, including wave height, which has a 1 percent (100-year flood) or greater chance of occurring in any given year.

BATHROOM GROUP. A group of fixtures consisting of a water closet,
lavatory, bathtub or shower, including or excluding a bidet, an emergency floor drain or both. Such fixtures are located together on the same floor level.

BEDPAN STEAMER OR BOILER. A fixture utilized for scalding bedpans or urinals by direct application of steam or boiling water.

BEDPAN WASHER AND STERILIZER. A fixture designed to wash bedpans and to flush the contents into the sanitary drainage system. Included are fixtures of this type that provide for disinfecting utensils by scalding with steam or hot water.

BEDPAN WASHER HOSE. A device supplied with hot and cold water and located adjacent to a water closet or clinical sink to be utilized for cleansing bedpans.

BRANCH. Any part of the piping system except a riser, main or stack.

BRANCH INTERVAL. A vertical measurement of distance, 8 feet (2438 mm) or more in developed length, between the connections of horizontal branches to a drainage stack. Measurements are taken down the stack from the highest horizontal branch connection.

BRANCH VENT. A vent connecting one or more individual vents with a vent stack or stack vent.

BUILDING. Any structure consisting of foundations, walls, columns, girders, beams, floors, and roof, or a combination of any number of these parts, with or without other parts or appurtenances. See division (C)(2) of section 3781.06 of the Revised Code.

BUILDING CODE. The “Ohio Building Code”.

BUILDING DRAIN. That part of the lowest piping of a drainage system that receives the discharge from soil, waste and other drainage pipes inside and that extends 30 inches (762 mm) in developed length of pipe beyond the exterior walls of the building and conveys the drainage to the building sewer.

- **Combined.** A building drain that conveys both sewage and storm water or other drainage.
- **Sanitary.** A building drain that conveys sewage only.
- **Storm.** A building drain that conveys storm water or other drainage, but not sewage.

BUILDING OFFICIAL. See definition of “Building Official” in rule 4101:1-2-01 of the Administrative Code.
BUILDING SERVICE EQUIPMENT. Equipment, appliances, materials, devices, and systems integrated into a building that provide space heating, air conditioning, ventilation, fire protection, lighting, electricity, sanitation, water, water heating, cooking, medical gas, medical vacuum, and clothes drying. Building service equipment begins from the connected stored source of liquid or gas fuel or electrical power supplying the equipment or the utility service point/point of delivery and extends through the point of use but does not include process equipment that may also be connected to the same source.

BUILDING SERVICES PIPING. All piping systems and their component parts that are part of a building system and that promote the safe, sanitary, and energy efficient occupancy of a building. Building services piping includes, but is not limited to, cold and hot potable water distribution for plumbing fixtures; sanitary lines from plumbing fixtures; nonflammable medical gas systems; medical oxygen systems; medical vacuum systems; fire protection piping systems and compressed air in dry systems; refrigeration, chilled water, condenser and cooling tower water, brine, and water/antifreeze systems; steam, steam condensate, and hot water piping systems; and fuel oil piping and fuel gas piping for heating, cooling, and cooking applications. See division (A) of section 4104.41 of the Revised Code.

BUILDING SEWER. That part of the drainage system that extends from the end of the building drain and conveys the discharge to a public sewer, private sewer, individual sewage disposal system or other point of disposal.

- **Combined.** A building sewer that conveys both sewage and storm water or other drainage.
- **Sanitary.** A building sewer that conveys sewage only.
- **Storm.** A building sewer that conveys storm water or other drainage, but not sewage.

BUILDING SUBDRAIN. That portion of a drainage system that does not drain by gravity into the building sewer.

BUILDING TRAP. A device, fitting or assembly of fittings installed in the building drain to prevent circulation of air between the drainage system of the building and the building sewer.

CIRCUIT VENT. A vent that connects to a horizontal drainage branch and vents two traps to a maximum of eight traps or trapped fixtures connected into a battery.

CISTERN. A small covered tank for storing water for a home or farm. Generally,
this tank stores rainwater to be utilized for purposes other than in the potable water supply, and such tank is placed underground in most cases.

CLEANOUT. An access opening in the drainage system utilized for the removal of obstructions. Types of cleanouts include a removable plug or cap, and a removable fixture or fixture trap.

CODE. Those rules contained in division number 4101:3 of the Administrative Code.

COMBINATION FIXTURE. A fixture combining one sink and laundry tray or a two-or three-compartment sink or laundry tray in one unit.

COMBINATION WASTE AND VENT SYSTEM. A specially designed system of waste piping embodying the horizontal wet venting of one or more sinks, lavatories, drinking fountains or floor drains by means of a common waste and vent pipe adequately sized to provide free movement of air above the flow line of the drain.

COMBINED BUILDING DRAIN. See “Building drain, combined.”

COMBINED BUILDING SEWER. See “Building sewer, combined.”

COMMON VENT. A vent connecting at the junction of two fixture drains or to a fixture branch and serving as a vent for both fixtures.

CONCEALED FOULING SURFACE. Any surface of a plumbing fixture which is not readily visible and is not scoured or cleansed with each fixture operation.

CONDUCTOR. A pipe inside the building that conveys storm water from the roof to a storm or combined building drain.

CONSTRUCTION DOCUMENTS. All of the written, graphic and pictorial documents prepared or assembled for describing the design, location and physical characteristics of the elements of the project necessary for obtaining plan approval in accordance with section 106 of rule 4101:1-1-01 of the Administrative code.

CONTAINMENT BACKFLOW PREVENTION DEVICE. A device for the prevention of the backflow of liquids, solids, or gases that is installed by the supplier of, or as a requirement of, any public water system as defined in division (A) of section 6109.01 of the Revised Code.
CONTAMINATION. An impairment of the quality of the potable water that creates an actual hazard to the public health through poisoning or through the spread of disease by sewage, industrial fluids or waste.

CRITICAL LEVEL (C-L). An elevation (height) reference point that determines the minimum height at which a backflow preventer or vacuum breaker is installed above the flood level rim of the fixture or receptor served by the device. The critical level is the elevation level below which there is a potential for backflow to occur. If the critical level marking is not indicated on the device, the bottom of the device shall constitute the critical level.

CROSS CONNECTION. Any physical connection or arrangement between two otherwise separate piping systems, one of which contains potable water and the other either water of unknown or questionable safety or steam, gas or chemical, whereby there exists the possibility for flow from one system to the other, with the direction of flow depending on the pressure differential between the two systems (see “Backflow”).

DEAD END. A branch leading from a soil, waste or vent pipe; a building drain; or a building sewer, and terminating at a developed length of 2 feet (610 mm) or more by means of a plug, cap or other closed fitting.

DEPTH OF TRAP SEAL. The depth of liquid that would have to be removed from a full trap before air could pass through the trap.

DESIGN FLOOD ELEVATION. The elevation of the “design flood,” including wave height, relative to the datum specified on the legally designated flood hazard map.

DEVELOPED LENGTH. The length of a pipeline measured along the centerline of the pipe and fittings.

DISCHARGE PIPE. A pipe that conveys the discharges from plumbing fixtures or appliances.

DRAIN. Any pipe that carries wastewater or water-borne wastes in a building drainage system.

DRAINAGE FITTINGS. Type of fitting or fittings utilized in the drainage system. Drainage fittings are similar to cast-iron fittings, except that instead of having a bell and spigot, drainage fittings are recessed and tapped to eliminate ridges on the inside of the installed pipe.

DRAINAGE FIXTURE UNIT

Drainage (dfu). A measure of the probable discharge into the drainage system
by various types of plumbing fixtures. The drainage fixture-unit value for a particular fixture depends on its volume rate of drainage discharge, on the time duration of a single drainage operation and on the average time between successive operations.

DRAINAGE SYSTEM. Piping within a public or private premise that conveys sewage, rainwater or other liquid wastes to a point of disposal. A drainage system does not include the mains of a public sewer system or a private or public sewage treatment or disposal plant.

Building gravity. A drainage system that drains by gravity into the building sewer.

Sanitary. A drainage system that carries sewage and excludes storm, surface and ground water.

Storm. A drainage system that carries rainwater, surface water, subsurface water and similar liquid wastes.

EFFECTIVE OPENING. The minimum cross-sectional area at the point of water supply discharge, measured or expressed in terms of the diameter of a circle or, if the opening is not circular, the diameter of a circle of equivalent cross-sectional area. For faucets and similar fittings, the effective opening shall be measured at the smallest orifice in the fitting body or in the supply piping to the fitting.

EMERGENCY FLOOR DRAIN. A floor drain that does not receive the discharge of any drain or indirect waste pipe, and that protects against damage from accidental spills, fixture overflows and leakage.

ENGINE-MOUNTED TANK. A fuel tank furnished by the engine manufacturer or the emergency power system supplier and mounted on the engine, the engine-frame, or under as a subbase.

ESSENTIALLY NONTOXIC TRANSFER FLUIDS. Fluids having a Gosselin rating of 1, including propylene glycol; mineral oil; polydimethylsiloxane; hydrochlorofluorocarbon, chlorofluorocarbon and carbon refrigerants; and FDA-approved boiler water additives for steam boilers.

ESSENTIALLY TOXIC TRANSFER FLUIDS. Soil, waste or gray water and fluids having a Gosselin rating of 2 or more including ethylene glycol, hydrocarbon oils, ammonia refrigerants and hydrazine.

EXISTING INSTALLATIONS. Any plumbing system regulated by this code that was installed, or for which an approval has been issued.

FAUCET. A valve end of a water pipe through which water is drawn from or held within the pipe.
FILL VALVE. A water supply valve, opened or closed by means of a float or similar device, utilized to supply water to a tank. An antisiphon fill valve contains an antisiphon device in the form of an approved air gap or vacuum breaker that is an integral part of the fill valve unit and that is positioned on the discharge side of the water supply control valve.

FIRE CODE. The “Ohio Fire Code”.

FIXTURE. See “Plumbing fixture.”

FIXTURE BRANCH. A drain serving two or more fixtures that discharges to another drain or to a stack.

FIXTURE DRAIN. The drain from the trap of a fixture to a junction with any other drain pipe.

FIXTURE FITTING

Supply fitting. A fitting that controls the volume and/or directional flow of water and is either attached to or accessible from a fixture, or is used with an open or atmospheric discharge.

Waste fitting. A combination of components that conveys the sanitary waste from the outlet of a fixture to the connection to the sanitary drainage system.

FIXTURE SUPPLY. The water supply pipe connecting a fixture to a branch water supply pipe or directly to a main water supply pipe.

FLOOD HAZARD AREA. The greater of the following two areas:

1. The area within a flood plain subject to a 1-percent or greater chance of flooding in any given year.
2. The area designated as a flood hazard area on a legally designated flood hazard map.

FLOOD LEVEL RIM. The edge of the receptacle from which water overflows.

FLOW CONTROL (Vented). A device installed upstream from the interceptor having an orifice that controls the rate of flow through the interceptor and an air intake (vent) downstream from the orifice that allows air to be drawn into the flow stream.

FLOW PRESSURE. The pressure in the water supply pipe near the faucet or water outlet while the faucet or water outlet is wide open and flowing.

FLUSH TANK. A tank designed with a fill valve and flush valve to flush the contents of the bowl or usable portion of the fixture.

FLUSHOMETER TANK. A device integrated within an air accumulator vessel that is designed to discharge a predetermined quantity of water to fixtures for flushing purposes.
FLUSHOMETER VALVE. A valve attached to a pressurized water supply pipe and so designed that when activated it opens the line for direct flow into the fixture at a rate and quantity to operate the fixture properly, and then gradually closes to reseal fixture traps and avoid water hammer.

FUEL TANK. A tank containing fuel for an engine(s) or appliance.

GRAY WATER. Waste discharged from lavatories, bathtubs, showers, clothes washers and laundry trays.

GREASE INTERCEPTOR. A plumbing appurtenance that is installed in a sanitary drainage system to intercept oily and greasy wastes from a wastewater discharge. Such device has the ability to intercept free-floating fats and oils.

GREASE-LADEN WASTE. Effluent discharge that is produced from food processing, food preparation or other sources where grease, fats and oils enter automatic dishwasher prerinse stations, sinks or other appurtenances.

GREASE REMOVAL DEVICE, AUTOMATIC (GRD). A plumbing appurtenance that is installed in the sanitary drainage system to intercept free-floating fats, oils and grease from wastewater discharge. Such a device operates on a time-or event-controlled basis and has the ability to remove free-floating fats, oils and grease automatically without intervention from the user except for maintenance.

GRIDDED WATER DISTRIBUTION SYSTEM. A water distribution system where every water distribution pipe is interconnected so as to provide two or more paths to each fixture supply pipe.

HANGERS. See “Supports.”

HORIZONTAL BRANCH DRAIN. A drainage branch pipe extending laterally from a soil or waste stack or building drain, with or without vertical sections or branches, that receives the discharge from two or more fixture drains or branches and conducts the discharge to the soil or waste stack or to the building drain.

HORIZONTAL PIPE. Any pipe or fitting that makes an angle of less than 45 degrees (0.79 rad) with the horizontal.

HOT WATER. Water at a temperature greater than or equal to 110°F (43°C).

HOUSE TRAP. See “Building trap.”

HUB DRAIN. A drain whose inlet terminates not less than one inch (25.4mm) above the finished floor.

INDIRECT WASTE PIPE. A waste pipe that does not connect directly with the drainage system, but that discharges into the drainage system through an air break or air gap into a trap, fixture, receptor or interceptor.
INDIVIDUAL SEWAGE DISPOSAL SYSTEM. A system for disposal of domestic sewage by means of a septic tank, cesspool or mechanical treatment, designed for utilization apart from a public sewer to serve a single establishment or building.

INDIVIDUAL VENT. A pipe installed to vent a fixture trap and that connects with the vent system above the fixture served or terminates in the open air.

INDIVIDUAL WATER SUPPLY. A water supply that serves one or more families, and that is not an approved public water supply.

INTERCEPTOR. A device designed and installed to separate and retain for removal, by automatic or manual means, deleterious, hazardous or undesirable matter from normal wastes, while permitting normal sewage or wastes to discharge into the drainage system by gravity.

ISOLATION BACKFLOW PREVENTION DEVICE. A device for the prevention of the backflow of liquids, solids, or gases that is regulated by the plumbing code adopted pursuant to section 3781.10 of the Revised Code and rules adopted pursuant to this section. See “Backflow Preventer”.

JOINT

Expansion. A loop, return bend or return offset that provides for the expansion and contraction in a piping system and is utilized in tall buildings or where there is a rapid change of temperature, as in power plants, steam rooms and similar occupancies.

Flexible. Any joint between two pipes that permits one pipe to be deflected or moved without movement or deflection of the other pipe.

Mechanical. See “Mechanical joint.”

Slip. A type of joint made by means of a washer or a special type of packing compound in which one pipe is slipped into the end of an adjacent pipe.

JURISDICTION. The authority to enforce this code by municipal corporations, townships or counties certified by the board in accordance with section 3781.10 of the Revised Code, or by general health districts, or by the division of industrial compliance in the department of commerce.

LABEL. An identification applied on a product by the manufacturer that contains the name of the manufacturer, the function and performance characteristics of the product or material, and the name and identification of an approved agency and
that indicates that the representative sample of the product or material has been tested and evaluated by an approved agency (see building code section 1703.5 and building code definitions “Inspection Certificate,” “Manufacturer’s Designation,” and “Mark”).

LEAD-FREE SOLDER AND FLUX. Containing not more than 0.2-percent lead.

LEADER. An exterior drainage pipe for conveying storm water from roof or gutter drains to an approved means of disposal.

LISTED. Equipment, appliances, materials, products or services included in a directory published by an approved agency whose listing states either that the equipment, appliance, material, product or service meets identified standards listed in this code or have been tested and found suitable for use in a specified manner.

LOCAL VENT STACK. A vertical pipe to which connections are made from the fixture side of traps and through which vapor or foul air is removed from the fixture or device utilized on bedpan washers.

MACERATING TOILET SYSTEMS. An assembly consisting of a water closet and sump with a macerating pump that is designed to collect, grind and pump wastes from the water closet and up to two other fixtures connected to the sump.

MAIN. The principal pipe artery to which branches are connected.

MANIFOLD. See “Plumbing appurtenance.”

MECHANICAL CODE. The “Ohio Mechanical Code”.

MECHANICAL JOINT. A connection between pipes, fittings, or pipes and fittings that is not screwed, caulked, threaded, soldered, solvent cemented, brazed or welded. A joint in which compression is applied along the centerline of the pieces being joined. In some applications, the joint is part of a coupling, fitting or adapter.

MEDICAL GAS SYSTEM. The complete system to convey medical gases for direct patient application from central supply systems (bulk tanks, manifolds and medical air compressors), with pressure and operating controls, alarm warning systems, related components and piping networks extending to station outlet valves at patient use points.

MEDICAL VACUUM SYSTEMS. A system consisting of central-vacuum-producing equipment with pressure and operating controls, shutoff valves, alarm-warning systems, gauges and a network of piping extending to and terminating with suitable station inlets at locations where patient suction may be required.

NONPOTABLE WATER. Water not safe for drinking, personal or culinary
utilization.

NUISANCE. See “Public Nuisance.”

OCCUPANCY. The purpose for which a building or portion thereof is utilized or occupied.

OFFSET. A combination of approved bends that makes two changes in direction bringing one section of the pipe out of line but into a line parallel with the other section.

OPEN AIR. Outside the structure.

PLUMBING. The practice, materials and fixtures utilized in the installation, maintenance, extension and alteration of all piping, fixtures, plumbing appliances and plumbing appurtenances, within or adjacent to any structure, in connection with sanitary drainage or storm drainage facilities; venting systems; and public or private water supply systems.

PLUMBING APPLIANCE. Any one of a special class of plumbing fixtures **Water-connected or drain-connected devices** intended to perform a special function. Included are fixtures having the **These devices have their** operation or control dependent on one or more energized components, such as motors, controls, or heating elements, or pressure or temperature-sensing elements.

Such fixtures **devices** are manually adjusted or controlled by the owner or operator, or are operated automatically through one or more of the following actions: a time cycle, a temperature range, a pressure range, a measured volume or weight.

PLUMBING APPURTENANCE. A manufactured device, prefabricated assembly or an on-the-job assembly of component parts that is an adjunct to the basic piping system and plumbing fixtures. An appurtenance demands no additional water supply and does not add any discharge load to a fixture or to the drainage system.

PLUMBING FIXTURE. A receptacle or device that is either permanently or temporarily connected to the water distribution system of the premises and demands **connected to a water supply or discharges to a drainage system or both. Such receptacles or devices require a supply of water therefrom; discharges wastewater, or discharge liquid-borne waste materials or sewage either directly or indirectly to the drainage system of the premises; or requires both a water supply connection and a or liquid-borne solid waste; or require a supply of water and discharge to the a drainage system of the premises.

PLUMBING SYSTEM. Includes the water supply and distribution pipes; plumbing fixtures and traps; water-treating or water-using equipment; soil, waste
and vent pipes; and sanitary and storm sewers and building drains; in addition to
their respective connections, devices and appurtenances within a structure or
premises.

POLLUTION. An impairment of the quality of the potable water to a degree that
does not create a hazard to the public health but that does adversely and
unreasonably affect the aesthetic qualities of such potable water for domestic use.

POTABLE WATER. Water free from impurities present in amounts sufficient to
cause disease or harmful physiological effects and conforming to the
bacteriological and chemical quality requirements of the Public Health Service
Drinking Water Standards or the regulations of the public health authority having
jurisdiction.

POWER PIPING. Piping systems and their component parts that are not
building services piping systems, and that may be installed within electric power
generating stations, industrial and institutional plants, utility geothermal heating
systems, and central and district heating and cooling systems. Power piping
includes, but is not limited to, piping used in the distribution of plant and process
steam at boiler pressures greater than fifteen pounds per square inch gauge, high
temperature water piping from high pressure and high temperature boilers,
power boiler steam condensate piping, high pressure and high temperature water
condensate piping, and compressed air and hydraulic piping upstream of the first
stop valve off a system distribution header. See division (B) of section 4104.41 of
the Revised Code.

PRIVATE. In the classification of plumbing fixtures, “private” applies to fixtures
in residences and apartments, and to fixtures in nonpublic toilet rooms of hotels
and motels and similar installations in buildings where the plumbing fixtures are
intended for utilization by a family or an individual.

PROCESS PIPING. Piping systems and their component parts that are not
building services or power piping systems and that may be installed in petroleum
refineries; chemical, pharmaceutical, textile, paper, semiconductor, and
cryogenic plants; and related processing plants and terminals. See division (C) of
section 4104.41 of the Revised Code.

PUBLIC NUISANCE. Any building, structure, or part thereof, constructed,
erected, altered, manufactured, or repaired not in accordance with the Ohio
Revised Code or the rules of the board, and any building, structure, or part
thereof in which there is installed, altered, or repaired any fixture, device, and
material, or plumbing, heating, or ventilating system, or electric wiring not in
accordance with the Ohio Revised Code or the rules of the board. See division (C) of section 3781.11 of the Revised Code.

PUBLIC OR PUBLIC UTILIZATION. In the classification of plumbing fixtures, “public” applies to fixtures in general toilet rooms of schools, gymnasiums, hotels, airports, bus and railroad stations, public buildings, bars, public comfort stations, office buildings, stadiums, stores, restaurants and other installations where toilet fixtures are intended for public use.

PUBLIC WATER MAIN. A water supply pipe for public utilization controlled by public authority.

QUICK-CLOSING VALVE. A valve or faucet that closes automatically when released manually or that is controlled by a mechanical means for fast-action closing.

READY ACCESS. That which enables a fixture, appliance or equipment to be directly reached without requiring the removal or movement of any panel, door or similar obstruction and without the use of a portable ladder, step stool or similar device. (See “Access (to)"

REDUCED PRESSURE PRINCIPLE BACKFLOW PREVENTER. A backflow prevention device consisting of two independently acting check valves, internally force-loaded to a normally closed position and separated by an intermediate chamber (or zone) in which there is an automatic relief means of venting to the atmosphere, internally loaded to a normally open position between two tightly closing shutoff valves and with a means for testing for tightness of the checks and opening of the relief means.

REGISTERED DESIGN PROFESSIONAL. Any person holding a certificate issued under sections 4703.10, 4703.36 or 4733.14 of the Revised Code.

RELIEF VALVE

Pressure relief valve. A pressure-actuated valve held closed by a spring or other means and designed to relieve pressure automatically at the pressure at which such valve is set.

Temperature and pressure relief (T&P) valve. A combination relief valve designed to function as both a temperature relief and a pressure relief valve.

Temperature relief valve. A temperature-actuated valve designed to discharge automatically at the temperature at which such valve is set.

RELIEF VENT. A vent whose primary function is to provide circulation of air
between drainage and vent systems.

RIM. An unobstructed open edge of a fixture.

RISER. See “Water pipe, riser.”

RODENT PROOFING. *The installation of plumbing systems in a manner which will prevent the entry of rodents into a structure through openings created when any part of a plumbing system penetrates an exterior wall or floor assembly located near or on grade.*

ROOF DRAIN. A drain installed to receive water collecting on the surface of a roof and to discharge such water into a leader or a conductor.

ROUGH-IN. Parts of the plumbing system that are installed prior to the installation of fixtures. This includes drainage, water supply, vent piping and the necessary fixture supports and any fixtures that are built into the structure.

SELF-CLOSING FAUCET. A faucet containing a valve that automatically closes upon deactivation of the opening means.

SEPARATOR. See “Interceptor.”

SEWAGE. Any liquid waste containing animal or vegetable matter in suspension or solution, including liquids containing chemicals in solution.

SEWAGE EJECTORS. A device for lifting sewage by entraining the sewage in a high-velocity jet of steam, air or water.

SEWER

- **Building sewer.** See “Building sewer.”
- **Public sewer.** A common sewer directly controlled by public authority.

Sanitary sewer. A sewer that carries sewage and excludes storm, surface and ground water.

Storm sewer. A sewer that conveys rainwater, surface water, subsurface water and similar liquid wastes.

SINK, SERVICE. *Any designated sink so approved for liquid discharge, liquid filling, cleaning, and washing in a facility, and installed in a dedicated area or space.*

SLOPE. The fall (pitch) of a line of pipe in reference to a horizontal plane. In drainage, the slope is expressed as the fall in units vertical per units horizontal (percent) for a length of pipe.

SOIL PIPE. A pipe that conveys sewage containing fecal matter to the building
drain or building sewer.

SPILLPROOF VACUUM BREAKER. An assembly consisting of one check valve force-loaded closed and an air-inlet vent valve force-loaded open to atmosphere, positioned downstream of the check valve, and located between and including two tightly closing shutoff valves and a test cock.

STACK. A general term for any vertical line of soil, waste, vent or inside conductor piping that extends through at least one story with or without offsets.

STACK VENT. The extension of a soil or waste stack above the highest horizontal drain connected to the stack.

STACK VENTING. A method of venting a fixture or fixtures through the soil or waste stack.

STERILIZER

- **Boiling type.** A boiling-type sterilizer is a fixture of a nonpressure type utilized for boiling instruments, utensils or other equipment for disinfection. These devices are portable or are connected to the plumbing system.

- **Instrument.** A device for the sterilization of various instruments.

- **Pressure (autoclave).** A pressure vessel fixture designed to utilize steam under pressure for sterilizing.

- **Pressure instrument washer sterilizer.** A pressure instrument washer sterilizer is a pressure vessel fixture designed to both wash and sterilize instruments during the operating cycle of the fixture.

- **Utensil.** A device for the sterilization of utensils as utilized in health care services.

- **Water.** A water sterilizer is a device for sterilizing water and storing sterile water.

STERILIZER VENT. A separate pipe or stack, indirectly connected to the building drainage system at the lower terminal, that receives the vapors from nonpressure sterilizers, or the exhaust vapors from pressure sterilizers, and conducts the vapors directly to the open air. Also called vapor, steam, atmospheric or exhaust vent.

STORM DRAIN. See “Drainage system, storm.”

STRUCTURE. That which is built or constructed or a portion thereof.

SUBSOIL DRAIN. A drain that collects subsurface water or seepage water and conveys such water to a place of disposal.

SUMP. A tank or pit that receives sewage or liquid waste, located below the normal grade of the gravity system and that must be emptied by mechanical
means.

SUMP PUMP. An automatic water pump powered by an electric motor for the removal of drainage, except raw sewage, from a sump, pit or low point.

SUMP VENT. A vent from pneumatic sewage ejectors, or similar equipment, that terminates separately to the open air.

SUPPORTS. Devices for supporting and securing pipe, fixtures and equipment.

SWIMMING POOL. See section 3109.2 of the building code for classifications of swimming pool.

TEMPERED WATER. Water having a temperature range between 85°F (29°C) and 110°F (43°C).

THIRD-PARTY CERTIFICATION AGENCY. See “APPROVED AGENCY”.

THIRD-PARTY CERTIFIED. See “LISTED”.

THIRD-PARTY TESTED. Procedure by which an approved agency provides documentation that a product, material or system conforms to specified requirements.

TRAP. A fitting or device that provides a liquid seal to prevent the emission of sewer gases without materially affecting the flow of sewage or wastewater through the trap.

TRAP SEAL. The vertical distance between the weir and the top of the dip of the trap.

UNSTABLE GROUND. Earth that does not provide a uniform bearing for the barrel of the sewer pipe between the joints at the bottom of the pipe trench.

VACUUM. Any pressure less than that exerted by the atmosphere.

VACUUM BREAKER. A type of backflow preventer installed on openings subject to normal atmospheric pressure that prevents backflow by admitting atmospheric pressure through ports to the discharge side of the device.

VENT PIPE. See “Vent system.”

VENT STACK. A vertical vent pipe installed primarily for the purpose of providing circulation of air to and from any part of the drainage system.

VENT SYSTEM. A pipe or pipes installed to provide a flow of air to or from a drainage system, or to provide a circulation of air within such system to protect trap seals from siphonage and backpressure.

VERTICAL PIPE. Any pipe or fitting that makes an angle of 45 degrees (0.79 rad) or more with the horizontal.

WALL-HUNG WATER CLOSET. A wall-mounted water closet installed in such a way that the fixture does not touch the floor.
WASTE. The discharge from any fixture, appliance, area or appurtenance that does not contain fecal matter.

WASTE PIPE. A pipe that conveys only waste.

WASTE RECEPTOR. *A device for receiving the discharge of a waste pipe or pipes and discharges them by gravity into the sanitary drainage system.* Waste receptors include, but are not limited to, floor drains, floor sinks, trench drains, hub drains, standpipes, mop basins, service sinks, and laundry trays.

WATER-HAMMER ARRESTOR. A device utilized to absorb the pressure surge (water hammer) that occurs when water flow is suddenly stopped in a water supply system.

WATER HEATER. Any heating appliance or equipment that heats potable water and supplies such water to the potable hot water distribution system.

WATER MAIN. A water supply pipe or system of pipes, installed and maintained by a city, township, county, public utility company or other public entity, on public property, in the street or in an approved dedicated easement of public or community use.

WATER OUTLET. A discharge opening through which water is supplied to a fixture, into the atmosphere (except into an open tank that is part of the water supply system), to a boiler or heating system, or to any devices or equipment requiring water to operate but which are not part of the plumbing system.

WATER PIPE

- **Riser.** A water supply pipe that extends one full story or more to convey water to branches or to a group of fixtures.

- **Water distribution pipe.** A pipe within the structure or on the premises that conveys water from the water service pipe, or from the meter when the meter is at the structure, to the points of utilization.

- **Water service pipe.** The pipe from the water main or other source of potable water supply, or from the meter when the meter is at the public right of way, to the water distribution system of the building served.

WATER SUPPLY SYSTEM. The water service pipe, water distribution pipes, and the necessary connecting pipes, fittings, control valves and all appurtenances in or adjacent to the structure or premises.

WELL

- **Bored.** A well constructed by boring a hole in the ground with an auger and installing a casing.

- **Drilled.** A well constructed by making a hole in the ground with a drilling machine of any type and installing casing and screen.
Driven. A well constructed by driving a pipe in the ground. The drive pipe is usually fitted with a well point and screen.

Dug. A well constructed by excavating a large-diameter shaft and installing a casing.

WHIRLPOOL BATHTUB. A plumbing appliance consisting of a bathtub fixture that is equipped and fitted with a circulating piping system designed to accept, circulate and discharge bathtub water upon each use.

YOKE VENT. A pipe connecting upward from a soil or waste stack to a vent stack for the purpose of preventing pressure changes in the stacks.
Effective: 01/01/2016

Five Year Review (FYR) Dates: 11/01/2016

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04, 4104.41
Prior Effective Dates: 7/1/95, 3/1/98, 4/1/99, 1/1/02, 3/1/05, 7/1/07, 11/01/11, 7/1/14
4101:3-3-01 General regulations.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 301
GENERAL

301.1 Scope. The provisions of this chapter shall govern the general regulations regarding the design and installation of plumbing not specific to other chapters.

301.2 System installation. Plumbing shall be installed with due regard to preservation of the strength of structural members and prevention of damage to walls and other surfaces through fixture usage.

301.3 Connections to the sanitary drainage system. All plumbing fixtures, drains, appurtenances and appliances used to receive or discharge liquid wastes or sewage shall be directly connected to the sanitary drainage system of the building or premises, in accordance with the requirements of this code and the requirements of the department of the city engineer, in cities having such departments, the boards of health of health districts, or the sewer purveyor, as appropriate (see division (D) of section 3781.03 of the Revised Code). This section shall not be construed to prevent the indirect waste systems required by Chapter 8.

Exceptions:
1. Bathtubs, showers, lavatories, clothes washers and laundry sinks shall not be required to discharge to the sanitary drainage system where such fixtures discharge to a gray water recycling system approved by the “Ohio Environmental Protection Agency” in accordance with Chapter 3745-42 of the Administrative Code.
2. Wastes from dental or cuspidor fountains, drinking fountains, bar sinks, soda fountains, floor drains or shower drains may be indirectly connected by means of an air break to the sanitary drainage system. Each indirectly connected item listed above shall individually discharge to a directly connected floor drain, waste receptor or standpipe.

301.4 Connections to water supply. Every plumbing fixture, device or appliance
requiring or using water for its proper operation shall be directly or indirectly connected to the water supply system in accordance with the provisions of this code.

301.5 Pipe, tube and fitting sizes. Unless otherwise specified, the pipe, tube and fitting sizes specified in this code are expressed in nominal or standard sizes as designated in the referenced material standards.

301.6 Prohibited locations. Plumbing systems shall not be located in an elevator shaft or in an elevator equipment room.

 Exception: Floor drains, sumps and sump pumps shall be permitted at the base of the shaft, provided that they are indirectly connected to the plumbing system.

301.7 Conflicts. In instances where conflicts occur between this code and the manufacturer’s installation instructions, the more restrictive provisions shall apply.

SECTION 302

EXCLUSION OF MATERIALS DETRIMENTAL TO THE SEWER SYSTEM

302.1 Detrimental or dangerous materials. Ashes, cinders or rags; flammable, poisonous or explosive liquids or gases; oil, grease or any other insoluble material capable of obstructing, damaging or overloading the building drainage or sewer system, or capable of interfering with the normal operation of the sewage treatment processes, shall not be deposited, by any means, into such systems.

302.2 Industrial wastes. Waste products from manufacturing or industrial operations shall not be introduced into the public sewer until it has been determined by the building official or other authority having jurisdiction that the introduction thereof will not damage the public sewer system or interfere with the functioning of the sewage treatment plant.

SECTION 303

MATERIALS

303.1 Identification. Each length of pipe and each pipe fitting, trap, fixture, material and device utilized in a plumbing system shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.

303.2 Installation of materials. All materials used shall be installed in strict
accordance with the standards under which the materials are accepted and approved. In the absence of such installation procedures, the manufacturer’s installation instructions shall be followed. Where the requirements of referenced standards or manufacturer’s installation instructions do not conform to minimum provisions of this code, the provisions of this code shall apply.

303.3 Plastic pipe, fittings and components. All plastic pipe, fittings and components shall be third-party certified listed as conforming to NSF 14.

303.4 Third-party Approved agency testing and certification. All plumbing products and materials shall comply be listed by an approved agency as complying with the applicable referenced standards, specifications and performance criteria of this code and shall be identified in accordance with Section 303.1. When required by Table 303.4, plumbing products and materials shall either be tested by an approved third-party testing agency or certified by an approved third-party certification agency. Products and materials shall be identified in accordance with Section 303.1

| TABLE 303.4 |
| PRODUCTS AND MATERIALS REQUIRING THIRD-PARTY TESTING AND THIRD-PARTY CERTIFICATION |
PRODUCT OR MATERIAL	THIRD-PARTY CERTIFIED	THIRD-PARTY TESTED
Potable water supply system components and potable water fixture fittings	Required	—
Sanitary drainage and vent system components	Plastic pipe, fittings and pipe related components	All others
Waste fixture fittings	Plastic pipe, fittings and pipe related components	All others
Storm drainage system components	Plastic pipe, fittings and pipe related components	All others
Plumbing fixtures	—	Required
Plumbing appliances	Required	—
Backflow prevention devices	Required	—
Water distribution system safety devices	Required	—
Special waste system components	—	Required
Subsoil drainage system components	—	Required

SECTION 304
RODENTPROOFING
304.1 General. Plumbing systems shall be designed and installed in accordance with Sections 304.2 through 304.4 to prevent rodents from entering structures.

304.2 Strainer plates. All strainer plates on drain inlets shall be designed and installed so that all openings are not greater than 1/2 inch (12.7 mm) in least dimension.

304.3 Meter boxes. Meter boxes shall be constructed in such a manner that rodents are prevented from entering a structure by way of the water service pipes connecting the meter box and the structure.

304.4 Openings for pipes. In or on structures where openings have been made in walls, floors or ceilings for the passage of pipes, such openings shall be closed and protected by the installation of approved metal collars that are securely fastened to the adjoining structure.

SECTION 305
PROTECTION OF PIPES AND PLUMBING SYSTEM COMPONENTS

305.1 Corrosion. Pipes passing through concrete or cinder walls and floors or other corrosive material shall be protected against external corrosion by a protective sheathing or wrapping or other means that will withstand any reaction from the lime and acid of concrete, cinder or other corrosive material. Sheathing or wrapping shall allow for movement including expansion and contraction of piping. Minimum wall thickness of material shall be 0.025 inch (0.64 mm).

305.2 Breakage. Pipes passing through or under walls shall be protected from breakage.

305.3 Stress and strain. Piping in a plumbing system shall be installed so as to prevent strains and stresses that exceed the structural strength of the pipe. Where necessary, provisions shall be made to protect piping from damage resulting from expansion, contraction and structural settlement.

305.4 Sleeves. Annular spaces between sleeves and pipes shall be filled or tightly caulked in an approved manner. Annular spaces between sleeves and pipes in fire-resistance-rated assemblies shall be filled or tightly caulked in accordance with the building code.

305.5 Pipes through or under footings or foundation walls. Any pipe that passes under a footing or through a foundation wall shall be provided with a relieving arch, or a pipe sleeve pipe shall be built into the foundation wall. The sleeve shall be two pipe sizes greater than the pipe passing through the wall.

305.6 Freezing. Water, soil and waste pipes shall not be installed outside of a
building, in attics or crawl spaces, concealed in outside walls, or in any other place subjected to freezing temperatures unless adequate provision is made to protect such pipes from freezing by insulation or heat or both. Exterior water supply system piping shall be installed not less than 6 inches (152 mm) below the frost line and not less than 12 inches (305 mm) below grade.

305.6.1 Sewer depth. Deleted.

305.7 Waterproofing of openings. Joints at the roof and around vent pipes, shall be made water-tight by the use of lead, copper, galvanized steel, aluminum, plastic or other approved flashings or flashing material. Exterior wall openings shall be made water-tight.

305.8 Protection against physical damage. In concealed locations where piping, other than cast-iron or galvanized steel, is installed through holes or notches in studs, joists, rafters or similar members less than 1 ½ inches (38 mm) from the nearest edge of the member, the pipe shall be protected by steel shield plates. Such shield plates shall have a thickness of not less than 0.0575 inch (1.463 mm) (No. 16 gage). Such plates shall cover the area of the pipe where the member is notched or bored, and shall extend a minimum of 2 inches (51 mm) above sole plates and below top plates.

305.9 Protection of components of plumbing system. Components of a plumbing system installed along alleyways, driveways, parking garages or other locations exposed to damage shall be recessed into the wall or otherwise protected in an approved manner.

SECTION 306
TRENCHING, EXCAVATION AND BACKFILL

306.1 Support of piping. Buried piping shall be supported throughout its entire length.

306.2 Trenching and bedding. Where trenches are excavated such that the bottom of the trench forms the bed for the pipe, solid and continuous load-bearing support shall be provided between joints. Bell holes, hub holes and coupling holes shall be provided at points where the pipe is joined. Such pipe shall not be supported on blocks to grade. In instances where the materials manufacturer’s installation instructions are more restrictive than those prescribed by the code, the material shall be installed in accordance with the more restrictive requirement.

306.2.1 Overexcavation. Where trenches are excavated below the installation level of the pipe such that the bottom of the trench does not form the bed for
the pipe, the trench shall be backfilled to the installation level of the bottom of the pipe with sand or fine gravel placed in layers of 6 inches (152 mm) maximum depth and such backfill shall be compacted after each placement.

306.2.2 Rock removal. Where rock is encountered in trenching, the rock shall be removed to a minimum of 3 inches (76 mm) below the installation level of the bottom of the pipe, and the trench shall be backfilled to the installation level of the bottom of the pipe with sand tamped in place so as to provide uniform load-bearing support for the pipe between joints. The pipe, including the joints, shall not rest on rock at any point.

306.2.3 Soft load-bearing materials. If soft materials of poor load-bearing quality are found at the bottom of the trench, stabilization shall be achieved by overexcavating a minimum of two pipe diameters and backfilling to the installation level of the bottom of the pipe with fine gravel, crushed stone or a concrete foundation. The concrete foundation shall be bedded with sand tamped into place so as to provide uniform load-bearing support for the pipe between joints.

306.3 Backfilling. Backfill shall be free from discarded construction material and debris. Loose earth free from rocks, broken concrete and frozen chunks shall be placed in the trench in 6-inch (152 mm) layers and tamped in place until the crown of the pipe is covered by 12 inches (305 mm) of tamped earth. The backfill under and beside the pipe shall be compacted for pipe support. Backfill shall be brought up evenly on both sides of the pipe so that the pipe remains aligned. In instances where the manufacturer’s installation instructions for materials are more restrictive than those prescribed by the code, the material shall be installed in accordance with the more restrictive requirement.

306.4 Tunneling. Where pipe is to be installed by tunneling, jacking or a combination of both, the pipe shall be protected from damage during installation and from subsequent uneven loading. Where earth tunnels are used, adequate supporting structures shall be provided to prevent future settling or caving.

SECTION 307
STRUCTURAL SAFETY

307.1 General. In the process of installing or repairing any part of a plumbing and drainage installation, the finished floors, walls, ceilings, tile work or any other part of the building or premises that must be changed or replaced shall be left in a safe structural condition in accordance with the requirements of the building code.

307.2 Cutting, notching or bored holes. A framing member shall not be cut,
notched or bored in excess of limitations specified in the building code.

307.3 Penetrations of floor/ceiling assemblies and fire-resistance-rated assemblies. Penetrations of floor/ceiling assemblies and assemblies required to have a fire-resistance rating shall be protected in accordance with the building code.

307.4 Alterations to trusses. Truss members and components shall not be cut, drilled, notched, spliced or otherwise altered in any way without written concurrence and approval of a registered design professional. Alterations resulting in the addition of loads to any member (e.g., HVAC equipment, water heater) shall not be permitted without verification that the truss is capable of supporting such additional loading.

307.5 Trench location. Trenches installed parallel to footings shall not extend below the 45-degree (0.79 rad) bearing plane of the footing or wall.

307.6 Piping materials exposed within plenums. All piping materials exposed within plenums shall comply with the provisions of the mechanical code.

307.7 Enforcement. Enforcement of the provisions of this section is the responsibility of the certified building official of the certified municipal, county, or township building department having jurisdiction or the superintendent of the division of industrial compliance.

SECTION 308
PIPING SUPPORT

308.1 General. All plumbing piping shall be supported in accordance with this section.

308.2 Piping seismic supports. Where earthquake loads are applicable in accordance with the building code, plumbing piping supports shall be designed and installed for the seismic forces in accordance with the building code.

308.3 Materials. Hangers, anchors and supports shall support the piping and the contents of the piping. Hangers and strapping material shall be of approved material that will not promote galvanic action.

308.4 Structural attachment. Hangers and anchors shall be attached to the building construction in an approved manner.

308.5 Interval of support. Pipe shall be supported in accordance with Table 308.5.

Exception: The interval of support for piping systems designed to provide for
expansion/contraction shall conform to the engineered design in accordance with Section 106.5 of the building code.

308.6 Sway bracing. Rigid support sway bracing shall be provided at changes in direction greater than 45 degrees (0.79 rad) for pipe sizes 4 inches (102 mm) and larger.

308.7 Anchorage. Anchorage shall be provided to restrain drainage piping from axial movement.

308.7.1 Location. For pipe sizes greater than 4 inches (102 mm), restraints shall be provided for drain pipes at all changes in direction and at all changes in diameter greater than two pipe sizes. Braces, blocks, rodding and other suitable methods as specified by the coupling manufacturer shall be utilized.

308.8 Expansion joint fittings. Expansion joint fittings shall be used only where necessary to provide for expansion and contraction of the pipes. Expansion joint fittings shall be of the typical material suitable for use with the type of piping in which such fittings are installed.

308.9 Parallel water distribution systems. Piping bundles for manifold systems shall be supported in accordance with Table 308.5. Support at changes in direction shall be in accordance with the manufacturer’s installation instructions. Hot and cold water piping shall not be grouped in the same bundle. Where hot water piping is bundled, each hot water pipe shall be insulated.

TABLE 308.5
HANGER SPACING

<table>
<thead>
<tr>
<th>PIPING MATERIAL</th>
<th>MAXIMUM HORIZONTAL SPACING (feet)</th>
<th>MAXIMUM VERTICAL SPACING (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS pipe</td>
<td>4</td>
<td>10(^b)</td>
</tr>
<tr>
<td>Aluminum tubing</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Brass pipe</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Cast-iron pipe</td>
<td>5(^a)</td>
<td>15</td>
</tr>
<tr>
<td>Copper or copper-alloy pipe</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Copper or copper-alloy tubing, 1 ¼-inch diameter and smaller</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Copper or copper-alloy tubing, 1 ½-inch diameter and larger</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Cross-linked polyethylene (PEX) pipe</td>
<td>2.67 (32 inches)</td>
<td>10(^b)</td>
</tr>
<tr>
<td>Pipe Material</td>
<td>Maximum Horizontal Spacing (feet)</td>
<td>Minimum Vertical Distance (feet)</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Cross-linked polyethylene/aluminum/cross-linked polyethylene (PEX-AL-PEX) pipe</td>
<td>2.67 (32 inches)</td>
<td>4</td>
</tr>
<tr>
<td>CPVC pipe or tubing, 1 inch and smaller</td>
<td>3</td>
<td>10b</td>
</tr>
<tr>
<td>CPVC pipe or tubing, 1 ¼ inches and larger</td>
<td>4</td>
<td>10b</td>
</tr>
<tr>
<td>Steel pipe</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Lead pipe</td>
<td>Continuous</td>
<td>4</td>
</tr>
<tr>
<td>Polyethylene/aluminum/polyethylene (PE-AL-PE) pipe</td>
<td>2.67 (32 inches)</td>
<td>4</td>
</tr>
<tr>
<td>Polypropylene (PP) pipe or tubing 1 inch and smaller</td>
<td>2.67 (32 inches)</td>
<td>10b</td>
</tr>
<tr>
<td>Polypropylene (PP) pipe or tubing, 1 ¼ inches and larger</td>
<td>4</td>
<td>10b</td>
</tr>
<tr>
<td>PVC pipe</td>
<td>4</td>
<td>10b</td>
</tr>
<tr>
<td>Stainless steel drainage systems</td>
<td>10</td>
<td>10b</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

a. The maximum horizontal spacing of cast-iron pipe hangers shall be increased to 10 feet where 10-foot lengths of pipe are installed.

b. Midstory guide for sizes 2 inches and smaller.

SECTION 309
FLOOD HAZARD RESISTANCE

309.1 General. All buildings and structures which have been determined to require flood resistant construction by the local flood plain administrator, as a participant in the "National Flood Insurance Program", shall be constructed as required by the provisions of this section 1612 of the building code for approval under the "Regulations for Floodplain Management and Flood Hazard Identification" of the "National Flood Insurance Program" pursuant to 44 "CFR parts 59-77" and the authority's "Flood Damage Prevention Ordinance."

309.2 Flood hazard. Deleted.

309.3 Flood hazard areas subject to high-velocity wave action. Deleted.

SECTION 310
WASHROOM AND TOILET ROOM REQUIREMENTS
310.1 **Light and ventilation.** Washrooms and toilet rooms shall be illuminated and ventilated in accordance with the **building code** and **mechanical code**.

310.2 **Location of fixtures and piping.** Piping, fixtures or equipment shall not be located in such a manner as to interfere with the normal operation of windows, doors or other means of egress openings.

310.3 **Interior finish.** Interior finish surfaces of toilet rooms shall comply with the **building code**.

310.4 **Water closet compartment.** Each water closet utilized by the public or employees shall occupy a separate compartment with walls or partitions and a door enclosing the fixtures to ensure privacy.

 Exceptions:

 1. Water closet compartments shall not be required in a single-occupant toilet room with a lockable door.
 2. Toilet rooms located in day care and child-care facilities and containing two or more water closets shall be permitted to have one water closet without an enclosing compartment.
 3. This provision is not applicable to toilet areas located within Group I-3 housing areas.

310.5 **Urinal partitions.** Deleted.

310.6 **Enforcement.** Enforcement of the provisions of this section is the responsibility of the certified building official of the certified municipal, county, or township building department having jurisdiction or the superintendent of the division of industrial compliance.

SECTION 311

TOILET FACILITIES FOR WORKERS

311.1 **General.** Deleted.

SECTION 312

TESTS AND INSPECTIONS

312.1 **Required tests.** The **owner or owner’s representative** shall **cause** the applicable tests prescribed in Sections 312.2 through **312.11 to be made** to determine compliance with the provisions of this code. **Reasonable advance notice shall be given** to the **building official** when the plumbing work is ready for
tests. The owner or owner’s representative shall keep records of the tests and shall submit such records to the building official upon request.

312.1 Test gauges. Gauges used for testing shall be as follows:

1. Tests requiring a pressure of 10 pounds per square inch (psi) (69 kPa) or less shall utilize a testing gauge having increments of 0.10 psi (0.69 kPa) or less.
2. Tests requiring a pressure of greater than 10 psi (69 kPa) but less than or equal to 100 psi (689 kPa) shall utilize a testing gauge having increments of 1 psi (6.9 kPa) or less.
3. Tests requiring a pressure of greater than 100 psi (689 kPa) shall utilize a testing gauge having increments of 2 psi (14 kPa) or less.

312.1.2 Test media. All plumbing system piping shall be tested with water. Exception: Plumbing system piping is permitted to be tested with air or another compressed gas only when specifically allowed by the manufacturer of the proposed piping and when tested in accordance with the pressure limitations and conditions prescribed by that manufacturer.

312.2 Drainage and vent water test. A water test shall be applied to the drainage system either in its entirety or in sections. If applied to the entire system, all openings in the piping shall be tightly closed, except the highest opening, and the system shall be filled with water to the point of overflow. If the system is tested in sections, each opening shall be tightly plugged except the highest openings of the section under test, and each section shall be filled with water, but no section shall be tested with less than a 10-foot (3048 mm) head of water. In testing successive sections, at least the upper 10 feet (3048 mm) of the next preceding section shall be tested so that no joint or pipe in the building, except the uppermost 10 feet (3048 mm) of the system, shall have been submitted to a test of less than a 10-foot (3048 mm) head of water. This pressure shall be held for at least 15 minutes. The system shall then be tight at all points.

312.3 Drainage and vent air test. An air test shall be made by forcing air into the system until there is a uniform gauge pressure of 5 psi (34.5 kPa) or sufficient to balance a 10-inch (254 mm) column of mercury. This pressure shall be held for a test period of at least 15 minutes. Any adjustments to the test pressure required because of changes in ambient temperature or the seating of gaskets shall be made prior to the beginning of the test period.
312.4 Drainage and vent final test. The final test of the completed drainage and vent systems shall be made by air test after the fixtures are connected, with or without smoke or peppermint as follows:
 1. Close all stack openings;
 2. Apply air pressure to the entire drainage and vent system or to sections thereof equivalent to at least 1 in. water column (248.8 Pa);
 3. Maintain this pressure starting fifteen (15) minutes before beginning inspection;
 4. Indicate the system to be air-tight at all points.

312.5 Water supply system test. Upon completion of a section of or the entire water supply system, the system, or portion completed, shall be tested and proved tight under a water pressure not less than 10 percent in excess of the working pressure under which the system is to be used; or, for piping systems other than plastic, by an air test of not less than 50 psi (344 kPa). This pressure shall be held for at least 15 minutes. The water utilized for tests shall be obtained from a potable source of supply. The required tests shall be performed in accordance with this section and Section 108.8 of the building code.

312.6 Gravity sewer test. Deleted.

312.7 Forced sewer test. Deleted.

312.8 Storm drainage system test. Storm drain systems within a building shall be tested by water or air in accordance with Section 312.2 or 312.3.

312.9 Shower liner test. Where shower floors and receptors are made water-tight by the application of materials required by Section 417.5.2, the completed liner installation shall be tested. The pipe from the shower drain shall be plugged water tight for the test. The floor and receptor area shall be filled with potable water to a depth of not less than 2 inches (51 mm) measured at the threshold. Where a threshold of at least 2 inches (51 mm) high does not exist, a temporary threshold shall be constructed to retain the test water in the lined floor or receptor area to a level not less than 2 inches (51 mm) deep measured at the threshold. The water shall be retained for a test period of not less than 15 minutes, and there shall not be evidence of leakage.
 Exception: The shower liner test is not required for one-, two-, or three-family dwellings unless required by the shower liner manufacturer’s installation instructions.

312.10 Inspection and testing of isolation backflow prevention assemblies devices required by this code. Inspection and testing shall comply with Sections 312.10.1 and 312.10.2. Inspection and testing requirements for containment
backflow prevention devices required by the water supplier shall be in accordance with rule 3745-95-06 of the Administrative Code and enforced by the water supplier.

312.10.1 Inspections. Annual inspections shall be made of all backflow prevention assemblies and air gaps to determine whether they are operable.

312.10.2 Testing. Reduced pressure principle backflow preventer assemblies, double check-valve assemblies, pressure vacuum breaker assemblies, reduced pressure detector fire protection backflow prevention assemblies, double check detector fire protection backflow prevention assemblies, hose connection backflow preventers, and spillproof vacuum breakers shall be tested at the time of installation, immediately after repairs or relocation and at least annually. The testing procedure shall be performed in accordance with one of the following standards:

ASSE 5013, ASSE 5015, ASSE 5020, ASSE 5047, ASSE 5048, ASSE 5052, ASSE 5056, CSA B64.10 or CSA B64.10.1.

312.11 Operational testing of low pressure cut-off device, low suction throttling valves, and variable speed suction limiting controls. Although enforcement of this section is outside the scope of the plumbing code, it is important for owners to note that rule 3745-95-07 of the Administrative Code requires that the owner certify to the supplier of water that their low pressure cut-off devices, low suction throttling valves, and variable speed suction limiting controls are maintained in proper working order. Enforcement of this requirement and the referenced rule is the responsibility of the water supplier. See Section 606.5.5 of this code for additional information.

312.12 Inspections. No part of any plumbing or drainage system shall be covered until it has been inspected, tested, and approved, except as provided in this section.

Failure of the inspector to inspect the work within four days, exclusive of Saturdays, Sundays, and legal holidays, after the work is ready for inspection, allows the work to proceed.

SECTION 313
EQUIPMENT EFFICIENCIES
313.1 General. Equipment efficiencies shall be in accordance with the *the applicable standard referenced in Chapter 13 of the building code or Chapter 11 of the “Residential Code of Ohio”*.

SECTION 314
CONDENSATE DISPOSAL

314.1 Fuel-burning appliances. Liquid combustion by-products of condensing appliances shall be collected and discharged to an approved plumbing fixture or disposal area in accordance with the manufacturer’s installation instructions. Condensate piping shall be of approved corrosion-resistant material and shall not be smaller than the drain connection on the appliance. Such piping shall maintain a minimum horizontal slope in the direction of discharge of not less than one-eighth unit vertical in 12 units horizontal (1-percent slope).

314.2 Evaporators and cooling coils. Condensate drain systems shall be provided for equipment and appliances containing evaporators or cooling coils. Condensate drain systems shall be designed, constructed and installed in accordance with Sections 314.2.1 through 314.2.4.

314.2.1 Condensate disposal. Condensate from all cooling coils and evaporators shall be conveyed from the drain pan outlet to an approved place of disposal. Such piping shall maintain a minimum horizontal slope in the direction of discharge of not less than one-eighth unit vertical in 12 units horizontal (1-percent slope). Condensate shall not discharge into a street, alley or other areas so as to cause a nuisance.

314.2.2 Drain pipe materials and sizes. Components of the condensate disposal system shall be cast iron, galvanized steel, copper, cross-linked polyethylene, polybutylene, polyethylene, ABS, CPVC or PVC pipe or tubing. All components shall be selected for the pressure and temperature rating of the installation. Joints and connections shall be made in accordance with the applicable provisions of Chapter 7 relative to the material type. Condensate waste and drain line size shall be not less than \(\frac{3}{4}\)-inch (19 mm) internal diameter and shall not decrease in size from the drain pan connection to the place of condensate disposal. Where the drain pipes from more than one unit are manifolded together for condensate drainage, the pipe or tubing shall be sized in accordance with Table 314.2.2.

314.2.3 Auxiliary and secondary drain systems. In addition to the requirements of Section 314.2.1, where damage to any building components could occur as a result of overflow from the equipment primary condensate removal system, one of the following auxiliary
protection methods shall be provided for each cooling coil or fuel-fired appliance that produces condensate:

1. An auxiliary drain pan with a separate drain shall be provided under the coils on which condensation will occur. The auxiliary pan drain shall discharge to a conspicuous point of disposal to alert occupants in the event of a stoppage of the primary drain. The pan shall have a minimum depth of 1½ inches (38 mm), shall not be less than 3 inches (76 mm) larger than the unit or the coil dimensions in width and length and shall be constructed of corrosion-resistant material. Galvanized sheet metal pans shall have a minimum thickness of not less than 0.0236-inch (0.6010 mm) (No. 24 gage) galvanized sheet metal. Nonmetallic pans shall have a minimum thickness of not less than 0.0625 inch (1.6 mm).

2. A separate overflow drain line shall be connected to the drain pan provided with the equipment. Such overflow drain shall discharge to a conspicuous point of disposal to alert occupants in the event of a stoppage of the primary drain. The overflow drain line shall connect to the drain pan at a higher level than the primary drain connection.

3. An auxiliary drain pan without a separate drain line shall be provided under the coils on which condensate will occur. Such pan shall be equipped with a water-level detection device conforming to UL 508 that will shut off the equipment served prior to overflow of the pan. The auxiliary drain pan shall be constructed in accordance with Item 1 of this section.

4. A water-level detection device conforming to UL 508 shall be provided that will shut off the equipment served in the event that the primary drain is blocked. The device shall be installed in the primary drain line, the overflow drain line, or in the equipment-supplied drain pan, located at a point higher than the primary drain line connection and below the overflow rim of such pan.

Exception: Fuel-fired appliances that automatically shut down operation in the event of a stoppage in the condensate drainage system.

TABLE 314.2.2
CONDENSATE DRAIN SIZING

<table>
<thead>
<tr>
<th>EQUIPMENT CAPACITY</th>
<th>MINIMUM CONDENSATE PIPE DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 20 tons of refrigeration</td>
<td>3/4 inch</td>
</tr>
<tr>
<td>Over 20 tons to 40 tons of refrigeration</td>
<td>1 inch</td>
</tr>
<tr>
<td>Over 40 tons to 90 tons of refrigeration</td>
<td>1 1/4 inch</td>
</tr>
<tr>
<td>Over 90 tons to 125 tons of refrigeration</td>
<td>1 1/2 inch</td>
</tr>
</tbody>
</table>
314.2.3.1 Water-level monitoring devices. On down-flow units and all other coils that do not have a secondary drain or provisions to install a secondary or auxiliary drain pan, a water-level monitoring device shall be installed inside the primary drain pan. This device shall shut off the equipment served in the event that the primary drain becomes restricted. Devices installed in the drain line shall not be permitted.

314.2.3.2 Appliance, equipment and insulation in pans. Where appliances, equipment or insulation are subject to water damage when auxiliary drain pans fill such portions of the appliances, equipment and insulation shall be installed above the flood level rim of the pan. Supports located inside of the pan to support the appliance or equipment shall be water resistant and approved.

314.2.4 Traps. Condensate drains shall be trapped as required by the equipment or appliance manufacturer.

314.3 Enforcement. Enforcement of the provisions of this section is the responsibility of the certified building official of the certified municipal, county, or township building department having jurisdiction or the superintendent of the division of industrial compliance.

SECTION 315
WELDING AND BRAZING

315.1 Scope. This section, consistent with section 4104.44 of the Revised Code, governs the requirements for welding and brazing of metallic building services (including medical gas) piping systems referenced by this code.

315.2 Procedure specification. Each manufacturer or contractor of metallic building services piping systems is responsible for the welding and brazing done by his company or organization and shall specify and certify, in writing, a welding or brazing procedure that provides specific direction to the welder or brazer and complies with section IX of the ASME Boiler and Pressure Vessel Code.

315.3 Procedure qualification records. Each manufacturer or contractor is responsible for getting each procedure described in section 315.2 qualified by an independent testing laboratory that has, on staff, a welding inspector certified by
the “American Welding Society (AWS).” Qualification testing determines that the specified joint construction is capable of providing the required properties for its intended application. The procedure qualification record (PQR) documents what occurred during the welding or brazing of the test coupon, identifies all essential variables, and documents the test results. The manufacturer or contractor shall certify on the record that the tests were conducted in accordance with section IX of the ASME Boiler and Pressure Vessel Code.

315.4 Performance qualification testing. Each welder and brazer that performs a welding or brazing procedure as described in section 315.2 shall be tested and qualified on that procedure as required in section IX of the ASME Boiler and Pressure Vessel Code. The manufacturer or contractor, shall certify on the performance qualification record that the welder or brazer prepared and welded or brazed the test coupons in accordance with section IX and that the test coupons were tested by an independent testing laboratory that has, on staff, a welding inspector certified by the “American Welding Society (AWS).”

315.5 Submission of welding and brazing forms to the division of industrial compliance (DIC). Each manufacturer or contractor of metallic building services piping systems referenced by this code who causes welding or brazing to be performed shall file with the superintendent of the division of industrial compliance in the department of commerce, or the superintendent’s designee, certified copies of the welding and brazing procedure specifications, the procedure qualification records, and the welder and brazer performance qualifications of the welders and brazers used in the proposed construction of a new or altered piping system. The required documentation shall be submitted in accordance with rules adopted by the superintendent.
4101:3-4-01 Fixtures, faucets and fixture fittings.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 401
GENERAL

401.1 Scope. This chapter shall govern the materials, design and installation of plumbing fixtures, faucets and fixture fittings in accordance with the type of occupancy, and shall provide for the minimum number of fixtures for various types of occupancies.

401.2 Prohibited fixtures and connections. Water closets having a concealed trap seal or an unventilated space or having walls that are not thoroughly washed at each discharge in accordance with ASME A112.19.2M/CSA B45.1 shall be prohibited. Any water closet that permits siphonage of the contents of the bowl back into the tank shall be prohibited. Trough urinals shall be prohibited.

401.3 Water conservation. The maximum water flow rates and flush volume for plumbing fixtures and fixture fittings shall comply with Section 604.4.

SECTION 402
FIXTURE MATERIALS

402.1 Quality of fixtures. Plumbing fixtures shall be constructed of approved materials, with smooth, impervious surfaces, free from defects and concealed fouling surfaces, and shall conform to standards cited in this code. All porcelain enameled surfaces on plumbing fixtures shall be acid resistant.

402.2 Materials for specialty fixtures. Materials for specialty fixtures not otherwise covered in this code shall be of stainless steel, soapstone, chemical stoneware or plastic, or shall be lined with lead, copper-base alloy, nickel-copper alloy, corrosion-resistant steel or other material especially suited to the application for which the fixture is intended.

402.3 Sheet copper. Sheet copper for general applications shall conform to ASTM B 152 and shall not weigh less than 12 ounces per square foot (3.7 kg/m²).

402.4 Sheet lead. Sheet lead for pans shall not weigh less than 4 pounds per square foot (19.5 kg/m²) coated with an asphalt paint or other approved coating.
SECTION 403
MINIMUM PLUMBING FACILITIES

403.1 Minimum number of fixtures. Plumbing fixtures shall be provided for the type of occupancy and in the minimum number shown in Table 403.1. Types of occupancies not shown in Table 403.1 shall be considered individually by the building official. The number of occupants shall be determined by the building code. Occupancy classification shall be determined in accordance with the building code. When the actual occupant load will be significantly different than that determined by section 1004 of the building code, the building official may establish an alternate basis for determining the occupant load. This alternate basis shall be included in the special stipulations and conditions section of the certificate of occupancy issued for that structure pursuant to section 110 of the building code. For accessibility requirements, see “Chapter 11, Accessibility” of the building code.

Exception: Facilities are not required in buildings less than 100 square feet in area if fixtures are available within 500 feet of the building.

TABLE 403.1
MINIMUM NUMBER OF REQUIRED PLUMBING FIXTURES
(See Sections 403.2 and 403.3)

<table>
<thead>
<tr>
<th>NO.</th>
<th>CLASSIFICATION</th>
<th>OCCUPANCY</th>
<th>DESCRIPTION</th>
<th>WATER CLOSETS (URINALS SEE footnote h)</th>
<th>LAVATORIES</th>
<th>BATHTUBS/SHOWERS</th>
<th>DRINKING FOUNTAIN, f</th>
<th>OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A-1d</td>
<td>Theaters and other buildings for the performing arts and motion pictures</td>
<td>1 per 125</td>
<td>1 per 65</td>
<td>1 per 200</td>
<td>—</td>
<td>1 per 500</td>
</tr>
<tr>
<td>1</td>
<td>Assembly</td>
<td>A-1d</td>
<td>Nightclubs, bars, taverns, dance halls and buildings for similar purposes</td>
<td>1 per 40</td>
<td>1 per 40</td>
<td>1 per 75</td>
<td>—</td>
<td>1 per 500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-2d</td>
<td>Casinos</td>
<td>1:1-100</td>
<td>3:1-50</td>
<td>1:1-200</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-2d</td>
<td>Over 400, add on one fixture per additional 250 males, and one for each additional 150 females.</td>
<td>2:101-200</td>
<td>6:101-200</td>
<td>3:401-750</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-2d</td>
<td>Over 750, add one fixture for each additional 500 persons</td>
<td>3:201-400</td>
<td>8:201-400</td>
<td>Over 750</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>A-3<sup>d</sup></td>
<td>Restaurants, banquet halls and food courts</td>
<td>1 per 75</td>
<td>1 per 75</td>
<td>1 per 200</td>
<td>—</td>
<td>1 per 500</td>
<td>1 service sink</td>
<td></td>
</tr>
<tr>
<td>Auditoriums without permanent seating, art galleries, exhibition halls, museums, lecture halls, libraries, arcades and gymnasiuums</td>
<td>1 per 125</td>
<td>1 per 65</td>
<td>1 per 200</td>
<td>—</td>
<td>1 per 500</td>
<td>1 service sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passenger terminals and transportation facilities</td>
<td>1 per 500</td>
<td>1 per 500</td>
<td>1 per 750</td>
<td>—</td>
<td>1 per 1,000</td>
<td>1 service sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Places of worship and other religious services.</td>
<td>1 per 150</td>
<td>1 per 75</td>
<td>1 per 200</td>
<td>—</td>
<td>1 per 1,000</td>
<td>1 service sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-4</td>
<td>Coliseums, arenas, skating rinks, pools and tennis courts for indoor sporting events and activities</td>
<td>1 per 75 for the first 1,500 and 1 per 120 for the remainder exceeding 1,500</td>
<td>1 per 40 for the first 1,520 and 1 per 60 for the remainder exceeding 1,520</td>
<td>1 per 200</td>
<td>—</td>
<td>1 per 1,000</td>
<td>1 service sink</td>
<td></td>
</tr>
<tr>
<td>Stadiums, amusement parks, bleachers and grandstands for outdoor sporting events and activities</td>
<td>1 per 75 for the first 1,500 and 1 per 120 for the remainder exceeding 1,500</td>
<td>1 per 40 for the first 1,520 and 1 per 60 for the remainder exceeding 1,520</td>
<td>1 per 150</td>
<td>—</td>
<td>1 per 1,000</td>
<td>1 service sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Business</td>
<td>Buildings for the transaction of business, professional services, other services involving merchandise, office buildings, banks, light industrial and similar uses</td>
<td>1 per 50</td>
<td>1 per 80</td>
<td>—</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Educational</td>
<td>Educational facilities</td>
<td>1 per 50</td>
<td>1 per 50</td>
<td>—</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Factory and industrial</td>
<td>Structures in which occupants are engaged in work fabricating, assembly or processing of products or materials</td>
<td></td>
<td></td>
<td>(see Section 411)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F-1 and F-2</td>
<td>1 per 100</td>
<td>1 per 100</td>
<td></td>
<td>1 per 100</td>
<td>1 per 400</td>
<td>1 service sink</td>
<td></td>
</tr>
</tbody>
</table>

| | I-1 Residential care | 1 per 10 | 1 per 10 | 1 per 8 | 1 per 100 | 1 service sink |

	I-2 Hospitals, ambulatory nursing home patients^b	1 per room^c	1 per room^c	1 per 15	1 per 100	1 service sink per floor
	Employees, other than residential care^b	1 per 25	1 per 35		1 per 100	
	Visitors, other than residential care	1 per 75	1 per 100		1 per 500	

	I-3 Prisons^b	1 per cell	1 per cell	1 per 15	1 per 100	1 service sink
	Reformitories, detention centers, and correctional centers^b	1 per 15	1 per 15	1 per 15	1 per 100	1 service sink
	Employees^b	1 per 25	1 per 35		1 per 100	

| | I-4 Adult day care and child care | 1 per 15 | 1 per 15 | | 1 per 100 | 1 service sink |

| | M Mercantile^f | 1 per 500 | 1 per 750 | | 1 per 1,000 | 1 service sink^d |

| | R-1 Hotels, motels, boarding houses (transient) | 1 per sleeping unit | 1 per sleeping unit | | 1 per sleeping unit | 1 service sink |

| | R-2 Dormitories, fraternities, sororities and boarding houses (not transient) | 1 per 10 | 1 per 10 | 1 per 8 | 1 per 100 | 1 service sink |

| | R-2 Apartment house | 1 per dwelling unit | 1 per dwelling unit | | 1 per dwelling unit | |

| | R-3 Multiple single-family dwellings | 1 per dwelling unit | 1 per dwelling unit | | | 1 kitchen sink per dwelling unit; 1 automatic clothes washer connection per 20 dwelling units |

| | R-3 Dormitories, fraternities, sororities and boarding houses (not transient) | 1 per 10 | 1 per 10 | 1 per 8 | 1 per 100 | 1 service sink |

<p>| | R-3 Apartment house | 1 per dwelling unit | 1 per dwelling unit | | | 1 kitchen sink per dwelling unit |</p>
<table>
<thead>
<tr>
<th>Building Code</th>
<th>Description</th>
<th>Fixture Ratios</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-3</td>
<td>Congregate living facilities with 16 or fewer persons and other R-3 occupancies</td>
<td>1 per 10, 1 per 10, 1 per 8, 1 per 100</td>
<td>1 service sink</td>
<td>1 automatic clothes washer connection per dwelling unit</td>
</tr>
<tr>
<td>R-4</td>
<td>Residential care/assisted living facilities</td>
<td>1 per 10, 1 per 10, 1 per 8, 1 per 100</td>
<td>1 service sink</td>
<td></td>
</tr>
<tr>
<td>S-1</td>
<td>Storage S-1</td>
<td>1 per 100</td>
<td>1 service sink</td>
<td></td>
</tr>
<tr>
<td>S-2</td>
<td>Storage S-2</td>
<td>1 per 100</td>
<td>See Section 411, 1 per 1,000</td>
<td></td>
</tr>
</tbody>
</table>

a. The fixtures shown are based on one fixture being the minimum required for the number of persons indicated or any fraction of the number of persons indicated. The number of occupants shall be determined by the building code.
b. Toilet facilities for employees shall be separate from facilities for inmates or patients.
c. A single-occupant toilet room with one water closet and one lavatory serving not more than two adjacent patient sleeping units shall be permitted where such room is provided with direct access from each patient sleeping unit and with provisions for privacy.
d. The occupant load for seasonal outdoor seating and entertainment areas shall be included when determining the minimum number of facilities required.
e. The minimum number of required drinking fountains shall comply with Table 403.1 and Chapter 11 of the building code.
f. Drinking fountains are not required for an occupant load of 15 or fewer.
g. Mercantile occupancies are not required to provide customer facilities when the occupant load is 50 or less.
h. In each bathroom or toilet room, urinals shall not be substituted for more than 67 percent of the required water closets in assembly and educational occupancies. Urinals shall not be substituted for more than 50 percent of the required water closets in all other occupancies.
i. For business and mercantile occupancies with an occupant load of 15 or fewer, service sinks shall not be required.

403.1.1 Fixture calculations

To determine the occupant load of each sex, the total occupant load shall be divided in half. To determine the required number of fixtures, the fixture ratio or ratios for each fixture type shall be applied to the occupant load of each sex in accordance with Table 403.1. Fractional numbers resulting from applying the fixture ratios of Table 403.1 shall be rounded up to the next whole number. For calculations involving multiple occupancies, such fractional numbers for each occupancy shall first be summed and then rounded up to the next whole number.
Exception: The total occupant load shall not be required to be divided in half where approved statistical data indicates a distribution of the sexes of other than 50 percent of each sex.

403.1.2 Family or assisted-use toilet and bath fixtures. Fixtures located within family or assisted-use toilet and bathing rooms required by Section 1109.2.1 of the building code are permitted to be included in the number of required fixtures for either the male or female occupants in assembly and mercantile occupancies.

403.2 Separate facilities. Where plumbing fixtures are required, separate facilities shall be provided for each sex.

Exceptions:
1. Separate facilities shall not be required for dwelling units and sleeping units.
2. Separate facilities shall not be required in structures or tenant spaces with a total occupant load, including both employees and customers, of 15 or fewer.
3. Separate facilities shall not be required in mercantile occupancies in which the maximum occupant load is 50 or fewer.

403.2.1 Family or assisted-use toilet facilities serving as separate facilities. Where a building or tenant space requires a separate toilet facility for each sex and each toilet facility is required to have only one water closet, two family/assisted-use toilet facilities shall be permitted to serve as the required separate facilities. Family or assisted-use toilet facilities shall not be required to be identified for exclusive use by either sex as required by Section 403.4.

403.3 Required public toilet facilities. Customers, patrons and visitors shall be provided with public toilet facilities in structures and tenant spaces intended for public utilization. The number of plumbing fixtures located within the required toilet facilities shall be provided in accordance with Section 403 for all users. Employees shall be provided with toilet facilities in all occupancies. Employee toilet facilities shall be either separate or combined employee and public toilet facilities.

403.3.1 Access. The route to the public toilet facilities required by Section 403.3 shall not pass through kitchens, storage rooms, closets, or similar spaces not available to the public. Access to the required facilities shall be from within the building or from the exterior of the building. All routes shall comply with the accessibility requirements of the building code. The public shall have access to the required toilet facilities at all times that the building is occupied. The building owner is permitted to control access to the toilet facilities. Where such access is controlled, a sign shall be posted indicating how access is to be obtained.
403.3.2 Location of toilet facilities in occupancies other than covered malls. In occupancies other than covered mall buildings, the required public and employee toilet facilities shall be located not more than one story above or below the space required to be provided with toilet facilities, and the path of travel to such facilities shall not exceed a distance of 500 feet (152 m).

Exception: The location and maximum travel distances to required employee facilities in factory and industrial occupancies are permitted to exceed that required by this section, provided that the location and maximum travel distance are approved.

403.3.3 Location of toilet facilities in covered malls. In covered mall buildings, the required public and employee toilet facilities shall be located not more than one story above or below the space required to be provided with toilet facilities, and the path of travel to such facilities shall not exceed a distance of 300 feet (91 440 mm). In covered mall buildings, the required facilities shall be based on total square footage, and facilities shall be installed in each individual store or in a central toilet area located in accordance with this section. The maximum travel distance to central toilet facilities in covered mall buildings shall be measured from the main entrance of any store or tenant space. In covered mall buildings, where employees’ toilet facilities are not provided in the individual store, the maximum travel distance shall be measured from the employees’ work area of the store or tenant space.

403.3.4 Pay facilities. Where pay facilities are installed, such facilities shall be in excess of the required minimum facilities. Required facilities shall be free of charge.

403.3.5 Toilet room location. Toilet rooms shall not open directly into a room used for the preparation of food for service to the public.

403.4 Signage. Required public facilities shall be designated by a legible sign for each sex. Signs shall be readily visible and located near the entrance to each toilet facility.

403.4.1 Directional signage. Directional signage indicating the route to the public facilities shall be posted in accordance with Section 3107 of the building code. Such signage shall be located in a corridor or aisle, at the entrance to the facilities for customers and visitors.

403.5 Drinking fountain location. Drinking fountains shall not be required to be located in individual tenant spaces provided that public drinking fountains are located within a travel distance of 500 feet (152 400 mm) of the most remote location in the tenant space and not more than one story above or below the tenant space. Where the tenant space is in a covered or open mall, such distance shall not exceed 300 feet (91 440 mm). Drinking fountains shall be located on an accessible route.
403.5 403.6 Enforcement. This section is identical to section 2902 of the building code. It is provided in this code for reference only. Enforcement of the provisions of section 2902 of the building code and this section is the responsibility of the certified building official of the certified municipal, county, or township building department having jurisdiction or the superintendent of the division of industrial compliance.

SECTION 404
ACCESSIBLE PLUMBING FACILITIES

404.1 Where required. Accessible plumbing facilities and fixtures shall be provided in accordance with the building code. The provisions of “Chapter 11, Accessibility” of the building code shall control the design and construction of facilities for accessibility to physically disabled persons.

404.2 Enforcement. Enforcement of the provisions of this section is the responsibility of the certified building official of the certified municipal, county, or township building department having jurisdiction or the superintendent of the division of industrial compliance.

SECTION 405
INSTALLATION OF FIXTURES

405.1 Water supply protection. The supply lines and fittings for every plumbing fixture shall be installed so as to prevent backflow.

405.2 Access for cleaning. Plumbing fixtures shall be installed so as to afford easy access for cleaning both the fixture and the area around the fixture.

405.3 Setting. Fixtures shall be set level and in proper alignment with reference to adjacent walls.

405.3.1 Water closets, urinals, lavatories and bidets. A water closet, urinal, lavatory or bidet shall not be set closer than 15 inches (381 mm) from its center to any side wall, partition, vanity or other obstruction, or closer than 30 inches (762 mm) center-to-center between adjacent fixtures. There shall be at least not less than a 21-inch (533 mm) clearance in front of the water closet, urinal, lavatory or bidet to any wall, fixture or door. Water closet compartments shall not be not less than 30 inches (762 mm) wide in width and not less than 60 inches (1524 mm) deep (see Figure 405.3.1) in depth for floor-mounted water closets and not less than 30 inches (762 mm) in width and 56 inches (1422 mm) in depth for wall-hung...
water closets. See Chapter 11 of the building code for the minimum required dimensions for accessible fixtures.

FIGURE 405.3.1 FIXTURE CLEARANCE

405.3.2 Public lavatories. In employee and public toilet rooms, the required lavatory shall be located in the same room as the required water closet.

405.4 Floor and wall drainage connections. Connections between the drain and floor outlet plumbing fixtures shall be made with a floor flange. The flange shall be attached to the drain and anchored to the structure. Connections between the drain and wall-hung water closets shall be made with an approved extension nipple or horn adaptor. The water closet shall be bolted to the hanger with corrosion-resistant bolts or screws. Joints shall be sealed with an approved elastomeric gasket, flange-to-fixture connection complying with ASME A112.4.3 or an approved setting compound.

405.4.1 Floor flanges. Floor flanges for water closets or similar fixtures shall not be less than 0.125 inch (3.2 mm) thick for brass, 0.25 inch (6.4 mm) thick for plastic, and 0.25 inch (6.4 mm) thick and not less than a 2-inch (51 mm) caulking depth for cast-iron or galvanized malleable iron. Floor flanges of hard lead shall weigh not less than 1 pound, 9 ounces (0.7 kg) and shall be composed of lead alloy with not less than 7.75-percent antimony by weight. Closet screws and bolts shall be of brass. Flanges shall be secured to the building structure with corrosion-resistant screws or bolts.
405.4.2 Securing floor outlet fixtures. Floor outlet fixtures shall be secured to the floor or floor flanges by screws or bolts of corrosion-resistant material.

405.4.3 Securing wall-hung water closet bowls.
Wall-hung water closet bowls shall be supported by a concealed metal carrier that is attached to the building structural members so that strain is not transmitted to the closet connector or any other part of the plumbing system. The carrier shall conform to ASME A112.6.1M or ASME A112.6.2.

405.5 Water-tight joints. Joints formed where fixtures come in contact with walls or floors shall be sealed.

405.6 Plumbing in mental health centers. Deleted.

405.7 Design of overflows. Where any fixture is provided with an overflow, the waste shall be designed and installed so that standing water in the fixture will not rise in the overflow when the stopper is closed, and no water will remain in the overflow when the fixture is empty.

405.7.1 Connection of overflows. The overflow from any fixture shall discharge into the drainage system on the inlet or fixture side of the trap.
Exception: The overflow from a flush tank serving a water closet or urinal shall discharge into the fixture served.

405.8 Slip joint connections. Slip joints shall be made with an approved elastomeric gasket and shall only be installed on the trap outlet, trap inlet and within the trap seal. Fixtures with concealed slip-joint connections shall be provided with an access panel or utility space at least 12 inches (305 mm) in its smallest dimension or other approved arrangement so as to provide access to the slip joint connections for inspection and repair.

405.9 Design and installation of plumbing fixtures. Integral fixture fitting mounting surfaces on manufactured plumbing fixtures or plumbing fixtures constructed on site, shall meet the design requirements of ASME A112.19.2M/CSA B45.1 or ASME A112.19.3M/CSA B45.4.

SECTION 406
AUTOMATIC CLOTHES WASHERS

406.1 Approval. Domestic automatic clothes washers shall conform to ASSE 1007.

406.2 Water connection. The water supply to an automatic clothes washer shall be protected against backflow by an air gap installed integrally within the machine conforming to ASSE 1007 or with the installation of a backflow preventer in accordance with Section 608.

406.3 Waste connection. The waste from an automatic clothes washer shall discharge through an air break into a standpipe in accordance with Section 802.4 or into a laundry sink. The trap and fixture drain for an automatic clothes washer
standpipe shall be a minimum of 2 inches (51 mm) in diameter. The automatic clothes washer fixture drain shall connect to a branch drain or drainage stack a minimum of 3 inches (76 mm) in diameter. Automatic clothes washers that discharge by gravity shall be permitted to drain to a waste receptor or an approved trench drain.

SECTION 407
BATHTUBS

407.2 Bathtub waste outlets. Bathtubs shall have waste outlets a minimum of 1\(\frac{1}{2}\) inches (38 mm) in diameter. The waste outlet shall be equipped with an approved stopper.

407.3 Glazing. Windows and doors within a bathtub enclosure shall conform to the safety glazing requirements of the building code.

407.4 Bathtub enclosure. Doors within a bathtub enclosure shall conform to ASME A112.19.15.

SECTION 408
BIDETS

408.1 Approval. Bidets shall conform to ASME A112.19.2M/CSA B45.1, ASME A112.19.9M or CSA B45.1.

408.2 Water connection. The water supply to a bidet shall be protected against backflow by an air gap or backflow preventer in accordance with Section 608.13.1, 608.13.2, 608.13.3, 608.13.5, 608.13.6 or 608.13.8.

408.3 Bidet water temperature. The discharge water temperature from a bidet fitting shall be limited to a maximum temperature of 110°F (43°C) by a water temperature limiting device conforming to ASSE 1070 or CSA B125.3.

SECTION 409
DISHWASHING MACHINES

409.1 Approval. Domestic dishwashing machines shall conform to ASSE 1006. Commercial dishwashing machines shall conform to ASSE 1004 and NSF 3.
409.2 **Water connection.** The water supply to a dishwashing machine shall be protected against backflow by an air gap or backflow preventer in accordance with Section 608.

409.3 **Waste connection.** The waste connection of a dishwashing machine shall comply with Section 802.1.6 or 802.1.7, as applicable.

SECTION 410

DRINKING FOUNTAINS

410.1 **Approval.** Drinking fountains shall conform to ASME A112.19.1M/CSA B45.2 or ASME A112.19.2M or ASME A112.19.9M/CSA B45.1 and water coolers shall conform to ARI 1010. Drinking fountains and water coolers shall conform to NSF 61, Section 9. Where water is served in restaurants, or where bottled water coolers are provided in other occupancies, drinking fountains shall not be required.

410.2 **Minimum number.** Where drinking fountains are required, not fewer than two drinking fountains shall be provided. One drinking fountain shall comply with the requirements for people who use a wheelchair and one drinking fountain shall comply with the requirements for standing persons.

Exception: A single drinking fountain that complies with the requirements for people who use a wheelchair and standing persons shall be permitted to be substituted for two separate drinking fountains.

410.3 **Prohibited location.** Drinking fountains, water coolers and bottled water dispensers shall not be installed in public restrooms.

SECTION 411

EMERGENCY SHOWERS AND EYEWASH STATIONS

411.1 **Approval.** Emergency showers and eyewash stations shall conform to ISEA Z358.1.

411.2 **Waste connection.** Waste connections shall not be required for emergency showers and eyewash stations.

SECTION 412

FLOOR AND TRENCH DRAINS

412.1 **Approval.** Floor drains shall conform to ASME A112.3.1, ASME A112.6.3 or CSA B79. Trench drains shall comply with ASME A112.6.3.
412.2 Floor drains. Floor drains shall have removable strainers. The floor drain shall be constructed so that the drain is capable of being cleaned. Access shall be provided to the drain inlet. Ready access shall be provided to floor drains. Exception: Floor drains serving refrigerated display cases shall be provided with access.

412.3 Size of floor drains. Floor drains shall have a minimum 2-inch-diameter (51 mm) drain outlet.

412.4 Public laundries and central washing facilities. In public coin-operated laundries and in the central washing facilities of multiple-family dwellings, the rooms containing automatic clothes washers shall be provided with floor drains located to readily drain the entire floor area. Such drains shall have a minimum outlet of not less than 3 inches (76 mm) in diameter.

SECTION 413
FOOD WASTE GRINDER UNITS

413.1 Approval. Domestic food waste grinders shall conform to ASSE 1008. Commercial food waste grinders shall conform to ASSE 1009. Food waste grinders shall not increase the drainage fixture unit load on the sanitary drainage system.

413.2 Domestic food waste grinder waste outlets. Domestic food waste grinders shall be connected to a drain of not less than 1 ½ inches (38 mm) in diameter.

413.3 Commercial food waste grinder waste outlets. Commercial food waste grinders shall be connected to a drain not less than 1 ½ inches (38 mm) in diameter. Commercial food waste grinders shall be connected and trapped separately from any other fixtures or sink compartments.

413.4 Water supply required. All food waste grinders shall be provided with a supply of cold water. The water supply shall be protected against backflow by an air gap or backflow preventer in accordance with Section 608.

SECTION 414
GARBAGE CAN WASHERS

414.1 Water connection. The water supply to a garbage can washer shall be protected against backflow by an air gap or a backflow preventer in accordance with Section 608.13.1, 608.13.2, 608.13.3, 608.13.5, 608.13.6 or 608.13.8.

414.2 Waste connection. Garbage can washers shall be trapped separately. The receptacle receiving the waste from the washer shall have a removable basket or strainer to prevent the discharge of large particles into the drainage system.
SECTION 415
LAUNDRY TRAYS

415.1 Approval. Laundry trays shall conform to ANSI Z124.6, ASME A112.19.1M/CSA B45.2, ASME A112.19.2/CSA B45.1, or ASME A112.19.3M, ASME A112.19.9M, CSA B45.2 or CSA B45.4.

415.2 Waste outlet. Each compartment of a laundry tray shall be provided with a waste outlet a minimum of 1 ½ inches (38 mm) in diameter and a strainer or crossbar to restrict the clear opening of the waste outlet.

SECTION 416
LAVATORIES

416.1 Approval. Lavatories shall conform to ANSI Z124.3, ASME A112.19.1M/CSA B45.2, ASME A112.19.2M/CSA B45.1, or ASME A112.19.3M, ASME A112.19.4M, ASME A112.19.9M, CSA B45.1, CSA B45.2, CSA B45.3 or CSA B45.4. Group wash-up equipment shall conform to the requirements of Section 402. Every 20 inches (508 mm) of rim space shall be considered as one lavatory.

416.2 Cultured marble lavatories. Cultured marble vanity tops with an integral lavatory shall conform to ANSI Z124.3 or CSA B45.5.

416.3 Lavatory waste outlets. Lavatories shall have waste outlets not less than 1 1/4 inches (32 mm) in diameter. A strainer, pop-up stopper, crossbar or other device shall be provided to restrict the clear opening of the waste outlet.

416.4 Movable lavatory systems. Movable lavatory systems shall comply with ASME A112.19.12.

416.5 Tempered water for public hand-washing facilities. Tempered water shall be delivered from public hand-washing facilities located in public toilet facilities provided for customers, patrons and visitors. Tempered water shall be delivered through an approved water-temperature limiting device that conforms to ASSE 1070 or CSA B125.3.

SECTION 417
SHOWERS

417.1 Approval. Prefabricated showers and shower compartments shall conform to ANSI Z124.1.2, ASME A112.19.9M, ASME A112.19.2/CSA B45.1 or CSA
B45.5. Shower valves for individual showers shall conform to the requirements of Section 424.3.

417.2 Water supply riser. Water supply risers from the shower valve to the shower head outlet, whether exposed or concealed, shall be attached to the structure. The attachment to the structure shall be made by the use of support devices designed for use with the specific piping material or by fittings anchored with screws.

417.3 Shower waste outlet. Waste outlets serving showers shall be at least 1 ½ inches (38 mm) in diameter and, for other than waste outlets in bathtubs, shall have removable strainers not less than 3 inches (76 mm) in diameter with strainer openings not less than ¼ inch (6.4 mm) in minimum dimension. Where each shower space is not provided with an individual waste outlet, the waste outlet shall be located and the floor pitched so that waste from one shower does not flow over the floor area serving another shower. Waste outlets shall be fastened to the waste pipe in an approved manner.

417.4 Shower compartments. All shower compartments shall have a minimum of 900 square inches (0.58 m2) of interior cross-sectional area. Shower compartments shall not be less than 30 inches (762 mm) in minimum dimension measured from the finished interior dimension of the compartment, exclusive of fixture valves, showerheads, soap dishes, and safety grab bars or rails. Except as required in Section 404, the minimum required area and dimension shall be measured from the finished interior dimension at a height equal to the top of the threshold and at a point tangent to its centerline and shall be continued to a height not less than 70 inches (1778 mm) above the shower drain outlet. Exception: Shower compartments having not less than 25 inches (635 mm) in minimum dimension measured from the finished interior dimension of the compartment, provided that the shower compartment has a minimum of 1,300 square inches (.838 m2) of cross-sectional area.

417.4.1 Wall area. The wall area above built-in tubs with installed shower heads and in shower compartments shall be constructed of smooth, noncorrosive and nonabsorbent waterproof materials to a height not less than 6 feet (1829 mm) above the room floor level, and not less than 70 inches (1778 mm) where measured from the compartment floor at the drain. Such walls shall form a water-tight joint with each other and with either the tub, receptor or shower floor.

417.4.2 Access. The shower compartment access and egress opening shall have a minimum clear and unobstructed finished width of 22 inches (559 mm). Shower compartments required to be designed in conformance to accessibility provisions shall comply with Section 404.1.
417.5 **Shower floors or receptors.** Floor surfaces shall be constructed of impervious, noncorrosive, nonabsorbent and waterproof materials.

417.5.1 **Support.** Floors or receptors under shower compartments shall be laid on, and supported by, a smooth and structurally sound base.

417.5.2 **Shower lining.** Floors under shower compartments, except where prefabricated receptors have been provided, shall be lined and made water tight utilizing material complying with Sections 417.5.2.1 through 417.5.2.5. Such liners shall turn up on all sides at least 2 inches (51 mm) above the finished threshold level. Liners shall be recessed and fastened to an approved backing so as not to occupy the space required for wall covering, and shall not be nailed or perforated at any point less than 1 inch (25 mm) above the finished threshold. Liners shall be pitched one-fourth unit vertical in 12 units horizontal (2-percent slope) and shall be sloped toward the fixture drains and be securely fastened to the waste outlet at the seepage entrance, making a water-tight joint between the liner and the outlet. The completed liner shall be tested in accordance with Section 312.9.

Exceptions:

1. Floor surfaces under shower heads provided for rinsing laid directly on the ground are not required to comply with this section.

2. Where a sheet-applied, load-bearing, bonded, waterproof membrane is installed as the shower lining, the membrane shall not be required to be recessed.

3. *The shower liner test is not required for one-, two-, or three-family dwellings unless required by the shower liner manufacturer’s installation instructions.*

417.5.2.1 **PVC sheets.** Plasticized polyvinyl chloride (PVC) sheets shall be a minimum of 0.040 inch (1.02 mm) thick, and shall meet the requirements of ASTM D 4551. Sheets shall be joined by solvent welding in accordance with the manufacturer’s installation instructions.

417.5.2.2 **Chlorinated polyethylene (CPE) sheets.** Nonplasticized chlorinated polyethylene sheet shall be a minimum 0.040 inch (1.02 mm) thick, and shall meet the requirements of ASTM D 4068. The liner shall be joined in accordance with the manufacturer’s installation instructions.

417.5.2.3 **Sheet lead.** Sheet lead shall not weigh less than 4 pounds per square foot (19.5 kg/m²) coated with an asphalt paint or other approved coating. The lead sheet shall be insulated from conducting substances other than the connecting drain by 15-pound (6.80 kg) asphalt felt or its equivalent. Sheet lead shall be joined by burning.
417.5.2.4 Sheet copper. Sheet copper shall conform to ASTM B 152 and shall not weigh less than 12 ounces per square foot (3.7 kg/m²). The copper sheet shall be insulated from conducting substances other than the connecting drain by 15-pound (6.80 kg) asphalt felt or its equivalent. Sheet copper shall be joined by brazing or soldering.

417.5.2.5 Sheet-applied, load-bearing, bonded, waterproof membranes. Sheet-applied, load-bearing, bonded, waterproof membranes shall meet requirements of ANSI A118.10 and shall be applied in accordance with the manufacturer’s installation instructions.

417.5.2.6 Liquid-type, trowel-applied, load-bearing, bonded waterproof materials. Liquid-type, trowel-applied, load-bearing, bonded waterproof materials shall meet the requirements of ANSI A118.10 and shall be applied in accordance with the manufacturer’s instructions.

417.6 Glazing. Windows and doors within a shower enclosure shall conform to the safety glazing requirements of the building code.

SECTION 418
SINKS

418.1 Approval. Sinks shall conform to ANSI Z124.6, ASME A112.19.1M/CSA B45.2, ASME A112.19.2M/CSA B45.1, or ASME A112.19.3M, ASME A112.19.4M, ASME A112.19.9M, CSA B45.1, CSA B45.2, CSA B45.3 or /CSA B45.4.

418.2 Sink waste outlets. Sinks shall be provided with waste outlets a minimum of 1 1/2 inches (38 mm) in diameter. A strainer or crossbar shall be provided to restrict the clear opening of the waste outlet.

418.3 Movable sink systems. Movable sink systems shall comply with ASME A112.19.12.

SECTION 419
URINALS

419.1 Approval. Urinals shall conform to ANSI Z124.9, ASME A112.19.2M/CSA B45.1, ASME A112.19.19, CSA B45.1 or CSA B45.5. Urinals shall conform to the water consumption requirements of Section 604.4. Water-supplied urinals shall conform to the hydraulic performance requirements of ASME A112.19.6, /CSA B45.1 or CSA B45.5.

419.2 Substitution for water closets. Deleted.
419.3 Surrounding material. Wall and floor space to a point 2 feet (610 mm) in
front of a urinal lip and 4 feet (1219 mm) above the floor and at least 2 feet (610
mm) to each side of the urinal shall be waterproofed with a smooth, readily
cleanable, nonabsorbent material.

SECTION 420
WATER CLOSETS

420.1 Approval. Water closets shall conform to the water consumption
requirements of Section 604.4 and shall conform to ANSI Z124.4, ASME
A112.19.2M/CSA B45.1, ASME A112.19.3/CSA B45.4 or CSA B45.5. Water
closets shall conform to the hydraulic performance requirements of ASME
A112.19.62/CSA B45.1. Water closet tanks shall conform to ANSI Z124.4,
ASME A112.19.2/CSA B45.1, ASME A112.19.9M, CSA B45.1, ASME
A112.19.3/CSA B45.4 or CSA B45.5. Electro-hydraulic water closets shall
comply with ASME A112.19.132/CSA B45.1.

420.2 Water closets for public or employee toilet facilities.
Water closet bowls for public or employee toilet facilities shall be of the
elongated type.

420.3 Water closet seats. Water closets shall be equipped with seats of smooth,
nonabsorbent material. All seats of water closets provided for public or employee
toilet facilities shall be of the hinged open-front type. Integral water closet seats
shall be of the same material as the fixture. Water closet seats shall be sized for
the water closet bowl type.

420.4 Water closet connections. A 4-inch by 3-inch (102 mm by 76 mm) closet
bend shall be acceptable. Where a 3-inch (76 mm) bend is utilized on water
closets, a 4-inch by 3-inch (102 mm by 76 mm) flange shall be installed to receive
the fixture horn.

SECTION 421
WHIRLPOOL BATHTUBS

421.1 Approval. Whirlpool bathtubs shall comply with ASME A112.19.7M/CSA
B45.10 or with CSA B45.5 and CSA B45 (Supplement 1).

421.2 Installation. Whirlpool bathtubs shall be installed and tested in accordance
with the manufacturer’s installation instructions. The pump shall be located above
the weir of the fixture trap.

421.3 Drain. The pump drain and circulation piping shall be sloped to drain the
water in the volute and the circulation piping when the whirlpool bathtub is
empty.
421.4 **Suction fittings.** Suction fittings for whirlpool bathtubs shall comply with ASME A112.19.8M/CSA B45.10.

421.5 **Access to pump.** Access shall be provided to circulation pumps in accordance with the fixture or pump manufacturer’s installation instructions. Where the manufacturer’s instructions do not specify the location and minimum size of field-fabricated access openings, a 12-inch by 12-inch (305 mm by 305 mm) minimum sized opening shall be installed to provide access to the circulation pump. Where pumps are located more than 2 feet (609 mm) from the access opening, an 18-inch by 18-inch (457 mm by 457 mm) minimum sized opening shall be installed. A door or panel shall be permitted to close the opening. In all cases, the access opening shall be unobstructed and of the size necessary to permit the removal and replacement of the circulation pump.

421.6 **Whirlpool enclosure.** Doors within a whirlpool enclosure shall conform to ASME A112.19.15.

SECTION 422
HEALTH CARE FIXTURES AND EQUIPMENT

422.1 **Scope.** This section shall govern those aspects of health care plumbing systems that differ from plumbing systems in other structures. Health care plumbing systems shall conform to the requirements of this section in addition to the other requirements of this code. The provisions of this section shall apply to the special devices and equipment installed and maintained in the following occupancies: nursing homes, homes for the aged, orphanages, infirmaries, first aid stations, psychiatric facilities, clinics, professional offices of dentists and doctors, mortuaries, educational facilities, surgery, dentistry, research and testing laboratories, establishments manufacturing pharmaceutical drugs and medicines, and other structures with similar apparatus and equipment classified as plumbing.

422.2 **Approval.** All special plumbing fixtures, equipment, devices and apparatus shall be of an approved type.

422.3 **Protection.** All devices, appurtenances, appliances and apparatus intended to serve some special function, such as sterilization, distillation, processing, cooling, or storage of ice or foods, and that connect to either the water supply or drainage system, shall be provided with protection against backflow, flooding, fouling, contamination of the water supply system and stoppage of the drain.

422.4 **Materials.** Fixtures designed for therapy, special cleansing or disposal of waste materials, combinations of such purposes, or any other special purpose, shall be of smooth, impervious, corrosion-resistant materials and, where subjected to temperatures in excess of 180°F (82°C), shall be capable of withstanding, without damage, higher temperatures.
422.5 **Access.** Access shall be provided to concealed piping in connection with special fixtures where such piping contains steam traps, valves, relief valves, check valves, vacuum breakers or other similar items that require periodic inspection, servicing, maintenance or repair. Access shall be provided to concealed piping that requires periodic inspection, maintenance or repair.

422.6 **Clinical sink.** A clinical sink shall have an integral trap in which the upper portion of a visible trap seal provides a water surface. The fixture shall be designed so as to permit complete removal of the contents by siphonic or blowout action and to reseal the trap. A flushing rim shall provide water to cleanse the interior surface. The fixture shall have the flushing and cleansing characteristics of a water closet.

422.7 **Prohibited usage of clinical sinks and service sinks.** A clinical sink serving a soiled utility room shall not be considered as a substitute for, or be utilized as, a service sink. A service sink shall not be utilized for the disposal of urine, fecal matter or other human waste.

422.8 **Ice prohibited in soiled utility room.** Machines for manufacturing ice, or any device for the handling or storage of ice, shall not be located in a soiled utility room.

422.9 **Sterilizer equipment requirements.** The approval and installation of all sterilizers shall conform to the requirements of the *mechanical code*.

422.9.1 **Sterilizer piping.** Access for the purposes of inspection and maintenance shall be provided to all sterilizer piping and devices necessary for the operation of sterilizers.

422.9.2 **Steam supply.** Steam supplies to sterilizers, including those connected by pipes from overhead mains or branches, shall be drained to prevent any moisture from reaching the sterilizer. The condensate drainage from the steam supply shall be discharged by gravity.

422.9.3 **Steam condensate return.** Steam condensate returns from sterilizers shall be a gravity return system.

422.9.4 **Condensers.** Pressure sterilizers shall be equipped with a means of condensing and cooling the exhaust steam vapors. Nonpressure sterilizers shall be equipped with a device that will automatically control the vapor, confining the vapors within the vessel.

422.10 **Special elevations.** Control valves, vacuum outlets and devices protruding from a wall of an operating, emergency, recovery, examining or delivery room, or in a corridor or other location where patients are transported on a wheeled stretcher, shall be located at an elevation that prevents bumping the patient or stretcher against the device.
SECTION 423
SPECIALTY PLUMBING FIXTURES

423.1 Water connections. Baptisteries, ornamental and lily pools, aquariums, ornamental fountain basins, swimming pools, and similar constructions, where provided with water supplies, shall be protected against backflow in accordance with Section 608.

423.2 Approval. Specialties requiring water and waste connections shall be submitted for approval.

SECTION 424
FAUCETS AND OTHER FIXTURE FITTINGS

424.1 Approval. Faucets and fixture fittings shall conform to ASME A112.18.1/CSA B125.1. Faucets and fixture fittings that supply drinking water for human ingestion shall conform to the requirements of NSF 61, Section 9. Flexible water connectors exposed to continuous pressure shall conform to the requirements of Section 605.6.

424.1.1 Faucets and supply fittings. Faucets and supply fittings shall conform to the water consumption requirements of Section 604.4.

424.1.2 Waste fittings. Waste fittings shall conform to ASME A112.18.2/CSA B125.2, ASTM F 409 or to one of the standards listed in Tables 702.1 and 702.4 for above-ground drainage and vent pipe and fittings.

424.2 Hand showers. Hand-held showers shall conform to ASME A112.18.1 or CSA B125.1. Hand-held showers shall provide backflow protection in accordance with ASME A112.18.1 or CSA B125.1 or shall be protected against backflow by a device complying with ASME A112.18.3.

424.3 Individual shower valves. Individual shower and tub-shower combination valves shall be balanced-pressure, thermostatic or combination balanced-pressure/thermostatic valves that conform to the requirements of ASSE 1016 or ASME A112.18.1/CSA B125.1 and shall be installed at the point of use. Shower and tub-shower combination valves required by this section shall be equipped with a means to limit the maximum setting of the valve to 120°F (49°C), which shall be field adjusted in accordance with the manufacturer’s instructions. In-line thermostatic valves shall not be utilized for compliance with this section.

424.4 Multiple (gang) showers. Multiple (gang) showers supplied with a single-tempered water supply pipe shall have the water supply for such showers controlled by an approved automatic temperature control mixing valve that conforms to ASSE 1069 or CSA B125B/25.3, or each shower head shall be individually controlled by a balanced-pressure, thermostatic or combination balanced-pressure/thermostatic valve that conforms to ASSE 1016 or ASME
424.5 Bathhtub and whirlpool bathtub valves. The hot water supplied to bathtubs and whirlpool bathtubs shall be limited to a maximum temperature of 120°F (49°C) by a water-temperature limiting device that conforms to ASSE 1070 or CSA B125.3, except where such protection is otherwise provided by a combination tub/shower valve in accordance with Section 424.3.

424.6 Hose-connected outlets. Faucets and fixture fittings with hose-connected outlets shall conform to ASME A112.18.3M or CSA B125.1.

424.7 Temperature-actuated, flow reduction valves for individual fixture fittings. Temperature-actuated, flow reduction devices, where installed for individual fixture fittings, shall conform to ASSE 1062. Such valves shall not be used alone as a substitute for the balanced pressure, thermostatic or combination shower valves required in Section 424.3.

424.8 Transfer valves. Deck-mounted bath/shower transfer valves containing an integral atmospheric vacuum breaker shall conform to the requirements of ASME A112.18.7.

424.9 Water closet personal hygiene devices. Personal hygiene devices integral to water closets or water closet seats shall conform to the requirements of ASME A112.4.2.

SECTION 425
FLUSHING DEVICES FOR WATER CLOSETS AND URINALS

425.1 Flushing devices required. Each water closet, urinal, clinical sink and any plumbing fixture that depends on trap siphonage to discharge the fixture contents to the drainage system shall be provided with a flushometer valve, flushometer tank or a flush tank designed and installed to supply water in quantity and rate of flow to flush the contents of the fixture, cleanse the fixture and refill the fixture trap.

425.1.1 Separate for each fixture. A flushing device shall not serve more than one fixture.

425.2 Flushometer valves and tanks. Flushometer valves and tanks shall comply with ASSE 1037 or CSA B125.3. Vacuum breakers on flushometer valves shall conform to the performance requirements of ASSE 1001 or CAN/CSA B64.1.1. Access shall be provided to vacuum breakers. Flushometer valves shall be of the water-conservation type and shall not be utilized where the water pressure is lower than the minimum required for normal operation. When operated, the valve
shall automatically complete the cycle of operation, opening fully and closing positively under the water supply pressure. Each flushometer valve shall be provided with a means for regulating the flow through the valve. The trap seal to the fixture shall be automatically refilled after each valve flushing cycle.

425.3 Flush tanks. Flush tanks equipped for manual flushing shall be controlled by a device designed to refill the tank after each discharge and to shut off completely the water flow to the tank when the tank is filled to operational capacity. The trap seal to the fixture shall be automatically refilled after each flushing. The water supply to flush tanks equipped for automatic flushing shall be controlled with a timing device or sensor control devices.

425.3.1 Fill valves. All flush tanks shall be equipped with an antisiphon fill valve conforming to ASSE 1002 or CSA B125.3. The fill valve backflow preventer shall be located at least 1 inch (25 mm) above the full opening of the overflow pipe.

425.3.2 Overflows in flush tanks. Flush tanks shall be provided with overflows discharging to the water closet or urinal connected thereto and shall be sized to prevent flooding the tank at the maximum rate at which the tanks are supplied with water according to the manufacturer’s design conditions. The opening of the overflow pipe shall be located above the flood level rim of the water closet or urinal or above a secondary overflow in the flush tank.

425.3.3 Sheet copper. Sheet copper utilized for flush tank linings shall conform to ASTM B 152 and shall not weigh less than 10 ounces per square foot (0.03 kg/m²).

425.3.4 Access required. All parts in a flush tank shall be accessible for repair and replacement.

425.4 Flush pipes and fittings. Flush pipes and fittings shall be of nonferrous material and shall conform to ASME A112.19.5 or CSA B125/CNA B45.15.

SECTION 426
MANUAL FOOD AND BEVERAGE DISPENSING EQUIPMENT

426.1 Approval. Manual food and beverage dispensing equipment shall conform to the requirements of NSF 18.

SECTION 427
FLOOR SINKS

427.1 Approval. Sanitary floor sinks shall conform to the requirements of ASME A112.6.7.
Effective: 01/01/2016
Five Year Review (FYR) Dates: 11/01/2016

CERTIFIED ELECTRONICALLY

Date

12/07/2015

Certification

Promulgated Under: 119.03
Statutory Authority: 3781.10(A), 3781.109(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
Prior Effective Dates: 3/1/98, 4/1/99, 1/1/02, 1/1/03, 8/15/03, 3/1/05, 9/6/05, 3/1/06, 7/1/07, 11/1/07, 1/1/09, 11/1/11, 7/1/14
4101:3-6-01 Water supply and distribution.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 601
GENERAL

601.1 Scope. This chapter shall govern the materials, design and installation of water supply systems within a building, both hot and cold, for utilization in connection with human occupancy and habitation.

Exceptions:
1. This chapter shall not apply to private water systems as defined in section 3701.344 of the Revised Code and as defined in paragraph (ZZ) of rule 3701-28-01 of the Administrative Code and within the scope of the rules of the “Ohio Department of Health”.
2. This chapter shall not apply to public water systems as defined in division (A) of section 6109.01 of the Revised Code and as defined in rule 3745-81-01 of the Administrative Code and within the scope of the rules of the “Ohio Environmental Protection Agency”.

601.2 Solar energy utilization. Solar energy systems used for heating potable water or using an independent medium for heating potable water shall comply with the applicable requirements of this code. The use of solar energy shall not compromise the requirements for cross connection or protection of the potable water supply system required by this code.

601.3 Existing piping used for grounding. Existing metallic water service piping used for electrical grounding shall not be replaced with nonmetallic pipe or tubing until other approved means of grounding is provided.

601.4 Tests. The potable water distribution system shall be tested in accordance with Section 312.5.

SECTION 602
WATER REQUIRED
602.1 General. Every structure equipped with plumbing fixtures and utilized for human occupancy or habitation shall be provided with a potable supply of water in the amounts and at the pressures specified in this chapter.

602.2 Potable water required. Only potable water shall be supplied to plumbing fixtures that provide water for drinking, bathing or culinary purposes, or for the processing of food, medical or pharmaceutical products. Unless otherwise provided in this code, potable water shall be supplied to all plumbing fixtures.

602.3 Individual water supply. Deleted.

602.3.1 Sources. Deleted.

602.3.2 Minimum quantity. Deleted.

602.3.3 Water quality. Deleted.

602.3.4 Disinfection of system. Deleted.

602.3.5 Pumps. Deleted.

602.3.5.1 Pump enclosure. Deleted.

SECTION 603
WATER SERVICE

603.1 Size of water service pipe. The water service pipe shall be sized to supply water to the structure in the quantities and at the pressures required in this code. The minimum diameter of water service pipe shall be ¾ inch (19.1 mm).

603.2 Separation of water service and building sewer. Water service pipe and the building sewer shall be separated by 10 feet (1524 mm) of undisturbed or compacted earth.

Exceptions:
1. The required separation distance shall not apply where the bottom of the water service pipe within 10 feet (1524 mm) of the sewer is a minimum of 12 inches (305 mm) above the top of the highest point of the sewer and the pipe materials conform to Table 702.3.

2. Water service pipe is permitted to be located in the same trench with a building sewer, provided such sewer is constructed of materials listed in Table 702.2.

The required separation distance shall not apply where a water service pipe crosses a sewer pipe, provided the water service pipe is sleeved to at least 5 feet (1524 mm) horizontally from the sewer pipe center-line on both sides of such crossing with pipe materials listed in Table 605.3, 702.2 or 702.3.

603.2.1 Water service near sources of pollution. Potable water service pipes shall not be located in, under or above cesspools, septic tanks, septic tank drainage fields or seepage pits (see Section 605.1 for soil and groundwater conditions).
603.3 **Enforcement.** Enforcement of the provisions of this section is the responsibility of the certified building official of the certified municipal, county, or township building department having jurisdiction or the superintendent of the division of industrial compliance.

**SECTION 604
DESIGN OF BUILDING WATER DISTRIBUTION SYSTEM**

604.1 **General.** The design of the water distribution system shall conform to accepted engineering practice. Methods utilized to determine pipe sizes shall be approved.

604.2 **System interconnection.** At the points of interconnection between the hot and cold water supply piping systems and the individual fixtures, appliances or devices, provisions shall be made to prevent flow between such piping systems.

604.3 **Water distribution system design criteria.** The water distribution system shall be designed, and pipe sizes shall be selected such that under conditions of peak demand, the capacities at the fixture supply pipe outlets shall not be less than shown in Table 604.3. The minimum flow rate and flow pressure provided to fixtures and appliances not listed in Table 604.3 shall be in accordance with the manufacturer’s installation instructions.

**TABLE 604.3
WATER DISTRIBUTION SYSTEM DESIGN CRITERIA REQUIRED CAPACITY AT FIXTURE SUPPLY PIPE OUTLETS**

<table>
<thead>
<tr>
<th>FIXTURE SUPPLY OUTLET SERVING</th>
<th>FLOW RATEa (gpm)</th>
<th>FLOW PRESSURE (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathtub, balanced-pressure, thermostatic or combination balanced-pressure/thermostatic mixing valve</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Bidet, thermostatic mixing valve</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Combination fixture</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Dishwasher, residential</td>
<td>2.75</td>
<td>8</td>
</tr>
<tr>
<td>Drinking fountain</td>
<td>0.75</td>
<td>8</td>
</tr>
<tr>
<td>Laundry tray</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Lavatory</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Shower</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Shower, balanced-pressure, thermostatic or combination balanced-pressure/thermostatic mixing valve</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Sillcock, hose bibb</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
604.4 Maximum flow and water consumption. The maximum water consumption flow rates and quantities for all plumbing fixtures and fixture fittings shall be in accordance with Table 604.4.

Exceptions:
1. Blowout design water closets having a maximum water consumption of 3½ gallons (13 L) per flushing cycle.
2. Vegetable sprays.
3. Clinical sinks having a maximum water consumption of 4½ gallons (17 L) per flushing cycle.
4. Service sinks.
5. Emergency showers.

TABLE 604.4
MAXIMUM FLOW RATES AND CONSUMPTION FOR PLUMBING FIXTURES AND FIXTURE FITTINGS

<table>
<thead>
<tr>
<th>PLUMBING Fixture or Fixture Fitting</th>
<th>Maximum Flow Rate or Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavatory, private</td>
<td>2.2 gpm at 60 psi</td>
</tr>
<tr>
<td>Lavatory, public (metering)</td>
<td>0.25 gallon per metering cycle</td>
</tr>
<tr>
<td>Lavatory, public (other than metering)</td>
<td>0.5 gpm at 60 psi</td>
</tr>
<tr>
<td>Shower heada</td>
<td>2.5 gpm at 80 psi</td>
</tr>
<tr>
<td>Sink faucet</td>
<td>2.2 gpm at 60 psi</td>
</tr>
<tr>
<td>Urinal</td>
<td>1.0 gallon per flushing cycle</td>
</tr>
<tr>
<td>Water closet</td>
<td>1.6 gallons per flushing cycle</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square inch = 6.895 kPa
1 gallon per minute = 3.785 L/m.
a. For additional requirements for flow rates and quantities, see Section 604.4.
For SI: 1 gallon = 3.785 L
 1 gallon per minute = 3.785 L/m
 1 pound per square inch = 6.895 kPa.
a. A hand-held shower spray is a shower head.
b. Consumption tolerances shall be determined from referenced standards.

604.5 Size of fixture supply. The minimum size of a fixture supply pipe shall be as shown in Table 604.5. The fixture supply pipe shall not terminate more than 30 inches (762 mm) from the point of connection to the fixture. A reduced-size flexible water connector installed between the supply pipe and the fixture shall be of an approved type. The supply pipe shall extend to the floor or wall adjacent to the fixture. The minimum size of individual distribution lines utilized in gridded or parallel water distribution systems shall be as shown in Table 604.5.

604.6 Variable street pressures. Where street water main pressures fluctuate, the building water distribution system shall be designed for the minimum pressure available.

604.7 Inadequate water pressure. Wherever water pressure from the street main or other source of supply is insufficient to provide flow pressures at fixture outlets as required under Table 604.3, a water pressure booster system conforming to Section 606.5 shall be installed on the building water supply system.

TABLE 604.5
MINIMUM SIZES OF FIXTURE WATER SUPPLY PIPES

<table>
<thead>
<tr>
<th>FIXTURE</th>
<th>MINIMUM PIPE SIZE (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathtubs a (60" x 32" and smaller)</td>
<td>1/2</td>
</tr>
<tr>
<td>Bathtubs a (larger than 60" x 32")</td>
<td>1/2</td>
</tr>
<tr>
<td>Bidet</td>
<td>3/8</td>
</tr>
<tr>
<td>Combination sink and tray</td>
<td>1/2</td>
</tr>
<tr>
<td>Dishwasher, domestic a</td>
<td>1/2</td>
</tr>
<tr>
<td>Drinking fountain</td>
<td>3/8</td>
</tr>
<tr>
<td>Hose bibbs</td>
<td>1/2</td>
</tr>
<tr>
<td>Kitchen sink a</td>
<td>1/2</td>
</tr>
<tr>
<td>Laundry, 1, 2 or 3 compartments a</td>
<td>1/2</td>
</tr>
<tr>
<td>Lavatory</td>
<td>3/8</td>
</tr>
<tr>
<td>Shower, single head a</td>
<td>1/2</td>
</tr>
<tr>
<td>Item</td>
<td>Size</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Sinks, flushing rim</td>
<td>3/4</td>
</tr>
<tr>
<td>Sinks, service</td>
<td>1/2</td>
</tr>
<tr>
<td>Urinal, flush tank</td>
<td>1/2</td>
</tr>
<tr>
<td>Urinal, flush flushometer valve</td>
<td>3/4</td>
</tr>
<tr>
<td>Wall hydrant</td>
<td>1/2</td>
</tr>
<tr>
<td>Water closet, flush tank</td>
<td>3/8</td>
</tr>
<tr>
<td>Water closet, flush flushometer valve</td>
<td>1</td>
</tr>
<tr>
<td>Water closet, flushometer tank</td>
<td>3/8</td>
</tr>
<tr>
<td>Water closet, one piece a</td>
<td>1/2</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm
1 foot = 304.8 mm
1 pound per square inch = 6.895 kPa.

a. Where the developed length of the distribution line is 60 feet or less, and the available pressure at the meter is a minimum of 35 psi, the minimum size of an individual distribution line supplied from a manifold and installed as part of a parallel water distribution system shall be one nominal tube size smaller than the sizes indicated.

604.8 Water-pressure reducing valve or regulator. Where water pressure within a building exceeds 80 psi (552 kPa) static, an approved water-pressure reducing valve conforming to ASSE 1003 or CSA B356 with strainer shall be installed to reduce the pressure in the building water distribution piping to 80 psi (552 kPa) static or less.

Exception: Service lines to sill cocks and outside hydrants, and main supply risers where pressure from the mains is reduced to 80 psi (552 kPa) or less at individual fixtures.

604.8.1 Valve design. The pressure-reducing valve shall be designed to remain open to permit uninterrupted water flow in case of valve failure.

604.8.2 Repair and removal. All water-pressure reducing valves, regulators and strainers shall be so constructed and installed as to permit repair or removal of parts without breaking a pipeline or removing the valve and strainer from the pipeline.

604.9 Water hammer. The flow velocity of the water distribution system shall be controlled to reduce the possibility of water hammer. A water-hammer arrestor shall be installed where quick-closing valves are utilized. Water-hammer arrestors shall be installed in accordance with the manufacturer’s specifications. Water-hammer arrestors shall conform to ASSE 1010.
604.10 Gridded and parallel water distribution system manifolds. Hot water and cold water manifolds installed with gridded or parallel connected individual distribution lines to each fixture or fixture fitting shall be designed in accordance with Sections 604.10.1 through 604.10.3.

604.10.1 Manifold sizing. Hot water and cold water manifolds shall be sized in accordance with Table 604.10.1. The total gallons per minute is the demand of all outlets supplied.

**TABLE 604.10.1
MANIFOLD SIZING**

<table>
<thead>
<tr>
<th>NOMINAL SIZE INTERNAL DIAMETER (inches)</th>
<th>MAXIMUM DEMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(gpm)</td>
</tr>
<tr>
<td>½</td>
<td>2</td>
</tr>
<tr>
<td>¾</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1 ¼</td>
<td>15</td>
</tr>
<tr>
<td>1 ½</td>
<td>22</td>
</tr>
</tbody>
</table>

For SI:
1 inch = 25.4 mm
1 gallon per minute = 3.785 L/m
1 foot per second = 0.305 m/s.

604.10.2 Valves. Individual fixture shutoff valves installed at the manifold shall be identified as to the fixture being supplied.

604.10.3 Access. Access shall be provided to manifolds with integral factory- or field-installed valves.

604.11 Individual pressure balancing in-line valves for individual fixture fittings. Where individual pressure balancing in-line valves for individual fixture fittings are installed, such valves shall comply with ASSE 1066. Such valves shall be installed in an accessible location and shall not be utilized alone as a substitute for the balanced pressure, thermostatic or combination shower valves required in Section 424.3.

SECTION 605
MATERIALS, JOINTS AND CONNECTIONS

605.1 Soil and ground water. The installation of a water service or water distribution pipe shall be prohibited in soil and ground water contaminated with
solvents, fuels, organic compounds or other detrimental materials causing permeation, corrosion, degradation or structural failure of the piping material. Where detrimental conditions are suspected, a chemical analysis of the soil and ground water conditions shall be required to ascertain the acceptability of the water service or water distribution piping material for the specific installation. Where detrimental conditions exist, approved alternative materials or routing shall be required.

605.2 Lead content of drinking water pipe and fittings. Pipe, pipe fittings, joints, valves, faucets, and fixture fittings utilized to supply water for drinking or cooking purposes shall comply with NSF 372 and shall have a weighted average lead content of 0.25 percent lead or less.

Exceptions: The following items are exempt from the lead content limitations of this section (even though the potable water supply pipe which serves the fixture or supplies the nonpotable water system is not exempt):

1. Pipes, pipe fittings, plumbing fittings, or fixtures, including backflow preventers that are used exclusively for nonpotable services such as process piping, irrigation piping, and outdoor watering piping.
2. Toilets, bidets, urinals, fill valves, flushometer valves, tub fillers, shower valves, and service saddles.
3. Water distribution main gate valves two inches in diameter or larger.

605.3 Water service pipe. Water service pipe shall conform to NSF 61 and shall conform to one of the standards listed in Table 605.3. All water service pipe or tubing, installed underground and outside of the structure, shall have a minimum working pressure rating of 160 psi (1100 kPa) at 73.4°F (23°C). Where the water pressure exceeds 160 psi (1100 kPa), piping material shall have a minimum rated working pressure equal to the highest available pressure. Water service piping materials not third-party certified for water distribution shall terminate at or before the full open valve located at the entrance to the structure. All ductile iron water service piping shall be cement mortar lined in accordance with AWWA C104.

605.3.1 Dual check-valve-type backflow preventer. Where a dual check-valve backflow preventer is installed on the water supply system, it shall comply with ASSE 1024 or CSA B64.6.

605.4 Water distribution pipe. Water distribution pipe shall conform to NSF 61 and shall conform to one of the standards listed in Table 605.4. All hot water distribution pipe and tubing shall have a minimum pressure rating of 100 psi (690 kPa) at 180°F (82°C).
605.5 Fittings. Pipe fittings shall be approved for installation with the piping material installed and shall comply with the applicable standards listed in Table 605.5. All pipe fittings utilized in water supply systems shall also comply with NSF 61. Ductile and gray iron pipe fittings shall be cement mortar lined in accordance with AWWA C104.

605.5.1 Mechanically formed tee fittings. Mechanically extracted outlets shall have a height not less than three times the thickness of the branch tube wall.

605.5.1.1 Full flow assurance. Branch tubes shall not restrict the flow in the run tube. A dimple/depth stop shall be formed in the branch tube to ensure that penetration into the collar is of the correct depth. For inspection purposes, a second dimple shall be placed 1/4 inch (6.4 mm) above the first dimple. Dimples shall be aligned with the tube run.

605.5.1.2 Brazed joints. Mechanically formed tee fittings shall be brazed in accordance with Section 605.14.1.

605.6 Flexible water connectors. Flexible water connectors exposed to continuous pressure shall conform to ASME A112.18.6/CSA B125.6. Access shall be provided to all flexible water connectors.

605.7 Valves. All valves shall be of an approved type and compatible with the type of piping material installed in the system. Ball valves, gate valves, globe valves and plug valves intended to supply drinking water shall meet the requirements of NSF 61.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylonitrile butadiene styrene (ABS) plastic pipe</td>
<td>ASTM D 1527; ASTM D 2282</td>
</tr>
<tr>
<td>Asbestos-cement pipe</td>
<td>ASTM C 296</td>
</tr>
<tr>
<td>Brass pipe</td>
<td>ASTM B 43</td>
</tr>
<tr>
<td>Chlorinated polyvinyl chloride (CPVC) plastic pipe</td>
<td>ASTM D 2846; ASTM F 441; ASTM F 442; CSA B137.6</td>
</tr>
<tr>
<td>Copper or copper-alloy pipe</td>
<td>ASTM B 42; ASTM B 302</td>
</tr>
<tr>
<td>Copper or copper-alloy tubing (Type K, WK, L, WL, M or WM)</td>
<td>ASTM B 75; ASTM B 88; ASTM B 251; ASTM B 447</td>
</tr>
<tr>
<td>Cross-linked polyethylene (PEX) plastic pipe and tubing</td>
<td>ASTM F 876; ASTM F 877; AWWA C904; CSA B137.5</td>
</tr>
<tr>
<td>Cross-linked polyethylene/aluminum/cross-linked polyethylene (PEX-AL-PEX) pipe</td>
<td>ASTM F 1281; ASTM F 2262; CAN/CSA B137.10M</td>
</tr>
<tr>
<td>Cross-linked polyethylene/aluminum/high-density polyethylene (PEX-AL-HDPE)</td>
<td>ASTM F 1986</td>
</tr>
<tr>
<td>Ductile iron water pipe</td>
<td>AWWA C151; AWWA C115</td>
</tr>
<tr>
<td>Galvanized steel pipe</td>
<td>ASTM A 53</td>
</tr>
<tr>
<td>Polyethylene (PE) plastic pipe</td>
<td>ASTM D 2239; ASTM D 3035; AWWA C901; CSA B137.1</td>
</tr>
<tr>
<td>Polyethylene (PE) plastic tubing</td>
<td>ASTM D 2737; AWWA C901; CSA B137.1</td>
</tr>
</tbody>
</table>
TABLE 605.4
WATER DISTRIBUTION PIPE

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brass pipe</td>
<td>ASTM B 43</td>
</tr>
<tr>
<td>Chlorinated polyvinyl chloride (CPVC) plastic pipe and tubing</td>
<td>ASTM D 2846; ASTM F 441; ASTM F 442; CSA B137.6</td>
</tr>
<tr>
<td>Copper or copper-alloy pipe</td>
<td>ASTM B 42; ASTM B 302</td>
</tr>
<tr>
<td>Copper or copper-alloy tubing (Type K, WK, L, WL, M or WM)</td>
<td>ASTM B 75; ASTM B 88; ASTM B 251; ASTM B 447</td>
</tr>
<tr>
<td>Cross-linked polyethylene (PEX) plastic tubing</td>
<td>ASTM F 876; ASTM F 877; CSA B137.5</td>
</tr>
<tr>
<td>Cross-linked polyethylene/aluminum/cross-linked polyethylene (PEX-AL-PEX) pipe</td>
<td>ASTM F 1281; ASTM F 2262; CAN/CSA B137.10M</td>
</tr>
<tr>
<td>Cross-linked polyethylene/aluminum/high-density polyethylene (PEX-AL-HDPE)</td>
<td>ASM F 1986</td>
</tr>
<tr>
<td>Ductile iron pipe</td>
<td>AWWA C151/A21.51; AWWA C115/A21.15</td>
</tr>
<tr>
<td>Galvanized steel pipe</td>
<td>ASTM A 53</td>
</tr>
<tr>
<td>Polyethylene/aluminum/polyethylene (PE-AL-PE) composite pipe</td>
<td>ASTM F 1282</td>
</tr>
<tr>
<td>Polyethylene of raised temperature (PE-RT) plastic tubing</td>
<td>ASTM F2769</td>
</tr>
<tr>
<td>Polypropylene (PP) plastic pipe or tubing</td>
<td>ASTM F 2389; CSA B137.11</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC) plastic pipe</td>
<td>ASTM D 1785; ASTM D 2241; ASTM D 2672; CSA B137.3</td>
</tr>
<tr>
<td>Stainless steel pipe (Type 304/304L)</td>
<td>ASTM A 312; ASTM A 778</td>
</tr>
<tr>
<td>Stainless steel pipe (Type 316/316L)</td>
<td>ASTM A 312; ASTM A 778</td>
</tr>
</tbody>
</table>

TABLE 605.5
PIPE FITTINGS

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylonitrile butadiene styrene (ABS) plastic</td>
<td>ASTM D 2468</td>
</tr>
<tr>
<td>Cast-iron</td>
<td>ASME B16.4; ASME B16.12</td>
</tr>
<tr>
<td>Chlorinated polyvinyl chloride (CPVC) plastic</td>
<td>ASSE 1061; ASTM D 2846; ASTM F 437; ASTM F 438; ASTM F 439; CSA B137.6</td>
</tr>
<tr>
<td>Copper or copper alloy</td>
<td>ASSE 1061; ASME B16.15; ASME B16.18; ASME B16.22; ASME B16.23; ASME B16.26; ASME B16.29</td>
</tr>
<tr>
<td>Cross-linked polyethylene/aluminum/high-density polyethylene (PEX-AL-HDPE)</td>
<td>ASTM F 1986</td>
</tr>
</tbody>
</table>
4101:3-6-01

4101:3-6-01

Fittings for cross-linked polyethylene (PEX) plastic tubing	ASSE 1061; ASTM F 877; ASTM F 1807; ASTM F 1960; ASTM F 2080; ASTM F 2098; ASTM F 2159; ASTM F 2434; ASTM F 2735; CSA B137.5
Fittings for polyethylene of raised temperature (PE-RT) plastic tubing	ASTM F1807; ASTM F2098; ASTM F2159; ASTM F2735
Gray iron and ductile iron	ASTM F 1974; ASTM F1281; ASTM F1282; CAN/CSA B137.9; CAN/CSA B137.10
Insert fittings for polyethylene/aluminum/polyethylene (PE-AL-PE) and cross-linked polyethylene/aluminum/cross-linked polyethylene (PEX-AL-PE)	AWWA C110; AWWA C153
Malleable iron	ASME B16.3
Metal (brass) insert fittings for polyethylene/aluminum/polyethylene (PE-AL-PE) and cross-linked polyethylene/aluminum/cross-linked polyethylene (PEX-AL-PE)	ASTM F 1974
Polyethylene (PE) plastic pipe	ASTM D 2609; ASTM D 2683; ASTM D 3261; ASTM F 1055; CSA B137.1
Polypropylene (PP) plastic pipe or tubing	ASTM F 2389; CSA B137.11
Polyvinyl chloride (PVC) plastic	ASTM D 2464; ASTM D 2466; ASTM D 2467; CSA B137.2; CSA B137.3
Stainless steel (Type 304/304L)	ASTM A 312; ASTM A 778
Stainless steel (Type 316/316L)	ASTM A 312; ASTM A 778
Steel	ASME B16.9; ASME B16.11; ASME B16.28

605.8 Manufactured pipe nipples

Manufactured pipe nipples shall conform to one of the standards listed in Table 605.8.

TABLE 605.8
MANUFACTURED PIPE NIPPLES

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brass-, copper-, chromium-plated</td>
<td>ASTM B 687</td>
</tr>
<tr>
<td>Steel</td>
<td>ASTM A 733</td>
</tr>
</tbody>
</table>

605.9 Prohibited joints and connections

The following types of joints and connections shall be prohibited:

1. Cement or concrete joints.
2. Joints made with fittings not approved for the specific installation.
3. Solvent-cement joints between different types of plastic pipe.
4. Saddle-type fittings.

605.10 ABS plastic

Joints between ABS plastic pipe or fittings shall comply with Sections 605.10.1 through 605.10.3.
605.10.1 Mechanical joints. Mechanical joints on water pipes shall be made with an elastomeric seal conforming to ASTM D 3139. Mechanical joints shall only be installed in underground systems, unless otherwise approved. Joints shall be installed only in accordance with the manufacturer’s instructions.

605.10.2 Solvent cementing. Joint surfaces shall be clean and free from moisture. Solvent cement that conforms to ASTM D 2235 shall be applied to all joint surfaces. The joint shall be made while the cement is wet. Joints shall be made in accordance with ASTM D 2235. Solvent-cement joints shall be permitted above or below ground.

605.10.3 Threaded joints. Threads shall conform to ASME B1.20.1. Schedule 80 or heavier pipe shall be permitted to be threaded with dies specifically designed for plastic pipe. Approved thread lubricant or tape shall be applied on the male threads only.

605.11 Asbestos-cement. Joints between asbestos-cement pipe or fittings shall be made with a sleeve coupling of the same composition as the pipe, sealed with an elastomeric ring conforming to ASTM D 1869.

605.12 Brass. Joints between brass pipe or fittings shall comply with Sections 605.12.1 through 605.12.4.

605.12.1 Brazed joints. All joint surfaces shall be cleaned. An approved flux shall be applied where required. The joint shall be brazed with a filler metal conforming to AWS A5.8.

605.12.2 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

605.12.3 Threaded joints. Threads shall conform to ASME B1.20.1. Pipe-joint compound or tape shall be applied on the male threads only.

605.12.4 Welded joints. All joint surfaces shall be cleaned. The joint shall be welded with an approved filler metal.

605.13 Gray iron and ductile iron joints. Joints for gray and ductile iron pipe and fittings shall comply with AWWA C111 and shall be installed in accordance with the manufacturer’s installation instructions.

605.14 Copper pipe. Joints between copper or copper-alloy pipe or fittings shall comply with Sections 605.14.1 through 605.14.5.

605.14.1 Brazed joints. All joint surfaces shall be cleaned. An approved flux shall be applied where required. The joint shall be brazed with a filler metal conforming to AWS A5.8.

605.14.2 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

605.14.3 Soldered joints. Solder joints shall be made in accordance with the methods of ASTM B 828. All cut tube ends shall be reamed to the full inside
diameter of the tube end. All joint surfaces shall be cleaned. A flux conforming to ASTM B 813 shall be applied. The joint shall be soldered with a solder conforming to ASTM B 32. The joining of water supply piping shall be made with lead-free solders and fluxes. “Lead free” shall mean a chemical composition equal to or less than 0.2-percent lead.

605.14.4 Threaded joints. Threads shall conform to ASME B1.20.1. Pipe-joint compound or tape shall be applied on the male threads only.

605.14.5 Welded joints. All joint surfaces shall be cleaned. The joint shall be welded with an approved filler metal.

605.15 Copper tubing. Joints between copper or copper-alloy tubing or fittings shall comply with Sections 605.15.1 through 605.15.4.

- **605.15.1 Brazed joints.** All joint surfaces shall be cleaned. An approved flux shall be applied where required. The joint shall be brazed with a filler metal conforming to AWS A5.8.
- **605.15.2 Flared joints.** Flared joints for water pipe shall be made by a tool designed for that operation.
- **605.15.3 Mechanical joints.** Mechanical joints shall be installed in accordance with the manufacturer’s instructions.
- **605.15.4 Soldered joints.** Solder joints shall be made in accordance with the methods of ASTM B 828. All cut tube ends shall be reamed to the full inside diameter of the tube end. All joint surfaces shall be cleaned. A flux conforming to ASTM B 813 shall be applied. The joint shall be soldered with a solder conforming to ASTM B 32. The joining of water supply piping shall be made with lead-free solders and fluxes. “Lead free” shall mean a chemical composition equal to or less than 0.2-percent lead.

605.16 CPVC plastic. Joints between CPVC plastic pipe or fittings shall comply with Sections 605.16.1 through 605.16.3.

- **605.16.1 Mechanical joints.** Mechanical joints shall be installed in accordance with the manufacturer’s instructions.
- **605.16.2 Solvent cementing.** Joint surfaces shall be clean and free from moisture, and an approved primer shall be applied. Solvent cement, orange in color and conforming to ASTM F 493, shall be applied to all joint surfaces. The joint shall be made while the cement is wet, and in accordance with ASTM D 2846 or ASTM F 493. Solvent-cement joints shall be permitted above or below ground.

Exception: A primer is not required where all of the following conditions apply:

1. The solvent cement used is third-party certified as conforming to ASTM F 493.
2. The solvent cement used is yellow in color.
3. The solvent cement is used only for joining 1/2 inch (12.7 mm) through 2 inch (51 mm) diameter CPVC pipe and fittings.

4. The CPVC pipe and fittings are manufactured in accordance with ASTM D 2846.

605.16.3 **Threaded joints.** Threads shall conform to ASME B1.20.1. Schedule 80 or heavier pipe shall be permitted to be threaded with dies specifically designed for plastic pipe, but the pressure rating of the pipe shall be reduced by 50 percent. Thread by socket molded fittings shall be permitted. Approved thread lubricant or tape shall be applied on the male threads only.

605.17 **Cross-linked polyethylene plastic.** Joints between cross-linked polyethylene plastic tubing or fittings shall comply with Sections 605.17.1 and 605.17.2.

605.17.1 **Flared joints.** Flared pipe ends shall be made by a tool designed for that operation.

605.17.2 **Mechanical joints.** Mechanical joints shall be installed in accordance with the manufacturer’s instructions. Fittings for cross-linked polyethylene (PEX) plastic tubing shall comply with the applicable standards listed in Table 605.5 and shall be installed in accordance with the manufacturer’s instructions. PEX tubing shall be factory marked with the appropriate standards for the fittings that the PEX manufacturer specifies for use with the tubing.

605.18 **Steel.** Joints between galvanized steel pipe or fittings shall comply with Sections 605.18.1 and 605.18.2.

605.18.1 **Threaded joints.** Threads shall conform to ASME B1.20.1. Pipe-joint compound or tape shall be applied on the male threads only.

605.18.2 **Mechanical joints.** Joints shall be made with an approved elastomeric seal. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

605.19 **Polyethylene plastic.** Joints between polyethylene plastic pipe and tubing or fittings shall comply with Sections 605.19.1 through 605.19.4.

605.19.1 **Flared joints.** Flared joints shall be permitted where so indicated by the pipe manufacturer. Flared joints shall be made by a tool designed for that operation.

605.19.2 **Heat-fusion joints.** Joint surfaces shall be clean and free from moisture. All joint surfaces shall be heated to melt temperature and joined. The joint shall be undisturbed until cool. Joints shall be made in accordance with ASTM D 2657.

605.19.3 **Mechanical joints.** Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

605.19.4 **Installation.** Polyethylene pipe shall be cut square, with a cutter designed for plastic pipe. Except where joined by heat fusion, pipe ends shall
be chamfered to remove sharp edges. Kinked pipe shall not be installed. The minimum pipe bending radius shall not be less than 30 pipe diameters, or the minimum coil radius, whichever is greater. Piping shall not be bent beyond straightening of the curvature of the coil. Bends shall not be permitted within 10 pipe diameters of any fitting or valve. Stiffener inserts installed with compression-type couplings and fittings shall not extend beyond the clamp or nut of the coupling or fitting.

605.20 Polypropylene (PP) plastic. Joints between PP plastic pipe and fittings shall comply with Section 605.20.1 or 605.20.2.

605.20.1 Heat-fusion joints. Heat-fusion joints for polypropylene pipe and tubing joints shall be installed with socket-type heat-fused polypropylene fittings, butt-fusion polypropylene fittings or electrofusion polypropylene fittings. Joint surfaces shall be clean and free from moisture. The joint shall be undisturbed until cool. Joints shall be made in accordance with ASTM F 2389.

605.20.2 Mechanical and compression sleeve joints. Mechanical and compression sleeve joints shall be installed in accordance with the manufacturer’s instructions.

605.21 Polyethylene/aluminum/polyethylene (PE-AL-PE) and cross-linked polyethylene/aluminum/cross-linked polyethylene (PEX-AL-PEX). Joints between PE-AL-PE and PEX-AL-PEX pipe and fittings shall comply with Section 605.21.1.

605.21.1 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions. Fittings for PE-AL-PE and PEX-AL-PEX as described in ASTM F 1974, ASTM F 1281, ASTM F 1282, CAN/CSA B137.9 and CAN/CSA B137.10 shall be installed in accordance with the manufacturer’s instructions.

605.22 PVC plastic. Joints between PVC plastic pipe or fittings shall comply with Sections 605.22.1 through 605.22.3.

605.22.1 Mechanical joints. Mechanical joints on water pipe shall be made with an elastomeric seal conforming to ASTM D 3139. Mechanical joints shall not be installed in above-ground systems unless otherwise approved. Joints shall be installed in accordance with the manufacturer’s instructions.

605.22.2 Solvent cementing. Joint surfaces shall be clean and free from moisture. A primer that conforms to ASTM F 656 shall be applied. Solvent cement conforming to ASTM D 2564 or CSA-B137.3 shall be applied to all joint surfaces. The joint shall be made while the cement is wet and shall be in accordance with ASTM D 2855. Solvent-cement joints shall be permitted above or below ground.

605.22.3 Threaded joints. Threads shall conform to ASME B1.20.1. Schedule 80 or heavier pipe shall be permitted to be threaded with dies.
specifically designed for plastic pipe, but the pressure rating of the pipe shall be reduced by 50 percent. Thread by socket molded fittings shall be permitted. Approved thread lubricant or tape shall be applied on the male threads only.

605.23 Stainless steel. Joints between stainless steel pipe and fittings shall comply with Sections 605.23.1 and 605.23.2.

605.23.1 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions.

605.23.2 Welded joints. All joint surfaces shall be cleaned. The joint shall be welded autogenously or with an approved filler metal as referenced in ASTM A 312.

605.24 Joints between different materials. Joints between different piping materials shall be made with a mechanical joint of the compression or mechanical-sealing type, or as permitted in Sections 605.24.1, 605.24.2, and 605.24.3. Connectors or adapters shall have an elastomeric seal conforming to ASTM D 1869 or ASTM F 477. Joints shall be installed in accordance with the manufacturer’s instructions.

605.24.1 Copper or copper-alloy tubing to galvanized steel pipe. Joints between copper or copper-alloy tubing and galvanized steel pipe shall be made with a brass fitting or dielectric fitting or a dielectric union conforming to ASSE 1079. The copper tubing shall be soldered to the fitting in an approved manner, and the fitting shall be screwed to the threaded pipe.

605.24.2 Plastic pipe or tubing to other piping material.

Joints between different grades of plastic pipe or between plastic pipe and other piping material shall be made with an approved adapter fitting.

605.24.3 Stainless steel. Joints between stainless steel and different piping materials shall be made with a mechanical joint of the compression or mechanical sealing type or a dielectric fitting or a dielectric union conforming to ASSE 1079.

605.25 Polyethylene of raised temperature plastic. Joints between polyethylene of raised temperature plastic tubing and fittings shall be in accordance with Sections 605.25.1 and 605.25.2.

605.25.1 Flared joints. Flared pipe ends shall be made by a tool designed for that operation.

605.25.2 Mechanical joints. Mechanical joints shall be installed in accordance with the manufacturer’s instructions. Fittings for polyethylene of raised temperature plastic tubing shall comply with the applicable standards listed in Table 605.5 and shall be installed in accordance with the manufacturer’s instructions. Polyethylene of raised temperature plastic tubing
shall be factory marked with the applicable standards for the fittings that the
manufacturer of the tubing specifies for use with the tubing.

SECTION 606
INSTALLATION OF THE BUILDING WATER DISTRIBUTION
SYSTEM

606.1 Location of full-open valves. Full-open valves shall be installed in the
following locations:
1. On the building water service pipe from the public water supply near the curb.
2. On the water distribution supply pipe at the entrance into the structure.
3. On the discharge side of every water meter.
4. On the base of every water riser pipe.
5. On the top of every water down-feed pipe in occupancies other than one-, two-, and three-family residential occupancies.
6. On the entrance to every water supply pipe to a dwelling unit, except where
 supplying a single fixture equipped with individual stops.
7. On the water supply pipe to a gravity or pressurized water tank.
8. On the water supply pipe to every water heater.

606.2 Location of shutoff valves. Shutoff valves shall be installed in the
following locations:
1. On the fixture supply to each plumbing fixture other than in individual
 sleeping units that are provided with unit shutoff valves in hotels, motels,
 boarding houses and similar occupancies.
2. On the water supply pipe to each sillcock.
3. On the water supply pipe to each appliance or mechanical equipment.

606.3 Access to valves. Access shall be provided to all full-open valves and
shutoff valves.

606.4 Valve identification. Service and hose bibb valves shall be identified. All
other valves installed in locations that are not adjacent to the fixture or appliance
shall be identified, indicating the fixture or appliance served.

606.5 Water pressure booster systems. Water pressure booster systems shall be
provided as required by Sections 606.5.1 through 606.5.10.

606.5.1 Water pressure booster systems required. Where the water pressure
in the public water main or individual water supply system is insufficient to
supply the minimum pressures and quantities specified in this code, the supply
shall be supplemented by an elevated water tank, a hydropneumatic pressure
booster system or a water pressure booster pump installed in accordance with
Section 606.5.5.
606.5.2 Support. All water supply tanks shall be supported in accordance with the building code.

606.5.3 Covers. All water supply tanks shall be covered to keep out unauthorized persons, dirt and vermin. The covers of gravity tanks shall be vented with a return bend vent pipe with an area not less than the area of the down-feed riser pipe, and the vent shall be screened with a corrosion-resistant screen of not less than 16 by 20 mesh per inch (630 by 787 mesh per m).

606.5.4 Overflows for water supply tanks. Each gravity or suction water supply tank shall be provided with an overflow with a diameter not less than that shown in Table

606.5.4. The overflow outlet shall discharge at a point not less than 6 inches (152 mm) above the roof or roof drain; floor or floor drain; or over an open water-supplied fixture. The overflow outlet shall be covered with a corrosion-resistant screen of not less than 16 by 20 mesh per inch (630 by 787 mesh per m) and by 1/4-inch (6.4 mm) hardware cloth or shall terminate in a horizontal angle seat check valve. Drainage from overflow pipes shall be directed so as not to freeze on roof walks.

<table>
<thead>
<tr>
<th>MAXIMUM CAPACITY OF WATER SUPPLY LINE TO TANK (gpm)</th>
<th>DIAMETER OF OVERFLOW PIPE (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 50</td>
<td>2</td>
</tr>
<tr>
<td>51 - 150</td>
<td>2 ½</td>
</tr>
<tr>
<td>151 - 200</td>
<td>3</td>
</tr>
<tr>
<td>201 - 400</td>
<td>4</td>
</tr>
<tr>
<td>401 - 700</td>
<td>5</td>
</tr>
<tr>
<td>701 - 1,000</td>
<td>6</td>
</tr>
<tr>
<td>Over 1,000</td>
<td>8</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 gallon per minute = 3.785 L/m.

606.5.5 Low-pressure cutoff required on booster pumps. In accordance with rule 3745-95-07 of the Administrative Code, a low-pressure cutoff or a low suction throttling valve, or variable speed suction limiting controls shall be installed on all booster pumps in a water pressure booster system to prevent creation of a vacuum or negative pressure on the suction side of the pump when a positive pressure of 10 psi (68.94 kPa) or less occurs on the suction side of the pump while the pump is operating. Enforcement of the referenced
rule is the responsibility of the “Ohio Environmental Protection Agency” or the local water purveyor/supplier.

606.5.6 Potable water inlet control and location. Potable water inlets to gravity tanks shall be controlled by a fill valve or other automatic supply valve installed so as to prevent the tank from overflowing. The inlet shall be terminated so as to provide an air gap not less than 4 inches (102 mm) above the overflow.

606.5.7 Tank drain pipes. A valved pipe shall be provided at the lowest point of each tank to permit emptying of the tank. The tank drain pipe shall discharge as required for overflow pipes and shall not be smaller in size than specified in Table 606.5.7.

TABLE 606.5.7
SIZE OF DRAIN PIPES FOR WATER TANKS

<table>
<thead>
<tr>
<th>TANK CAPACITY (gallons)</th>
<th>DRAIN PIPE (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 750</td>
<td>1</td>
</tr>
<tr>
<td>751 to 1,500</td>
<td>1 ½</td>
</tr>
<tr>
<td>1,501 to 3,000</td>
<td>2</td>
</tr>
<tr>
<td>3,001 to 5,000</td>
<td>2 ½</td>
</tr>
<tr>
<td>5,000 to 7,500</td>
<td>3</td>
</tr>
<tr>
<td>Over 7,500</td>
<td>4</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 gallon = 3.785 L.

606.5.8 Prohibited location of potable supply tanks. Potable water gravity tanks or manholes of potable water pressure tanks shall not be located directly under any soil or waste piping or any source of contamination.

606.5.9 Pressure tanks, vacuum relief. All water pressure tanks shall be provided with a vacuum relief valve at the top of the tank that will operate up to a maximum water pressure of 200 psi (1380 kPa) and up to a maximum temperature of 200°F (93°C). The minimum size of such vacuum relief valve shall be ½ inch (12.7 mm).

Exception: This section shall not apply to pressurized captive air diaphragm/bladder tanks.

606.5.10 Pressure relief for tanks. Every pressure tank in a hydropneumatic pressure booster system shall be protected with a pressure relief valve. The pressure relief valve shall be set at a maximum pressure equal to the rating of the tank. The relief valve shall be installed on the supply pipe to the tank or on the tank. The relief valve shall discharge by gravity to a safe place of disposal.
606.6 Water supply system test. Upon completion of a section of or the entire water supply system, the system, or portion completed, shall be tested in accordance with Section 312.

SECTION 607
HOT WATER SUPPLY SYSTEM

607.1 Where required. In residential occupancies, hot water shall be supplied to all plumbing fixtures and equipment utilized for bathing, washing, culinary purposes, cleansing, laundry or building maintenance. In nonresidential occupancies, hot water shall be supplied for culinary purposes, cleansing, laundry or building maintenance purposes. In nonresidential occupancies, hot water or tempered water shall be supplied for bathing and washing purposes. Tempered water shall be delivered from public hand-washing facilities. Tempered water shall be supplied through a water temperature limiting device that conforms to ASSE 1070 and shall limit the tempered water to a maximum of 110°F (43°C). This provision shall not supersede the requirement for protective shower valves in accordance with Section 424.3.

607.1.1 Temperature limiting means. A thermostat control for a water heater shall not serve as the temperature limiting means for the purposes of complying with the requirements of this code for maximum allowable hot or tempered water delivery temperature at fixtures.

607.2 Hot water supply temperature maintenance. Where the developed length of hot water piping from the source of hot water supply to the farthest fixture exceeds 100 feet (30480 mm), the hot water supply system shall be provided with a method of maintaining the temperature in accordance with the applicable standard referenced in Chapter 13 of the building code or Chapter 11 of the “Residential Code of Ohio”.

607.2.1 Piping insulation. Circulating hot water system piping shall be insulated in accordance with the applicable standard referenced in Chapter 13 of the building code or Chapter 11 of the “Residential Code of Ohio”.

607.2.2 Hot water system controls. Automatic circulating hot water system pumps or heat trace shall be arranged to be conveniently turned off, automatically or manually, when the hot water system is not in operation.

607.2.3 Recirculating pump. Where a thermostatic mixing valve is used in a system with a hot water recirculating pump, the hot water or tempered water return line shall be routed to the cold water inlet pipe of the water heater and the cold water inlet pipe or the hot water return connection of the thermostatic mixing valve.
607.3 Thermal expansion control. A means of controlling increased pressure caused by thermal expansion shall be provided where required in accordance with Sections 607.3.1 and 607.3.2.

607.3.1 Pressure-reducing valve. For water service system sizes up to and including 2 inches (51 mm), a device for controlling pressure shall be installed where, because of thermal expansion, the pressure on the downstream side of a pressure-reducing valve exceeds the pressure-reducing valve setting.

607.3.2 Backflow prevention device or check valve. Where a containment or isolation backflow prevention device, check valve or other device is installed on a water supply system utilizing storage water heating equipment such that thermal expansion causes an increase in pressure, a device for controlling pressure shall be installed.

607.4 Flow of hot water to fixtures. Fixture fittings, faucets and diverters shall be installed and adjusted so that the flow of hot water from the fittings corresponds to the left-hand side of the fixture fitting.

Exception: Shower and tub/shower mixing valves conforming to ASSE 1016 or ASME A112.18.1/CSA B125.1, where the flow of hot water corresponds to the markings on the device.

SECTION 608 PROTECTION OF POTABLE WATER SUPPLY

608.1 General. A potable water supply system within a building shall be designed, installed and maintained in such a manner so as to prevent contamination from nonpotable liquids, solids or gases being introduced into the building potable water supply through cross-connections or any other piping connections to the system. Backflow preventer Isolation backflow prevention device applications shall conform to Table 608.1, except as specifically stated in Sections 608.2 through 608.16.10.

608.2 Plumbing fixtures. The supply lines and fittings for every plumbing fixture shall be installed so as to prevent backflow. Plumbing fixture fittings shall provide backflow protection in accordance with ASME A112.18.1.

608.3 Devices, appurtenances, appliances and apparatus. All devices, appurtenances, appliances and apparatus intended to serve some special function, such as sterilization, distillation, processing, cooling, or storage of ice or foods, and that connect to the water supply system, shall be provided with protection against backflow and contamination of the water supply system. Water pumps, water-powered sump pumps, filters, softeners, tanks and all other appliances and devices that handle or treat potable water shall be protected against contamination.
608.3.1 Special equipment, water supply protection. The water supply for hospital fixtures shall be protected against backflow with a reduced pressure principle backflow preventer, an atmospheric or spill-proof vacuum breaker, or an air gap. Vacuum breakers for bedpan washer hoses shall not be located less than 5 feet (1524 mm) above the floor. Vacuum breakers for hose connections in health care or laboratory areas shall not be less than 6 feet (1829 mm) above the floor.

608.4 Water service piping. Water service piping shall be protected in accordance with Sections 603.2 and 603.2.1.

608.5 Chemicals and other substances. Chemicals and other substances that produce either toxic conditions, taste, odor or discoloration in a potable water system shall not be introduced into, or utilized in, such systems.

608.6 Cross-connection control. Cross connections shall be prohibited, except where approved protective devices are installed.

608.6.1 Private water supplies. Cross connections between a private water supply and a potable public supply shall be prohibited.

608.7 Valves and outlets prohibited below grade. Potable water outlets and combination stop-and-waste valves shall not be installed underground or below grade. Freezeproof yard hydrants that drain the riser into the ground are considered to be stop-and-waste valves.

Exception: Freezeproof yard hydrants that drain the riser into the ground shall be permitted to be installed, provided that the potable water supply to such hydrants is protected upstream of the hydrants in accordance with Section 608 and the hydrants are permanently identified as nonpotable outlets by approved signage that reads as follows: “Nonpotable-not safe for drinking.”

608.8 Identification of nonpotable water. In buildings where nonpotable water systems are installed, the piping conveying the nonpotable water shall be identified either by color marking or metal tags in accordance with Sections 608.8.1 through 608.8.3. All nonpotable water outlets such as hose connections, open ended pipes, and faucets shall be identified at the point of use for each outlet with the words, “Nonpotable-not safe for drinking.” The words shall be indelibly printed on a tag or sign constructed of corrosion-resistant waterproof material or shall be indelibly printed on the fixture. The letters of the words shall be not less than 0.5 inches in height and color in contrast to the background on which they are applied.

608.8.1 Information. Pipe identification shall include the contents of the piping system and an arrow indicating the direction of flow. Hazardous piping systems shall also contain information addressing the nature of the hazard. Pipe identification shall be repeated at maximum intervals of 25 feet (7620 mm) and at each point where the piping passes through a wall, floor or roof.
Lettering shall be readily observable within the room or space where the piping is located.

608.8.2 Color. The color of the pipe identification shall be discernable and consistent throughout the building. The color purple shall be used to identify reclaimed, rain and gray water distribution systems.

TABLE 608.1
APPLICATION OF BACKFLOW PREVENTERS

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>DEGREE OF HAZARD</th>
<th>APPLICATION</th>
<th>APPLICABLE STANDARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air gap</td>
<td>High or low hazard</td>
<td>Backsiphonage or backpressure</td>
<td>ASME A112.1.2</td>
</tr>
<tr>
<td>Air gap fittings for use with plumbing fixtures, appliances and appurtenances</td>
<td>High or low hazard</td>
<td>Backsiphonage or backpressure</td>
<td>ASME A112.1.3</td>
</tr>
<tr>
<td>Antisiphon-type fill valves for gravity water closet flush tanks</td>
<td>High hazard</td>
<td>Backsiphonage only</td>
<td>ASSE 1002, CSA B125.3</td>
</tr>
<tr>
<td>Backflow preventer for carbonated beverage machines</td>
<td>Low hazard</td>
<td>Backpressure or backsiphonage Sizes ¼” - 3/8”</td>
<td>ASSE 1022</td>
</tr>
<tr>
<td>Backflow preventer with intermediate atmospheric vents</td>
<td>Low hazard</td>
<td>Backpressure or backsiphonage Sizes ¼” - 3/4”</td>
<td>ASSE 1012, CAN/CSA B64.3</td>
</tr>
<tr>
<td>Barometric loop</td>
<td>High or low hazard</td>
<td>Backsiphonage only</td>
<td>(See Section 608.13.4)</td>
</tr>
<tr>
<td>Double check backflow prevention assembly and double check fire protection backflow prevention assembly</td>
<td>Low hazard</td>
<td>Backpressure or backsiphonage Sizes 3/8” – 16”</td>
<td>ASSE 1015, AWWA C510, CSA B64.5, CSA B64.5.1</td>
</tr>
<tr>
<td>Double check detector fire protection backflow prevention assemblies</td>
<td>Low hazard</td>
<td>Backpressure or backsiphonage (Fire sprinkler systems) Sizes 2” – 16”</td>
<td>ASSE 1048</td>
</tr>
<tr>
<td>Dual-check-valve-type backflow preventer</td>
<td>Low hazard</td>
<td>Backpressure or backsiphonage Sizes ¼” – 1”</td>
<td>ASSE 1024, CSA B64.6</td>
</tr>
<tr>
<td>Hose connection backflow preventer</td>
<td>High or low hazard</td>
<td>Low head backpressure, rated working pressure, backpressure or backsiphonage Sizes ¼” - 1”</td>
<td>ASSE 1052, CSA B64.2.1.1</td>
</tr>
<tr>
<td>Hose connection vacuum breaker</td>
<td>High or low hazard</td>
<td>Low head backpressure or backsiphonage Sizes ½”, ¾”, 1”</td>
<td>ASSE 1011, CAN/CSA B64.2, CSA B64.2.1</td>
</tr>
<tr>
<td>Laboratory faucet backflow preventer</td>
<td>High or low hazard</td>
<td>Low head backpressure and backsiphonage</td>
<td>ASSE 1035, CSA B64.7</td>
</tr>
<tr>
<td>Pipe-applied atmospheric-type vacuum breaker</td>
<td>High or low hazard</td>
<td>Backsiphonage only Sizes ¼” - 4”</td>
<td>ASSE 1001, CAN/CSA B64.1.1</td>
</tr>
<tr>
<td>Pressure vacuum breaker assembly</td>
<td>High or low hazard</td>
<td>Backsiphonage only Sizes ½" – 2"</td>
<td>ASSE 1020, CSA B64.1.2</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Reduced pressure principle backflow preventer and reduced pressure principle fire protection backflow preventer</td>
<td>High or low hazard</td>
<td>Backpressure or backsiphonage Sizes 3/8" - 16"</td>
<td>ASSE 1013, AWWA C511, CAN/CSA B64.4, CSA B64.4.1</td>
</tr>
<tr>
<td>Reduced pressure detector fire protection backflow prevention assemblies</td>
<td>High or low hazard</td>
<td>Backsiphonage or backpressure (Fire sprinkler systems)</td>
<td>ASSE 1047</td>
</tr>
<tr>
<td>Spillproof vacuum breaker</td>
<td>High or low hazard</td>
<td>Backsiphonage only Sizes ¼" - 2"</td>
<td>ASSE 1056</td>
</tr>
<tr>
<td>Vacuum breaker wall hydrants, frost-resistant, automatic draining type</td>
<td>High or low hazard</td>
<td>Low head backpressure or backsiphonage Sizes ¾" - 1"</td>
<td>ASSE 1019, CAN/CSA B64.2.2</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Low hazard – See Pollution (Section 202).
High hazard – See Contamination (Section 202).
b. See Backpressure (Section 202).
See Backpressure, low head (Section 202).
See Backsiphonage (Section 202).

608.8.3 Size. The size of the background color field and lettering shall comply with Table 608.8.3.

TABLE 608.8.3

SIZE OF PIPE IDENTIFICATION

<table>
<thead>
<tr>
<th>PIPE DIAMETER (inches)</th>
<th>LENGTH BACKGROUND COLOR FIELD (inches)</th>
<th>SIZE OF LETTERS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾ to 1 ¼</td>
<td>8</td>
<td>0.5</td>
</tr>
<tr>
<td>1 ½ to 2</td>
<td>8</td>
<td>0.75</td>
</tr>
<tr>
<td>2 ½ to 6</td>
<td>12</td>
<td>1.25</td>
</tr>
<tr>
<td>8 to 10</td>
<td>24</td>
<td>2.5</td>
</tr>
<tr>
<td>over 10</td>
<td>32</td>
<td>3.5</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

608.9 Reutilization prohibited. Water utilized for the cooling of equipment or other processes shall not be returned to the potable water system. Such water shall be discharged into a drainage system through an air gap or shall be utilized for non-potable purposes.
608.10 Reuse of piping. Piping that has been utilized for any purpose other than conveying potable water shall not be utilized for conveying potable water.

608.11 Painting of water tanks. The interior surface of a potable water tank shall not be lined, painted or repaired with any material that changes the taste, odor, color or potability of the water supply when the tank is placed in, or returned to, service.

608.12 Pumps and other appliances. Water pumps, water-powered sump pumps, filters, softeners, tanks and all other devices that handle or treat potable water shall be protected against contamination.

608.13 Backflow protection. Means of protection against backflow shall be provided in accordance with Sections 608.13.1 through 608.13.9.

608.13.1 Air gap. The minimum required air gap shall be measured vertically from the lowest end of a potable water outlet to the flood level rim of the fixture or receptacle into which such potable water outlet discharges. Air gaps shall comply with ASME A112.1.2 and air gap fittings shall comply with ASME A112.1.3.

608.13.2 Reduced pressure principle backflow preventers. Reduced pressure principle backflow preventers shall conform to ASSE 1013, AWWA C511, CAN/CSA B64.4 or CSA B64.4.1. Reduced pressure detector assembly backflow preventers shall conform to ASSE 1047. These devices shall be permitted to be installed where subject to continuous pressure conditions. The relief opening shall discharge by air gap and shall be prevented from being submerged.

608.13.3 Backflow preventer with intermediate atmospheric vent. Backflow preventers with intermediate atmospheric vents shall conform to ASSE 1012 or CAN/CSA B64.3. These devices shall be permitted to be installed where subject to continuous pressure conditions. The relief opening shall discharge by air gap and shall be prevented from being submerged.

608.13.4 Barometric loop. Barometric loops shall precede the point of connection and shall extend vertically to a height of 35 feet (10 668 mm). A barometric loop shall only be utilized as an atmospheric-type or pressure-type vacuum breaker.

608.13.5 Pressure-type vacuum breakers. Pressure-type vacuum breakers shall conform to ASSE 1020 or CSA B64.1.2 and spillproof vacuum breakers shall comply with ASSE 1056. These devices are designed for installation under continuous pressure conditions when the critical level is installed at the required height. Pressure-type vacuum breakers shall not be installed in locations where spillage could cause damage to the structure.

608.13.6 Atmospheric-type vacuum breakers. Pipe-applied atmospheric-type vacuum breakers shall conform to ASSE 1001 or CAN/CSA B64.1.1. Hose-connection vacuum breakers shall conform to ASSE 1011, ASSE 1019,
ASSE 1035, ASSE 1052, CAN/CSA B64.2, CSA B64.2.1.1, CSA B64.2.1.1. CAN/CSA B64.2.2 or CSA B64.7. These devices shall operate under normal atmospheric pressure when the critical level is installed at the required height.

608.13.7 **Double check-valve assemblies.** Double check-valve assemblies shall conform to ASSE 1015, CSA B64.5, CSA B64.5.1 or AWWA C510. Double-detector check-valve assemblies shall conform to ASSE 1048. These devices shall be capable of operating under continuous pressure conditions.

608.13.8 **Spillproof vacuum breakers.** Spillproof vacuum breakers (SVB) shall conform to ASSE 1056. These devices are designed for installation under continuous-pressure conditions when the critical level is installed at the required height.

608.13.9 **Chemical dispenser backflow devices.** Back-flow devices for chemical dispensers shall comply with ASSE 1055 or shall be equipped with an air gap fitting.

608.14 **Location of backflow preventers.** Access shall be provided to backflow preventers as specified by the installation instructions of the approved manufacturer.

608.14.1 **Outdoor enclosures for backflow prevention devices.** Outdoor enclosures for backflow prevention devices shall comply with ASSE 1060.

608.14.2 **Protection of backflow preventers.** Backflow preventers shall not be located in areas subject to freezing except where they can be removed by means of unions or are protected from freezing by heat, insulation or both.

608.14.2.1 **Relief port piping.** The termination of the piping from the relief port or air gap fitting of a backflow preventer shall discharge to an approved indirect waste receptor or to the outdoors where it will not cause damage or create a nuisance.

608.15 **Protection of potable water outlets.** All potable water openings and outlets shall be protected against backflow in accordance with Section 608.15.1, 608.15.2, 608.15.3, 608.15.4, 608.15.4.1 or 608.15.4.2.

608.15.1 **Protection by air gap.** Openings and outlets shall be protected by an air gap between the opening and the fixture flood level rim as specified in Table 608.15.1. Openings and outlets equipped for hose connection shall be protected by means other than an air gap.

608.15.2 **Protection by a reduced pressure principle backflow preventer.** Openings and outlets shall be protected by a reduced pressure principle backflow preventer.

608.15.3 **Protection by a backflow preventer with intermediate atmospheric vent.** Openings and outlets shall be protected by a backflow preventer with an intermediate atmospheric vent.
608.15.4 Protection by a vacuum breaker. Openings and outlets shall be protected by atmospheric-type or pressure-type vacuum breakers. The critical level of the vacuum breaker shall be set a minimum of 6 inches (152 mm) above the flood level rim of the fixture or device. Fill valves shall be set in accordance with Section 425.3.1. Vacuum breakers shall not be installed under exhaust hoods or similar locations that will contain toxic fumes or vapors. Pipe-applied vacuum breakers shall be installed not less than 6 inches (152 mm) above the flood level rim of the fixture, receptor or device served.

608.15.4.1 Deck-mounted and integral vacuum breakers. Approved deck-mounted or equipment-mounted vacuum breakers and faucets with integral atmospheric or spillproof vacuum breakers shall be installed in accordance with the manufacturer’s instructions and the requirements for labeling with the critical level not less than 1 inch (25 mm) above the flood level rim.

608.15.4.2 Hose connections. Sillcocks, hose bibbs, wall hydrants and other openings with a hose connection shall be protected by an atmospheric-type or pressure-type vacuum breaker or a permanently attached hose connection vacuum breaker.

Exceptions:
1. This section shall not apply to water heater and boiler drain valves that are provided with hose connection threads and that are intended only for tank or vessel draining.
2. This section shall not apply to water supply valves intended for connection of clothes washing machines where backflow prevention is otherwise provided or is integral with the machine.

608.16 Connections to the potable water system. Connections to the potable water system shall conform to Sections 608.16.1 through 608.16.10.

608.16.1 Beverage dispensers. The water supply connection to beverage dispensers shall be protected against backflow by a backflow preventer conforming to ASSE 1022 or by an air gap. The portion of the backflow preventer device downstream from the second check valve and the piping downstream therefrom shall not be affected by carbon dioxide gas.

608.16.2 Connections to boilers. The potable supply to the boiler shall be equipped with a backflow preventer with an intermediate atmospheric vent complying with ASSE 1012 or CAN/CSA B64.3. Where conditioning chemicals are introduced into the system, the potable water connection shall be protected by an air gap or a reduced pressure principle backflow preventer, complying with ASSE 1013, CAN/CSA B64.4 or AWWA C511.

608.16.3 Heat exchangers. Heat exchangers utilizing an essentially toxic transfer fluid shall be separated from the potable water by double-wall
construction. An air gap open to the atmosphere shall be provided between the two walls. Heat exchangers utilizing an essentially nontoxic transfer fluid shall be permitted to be of single-wall construction.

TABLE 608.15.1
MINIMUM REQUIRED AIR GAPS

<table>
<thead>
<tr>
<th>FIXTURE</th>
<th>MINIMUM AIR GAP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Away from a wall</td>
</tr>
<tr>
<td></td>
<td>(inches)</td>
</tr>
<tr>
<td>Lavatories and other fixtures with effective opening not greater than 1/2 inch in diameter</td>
<td>1</td>
</tr>
<tr>
<td>Sink, laundry trays, gooseneck back faucets and other fixtures with effective openings not greater than 3/4 inch in diameter</td>
<td>1 1/2</td>
</tr>
<tr>
<td>Over-rim bath fillers and other fixtures with effective openings not greater than 1 inch in diameter</td>
<td>2</td>
</tr>
<tr>
<td>Drinking water fountains, single orifice not greater than 7/16 inch in diameter or multiple orifices with a total area of 0.150 square inch (area of circle 7/16 inch in diameter)</td>
<td>1</td>
</tr>
<tr>
<td>Effective openings greater than 1 inch</td>
<td>Two times the diameter of the effective opening</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. Applicable where walls or obstructions are spaced from the nearest inside-edge of the spout opening a distance greater than three times the diameter of the effective opening for a single wall, or a distance greater than four times the diameter of the effective opening for two intersecting walls.

608.16.4 Connections to automatic fire sprinkler systems and standpipe systems. The potable water supply to automatic fire sprinkler and standpipe systems shall be protected against backflow by a double check-valve assembly or a reduced pressure principle backflow preventer.

Exceptions:

1. Where systems are installed as a portion of the water distribution system in accordance with the requirements of this code and are not provided with a fire department connection, isolation of the water supply system shall not be required.
2. Isolation of the water distribution system is not required for deluge, preaction or dry pipe systems.

608.16.4.1 Additives or nonpotable source. Where systems under continuous pressure contain chemical additives or antifreeze, or where systems are connected to a nonpotable secondary water supply, the potable water supply shall be protected against backflow by a reduced pressure principle backflow preventer. Where chemical additives or antifreeze are
added to only a portion of an automatic fire sprinkler or standpipe system, the reduced pressure principle backflow preventer shall be permitted to be located so as to isolate that portion of the system. Where systems are not under continuous pressure, the potable water supply shall be protected against backflow by an air gap or a pipe applied atmospheric vacuum breaker conforming to ASSE 1001 or CAN/CSA B64.1.1.

608.16.5 Connections to lawn irrigation systems. The potable water supply to lawn irrigation systems shall be protected against backflow by an atmospheric-type vacuum breaker, a pressure-type vacuum breaker or a reduced pressure principle backflow preventer. A valve shall not be installed downstream from an atmospheric vacuum breaker. Where chemicals are introduced into the system, the potable water supply shall be protected against backflow by a reduced pressure principle backflow preventer.

608.16.6 Connections subject to backpressure. Where a potable water connection is made to a nonpotable line, fixture, tank, vat, pump or other equipment subject to backpressure, the potable water connection shall be protected by a reduced pressure principle backflow preventer.

608.16.7 Chemical dispensers. Where chemical dispensers connect to the potable water distribution system, the water supply system shall be protected against backflow in accordance with Section 608.13.1, 608.13.2, 608.13.5, 608.13.6, 608.13.8 or 608.13.9.

608.16.8 Portable cleaning equipment. Where the portable cleaning equipment connects to the water distribution system, the water supply system shall be protected against backflow in accordance with Section 608.13.1, 608.13.2, 608.13.3, 608.13.7 or 608.13.8.

608.16.9 Dental pump equipment. Where dental pumping equipment connects to the water distribution system, the water supply system shall be protected against backflow in accordance with Section 608.13.1, 608.13.2, 608.13.5, 608.13.6 or 608.13.8.

608.16.10 Coffee machines and noncarbonated beverage dispensers. The water supply connection to coffee machines and noncarbonated beverage dispensers shall be protected against backflow by a backflow preventer conforming to ASSE 1022 or by an air gap.

608.17 Protection of individual water supplies. An individual water supply, otherwise known as a private water system, shall be located and constructed so as to be safeguarded against contamination in accordance with the rules of the “Ohio Department of Health” contained within Chapter 3701-28 of the Administrative Code, “Private Water Systems.”.

608.17.1 Well locations. Deleted.
SECTION 609
HEALTH CARE PLUMBING

609.1 Scope. This section shall govern those aspects of health care plumbing systems that differ from plumbing systems in other structures. Health care plumbing systems shall conform to the requirements of this section in addition to the other requirements of this code. The provisions of this section shall apply to the special devices and equipment installed and maintained in the following occupancies: nursing homes, homes for the aged, orphanages, infirmaries, first aid stations, psychiatric facilities, clinics, professional offices of dentists and doctors, mortuaries, educational facilities, surgery, dentistry, research and testing laboratories, establishments manufacturing pharmaceutical drugs and medicines, and other structures with similar apparatus and equipment classified as plumbing.

609.2 Water service. All hospitals shall have two water service pipes installed in such a manner so as to minimize the potential for an interruption of the supply of water in the event of a water main or water service pipe failure.

609.3 Hot water. Hot water shall be provided to supply all of the hospital fixture, kitchen and laundry requirements. Special fixtures and equipment shall have hot water supplied at a temperature specified by the manufacturer. The hot water system shall be installed in accordance with Section 607.

609.4 Vacuum breaker installation. Vacuum breakers shall be installed a minimum of 6 inches (152 mm) above the flood level rim of the fixture or device in accordance with Section

The flood level rim of hose connections shall be the maximum height at which any hose is utilized.

609.5 Prohibited water closet and clinical sink supply. Jet-or water-supplied orifices, except those supplied by the flush connections, shall not be located in or connected with a water closet bowl or clinical sink. This section shall not prohibit an approved bidet installation.

609.6 Clinical, hydrotherapeutic and radiological equipment. All clinical, hydrotherapeutic, radiological or any equipment that is supplied with water or that
discharges to the waste system shall conform to the requirements of this section and Section 608.

609.7 Condensate drain trap seal. A water supply shall be provided for cleaning, flushing and resealing the condensate trap, and the trap shall discharge through an air gap in accordance with Section 608.

609.8 Valve leakage diverter. Each water sterilizer filled with water through directly connected piping shall be equipped with an approved leakage diverter or bleed line on the water supply control valve to indicate and conduct any leakage of unsterile water away from the sterile zone.

SECTION 610
DISINFECTION OF POTABLE WATER SYSTEM

610.1 General. New or repaired potable water systems shall be purged of deleterious matter and disinfected prior to utilization. The method to be followed shall be that prescribed by the health authority or water purveyor having jurisdiction or, in the absence of a prescribed method, the procedure described in either AWWA C651 or AWWA C652, or as described in this section. This requirement shall apply to “on-site” or “in-plant” fabrication of a system or to a modular portion of a system.

1. The pipe system shall be flushed with clean, potable water until dirty water does not appear at the points of outlet.

2. The system or part thereof shall be filled with a water/chlorine solution containing at least 50 parts per million (50 mg/L) of chlorine, and the system or part thereof shall be valved off and allowed to stand for 24 hours; or the system or part thereof shall be filled with a water/chlorine solution containing at least 200 parts per million (200 mg/L) of chlorine and allowed to stand for 3 hours.

3. Following the required standing time, the system shall be flushed with clean potable water until the chlorine is purged from the system.

4. The procedure shall be repeated where shown by a bacteriological examination that contamination remains present in the system.

SECTION 611
DRINKING WATER TREATMENT UNITS

611.1 Design. Drinking water treatment units shall meet the requirements of NSF 42, NSF 44, NSF 53 or NSF 62 or **CSA B483.1**.

611.2 Reverse osmosis systems. The discharge from a reverse osmosis drinking water treatment unit shall enter the drainage system through an air gap or an air gap device that meets the requirements of NSF 58 or **CSA B483.1**.
611.3 **Connection tubing.** The tubing to and from drinking water treatment units shall be of a size and material as recommended by the manufacturer. The tubing shall comply with NSF 14, NSF 42, NSF 44, NSF 53, NSF 58 or NSF 61.

SECTION 612
SOLAR SYSTEMS

612.1 **Solar systems.** The construction, installation, alterations and repair of systems, equipment and appliances intended to utilize solar energy for space heating or cooling, domestic hot water heating, swimming pool heating or process heating shall be in accordance with the *mechanical code.*

SECTION 613
TEMPERATURE CONTROL DEVICES AND VALVES

613.1 **Temperature-actuated mixing valves.** Temperature-actuated mixing valves, which are installed to reduce water temperatures to defined limits, shall comply with ASSE 1017. *Such valves shall be installed at the hot water source.*
Effective: 01/01/2016

Five Year Review (FYR) Dates: 11/01/2016

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
Prior Effective Dates: 3/1/98, 10/1/99, 12/1/00, 1/1/02, 3/1/05, 7/1/07, 11/1/07, 11/1/11, 7/1/14
4101:3-9-01 Vents.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:3-13-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:1-1-01 of the Administrative Code.]

SECTION 901
GENERAL

901.1 Scope. The provisions of this chapter shall govern the materials, design, construction and installation of vent systems.

901.2 Trap seal protection. The plumbing system shall be provided with a system of vent piping that will permit the admission or emission of air so that the seal of any fixture trap shall not be subjected to a pneumatic pressure differential of more than 1 inch of water column (249 Pa).

901.2.1 Venting required. Every trap and trapped fixture shall be vented in accordance with one of the venting methods specified in this chapter.

901.3 Chemical waste vent system. The vent system for a chemical waste system shall be independent of the sanitary vent system and shall terminate separately through the roof to the open air.

901.4 Use limitations. The plumbing vent system shall not be utilized for purposes other than the venting of the plumbing system.

901.5 Tests. The vent system shall be tested in accordance with Section 312.

901.6 Engineered systems. Engineered venting systems shall conform to the provisions of Section 918.

SECTION 902
MATERIALS

902.1 Vents. The materials and methods utilized for the construction and installation of venting systems shall comply with the applicable provisions of Section 702.

902.2 Sheet copper. Sheet copper for vent pipe flashings shall conform to ASTM B 152 and shall weigh not less than 8 ounces per square foot (2.5 kg/m²).

902.3 Sheet lead. Sheet lead for vent pipe flashings shall weigh not less than 3 pounds per square foot (15 kg/m²) for field-constructed flashings and not less than 2 1/2 pounds per square foot (12 kg/m²) for prefabricated flashings.

SECTION 903
OUTDOOR VENT EXTENSION

903.1 Required vent extension. The vent system serving each building drain shall have at least one vent pipe that extends to the outdoors through and above the roof.
903.1.1 Installation. The required vent shall be a dry vent that connects to the building drain or an extension of a drain that connects to the building drain. Such vent shall not be an island fixture vent as allowed by Section 913.

903.1.2 Size. The required vent shall be sized in accordance with Section 916.2 based on the required size of the building drain.

903.2 Vent stack required. A vent stack shall be required for every drainage stack that has five branch intervals or more.

Exception: Drainage stacks installed in accordance with Section 910.

903.3 Vent termination. Vent stacks or stack vents shall terminate outdoors to the open air or to a stack-type air admittance valve in accordance with Section 917.

903.4 Vent connection at base. Every vent stack shall connect to the base of the drainage stack. The vent stack shall connect at or below the lowest horizontal branch. Where the vent stack connects to the building drain, the connection shall be located downstream of the drainage stack and within a distance of 10 times the diameter of the drainage stack.

903.5 Vent headers. Stack vents and vent stacks connected into a common vent header at the top of the stacks and extending to the open air at one point shall be sized in accordance with the requirements of Section 916.1. The number of fixture units shall be the sum of all fixture units on all stacks connected thereto, and the developed length shall be the longest vent length from the intersection at the base of the most distant stack to the vent terminal in the open air, as a direct extension of one stack.

SECTION 904
VENT TERMINALS

904.1 Roof extension. All open vent pipes that extend through a roof shall be terminated at least 12 inches (304.8 mm) above the roof, except that where a roof is to be used for any purpose other than weather protection, the vent extensions shall be run at least 7 feet (2134 mm) above the roof.

904.2 Frost closure. Every vent extension through a roof or wall shall be a minimum of 3 inches (76 mm) in diameter. Any increase in the size of the vent shall be made inside the structure a minimum of 1 foot (305 mm) below the roof or inside the wall.

904.3 Flashings. The juncture of each vent pipe with the roof line shall be made water-tight by an approved flashing.

904.4 Prohibited use. Vent terminals shall not be used as a flag pole or to support flag poles, television aerials or similar items, except when the piping has been anchored in an approved manner.

904.5 Location of vent terminal. An open vent terminal from a drainage system shall not be located directly beneath any door, openable window, or other air intake opening of the building or of an adjacent building, and any such vent terminal shall not be within 10 feet (3048 mm) horizontally of such an opening unless it is at least 2 feet (610 mm) above the top of such opening.

904.6 Extension through the wall. Vent terminals extending through the wall shall terminate a minimum of 10 feet (3048 mm) from the lot line and 10 feet (3048 mm) above average ground level. Vent terminals shall not terminate under the overhang of a structure with soffit vents. Side wall vent terminals shall be protected to prevent birds or rodents from entering or blocking the vent opening.
904.7 **Extension outside a structure.** In climates where the 97.5-percent value for outside design temperature is less than 0°F (-18°C), vent pipes installed on the exterior of the structure shall be protected against freezing by insulation, heat or both.

SECTION 905
VENT CONNECTIONS AND GRADES

905.1 **Connection.** All individual, branch and circuit vents shall:
1. Connect to a vent stack, or
2. Connect to a stack vent, or
3. Extend to the open air, or
4. Connect to an air admittance valve in accordance with Section 917.

905.2 **Grade.** All vent and branch vent pipes shall be so graded and connected as to drain back to the drainage pipe by gravity.

905.3 **Vent connection to drainage system.** Every dry vent connecting to a horizontal drain shall connect above the center-line of the horizontal drain pipe.

905.4 **Vertical rise of vent.** Every dry vent shall rise vertically to a minimum of 6 inches (152 mm) above the flood level rim of the highest trap or trapped fixture being vented.

Exception: Vents for interceptors located outdoors.

905.5 **Height above fixtures.** A connection between a vent pipe and a vent stack or stack vent shall be made at least 6 inches (152 mm) above the flood level rim of the highest fixture served by the vent. Horizontal vent pipes forming branch vents, relief vents or loop vents shall be at least 6 inches (152 mm) above the flood level rim of the highest fixture served.

905.6 **Vent for future fixtures.** Where the drainage piping has been roughed-in for future fixtures, a rough-in connection for a vent shall be installed. The vent size shall be not less than one-half the diameter of the rough-in drain to be served. The vent rough-in shall connect to the vent system, or shall be vented by other means as provided for in this chapter. The connection shall be identified to indicate that it is a vent.

SECTION 906
FIXTURE VENTS

906.1 **Distance of trap from vent.** Each fixture trap shall have a protecting vent located so that the slope and the developed length in the fixture drain from the trap weir to the vent fitting are within the requirements set forth in Table 906.1.

Exception: The developed length of the fixture drain from the trap weir to the vent fitting for self-siphoning fixtures, such as water closets, shall not be limited in individual vent, common vent, and wet vent systems.

906.2 **Venting of fixture drains.** The total fall in a fixture drain due to pipe slope shall not exceed the diameter of the fixture drain, nor shall the vent connection to a fixture drain, except for water closets, be below the weir of the trap.

906.3 **Crown vent.** A vent shall not be installed within two pipe diameters of the trap weir.

TABLE 906.1
MAXIMUM DISTANCE OF FIXTURE TRAP FROM VENT
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 inch per foot = 83.3 mm/m.

SECTION 907
INDIVIDUAL VENT

907.1 Individual vent permitted. Each trap and trapped fixture is permitted to be provided with an individual vent. The individual vent shall connect to the fixture drain of the trap or trapped fixture being vented.

SECTION 908
COMMON VENT

908.1 Individual vent as common vent. An individual vent is permitted to vent two traps or trapped fixtures as a common vent. The traps or trapped fixtures being common vented shall be located on the same floor level.

908.2 Connection at the same level. Where the fixture drains being common vented connect at the same level, the vent connection shall be at the interconnection of the fixture drains or downstream of the interconnection. Common vent on the horizontal shall be a double pattern fitting.

908.3 Connection at different levels. Where the fixture drains connect at different levels, the vent shall connect as a vertical extension of the vertical drain. The vertical drain pipe connecting the two fixture drains shall be considered the vent for the lower fixture drain, and shall be sized in accordance with Table 908.3. The upper fixture shall not be a water closet.

TABLE 908.3
COMMON VENT SIZES

<table>
<thead>
<tr>
<th>PIPE SIZE (inches)</th>
<th>MAXIMUM DISCHARGE FROM UPPER FIXTURE DRAIN (dfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2 1/2 to 3</td>
<td>6</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
SECTION 909
WET VENTING

909.1 Horizontal wet vent permitted. Any combination of fixtures within two bathroom groups located on the same floor level is permitted to be vented by a horizontal wet vent. The wet vent shall be considered the vent for the fixtures and shall extend from the connection of the dry vent along the direction of the flow in the drain pipe to the most downstream fixture drain connection to the horizontal branch drain. Each wet-vented fixture drain shall connect independently to the horizontal wet vent. Only the fixtures within the bathroom groups shall connect to the wet-vented horizontal branch drain. Any additional fixtures shall discharge downstream of the horizontal wet vent.

909.1.1 Vertical wet vent permitted. Any combination of fixtures within two bathroom groups located on the same floor level is permitted to be vented by a vertical wet vent. The vertical wet vent shall be considered the vent for the fixtures and shall extend from the connection of the dry vent down to the lowest fixture drain connection. Each wet-vented fixture shall connect independently to the vertical wet vent. Water closet drains shall connect at the same elevation. Other fixture drains shall connect above or at the same elevation as the water closet fixture drains. The dry-vent connection to the vertical wet vent shall be an individual or common vent serving one or two fixtures.

909.2 Dry vent connection. The required dry-vent connection for wet-vented systems shall comply with Sections 909.2.1 and 909.2.2.

909.2.1 Horizontal wet vent. The dry-vent connection for a horizontal wet-vent system shall be an individual vent or a common vent for any bathroom group fixture, except an emergency floor drain. Where the dry-vent connects to a water closet fixture drain, the drain shall connect horizontally to the horizontal wet-vent system. Not more than one wet-vented fixture drain shall discharge upstream of the dry-vented fixture drain connection.

909.2.2 Vertical wet vent. The dry-vent connection for a vertical wet-vent system shall be an individual vent or common vent for the most upstream fixture drain.

909.3 Size. The dry vent serving the wet vent shall be sized based on the largest required diameter of pipe within the wet-vent system served by the dry vent. The wet vent shall be of a minimum size as specified in Table 909.3, based on the fixture unit discharge to the wet vent.

<p>| TABLE 909.3 |
| WET VENT SIZE |</p>
<table>
<thead>
<tr>
<th>WET VENT PIPE SIZE (inches)</th>
<th>DRAINAGE FIXTURE UNIT LOAD (dfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ½</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2 ½</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
SECTION 910
WASTE STACK VENT

910.1 Waste stack vent permitted. A waste stack shall be considered a vent for all of the fixtures discharging to the stack where installed in accordance with the requirements of this section.

910.2 Stack installation. The waste stack shall be vertical, and both horizontal and vertical offsets shall be prohibited between the lowest fixture drain connection and the highest fixture drain connection. Every fixture drain shall connect separately to the waste stack. The stack shall not receive the discharge of water closets or urinals.

910.3 Stack vent. A stack vent shall be provided for the waste stack. The size of the stack vent shall be not less than the size of the waste stack. Offsets shall be permitted in the stack vent, shall be located at least 6 inches (152 mm) above the flood level of the highest fixture and shall be in accordance with Section 905.2. The stack vent shall be permitted to connect with other stack vents and vent stacks in accordance with Section 903.5.

910.4 Waste stack size. The waste stack shall be sized based on the total discharge to the stack and the discharge within a branch interval in accordance with Table 910.4. The waste stack shall be the same size throughout its length.

<table>
<thead>
<tr>
<th>STACK SIZE (inches)</th>
<th>MAXIMUM NUMBER OF DRAINAGE FIXTURE UNITS (dfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total discharge into one branch interval</td>
</tr>
<tr>
<td>1 ½</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2 ½</td>
<td>No limit</td>
</tr>
<tr>
<td>3</td>
<td>No limit</td>
</tr>
<tr>
<td>4</td>
<td>No limit</td>
</tr>
<tr>
<td>5</td>
<td>No limit</td>
</tr>
<tr>
<td>6</td>
<td>No limit</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

SECTION 911
CIRCUIT VENTING

911.1 Circuit vent permitted. A maximum of eight fixtures connected to a horizontal branch drain shall be permitted to be circuit vented. Each fixture drain shall connect horizontally to the horizontal branch being circuit vented. The horizontal branch drain shall be classified as a vent from the most downstream fixture drain connection to the most upstream fixture drain connection to the horizontal branch.

911.1.1 Multiple circuit-vented branches. Circuit-vented horizontal branch drains are permitted to be connected together. Each group of a maximum of eight fixtures shall be considered a separate circuit vent and shall conform to the requirements of this section.
911.2 Vent connection. The circuit vent connection shall be located between the two most upstream fixture drains. The vent shall connect to the horizontal branch and shall be installed in accordance with Section 905. The circuit vent pipe shall not receive the discharge of any soil or waste.

911.3 Slope and size of horizontal branch. The maximum slope of the vent section of the horizontal branch drain shall be one unit vertical in 12 units horizontal (8-percent slope). The entire length of the vent section of the horizontal branch drain shall be sized for the total drainage discharge to the branch.

911.3.1 Size of multiple circuit vent. Each separate circuit-vented horizontal branch that is interconnected shall be sized independently in accordance with Section 911.3. The downstream circuit-vented horizontal branch shall be sized for the total discharge into the branch, including the upstream branches and the fixtures within the branch.

911.4 Relief vent. A relief vent shall be provided for circuit-vented horizontal branches receiving the discharge of four or more water closets and connecting to a drainage stack that receives the discharge of soil or waste from upper horizontal branches.

911.4.1 Connection and installation. The relief vent shall connect to the horizontal branch drain between the stack and the most downstream fixture drain of the circuit vent. The relief vent shall be installed in accordance with Section 905.

911.4.2 Fixture drain or branch. The relief vent is permitted to be a fixture drain or fixture branch for fixtures located within the same branch interval as the circuit-vented horizontal branch. The maximum discharge to a relief vent shall be four fixture units.

911.5 Additional fixtures. Fixtures, other than the circuit-vented fixtures, are permitted to discharge to the horizontal branch drain. Such fixtures shall be located on the same floor as the circuit-vented fixtures and shall be either individually or common vented.

SECTION 912
COMBINATION DRAIN AND VENT SYSTEM

912.1 Type of fixtures. A combination drain and vent system shall not serve fixtures other than floor drains, sinks, lavatories and drinking fountains. Combination drain and vent systems shall not receive the discharge from a food waste grinder or clinical sink.

912.2 Installation. The only vertical pipe of a combination drain and vent system shall be the connection between the fixture drain of a sink, lavatory or drinking fountain, and the horizontal combination drain and vent pipe. The maximum vertical distance shall be 8 feet (2438 mm).

912.2.1 Slope. The horizontal combination drain and vent pipe shall have a maximum slope of one-half unit vertical in 12 units horizontal (4-percent slope). The minimum slope shall be in accordance with Table 704.1.

912.2.2 Connection. The combination drain and vent system shall be provided with a dry vent connected at any point within the system or the system shall connect to a horizontal drain that is vented in accordance with one of the venting methods specified in this chapter. Combination drain and vent systems connecting to building drains receiving only the discharge from a stack or stacks shall be provided with a dry vent. The vent connection to the combination drain and vent pipe shall extend vertically a minimum of 6 inches (152 mm) above the flood level rim of the highest fixture being vented before offsetting horizontally. The horizontal length of a combination drain and vent system shall be unlimited.
912.2.3 Vent size. The vent shall be sized for the total drainage fixture unit load in accordance with Section 916.2.

912.2.4 Fixture branch or drain. The fixture branch or fixture drain shall connect to the combination drain and vent within a distance specified in Table 906.1. The combination drain and vent pipe shall be considered the vent for the fixture.

912.3 Size. The minimum size of a combination drain and vent pipe shall be in accordance with Table 912.3.

TABLE 912.3
SIZE OF COMBINATION DRAIN AND VENT PIPE

<table>
<thead>
<tr>
<th>DIAMETER PIPE (inches)</th>
<th>MAXIMUM NUMBER OF DRAINAGE FIXTURE UNITS (dfu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Connecting to a horizontal branch or stack</td>
</tr>
<tr>
<td></td>
<td>Connecting to a building drain or building subdrain</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2 ½</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>575</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

SECTION 913
ISLAND FIXTURE VENTING

913.1 Limitation. Island fixture venting shall not be permitted for fixtures other than sinks and lavatories. Residential kitchen sinks with a dishwasher waste connection, a food waste grinder, or both, in combination with the kitchen sink waste, shall be permitted to be vented in accordance with this section.

913.2 Vent connection. The island fixture vent shall connect to the fixture drain as required for an individual or common vent. The vent shall rise vertically to above the drainage outlet of the fixture being vented before offsetting horizontally or vertically downward. The vent or branch vent for multiple island fixture vents shall extend to a minimum of 6 inches (152 mm) above the highest island fixture being vented before connecting to the outside vent terminal.

913.3 Vent installation below the fixture flood level rim. The vent located below the flood level rim of the fixture being vented shall be installed as required for drainage piping in accordance with Chapter 7, except for sizing. The vent shall be sized in accordance with Section 916.2. The lowest point of the island fixture vent shall connect full size to the drainage system. The connection shall be to a vertical drain pipe or to the top half of a horizontal drain pipe. Cleanouts shall be provided in the island fixture vent to permit rodding of all vent piping located below the flood level rim of the fixtures. Rodding in both directions shall be permitted through a cleanout.
SECTION 914
RELIEF VENTS—STACKS OF MORE THAN 10 BRANCH INTERVALS

914.1 Where required. Soil and waste stacks in buildings having more than 10 branch intervals shall be provided with a relief vent at each tenth interval installed, beginning with the top floor.

914.2 Size and connection. The size of the relief vent shall be equal to the size of the vent stack to which it connects. The lower end of each relief vent shall connect to the soil or waste stack through a wye below the horizontal branch serving the floor, and the upper end shall connect to the vent stack through a wye not less than 3 feet (914 mm) above the floor.

SECTION 915
VENTS FOR STACK OFFSETS

915.1 Vent for horizontal offset of drainage stack. Horizontal offsets of drainage stacks shall be vented where five or more branch intervals are located above the offset. The offset shall be vented by venting the upper section of the drainage stack and the lower section of the drainage stack.

915.2 Upper section. The upper section of the drainage stack shall be vented as a separate stack with a vent stack connection installed in accordance with Section 903.4. The offset shall be considered the base of the stack.

915.3 Lower section. The lower section of the drainage stack shall be vented by a yoke vent connecting between the offset and the next lower horizontal branch. The yoke vent connection shall be permitted to be a vertical extension of the drainage stack. The size of the yoke vent and connection shall be a minimum of the size required for the vent stack of the drainage stack.

SECTION 916
VENT PIPE SIZING

916.1 Size of stack vents and vent stacks. The minimum required diameter of stack vents and vent stacks shall be determined from the developed length and the total of drainage fixture units connected thereto in accordance with Table 916.1, but in no case shall the diameter be less than one-half the diameter of the drain served or less than 1 1/4 inches (32 mm).

<table>
<thead>
<tr>
<th>DIAMETER OF SOIL OR WASTE STACK (inches)</th>
<th>TOTAL FIXTURE UNITS BEING VENTED (dfu)</th>
<th>MAXIMUM DEVELOPED LENGTH OF VENT (feet)* DIAMETER OF VENT (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1¼ 1 ½ 2 2 ½ 3 4 5 6 8 10 12</td>
<td></td>
</tr>
<tr>
<td>1 ¼</td>
<td>2 30 - - - - - - - - - - - - - - - - - -</td>
<td></td>
</tr>
<tr>
<td>1 ½</td>
<td>8 50 150 - - - - - - - - - - - - - - - -</td>
<td></td>
</tr>
<tr>
<td>1 ¾</td>
<td>10 30 100 - - - - - - - - - - - - - - - -</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12 30 75 200 - - - - - - - - - - - - - -</td>
<td></td>
</tr>
<tr>
<td>2 ½</td>
<td>20 26 50 150 - - - - - - - - - - - - - -</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>42 - 30 100 300 - - - - - - - - - - - -</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 916.1
SIZE AND DEVELOPED LENGTH OF STACK VENTS AND VENT STACKS
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.
a. The developed length shall be measured from the vent connection to the open air.

916.2 Vents other than stack vents or vent stacks. The diameter of individual vents, branch vents, circuit vents and relief vents shall be at least one-half the required diameter of the drain served. The required size of the drain shall be determined in accordance with Table 710.1(2). Vent pipes shall not be less than 1 ¼ inches (32 mm) in diameter. Vents exceeding 40 feet (12 192 mm) in developed length shall be increased by one nominal pipe size for the entire developed length of the vent pipe. Relief vents for soil and waste stacks in buildings having more than 10 branch intervals shall be sized in accordance with Section 914.2.

916.3 Developed length. The developed length of individual, branch, circuit and relief vents shall be measured from the farthest point of vent connection to the drainage system to the point of connection to the vent stack, stack vent or termination outside of the building.

916.4 Multiple branch vents. Where multiple branch vents are connected to a common branch vent, the common branch vent shall be sized in accordance with this section based on the size of the common horizontal drainage branch that is or would be required to serve the total drainage fixture unit (dfu) load being vented.

916.4.1 Branch vents exceeding 40 feet in developed length. Branch vents exceeding 40 feet (12 192 mm) in developed length shall be increased by one nominal size for the entire developed length of the vent pipe.
916.5 Sump vents. Sump vent sizes shall be determined in accordance with Sections 916.5.1 and 917.6.2.

916.5.1 Sewage pumps and sewage ejectors other than pneumatic. Drainage piping below sewer level shall be vented in a similar manner to that of a gravity system. Building sump vent sizes for sumps with sewage pumps or sewage ejectors, other than pneumatic, shall be determined in accordance with Table 916.5.1.

916.5.2 Pneumatic sewage ejectors. The air pressure relief pipe from a pneumatic sewage ejector shall be connected to an independent vent stack terminating as required for vent extensions through the roof. The relief pipe shall be sized to relieve air pressure inside the ejector to atmospheric pressure, but shall not be less than $1\frac{1}{4}$ inches (32 mm) in size.

**SECTION 917
AIR ADMITTANCE VALVES**

917.1 General. Vent systems utilizing air admittance valves shall comply with this section and Section 903.1. Stack-type air admittance valves shall conform to ASSE 1050. Individual and branch-type air admissance valves shall conform to ASSE 1051.

917.2 Installation. The valves shall be installed in accordance with the requirements of this section and the manufacturer’s installation instructions. Air admittance valves shall be installed after the DWV testing required by Section 312.2 or 312.3 has been performed.

TABLE 916.5.1 SIZE AND LENGTH OF SUMP VENTS

<table>
<thead>
<tr>
<th>DISCHARGE CAPACITY OF PUMP (gpm)</th>
<th>MAXIMUM DEVELOPED LENGTH OF VENT (feet)</th>
<th>Diameter of vent (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1(\frac{1}{4})</td>
<td>1(\frac{1}{2})</td>
</tr>
<tr>
<td>10</td>
<td>No limit</td>
<td>No limit</td>
</tr>
<tr>
<td>20</td>
<td>270</td>
<td>No limit</td>
</tr>
<tr>
<td>40</td>
<td>72</td>
<td>160</td>
</tr>
<tr>
<td>60</td>
<td>31</td>
<td>75</td>
</tr>
<tr>
<td>80</td>
<td>16</td>
<td>41</td>
</tr>
<tr>
<td>100</td>
<td>10(c)</td>
<td>25</td>
</tr>
<tr>
<td>150</td>
<td>Not permitted</td>
<td>10(c)</td>
</tr>
<tr>
<td>200</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
<tr>
<td>250</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
<tr>
<td>300</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
<tr>
<td>400</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
<tr>
<td>500</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 gallon per minute = 3.785 L/min.
a. Developed length plus an appropriate allowance for entrance losses and friction due to fittings, changes in direction and diameter. Suggested allowances shall be obtained from NSB Monograph 31 or other approved sources. An allowance of 50 percent of the developed length shall be assumed if a more precise value is not available.
b. Actual values greater than 500 feet.
c. Less than 10 feet.

917.3 Where permitted. Individual, branch and circuit vents shall be permitted to terminate with a connection to an individual or branch-type air admittance valve. Stack vents and vent stacks shall be permitted to terminate to stack-type air admittance valves. Individual and branch-type air admittance valves shall vent only fixtures that are on the same floor level and connect to a horizontal branch drain. The horizontal branch drain having individual and branch-type air admittance valves shall conform to Section 917.3.1 or 917.3.2. Stack-type air admittance valves shall conform to Section 917.3.3.

917.3.1 Location of branch. The horizontal branch drain shall connect to the drainage stack or building drain a maximum of four branch intervals from the top of the stack.

917.3.2 Relief vent. Where the horizontal branch is located more than four branch intervals from the top of the stack, the horizontal branch shall be provided with a relief vent that shall connect to a vent stack or stack vent, or extend outdoors to the open air. The relief vent shall connect to the horizontal branch drain between the stack and the most downstream fixture drain connected to the horizontal branch drain. The relief vent shall be sized in accordance with Section 916.2 and installed in accordance with Section 905. The relief vent shall be permitted to serve as the vent for other fixtures.

917.3.3 Stack. Stack-type air admittance valves shall not serve as the vent terminal for vent stacks or stack vents that serve drainage stacks having more than six branch intervals.

917.4 Location. Individual and branch-type air admittance valves shall be located a minimum of 4 inches (102 mm) above the horizontal branch drain or fixture drain being vented. Stack-type air admittance valves shall be located not less than 6 inches (152 mm) above the flood level rim of the highest fixture being vented. The air admittance valve shall be located within the maximum developed length permitted for the vent. The air admittance valve shall be installed a minimum of 6 inches (152 mm) above insulation materials.

917.5 Access and ventilation. Access shall be provided to all air admittance valves. The valve shall be located within a ventilated space that allows air to enter the valve.

917.6 Size. The air admittance valve shall be rated in accordance with the standard for the size of the vent to which the valve is connected.

917.7 Vent required. Within each plumbing system, a minimum of one stack vent or vent stack shall extend outdoors to the open air.

917.8 Prohibited installations. Air admittance valves shall not be installed in nonneutralized special waste systems as described in Chapter 8. Air admittance valves shall not be located in spaces utilized as supply or return air plenums or where limited by the manufacturer’s installation instructions. Air admittance valves without an engineered design shall not be utilized to vent sumps or tanks of any type.
SECTION 918
ENGINEERED VENT SYSTEMS

918.1 General. Engineered vent systems shall comply with this section and the design, submittal, approval, inspection and testing requirements of Section 106.7 of the building code.

918.2 Individual branch fixture and individual fixture header vents. The maximum developed length of individual fixture vents to vent branches and vent headers shall be determined in accordance with Table 918.2 for the minimum pipe diameters at the indicated vent airflow rates.

The individual vent airflow rate shall be determined in accordance with the following:

\[Q_{h,b} = N_{n,b} Q_v \]
(Equation 9-1)

For SI: \(Q_{h,b} = N_{n,b} Q_v \times 0.4719 \text{ L/s} \)

where:

- \(N_{n,b} \) = Number of fixtures per header (or vent branch) ÷ total number of fixtures connected to vent stack.
- \(Q_{h,b} \) = Vent branch or vent header airflow rate (cfm).
- \(Q_v \) = Total vent stack airflow rate (cfm).

\[Q_v \text{ (gpm)} = 27.8 \ r_s^{2/3} (1 - r_s) D^{8/3} \]
\[Q_v \text{ (cfm)} = 0.134 \ Q_v \text{ (gpm)} \]

where:

- \(D \) = Drainage stack diameter (inches).
- \(Q_w \) = Design discharge load (gpm).
- \(r_s \) = Waste water flow area to total area.

 \[= Q_w / 27.8 D^{8/3} \]

Individual vent airflow rates are obtained by equally distributing \(Q_{h,b} \) into one-half the total number of fixtures on the branch or header for more than two fixtures; for an odd number of total fixtures, decrease by one; for one fixture, apply the full value of \(Q_{h,b} \).

Individual vent developed length shall be increased by 20 percent of the distance from the vent stack to the fixture vent connection on the vent branch or header.

SECTION 919
COMPUTERIZED VENT DESIGN

919.1 Design of vent system. The sizing, design and layout of the vent system shall be permitted to be determined by approved computer program design methods.

919.2 System capacity. The vent system shall be based on the air capacity requirements of the drainage system under a peak load condition.
TABLE 918.2
MINIMUM DIAMETER AND MAXIMUM LENGTH OF INDIVIDUAL BRANCH FIXTURE VENTS AND INDIVIDUAL FIXTURE HEADER VENTS FOR SMOOTH PIPES

<table>
<thead>
<tr>
<th>DIAMETER OF VENT PIPE (inches)</th>
<th>INDIVIDUAL VENT AIRFLOW RATE (cubic feet per minute)</th>
<th>Maximum developed length of vent (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20</td>
</tr>
<tr>
<td>½</td>
<td></td>
<td>95 25 13 8 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>¾</td>
<td></td>
<td>100 88 47 30 20 15 10 9 7 6 5 4 3 3 2 2 2 2 1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>- - 100 94 65 48 37 29 24 20 17 14 12 11 9 8 7 7 6 6</td>
</tr>
<tr>
<td>1 ¼</td>
<td></td>
<td>- - - - - - - 100 87 73 62 53 46 40 36 32 29 26 23 21</td>
</tr>
<tr>
<td>1 ½</td>
<td></td>
<td>- - - - - - - - - - - - - - - - 100 96 84 75 65 60 54 49 45</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>- 100</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 cubic foot per minute = 0.4719 L/s, 1 foot = 304.8 mm.

SECTION 920
SINGLE STACK VENT SYSTEM

920.1 Where permitted. A drainage stack shall serve as a single stack vent system where sized and installed in accordance with Sections 920.2 through 920.9. The drainage stack and branch piping shall be the vents for the drainage system. The drainage stack shall have a stack vent.

920.2 Stack size. Drainage stacks shall be sized in accordance with Table 920.2. Stacks shall be uniformly sized based on the total connected drainage fixture unit load. The stack vent shall be the same size as the drainage stack. A 3-inch (76 mm) stack shall serve not more than two water closets.

TABLE 920.2
SINGLE STACK SIZE

<table>
<thead>
<tr>
<th>STACK SIZE (inches)</th>
<th>MAXIMUM CONNECTED DRAINAGE FIXTURE UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stacks less than 75 feet in height</td>
</tr>
<tr>
<td></td>
<td>Stacks 75 feet to less than 160 feet in</td>
</tr>
<tr>
<td></td>
<td>height</td>
</tr>
<tr>
<td></td>
<td>Stacks 160 feet and greater in height</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

920.3 Branch size. Horizontal branches connecting to a single stack vent system shall be sized in accordance with Table 710.1(2). Not more than one water closet shall discharge into a 3-inch (76 mm) horizontal branch at a point within a developed length of 18 inches (457 mm) measured horizontally from the stack.

Where a water closet is within 18 inches (457 mm) measured horizontally from the stack and not more than one fixture with a drain size of not more than 1 1/2 inch (38 mm) connects to a 3-inch (76 mm) horizontal branch, the branch drain connection to the stack shall be made with a sanitary tee.

920.4 Length of horizontal branches. The length of horizontal branches shall conform to the requirements of Sections 920.4.1 through 920.4.3.

920.4.1 Water closet connection. Water closet connections shall be not greater than 4 feet (1219 mm) in developed length measured horizontally from the stack.

Exception: Where the connection is made with a sanitary tee, the maximum developed length shall be 8 feet (2438 mm).

920.4.2 Fixture connections. Fixtures other than water closets shall be located not greater than 12 feet (3657 mm) in developed length, measured horizontally from the stack.

920.4.3 Vertical piping in branch. The length of vertical piping in a fixture drain connecting to a horizontal branch shall not be considered in computing the fixture’s distance in developed length measured horizontally from the stack.

920.5 Minimum vertical piping size from fixture. The vertical portion of piping in a fixture drain to a horizontal branch shall be 2 inches (51 mm). The minimum size of the vertical portion of piping for a water-supplied urinal or standpipe shall be 3 inches (76 mm). The maximum vertical drop shall be 4 feet (1219 mm). Fixture drains that are not increased in size, or have a vertical drop in excess of 4 feet (1219 mm) shall be individually vented.
920.6 Additional venting required. Additional venting shall be provided where more than one water closet discharges to a horizontal branch and where the distance from a fixture trap to the stack exceeds the limits in Section 920.4. Where additional venting is required, the fixture(s) shall be vented by individual vents, common vents, wet vents, circuit vents, or a combination drain and vent pipe. The dry vent extensions for the additional venting shall connect to a branch vent, vent stack, stack vent, air admittance valve, or shall terminate outdoors.

920.7 Stack offsets. Where fixture drains are not connected below a horizontal offset in a stack, a horizontal offset shall not be required to be vented. Where horizontal branches or fixture drains are connected below a horizontal offset in a stack, the offset shall be vented in accordance with Section 915. Fixture connections shall not be made to a stack within 2 feet (610 mm) above or below a horizontal offset.

920.8 Prohibited lower connections. Stacks greater than 2 branch intervals in height shall not receive the discharge of horizontal branches on the lower two floors. There shall be no connections to the stack between the lower two floors and a distance of not less than 10 pipe diameters downstream from the base of the single stack vented system.

920.9 Sizing building drains and sewers. The building drain and building sewer receiving the discharge of a single stack vent system shall be sized in accordance with Table 710.1(1).
Effective: 01/01/2016
Five Year Review (FYR) Dates: 11/01/2016

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
Prior Effective Dates: 7/1/98, 1/1/02, 8/15/03, 7/1/07, 11/1/11, 3/15/12
4101:3-13-01 Referenced standards.

1301.1 General. This chapter lists the codes and standards that are referenced in various sections of this document. The standards are listed herein by the promulgating agency of the standard, the standard identification, the effective date, and the title. The application of the referenced standards shall be as specified in Section 102.5 of the building code.

1301.2 Referenced codes. When indicated in the “OPC”, the following codes refer to provisions in the listed chapters of the Administrative Code:

<table>
<thead>
<tr>
<th>Referenced code</th>
<th>Ohio Administrative Code chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Code</td>
<td>4101:1-1 to 4101:1-35</td>
</tr>
<tr>
<td>Fire Code</td>
<td>1301:7-1 to 1301:7-7</td>
</tr>
<tr>
<td>Mechanical Code</td>
<td>4101:2-1 to 4101:2-15</td>
</tr>
<tr>
<td>Ohio Boiler and Pressure Vessel Rules</td>
<td>4101:4-1 to 4101:4-10</td>
</tr>
</tbody>
</table>

1301.3 Referenced Standards.

ANSI American National Standards Institute
25 West 43rd Street, Fourth Floor
New York, NY 10036

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A118.10-10</td>
<td>Specifications for Load Bearing, Bonded, Waterproof Membranes for Thin Set Ceramic Tile and Dimension Stone Installation</td>
</tr>
<tr>
<td>Z4.3—95 (R2005)</td>
<td>Minimum Requirements for Nonsewered Waste-Disposal Systems (Standard is developed by the Portable Sanitation Association International-PSAI)</td>
</tr>
<tr>
<td>Z124.1.2—05</td>
<td>Plastic Bathtub and Shower Units (Standard is developed by IAPMO)</td>
</tr>
<tr>
<td>Z124.3—05</td>
<td>Plastic Lavatories (Standard is developed by IAPMO)</td>
</tr>
<tr>
<td>Z124.4—06</td>
<td>Plastic Water Closet Bowls and Tanks (Standard is developed by IAPMO)</td>
</tr>
<tr>
<td>Z124.6—07</td>
<td>Plastic Sinks (Standard is developed by IAPMO)</td>
</tr>
<tr>
<td>Z124.9—04</td>
<td>Plastic Urinal Fixtures (Standard is developed by IAPMO)</td>
</tr>
</tbody>
</table>
AHRI

Air-Conditioning, Heating, & Refrigeration Institute
4100 North Fairfax Drive, Suite 200
Arlington, VA 22203

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1010—02</td>
<td>Self-contained, Mechanically Refrigerated Drinking-Water Coolers</td>
</tr>
</tbody>
</table>

ASME

American Society of Mechanical Engineers
Three Park Avenue
New York, NY 10016-5990

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A112.1.2—2004</td>
<td>Air Gaps in Plumbing Systems</td>
</tr>
<tr>
<td>A112.1.3—2000 (R 2005)</td>
<td>Air Gap Fittings for Use with Plumbing Fixtures, Appliances and Appurtenances</td>
</tr>
<tr>
<td>A112.3.1—2007</td>
<td>Stainless Steel Drainage Systems for Sanitary, DWV, Storm and Vacuum Applications Above and Below Ground</td>
</tr>
<tr>
<td>A112.3.4—2000 (R 2004)</td>
<td>Macerating Toilet Systems and Related Components</td>
</tr>
<tr>
<td>A112.4.1—2009</td>
<td>Water Heater Relief Valve Drain Tubes</td>
</tr>
<tr>
<td>A112.4.2-2008</td>
<td>Water Closet Personal Hygiene Devices</td>
</tr>
<tr>
<td>A112.4.3—1999 (R 2004)</td>
<td>Plastic Fittings for Connecting Water Closets to the Sanitary Drainage System</td>
</tr>
<tr>
<td>A112.6.1M—1997 (R2002)</td>
<td>Floor-affixed Supports for Off-the-floor Plumbing Fixtures for Public Use</td>
</tr>
<tr>
<td>A112.6.2—2000 (R2004)</td>
<td>Framing-affixed Supports for Off-the-floor Water Closets with Concealed Tanks</td>
</tr>
<tr>
<td>A112.6.3—2001 (R 2007)</td>
<td>2001 Floor and Trench Drains</td>
</tr>
<tr>
<td>A112.6.7—2001 (R 2007)</td>
<td>Enameled and Epoxy-coated Cast-iron and PVC Plastic Sanitary Floor Sinks</td>
</tr>
<tr>
<td>A112.14.1—2003</td>
<td>Backwater Valves</td>
</tr>
<tr>
<td>A112.14.3—2000</td>
<td>Grease Interceptors</td>
</tr>
<tr>
<td>A112.18.1/CSA B125.1-2005</td>
<td>Plumbing Supply Fittings</td>
</tr>
<tr>
<td>CSA B125.1-2005/A112.18.2/CSA B125.2-2005</td>
<td>Plumbing Waste Fittings</td>
</tr>
<tr>
<td>CSA B125.2-2005/A112.18.3-2002</td>
<td>Performance Requirements for Backflow Protection Devices and Systems in Plumbing Fixture Fittings</td>
</tr>
<tr>
<td>A112.18.6/ CSA B125.6—2009</td>
<td>Flexible Water Connectors</td>
</tr>
<tr>
<td>A112.18.7—1999 (R2004)</td>
<td>Deck mounted Bath/Shower Transfer Valves with Integral Backflow Protection</td>
</tr>
<tr>
<td>A112.19.1M/CSA B45.2-2008</td>
<td>Enameled Cast Iron Plumbing Fixtures</td>
</tr>
</tbody>
</table>
A112.19.2/CSA B45.1—2008 Vitreous China Plumbing Fixtures and Hydraulic
Requirements for Water Closets and Urinals.
A112.19.3M/CSA B45.4—2008 Stainless Steel Plumbing Fixtures (Designed for Residential
Use
A112.19.5/CSA B45.15—2005 Trim for Water-closet Bowls, Tanks and Urinals
A112.19.6—1995 Hydraulic Performance Requirements for Water Closets and
Urinals
A112.19.7M/CSA B45.10—2006 HydromassageBathtub Appliances
A112.19.8M—2007 Suction Fittings for Use in Swimming Pools, Wading Pools,
Spas, Hot Tubs
Supplement
A112.19.12—2006 Wall Mounted and Pedestal Mounted, Adjustable, Elevating,
Tilting and Pivoting Lavatory, Sink and Shampoo Bowl Carrier Systems and Drain Systems
A112.19.15—2005 Bathtub/Whirlpool Bathtubs with Pressure Sealed Doors
A112.19.19—2006 Vitreous ChinaNonwaterUrinals
A112.21.2M—1983 Roof Drains
A112.36.2M—1991(R2002) Cleanouts
B1.20.1—1983(R2006) Pipe Threads, General Purpose (inch
B16.3—2006 Malleable Iron Threaded Fittings Classes 150 and 300
B16.4—2006 Gray Iron Threaded Fittings Classes 125 and 250
B16.12—2009 Cast-iron Threaded Drainage Fittings
B16.15—2006 Cast Bronze Threaded Fittings
B16.18—2001(R 2005) Cast Copper Alloy Solder Joint Pressure Fittings
B16.22—2001 (R2005) Wrought Copper and Copper Alloy Solder Joint Pressure
Fittings
B16.23—2002 (R 2006) Cast Copper Alloy Solder Joint Drainage Fittings DWV
B16.26—2006 Cast Copper Alloy Fittings for Flared Copper Tubes .
B16.28—1994 Wrought Steel Buttwelding Short Radius Elbows and Returns
B16.29—2007 Wrought Copper and Wrought Copper Alloy Solder Joint
Drainage Fittings (DWV)

BPVC Section IX-2010 Welding and Brazing Qualifications.

ASSE American Society of Sanitary Engineering
901 Canterbury Road, Suite A
Westlake, OH 44145

Standard Referenced Title

1001—08 Performance Requirements for Atmospheric Type Vacuum
Breakers
1002—08 Performance Requirements for Antisiphon Fill Valves (Ballcocks) for Gravity Water Closet Flush Tanks
1003—09 Performance Requirements for Water Pressure Reducing Valves.
1004—08 Performance Requirements for Backflow Prevention Requirements for Commercial Dishwashing Machines.
1005—99 Performance Requirements for Water Heater Drain Valves.
1006—86 Performance Requirements for Residential Use Dishwashers.
1007—86 Performance Requirements for Home Laundry Equipment
1008—06 Performance Requirements for Household Food Waste Disposer Units
1009—90 Performance Requirements for Commercial Food Waste Grinder Units
1010—04 Performance Requirements for Water Hammer Arresters
1011—04 Performance Requirements for Hose Connection Vacuum Breakers
1012—09 Performance Requirements for Backflow Preventers with Intermediate Atmospheric Vent.
1013—09 Performance Requirements for Reduced Pressure Principle Backflow Preventers and Reduced Pressure Fire Protection Principle Backflow Preventers
1015—09 Performance Requirements for Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies
1016—05 Performance Requirements for Individual Thermostatic, Pressure Balancing and Combination Control Valves for Individual Fixture Fittings
1017—09 Performance Requirements for Temperature Actuated Mixing Valves for Hot Water Distribution Systems.
1018—01 Performance Requirements for Trap Seal Primer Valves; Potable Water Supplied
1019—04 Performance Requirements for Vacuum Breaker Wall Hydrants, Freeze Resistant, Automatic Draining Type
1020—04 Performance Requirements for Pressure Vacuum Breaker Assembly
1022—03 Performance Requirements for Backflow Preventer for Beverage Dispensing Equipment
1024—04 Performance Requirements for Dual Check Valve Type Backflow Preventers (for Residential Supply Service or Individual Outlets
1035—08 Performance Requirements for Laboratory Faucet Backflow Preventers
1037—90 Performance Requirements for Pressurized Flushing Devices for Plumbing Fixtures
1044—01 Performance Requirements for Trap Seal Primer Devices Drainage Types and Electronic Design Types
1047—09 Performance Requirements for Reduced Pressure Detector Fire Protection Backflow Prevention Assemblies
1048—09 Performance Requirements for Double Check Detector Fire Protection Backflow Prevention Assemblies
Performance Requirements for Stack Air Admittance Valves for Sanitary Drainage Systems.

Performance Requirements for Individual and Branch Type Air Admittance Valves for Sanitary Drainage Systems—fixture and Branch Devices.

Performance Requirements for Hose Connection Backflow Preventers.

Performance Requirements for Chemical Dispensing Systems.

Performance Requirements for Spill Resistant Vacuum Breaker.

Performance Requirements for Outdoor Enclosures for Backflow Prevention Assemblies.

Performance Requirements for Removable and Nonremovable Push Fit Fittings.

Performance Requirements for Temperature Actuated, Flow Reduction Valves to Individual Fixture Fittings.

Performance Requirements for Individual Pressure Balancing In-line Valves for Individual Fixture Fittings.

Performance Requirements for Automatic Temperature Control Mixing Valves.

Performance Requirements for Water-temperature Limiting Devices.

Performance Requirements for Barrier Type Floor Drain Trap Seal Protection Devices.

Performance Requirements for Testing Reduced Pressure Principle Backflow Prevention Assembly (RPA) and Reduced Pressure Fire Protection Principle Backflow Preventers (RFP).

Performance Requirements for Testing Double Check Valve Backflow Prevention Assembly (DCVA).

Performance Requirements for Testing Pressure Vacuum Breaker Assembly (PVBA).

Performance Requirements for Testing Reduced Pressure Detector Fire Protection Backflow Prevention Assemblies (RPDA).

Performance Requirements for Testing Double Check Valve Detector Assembly (DCDA).

Performance Requirements for Testing Hose Connection Backflow Preventers.

Performance Requirements for Testing Spill Resistant Vacuum Breaker.
<table>
<thead>
<tr>
<th>Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 53/A 53M—10</td>
<td>Specification for Pipe, Steel, Black and Hot-dipped, Zinc-coated Welded and Seamless</td>
</tr>
<tr>
<td>A 74—09</td>
<td>Specification for Cast-iron Soil Pipe and Fittings</td>
</tr>
<tr>
<td>A 312/A 312M—09</td>
<td>Specification for Seamless and Welded Austenitic Stainless Steel Pipes</td>
</tr>
<tr>
<td>A 733—03 (2009)e1</td>
<td>Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples</td>
</tr>
<tr>
<td>A 778—01(2009)e1</td>
<td>Specification for Welded Unannealed Austenitic Stainless Steel Tubular Products</td>
</tr>
<tr>
<td>A 888—09</td>
<td>Specification for Hubless Cast-iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Application</td>
</tr>
<tr>
<td>B 32—08</td>
<td>Specification for Solder Metal</td>
</tr>
<tr>
<td>B 42—10</td>
<td>Specification for Seamless Copper Pipe, Standard Sizes</td>
</tr>
<tr>
<td>B 43—09</td>
<td>Specification for Seamless Red Brass Pipe, Standard Sizes</td>
</tr>
<tr>
<td>B 75—02</td>
<td>Specification for Seamless Copper Tube</td>
</tr>
<tr>
<td>B 88—09</td>
<td>Specification for Seamless Copper Water Tube</td>
</tr>
<tr>
<td>B 152/B 152M—09</td>
<td>Specification for Copper Sheet, Strip Plate and Rolled Bar</td>
</tr>
<tr>
<td>B 251—10</td>
<td>Specification for General Requirements for Wrought Seamless Copper and Copper-alloy Tube</td>
</tr>
<tr>
<td>B 302—07</td>
<td>Specification for Threadless Copper Pipe, Standard Sizes</td>
</tr>
<tr>
<td>B 306—09</td>
<td>Specification for Copper Drainage Tube (DWV)</td>
</tr>
<tr>
<td>B 447—07</td>
<td>Specification for Welded Copper Tube</td>
</tr>
<tr>
<td>B 687—99(2005)e01</td>
<td>Specification for Brass, Copper and Chromium-plated Pipe Nipples</td>
</tr>
<tr>
<td>B 813—10</td>
<td>Specification for Liquid and Paste Fluxes for Soldering of Copper and Copper Alloy Tube</td>
</tr>
<tr>
<td>B 828—02</td>
<td>Practice for Making Capillary Joints by Soldering of Copper and Copper Alloy Tube and Fittings.</td>
</tr>
<tr>
<td>C 14—07</td>
<td>Specification for Nonreinforced Concrete Sewer, Storm Drain and Culvert Pipe.</td>
</tr>
<tr>
<td>C 76—10a</td>
<td>Specification for Reinforced Concrete Culvert, Storm Drain and Sewer Pipe</td>
</tr>
<tr>
<td>C 296-00 (2009)e1</td>
<td>Specification for Asbestos-cement Pressure Pipe</td>
</tr>
<tr>
<td>C 443—05ae1</td>
<td>Specification for Joints for Concrete Pipe and Manholes, Using Rubber Gaskets</td>
</tr>
<tr>
<td>C 508- 00 (2009)e1</td>
<td>Specification for Asbestos-cement Underdrain Pipe</td>
</tr>
<tr>
<td>C 564—09a</td>
<td>Specification for Rubber Gaskets for Cast-iron Soil Pipe and Fittings</td>
</tr>
</tbody>
</table>
C 1460—08 Specification for Shielded Transition Couplings for Use with Dissimilar DWV Pipe and Fittings Above Ground.
C 1540—09a Specification for Heavy Duty Shielded Couplings Joining Hubless Cast-iron Soil Pipe and Fittings.
D 1785—06 Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80 and 120.
D 2239—03 Specification for Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameter.
D 2241—09 Specification for Poly (Vinyl Chloride) (PVC) Pressure-rated Pipe (SDR-Series).
D 2467—06 Specification for Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80.
D 2657—07 Practice for Heat Fusion-joining of Polyolefin Pipe and Fitting.
D 2683—10 Standard Specification for Socket-type Polyethylene fittings for Outside Diameter-controlled Polyethylene Pipe and Tubing
D 2729—03 Specification for Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings
D 2737—03 Specification for Polyethylene (PE) Plastic Tubing
D 2751—05 Specification for Acrylonitrile-Butadiene-Styrene (ABS) Sewer Pipe and Fittings
D 2846/D 2846M—09b Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Hot and Cold Water Distribution Systems
D 3034—08 Specification for Type PSM Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings
D 3035-08 Standard Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside Diameter
D 3212—07 Specification for Joints for Drain and Sewer Plastic Pipes Using Flexible Elastomeric Seals
D 3311—06a09a Specification for Drain, Waste and Vent (DWV) Plastic Fittings Patterns
D 4068—09 Specification for Chlorinated Polyethylene (CPE) Sheeting for Concealed Water-containment Membrane
D 4551—96(2008) e1 Specification for Poly (Vinyl Chloride) (PVC) Plastic Flexible Concealed Water-containment Membrane
F 405—05 Specification for Corrugated Polyethylene (PE) Tubing and Fittings
F 437—09 Specification for Threaded Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80
F 438—09 Specification for Socket-type Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 40
F 441/F 441M—09 Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80
F 442/F 442M—09 Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe (SDR-PR)
F 477—10 Specification for Elastomeric Seals (Gaskets) for Joining Plastic Pipe
F 493—10 Specification for Solvent Cements for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe and Fittings
<table>
<thead>
<tr>
<th>Standard Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 628—08</td>
<td>Specification for Acrylonitrile-Butadiene-Styrene (ABS) Schedule 40 Plastic Drain, Waste, and Vent Pipe with a Cellular Core</td>
</tr>
<tr>
<td>F 656—10</td>
<td>Specification for Primers for Use in Solvent Cement Joints of Poly (Vinyl Chloride) (PVC) Plastic Pipe and Fittings</td>
</tr>
<tr>
<td>F 714—08</td>
<td>Specification for Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter</td>
</tr>
<tr>
<td>F 876—10</td>
<td>Specification for Cross-linked Polyethylene (PEX) Tubing</td>
</tr>
<tr>
<td>F 877—07</td>
<td>Specification for Cross-linked Polyethylene (PEX) Plastic Hot and Cold Water Distribution Systems</td>
</tr>
<tr>
<td>F 891—10</td>
<td>Specification for Coextruded Poly (Vinyl Chloride) (PVC) Plastic Pipe with a Cellular Core</td>
</tr>
<tr>
<td>F 1055—98(2006)</td>
<td>Standard Specification for Electrofusion Type Polyethylene Fittings for Outside Diameter Controlled Polyethylene Pipe and Tubing</td>
</tr>
<tr>
<td>F 1281—07</td>
<td>Specification for Cross-linked Polyethylene/Aluminum/Cross-linked Polyethylene (PEX-AL-PEX) Pressure Pipe</td>
</tr>
<tr>
<td>F 1282—10</td>
<td>Specification for Polyethylene/Aluminum/Polyethylene (PE-AL-PE) Composite Pressure Pipe</td>
</tr>
<tr>
<td>F 1412—09</td>
<td>Specification for Polyolefin Pipe and Fittings for Corrosive Waste Drainage</td>
</tr>
<tr>
<td>F 1488—09</td>
<td>Specification for Coextruded Composite Pipe</td>
</tr>
<tr>
<td>F 1673—10</td>
<td>PolyvinylideneFluoride (PVDF) Corrosive Waste Drainage Systems</td>
</tr>
<tr>
<td>F 1807—07</td>
<td>Specification for Metal Insert Fittings Utilizing a Copper Crimp Ring for SDR9 Cross-linked Polyethylene (PEX) Tubing</td>
</tr>
<tr>
<td>F 1866—07</td>
<td>Specification for Poly (Vinyl Chloride) (PVC) Plastic Schedule 40 Drainage and DWV Fabricated Fittings</td>
</tr>
<tr>
<td>F 1960—10</td>
<td>Specification for Cold Expansion Fittings with PEX Reinforcing Rings for use with Cross-linked Polyethylene (PEX) Tubing</td>
</tr>
<tr>
<td>F 1974—09</td>
<td>Specification for Metal Insert Fittings for Polyethylene/Aluminum/Polyethylene and Cross-linked Polyethylene/Aluminum/Cross-linked Polyethylene Composite Pressure Pipe</td>
</tr>
<tr>
<td>F 2080—09</td>
<td>Specifications for Cold-expansion Fittings with Metal Compression-sleeves for Cross-linked Polyethylene (PEX) Pipe</td>
</tr>
<tr>
<td>F 2098—08</td>
<td>Standard specification for Stainless Steel Clamps for Securing SDR9 Cross-linked Polyethylene (PEX) Tubing to Metal Insert Fittings</td>
</tr>
<tr>
<td>F 2159—10</td>
<td>Specification for Plastic Insert Fittings Utilizing a Copper Crimp Ring for SDR9 Cross-linked Polyethylene (PEX) Tubing</td>
</tr>
<tr>
<td>F 2262—09</td>
<td>Specification for Cross-linked Polyethylene/Aluminum/Cross-linked Polyethylene Tubing OD Controlled SDR9</td>
</tr>
</tbody>
</table>
Standard Referenced

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 2306/F 2306M-08</td>
<td>12" to 60" Annular Corrugated Profile-wall Polyethylene (PE) Pipe and Fittings for Gravity Flow Storm Sewer and Subsurface Drainage Applications</td>
</tr>
<tr>
<td>F 2389—10</td>
<td>Specification for Pressure-rated Polypropylene (PP) Piping Systems</td>
</tr>
<tr>
<td>F 2434—09</td>
<td>Standard Specification for Metal Insert Fittings Utilizing a Copper Crimp Ring for SDR9 Cross-linked Polyethylene (PEX) Tubing and SDR9 Cross-linked Polyethylene/Aluminum/Cross-linked Polyethylene (PEXAL-PEX) Tubing.</td>
</tr>
<tr>
<td>F2735-09</td>
<td>Standard Specification for SDR9 Cross-linked Polyethylene (PEX) and Raised Temperature (PE-RT) Tubing</td>
</tr>
<tr>
<td>F2769-09</td>
<td>Polyethylene or Raised Temperature (PE-RT) Plastic Hot and Cold Water Tubing and Distribution Systems</td>
</tr>
</tbody>
</table>

AWS

American Welding Society

550 N.W. LeJeune Road
Miami, FL 33126

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5.8—04</td>
<td>Specifications for Filler Metals for Brazing and Braze Welding</td>
</tr>
</tbody>
</table>

AWWA

American Water Works Association

6666 West Quincy Avenue
Denver, CO 80235

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>C104/A21.4-08</td>
<td>Standard for Cement-mortar Lining for Ductile-iron Pipe and Fittings for Water</td>
</tr>
<tr>
<td>C110/A21.10—08</td>
<td>Standard for Ductile-iron and Gray-iron Fittings, 3 Inches through 48 Inches, for Water</td>
</tr>
<tr>
<td>C111/A21.11-06</td>
<td>Standard for Rubber-gasket Joints for Ductile-iron Pressure Pipe and Fittings</td>
</tr>
<tr>
<td>C115/A21.15—05</td>
<td>Standard for Flanged Ductile-iron Pipe with Ductile-iron or Gray-iron Threaded Flanges</td>
</tr>
<tr>
<td>C151/A21.51—09</td>
<td>Standard for Ductile-iron Pipe, Centrifugally Cast for Water</td>
</tr>
<tr>
<td>C153/A21.53—06</td>
<td>Standard for Ductile-iron Compact Fittings for Water Service</td>
</tr>
<tr>
<td>C510—07</td>
<td>Double Check Valve Backflow Prevention Assembly</td>
</tr>
<tr>
<td>C511—07</td>
<td>Reduced-pressure Principle Backflow Prevention Assembly</td>
</tr>
</tbody>
</table>
C651—05 Disinfecting Water Mains
C652—02 Disinfection of Water-storage Facilities
C901-08 Polyethylene(PE) Pressure Pipe and Tubing ½ inch (13 mm) through 3 inch (76 mm) for Water Service
C904-08 Cross-linked Polyethylene (PEX) Pressure Pipe ½ inch (13 mm) through 3 inch (76 mm) for Water Service

CISPI Cast Iron Soil Pipe Institute
5959 Shallowford Road, Suite 419
Chattanooga, TN 37421

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>301—09</td>
<td>Specification for Hubless Cast-iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste and Vent Piping Applications</td>
</tr>
<tr>
<td>310—09</td>
<td>Specification for Coupling for Use in Connection with Hubless Cast-iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste and Vent Piping Applications</td>
</tr>
</tbody>
</table>

CSA Canadian Standards Association
5060 Spectrum Way.
Mississauga, Ontario, Canada L4W 5N6

<table>
<thead>
<tr>
<th>Standard Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>B45.1/ASME A112.19.2-02 (R2008)</td>
<td>Ceramic Plumbing Fixtures</td>
</tr>
<tr>
<td>B45.2/ASME A112.19.1-02 (R2008)</td>
<td>Enameled Cast-iron Plumbing Fixtures</td>
</tr>
<tr>
<td>B45.3-02 (R2008)</td>
<td>Porcelain Enameled Steel Plumbing Fixtures</td>
</tr>
<tr>
<td>B45.4/ASME A112.19.3-02 (R2008)</td>
<td>Stainless-steel Plumbing Fixtures</td>
</tr>
<tr>
<td>B45.5-02 (R2008)</td>
<td>Plastic Plumbing Fixtures</td>
</tr>
<tr>
<td>B45.9-99 (R2008)</td>
<td>Macerating Systems and Related Components</td>
</tr>
<tr>
<td>B45.10/ASME A112.19.7-09</td>
<td>Hydromassage Bathtub Appliances</td>
</tr>
<tr>
<td>B45.15/ASME A112.19.5-09</td>
<td>Trim for Water-closet Bowls, Tanks, and Urinals</td>
</tr>
<tr>
<td>B64.1-02</td>
<td>Vacuum Breakers, Pressure Type (PVB)</td>
</tr>
<tr>
<td>B64.2.1-07</td>
<td>Vacuum Breakers, Hose Connection Type (HCVB) with Manual Draining Feature</td>
</tr>
<tr>
<td>B64.2.1.1-07</td>
<td>Vacuum Breakers, Hose Connection Dual Check Type (HCDVB)</td>
</tr>
<tr>
<td>B64.4.1-07</td>
<td>Backflow Preventers, Reduced Pressure Principle Type for Fire Sprinklers (RPF)</td>
</tr>
<tr>
<td>B64.5-07</td>
<td>Backflow Preventers, Double Check Type (DCVA)</td>
</tr>
</tbody>
</table>
B64.5.1—07 Backflow Preventers, Double Check Type for Fire Systems (DCVAF)
B64.6—07 Backflow Preventers, Dual Check Valve Type (DuC)
B64.7—07 Vacuum Breakers, Laboratory Faucet Type (LFVB)
B64.10/B64.10.1—07 Manual for the Selection and Installation of Backflow Prevention Devices/Manual for the Maintenance and Field Testing of Backflow Prevention Devices
B79—08 Floor, Area and Shower Drains, and Cleanouts for Residential Construction
B125—01 Plumbing Fittings
B125.1/ASME A112.18.1-05 Plumbing Supply Fittings
B125.2/ASME A112.18.2-05 Plumbing Waste Fittings
B125.3—2005 Plumbing Fittings
B125.6/ASME A112.18.6-09 Flexible Water Connectors
B137.1-09 Polyethylene Pipe, Tubing and Fittings for Cold Water Pressure Services
B137.2-09 PVC Injection-moulded Gasketed Fittings for Pressure Applications
B137.3-09 Rigid Poly (Vinyl Chloride) (PVC) Pipe for Pressure Applications
B137.5-09 Cross-linked Polyethylene (PEX) Tubing Systems for Pressure Applications—with Revisions through September 1992
B137.6-09 CPVC Pipe, Tubing and Fittings for Hot and Cold Water Distribution Systems—with Revisions through May 1986B137.11—02 Polypropylene (PP-R) Pipe and Fittings for Pressure Applications
B181.1—06 ABS Drain, Waste and Vent Pipe and Pipe Fittings
B181.2—06 PVC Drain, Waste, and Vent Pipe and Pipe Fittings—with Revisions through December 1993
B182.1—06 Plastic Drain and Sewer Pipe and Pipe Fittings
B182.2—06 PVC Sewer Pipe and Fittings (PSM Type)
B182.4—06 Profile PVC Sewer Pipe and Fittings
B182.6—06 Profile Polyethylene Sewer Pipe and Fittings for Leak-proof Sewer Applications
B182.8—06 Profile Polyethylene Storm Sewer and Drainage Pipe and Fittings

B356-05 Water Pressure Reducing Valves for Domestic Water Systems
B483.1-07 Drinking Water Treatment Units
CAN/CSA-A257.1M—09 Circular Concrete Culvert, Storm Drain, Sewer Pipe and Fittings
CAN/CSA-A257.2M—09 Reinforced Circular Concrete Culvert, Storm Drain, Sewer Pipe and Fittings
CAN/CSA-A257.3M—09 Joints for Circular Concrete Sewer and Culvert Pipe, Manhole Sections and Fittings Using Rubber Gaskets
CAN/CSA-B64.1.1—07 Vacuum Breakers, Atmospheric Type (AVB)
CAN/CSA-B64.2—07 Vacuum Breakers, Hose Connection Type (HCVB)
CAN/CSA-B64.2.2—07 Vacuum Breakers, Hose Connection Type (HCVB) with Automatic Draining Feature
CAN/CSA-B64.3—07 Backflow Preventers, Dual Check Valve Type with Atmospheric Port (DCAP)
<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN/CSA-B64.4—07</td>
<td>Backflow Preventers, Reduced Pressure Principle Type (RP)</td>
</tr>
<tr>
<td>CAN/CSA-B64.10—07</td>
<td>Manual for the Selection, Installation, Maintenance and Field Testing of Backflow Prevention Devices</td>
</tr>
<tr>
<td>CAN/CSA-B137.9—09</td>
<td>Polyethylene/Aluminum/Polyethylene Composite Pressure Pipe Systems</td>
</tr>
<tr>
<td>CAN/CSA-B137.10M—09</td>
<td>Cross-linked Polyethylene/Aluminum/Polyethylene Composite Pressure Pipe Systems</td>
</tr>
<tr>
<td>CAN/CSA-B181.3—06</td>
<td>Polyolefin Laboratory Drainage Systems</td>
</tr>
<tr>
<td>CAN/CSA-B182.4—06</td>
<td>Profile PVC Sewer Pipe and Fittings</td>
</tr>
<tr>
<td>CAN/CSA-B602—10</td>
<td>Mechanical Couplings for Drain, Waste and Vent Pipe and Sewer Pipe</td>
</tr>
</tbody>
</table>

ICC

International Code Council, Inc.

500 New Jersey Ave, NW 6th Floor
Washington, DC 20001

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFGC—09</td>
<td>International Fuel Gas Code (including ICC Emergency Amendment changing IFGC Sections 406.7)</td>
</tr>
</tbody>
</table>

ISEA

International Safety Equipment Association

1901 N. Moore Street, Suite 808
Arlington, VA 22209

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z358.1—09</td>
<td>Emergency Eyewash and Shower Equipment</td>
</tr>
</tbody>
</table>

NFPA

National Fire Protection Association

1 Batterymarch Park
Quincy, MA 02169-7471

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>70—J4</td>
<td>National Electrical Code</td>
</tr>
<tr>
<td>99C—05</td>
<td>Gas and Vacuum Systems</td>
</tr>
</tbody>
</table>
NSF
NSF International
789 Dixboro Road
Ann Arbor, MI 48105

<table>
<thead>
<tr>
<th>Standard</th>
<th>Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3—2009</td>
<td></td>
<td>Commercial Warewashing Equipment</td>
</tr>
<tr>
<td>14—2010</td>
<td></td>
<td>Plastic Piping System Components and Related Materials</td>
</tr>
<tr>
<td>18—2009</td>
<td></td>
<td>Manual Food and Beverage Dispensing Equipment</td>
</tr>
<tr>
<td>42—2009</td>
<td></td>
<td>Drinking Water Treatment Units—Aesthetic Effects</td>
</tr>
<tr>
<td>44—2009</td>
<td></td>
<td>Residential Cation Exchange Water Softeners</td>
</tr>
<tr>
<td>53—2009e</td>
<td></td>
<td>Drinking Water Treatment Units—Health Effects.</td>
</tr>
<tr>
<td>58—2009</td>
<td></td>
<td>Reverse Osmosis Drinking Water Treatment Systems</td>
</tr>
<tr>
<td>61—2010a</td>
<td></td>
<td>Drinking Water System Components—Health Effects</td>
</tr>
<tr>
<td>62—2009</td>
<td></td>
<td>Drinking Water Distillation Systems</td>
</tr>
<tr>
<td>372-2010</td>
<td></td>
<td>Drinking Water System Components – Lead Content</td>
</tr>
</tbody>
</table>

PDI
Plumbing and Drainage Institute
800 Turnpike Street, Suite 300
North Andover, MA 01845

<table>
<thead>
<tr>
<th>Standard</th>
<th>Referenced</th>
<th>Title</th>
</tr>
</thead>
</table>

UL
Underwriters Laboratories, Inc.
333 Pfingsten Road
Northbrook, IL 60062-2096

<table>
<thead>
<tr>
<th>Standard</th>
<th>Referenced</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL 508—99</td>
<td></td>
<td>Industrial Control Equipment with Revision through July 2005</td>
</tr>
</tbody>
</table>
Effective: 01/01/2016

Five Year Review (FYR) Dates: 11/01/2016

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.10, 3781.11, 3791.04
Prior Effective Dates: 3/1/98, 4/1/99, 12/1/00, 1/1/02, 1/1/04, 3/1/05, 9/6/05, 3/1/06, 7/1/07, 1/1/08, 3/31/08(Emer.), 6/24/08, 1/1/09, 11/1/11, 3/1/13, 7/1/14, 1/1/15