December 2015

At its meeting on December 4, 2015, the Ohio Board of Building Standards adopted the rule changes identified as Amendments Group 90. These rule amendments were adopted for an effective date of January 1, 2016.

Amendments Group 90 included the following amended Residential Code of Ohio (RCO) rules. For your use, a summary of the changes is provided below and the text of the rule can be found immediately following this coversheet:

<table>
<thead>
<tr>
<th>Rule Number</th>
<th>RCO Chapter</th>
<th>Chapter Title</th>
<th>Effective date</th>
</tr>
</thead>
<tbody>
<tr>
<td>4101:8-1-01</td>
<td>1</td>
<td>Administration.</td>
<td>January 1, 2016</td>
</tr>
<tr>
<td>4101:8-3-01</td>
<td>3</td>
<td>Building planning.</td>
<td>January 1, 2016</td>
</tr>
<tr>
<td>4101:8-4-01</td>
<td>4</td>
<td>Foundations.</td>
<td>January 1, 2016</td>
</tr>
<tr>
<td>4101:8-5-01</td>
<td>5</td>
<td>Floors.</td>
<td>January 1, 2016</td>
</tr>
<tr>
<td>4101:8-22-01</td>
<td>22</td>
<td>Special piping and storage systems.</td>
<td>January 1, 2016</td>
</tr>
<tr>
<td>4101:8-34-01</td>
<td>34</td>
<td>General requirements.</td>
<td>January 1, 2016</td>
</tr>
<tr>
<td>4101:8-44-01</td>
<td>44</td>
<td>Referenced standards.</td>
<td>January 1, 2016</td>
</tr>
</tbody>
</table>

Reason for Amendments: 4101:8-1-01 to add language including electrical equipment associated with bodies of water, to add an exception for private water systems, to add above-ground storage tanks as work exempt from approval, to remove language regarding the installer of fire protection systems, to add accessibility provisions to plan submittal and to make general editorial corrections; 4101:8-2-01 to add definitions for above ground storage tank, building service equipment, engine mounted tank and fuel tank; 4101:8-3-01 to add detached garages with an exterior wall located ≥3 ft from a lot line in to exceptions to § 302.1, to specify the smoke alarm technology requirements in § 314.1, to add an exception for systems meeting in § 314.2, to add Type C (visitable) to accessibility scope and to make general editorial corrections; 4101:8-4-01 to remove the requirements for seismic reinforcing of foundations with stemwalls and turned-down, slab-on-grade footings because Ohio is not within the referenced Seismic Design Categories; 4101:8-5-01 to update references in §§ 502.1.1 and 502.2.1, to remove deck lateral load connection language, to remove figure 502.2.2.3, and to add clarification to the exceptions for vapor retarder requirements in § 506.2.3; 4101:8-19-01 to add a section for Engine and gas-turbine powered equipment and appliances, to add requirements for engine-driven equipment and appliances and fuel tanks connected to engine-driven building services equipment.
requirements and to make general editorial corrections; 4101:8-22-01 to add a scope to the Special piping and storage systems chapter, to add diesel oil to the scope of above-ground tanks requirements, to add an exception and specify a reference standard in § 2201.2 and to add regulated underground storage of fuel oil requirements; 4101:8-24-01 to add CSST bonding and to update language from ‘air conditioners’ to ‘equipment and appliances’; 4101:8-34-01 to update the reference to NFPA 70 to the 2014 edition with selected amendments and to add provisions for emergency and standby power systems; 4101:8-44-01 to update the OAC referenced codes, to add NFPA standards 30-15, 37-10, 110-10, and 111-10 and update standard 31-11 and 70-14, and to add UL standard 2200-12.

If you should have any questions regarding these rule changes, please call BBS staff at (614)644-2613.
4101:8-1-01 Administration.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:8-43-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:8-1-01 of the Administrative Code.]

SECTION 101
GENERAL

101.1 Title. Chapters 4101:8-1 to 4101:8-25, 4101:8-29, 4101:8-34, and 4101:8-44 of the Administrative Code are designated as the “Residential Code of Ohio for One-, Two-, and Three-Family Dwellings” for which the designation “RCO” may be substituted. The 2009 edition of the “International Residential Code”, first printing, Chapters 2 through 24, 29, and 44 as published by the “International Code Council, Inc.” is used as the basis of this document as is incorporated fully except as modified in italic herein. References in these chapters to “this code”, to the “residential code”, or to the “Residential Code of Ohio” in other sections of the Administrative Code shall mean the “Residential Code of Ohio for One-, Two-, and Three-Family Dwellings”.

101.2 Scope. The provisions of the “Residential Code of Ohio for One-, Two-, and Three-Family Dwellings” shall apply to the construction, alteration, movement, enlargement, replacement, repair, equipment, use and occupancy, location, maintenance, removal, and demolition of every one-, two-, or three-family dwelling, any appurtenances connected or attached to such buildings or structures, or any accessory structure incidental to that dwelling house including electrical equipment associated with bodies of water as defined in article 680 of NFPA 70 as referenced in part IX, chapter 44. This code also applies to a one-family, two-family, or three-family dwelling house that is used as a model to promote the sale of a similar dwelling house. No building or its equipment or accessories, to which the rules of the board apply shall be erected, constructed, or installed, except in conformity with the rules of the board.

This code also applies to such other residential occupancies as referenced and to the extent indicated in section 310 of the “OBC”.

Exceptions:
1. Manufactured home units constructed under “24 CFR Part 3280,” “Manufactured Home Construction and Safety Standards” and within the scope of the rules adopted by the Ohio Manufactured Home Commission. This exception does not apply to alterations of, additions to, or changes of occupancy of manufactured homes.

2. Multiple single-family dwelling structures more than three stories in height and with more than three dwelling units.

 a. The structure of one-, two-, and three-family dwellings which are more than three stories in height shall comply with the structural requirements of the OBC or section 106.5 of this code.

3. Residential buildings attached to occupancies that are within the scope of the OBC shall comply with the requirements of the “OBC”.

4. Buildings or structures containing two or three dwelling units with a shared exit shall comply with the requirements of the “OBC.”

5. Buildings or structures which are incident to the use for agricultural purposes of the land on which said buildings or structures are located, provided such buildings or structures are not used in the business of retail trade; for the purposes of this section, a building or structure is not considered used in the business of retail trade if fifty per cent or more of the gross income received from sales of products in the building or structure by the owner or operator is from sales of products produced or raised in a normal crop year on farms owned or operated by the seller (see sections 3781.06 and 3781.061 of the Revised Code);

6. Agricultural labor camps;

7. Type A or Type B family day-care homes, except for the inspection required for licensure by the “Ohio Department of Jobs and Family Services (ODJFS)”. This required inspection shall be conducted by the certified building department having jurisdiction in accordance with the inspection checklist found on the board of building standard’s website.;

8. Buildings or structures which are designed, constructed, and maintained in accordance with federal standards and regulations and are used primarily for
federal and state military purposes where the U.S. secretary of defense, pursuant to 10 U.S.C. Sections 18233(A)(1) and 18237, has acquired by purchase, lease, or transfer, and constructs, expands, rehabilitates, or corrects and equips, such buildings or structures as he determines to be necessary to carry out the purposes of Chapter 1803 of the U.S.C.

9. Sewerage systems, treatment works, and disposal systems (including the tanks, piping, and process equipment associated with these systems) regulated by the legislative authority of a municipal corporation or the governing board of a county or special district owning or operating a publicly owned treatment works or sewerage system as stated in division (A) of section 6111.032 of the Revised Code.

10. Building sewer piping.

11. Private water systems (including tanks, foundations, piping, and process equipment associated with these systems) regulated by the Ohio Department of Health in accordance with section 3701.344 of the Revised Code.

101.3 Intent. The purpose of this code is to establish uniform minimum requirements for the erection, construction, repair, alteration, and maintenance of residential buildings, including construction of industrialized units. Such requirements shall relate to the conservation of energy, safety, and sanitation of buildings for their intended use and occupancy with consideration for the following:

1. Performance. Establish such requirements, in terms of performance objectives for the use intended. Further, the rules shall consider the following:

 1.1 The impact that the state residential building code may have upon the health, safety, and welfare of the public;

 1.2 The economic reasonableness of the residential building code;

 1.3 The technical feasibility of the residential building code;

 1.4 The financial impact that the residential building code may have on the public's ability to purchase affordable housing.
2. **Extent of use.** Permit to the fullest extent feasible, the use of materials and technical methods, devices, and improvements which tend to reduce the cost of construction without affecting minimum requirements for the health, safety, and security of the occupants of buildings without preferential treatment of types or classes of materials or products or methods of construction.

3. **Standardization.** To encourage, so far as may be practicable, the standardization of construction practices, methods, equipment, material and techniques, including methods employed to produce industrialized units.

 This code does not prevent a local governing authority from adopting additional regulations governing residential structures if the regulations comply with this section.

 3.1. A local governing authority shall, and any person may, notify the board of building standards of any regulation the local governing authority adopts related to content within the scope of this code and request that the board of building standards determine whether that regulation conflicts with the state residential building code.

 3.1.1. Not later than sixty days after receiving a notice to review local regulations for conflict, the board shall determine, based upon a recommendation from the advisory committee, whether the regulation conflicts with the state residential building code and shall notify any person who submitted the notice and the local governing authority that adopted the regulation of the board’s determination.

 3.1.2 If the board determines that a conflict does not exist, the board shall take no further action with regard to the regulation. If the board determines a conflict exists and the regulation is not necessary to protect the health or safety of the persons within the local governing authority’s jurisdiction, the regulation is not valid and the local governing authority may not enforce the regulation.

 3.1.3 If the board determines that a conflict exists and that the regulation is necessary to protect the health or safety of the persons within the local governing authority’s jurisdiction, the board shall adopt a rule to incorporate the regulation into the state
residential building code. Until the rule becomes a part of the state residential building code, the board shall grant a temporary variance to the local governing authority and any similarly situated local governing authority to which the board determines the temporary variance should apply.

101.4 Reasonable application. The rules of the board and proceedings shall be liberally construed in order to promote its purpose. When the residential building official finds that the proposed design is a reasonable interpretation of the provisions of this code, it shall be approved. Materials, equipment and devices approved by the building officials pursuant to section 114 shall be constructed and installed in accordance with such approval.

SECTION 102
APPLICABILITY AND JURISDICTIONAL AUTHORITY

102.1 General. Where, in any specific case, different sections of this code specify different materials, methods of construction or other requirements, the most restrictive shall govern. Where there is a conflict between a general requirement and a specific requirement, the specific requirement shall be applicable.

102.2 Other laws. The provisions of this code shall not be deemed to nullify any provisions of state or federal law. Municipal corporations may make further and additional regulations, not in conflict with Chapters 3781. and 3791. of the Revised Code or with the rules of the board of building standards. However approval by the board of building standards of any fixture, device, material, system, assembly or product of a manufacturing process, or method or manner of construction or installation shall constitute approval for their use anywhere in Ohio.

102.3 Rules of the board. As provided in division (B) of section 3781.11 of the Revised Code, the rules of the board of building standards shall supersede and govern any order, standard, or rule of the divisions of state fire marshal or industrial compliance in the department of commerce, and the department of health and of counties and townships, in all cases where such orders, standards or rules are in conflict with the rules of the board of building standards, except that rules adopted and orders issued by the fire marshal pursuant to Chapter 3743. of the Revised Code prevail in the event of a conflict.
The rules of the board of building standards adopted pursuant to section 3781.10 of the Revised Code shall govern any rule or standard adopted by the board pursuant to sections 4104.02 and 4105.011 of the Revised Code.

102.4 Application of references. References to chapter or section numbers, or to provisions not specifically identified by number, shall be construed to refer to such chapter, section or provision of this code.

102.5 Referenced codes and standards. The codes and standards referenced in this code shall be considered part of the requirements of this code to the prescribed extent of each such reference. When a reference is made within the code to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in Chapter 44.

Unless specified otherwise in this code, reference to the term “International Residential Code” shall be changed to “residential code”; reference to “International Fire Code” shall be changed to “fire prevention code”; and reference in design and construction provisions to “one-and two-family dwellings” shall be changed to “one-, two-, and three-family dwellings.”

Because the “International Code Council” has placed design and construction information throughout its model code documents, including into the fire prevention code, any referenced code requirements relating to the design, construction, alteration, movement, enlargement, replacement, repair, equipment, use and occupancy, location, removal, and demolition of every building or structure within the scope of this code, shall be enforced by the residential building official.

Where differences occur between provisions of this code and referenced standards listed in Chapter 44, the provisions of this code shall apply.

102.6 Partial invalidity. In the event any part or provision of this code is held to be illegal or void, this shall not have the effect of making void or illegal any of the other parts or provisions thereof, and it shall be presumed that this code would have been adopted without such illegal or invalid parts or provisions.
102.7 Existing structures. The provisions of section 113 shall control the alteration, repair, addition, maintenance, and change of occupancy of any existing structure.

The occupancy of any structure currently existing on the date of adoption of this code shall be permitted to continue without change provided there are no orders of the residential building official pending, no evidence of fraud, or no serious safety or sanitation hazard. When requested, such approvals shall be in the form of a “Certificate of Occupancy for an Existing Building” in accordance with section 111.

Buildings constructed in accordance with plans which have been approved prior to the effective date of this code are existing buildings.

102.8 Non-required work. Any component, building element, equipment, system or portion thereof not required by this code shall be permitted to be installed provided that it is constructed or installed in accordance with this code to the extent of the installation.

102.8.1 Fire protection systems. Non-required fire protection systems shall be installed in accordance with Chapter 29 to the extent of the intended installation.

102.8.2 Elevators and lifts. When a non-required elevator is intended to be installed, it shall be designed and installed in accordance with the residential elevator provisions in Part 5.3 of the ANSI A17.1. Non-required platform (wheelchair) lifts shall be designed and installed in accordance with ASME A18.1.

102.9 Temporary structures. The residential building official is authorized to issue approvals for temporary structures. Such approvals shall be in the form of a “Certificate of Occupancy for a Temporary Building” in accordance with section 111.1.5. This section does not apply to time-limited occupancies in existing structures. See section 111.1.4 for time-limited occupancies.

102.9.1 Conformance. Temporary structures shall conform to the structural strength, fire safety, means of egress, accessibility, light, ventilation and sanitary requirements of this code as necessary to ensure the public health, safety and general welfare.
102.9.2 Termination of approval. The residential building official is authorized to terminate approval for a temporary structure and to order the temporary structure to be discontinued if conditions of the approval have been violated or the structure or use poses an immediate hazard to the public or occupants of the structure.

102.10 Work exempt from approval. Approval shall not be required for the following:

Building:

1. One-story detached accessory structures used as tool and storage sheds, playhouses and similar uses, provided the floor area does not exceed two hundred square feet (11.15 m2) and playground structures.

2. Fences not over six feet (1829 mm) high.

3. Retaining walls which are not over four feet (1219 mm) in height measured from the bottom of the footing to the top of the wall, unless supporting a surcharge.

4. Water tanks supported directly upon grade if the capacity does not exceed five thousand gallons (18 927 L) and the ratio of height to diameter or width does not exceed two to one.

5. Sidewalks and driveways not more than thirty inches (762 mm) above grade and not over any basement or story below and which are not part of an accessible route.

6. Painting, papering, tiling, carpeting, cabinets, counter tops and similar finish work.

7. Swings and other playground equipment accessory to a one, two, or three-family dwelling.

8. Window awnings supported by an exterior wall which do not project more than fifty-four inches (1372 mm) from the exterior wall and do not require additional support.
9. Decks not exceeding 200 square feet (18.58 m²) in area, that are not more than 30 inches (762mm) above grade at any point, are not attached to a dwelling, and do not serve the exit door required by section 311.2.

10. Above-ground storage tanks as defined in rule 4101:8-2-01 of the Administrative Code and the associated tank foundations.

Electrical:

1. Listed cord-and-plug connected temporary decorative lighting.
2. Reinstallation of attachment plug receptacles but not the outlets thereof.
3. Replacement of branch circuit overcurrent devices of the required capacity and type in the same location.
4. Electrical wiring, devices, appliances, apparatus, or equipment operating at less than 25 volts and not capable of supplying more than 50 watts of energy.
5. Repairs and Maintenance: Approval shall not be required for minor repair work, including the replacement of lamps or the connection of approved portable electrical equipment to approved permanently installed receptacles.

Gas:

1. Portable heating, cooking, or clothes drying appliances;
2. Replacement of any minor part that does not alter approval of equipment or make such equipment unsafe.
3. Portable fuel cell appliances that are not connected to a fixed piping system and are not interconnected to a power grid.
4. Gas distribution piping owned and maintained by public or municipal utilities and located upstream of the point of delivery.

Mechanical:
1. Portable heating appliances;

2. Portable ventilation equipment;

3. Portable cooling units;

4. Steam, hot or chilled water piping within any heating or cooling equipment regulated by this code.

5. Replacement of any minor part that does not alter approval of equipment or make such equipment unsafe.

6. Portable evaporative cooler.

7. Self-contained refrigeration systems containing ten pounds (4.54 kg) or less of refrigerant or that are actuated by motors of one horsepower (746 W) or less.

8. Portable fuel cell appliances that are not connected to a fixed piping system and are not interconnected to a power grid.

9. Heating and cooling distribution piping owned and maintained by public or municipal utilities.

Plumbing:

1. The repair of leaks in drains, water, soil, waste or vent pipe; provided, however, that if any concealed trap, drain-pipe, water, soil, waste or vent pipe becomes defective and it becomes necessary to remove and replace the same with new material, such work shall be considered as new work and an approval shall be obtained and inspection made as provided in this code.

2. The clearance of stoppages or the repair of leaks in pipes, valves or fixtures, and the removal and reinstallation of water closets, provided such repairs do not involve or require the replacement or rearrangement of valves, pipes or fixtures.
102.10.1 Emergency repairs. Where equipment replacements and repairs must be performed in an emergency situation, an application for approval shall be submitted within the next working business day to the building official.

102.10.2 Minor repairs. Minor repairs to structures may be to residential structures made without application or notice to the residential building official. Such repairs shall not include the cutting away of any wall, partition or portion thereof, the removal or cutting of any structural beam or load bearing support, or the removal or change of any required means of egress, or rearrangement of parts of a structure affecting the egress requirements; nor shall ordinary repairs include addition to, alteration of, replacement or relocation of any standpipe, water supply, sewer, drainage, drain leader, gas, soil, waste, vent or similar piping, electric wiring or mechanical or other work affecting public health or general safety.

102.11 Building department jurisdictional limitations. A municipal, township, or county residential building department that has been certified by the board of building standards, pursuant to section 103.2, shall enforce provisions of the rules of the board and of Chapters 3781. and 3791. of the Revised Code, relating to construction, arrangement, and the erection of residential buildings or parts thereof as defined in the rules of the board in accordance with the certification except as follows:

1. Fire. The fire chief of municipal corporations or townships, having fire departments, shall enforce all provisions of the rules of the board relating to fire prevention.

2. Health. The department of health, the boards of health of city or general health districts, or the residential departments of building inspection of municipal corporations, townships, or counties shall enforce such provisions relating to sanitary construction.

3. Sewerage and drainage system. In accordance with Section 3781.03 of the Revised Code, the department of the city engineer, in cities having such departments, the boards of health of health districts, or the sewer purveyor, as appropriate, shall have complete supervision and regulation of the entire sewerage and drainage system of the jurisdiction, including the building sewer and all laterals draining into the street sewers. Such
department or agency shall have control and supervision of the installation and construction of all drains and sewers that become a part of the sewerage system of the jurisdiction and shall issue all the necessary permits and licenses for the construction and installation of all building sewers and of all other lateral drains that empty into the main sewers. Such department or agency shall keep a permanent record of the installation and location of every drain and sewerage system of the city.

4. **Enforcement.** This section does not exempt any officer or department from the obligation of enforcing any provision of the rules of the board.

5. **State Projects.** Certification does not confer any jurisdiction to a certified building department to:

5.1 The construction of buildings by the state of Ohio or on land owned by the state of Ohio including, but is not limited to, its agencies, authorities, boards, commissions, administrative departments, instrumentalities, community or technical college districts, but does not include other political subdivisions.

Exception: Local school district building projects funded by the Ohio school facilities commission in accordance with Chapter 3318. of the Revised Code where the local certified building department is authorized by the board to regulate construction of school facilities.

5.2 Park districts created pursuant to Chapter 1545. of the Revised Code.

Note: The lands owned by Miami university in the city of Oxford and Oxford township in Butler County and leased to private individuals or corporations under the land rent provisions of the Act of February 17, 1809, as set forth at 7 Ohio laws 184, are subject to local certified building department jurisdiction and are exempt from these provisions.

SECTION 103

CERTIFIED RESIDENTIAL BUILDING DEPARTMENTS, PERSONNEL, AND APPEALS BOARDS

Refer to division 4101:7 of the Administrative Code for existing relocated building department, building department personnel, and boards of building
appeals certification requirements.

SECTION 104
DUTIES AND RESPONSIBILITIES

104.1 General. Personnel of residential building departments that have been certified by the board of building standards, pursuant to rule 4101:7-3-01 of the Administrative Code, shall be responsible for performing the duties described in this section.

104.2 Residential building department personnel duties and responsibilities. Municipal, township, or county residential building departments certified by the board shall have personnel qualified to perform the enforcement duties and responsibilities described in this section.

104.2.1 Residential building official. The residential building official is responsible for the enforcement of the rules of the board and of Chapters 3781. and 3791. of the Revised Code relating to the construction, arrangement, and the erection of residential buildings or parts thereof and may perform duties outlined in this section and in sections 104.2.2.1 and 104.2.3.1 below. All residential building officials shall conduct themselves in a professional, courteous, impartial, responsive, and cooperative manner. Residential building officials shall be responsible to assure that a system is in place to track and audit all projects, to assure that all residential building department personnel perform their duties in accordance with this section, and for the overall administration of a residential building department as follows:

104.2.1.1 Applications and plan approvals. The residential building official shall receive applications, examine or cause the submitted construction documents to be examined, ascertain by such examinations whether the construction indicated and described is in accordance with the requirements of this code, and shall issue plan approvals for the construction, erection, alteration, demolition, and moving of buildings and structures.

104.2.1.2 Orders. The residential building official shall issue all orders in accordance with section 109 to ensure compliance with this code.
104.2.1.3 Inspections. If the plans for the erection, construction, repair, alteration, relocating, or equipment of a building are subject to inspection by the residential building official, under section 108, the residential building official shall make such inspections as the building official is authorized to make or shall cause to be made such inspections, investigations, and determinations as are necessary to determine whether or not the work which has been performed and the installations which have been made are in conformity with the approved construction documents.

104.2.1.4 Residential department records. The residential building official shall keep official records of applications received, certificate of plan approvals issued, notices and orders issued, certificates of occupancy, and other such records required by the rules of the board of building standards. Such information shall be retained in the official permanent record for each project. One set of approved residential construction documents shall be retained by the residential building official for a period of not less than one hundred eighty days from date of completion of the permitted work, or as required by the residential department’s document retention regulations.

104.2.1.5 Department reports. The residential building official shall be responsible for the submission of reports and any requested special information to the board of building standards as required in section 103.2.6. Failure to submit these reports in a timely manner as required by rule or by special request or inquiry of the board of building standards may be grounds for board action as described in section 103.3.10.

104.2.2 Residential plans examiners. A residential plans examiner is responsible for the examination of construction documents in accordance with section 107, within the limits of their certification, to determine compliance with the rules of the board and may perform duties outlined in this section and in section 104.2.3.1 below. All residential plans examiners shall effectively communicate the results of their plan review to the owner or the owner’s representative and the residential building official. A residential plans examiner shall conduct themselves in a professional, courteous, impartial, responsive, and cooperative manner.
104.2.2.1 Residential plans examiner. A residential plans examiner is responsible for the examination of all types of residential construction documents to determine compliance with the rules of the board.

104.2.2.1.1 Residential plans examiner trainee. A residential plans examiner trainee is responsible for the examination of all types of residential construction documents to determine compliance with the rules of the board under the direct supervision of an individual holding a residential plans examiner certification.

104.2.2.1.2 Electrical plans examiner. An electrical plans examiner is responsible for the examination of construction documents related to electrical systems to determine compliance with the rules of the board. If the department does not have in its employ or under contract persons holding the electrical plans examiner certification, then the examination of the construction documents for compliance with the electrical provisions of the code shall be done by the residential plans examiner.

104.2.3 Residential inspectors. A residential inspector is responsible for performing inspections and determining that work, for which they are certified to make inspections, is performed in compliance with the approved residential construction documents. All residential inspectors shall inspect the work to the extent of the approval given when residential construction documents were approved by the residential building official and for which the inspection was requested. All residential inspectors shall effectively communicate the results of their inspections as required by section 108, and shall conduct themselves in a professional, courteous, impartial, responsive, and cooperative manner.

104.2.3.1 Residential building inspector. A residential building inspector is responsible to determine compliance with the approved residential construction documents in accordance with section 108.

A residential building inspector trainee is designated to determine compliance with approved residential construction documents, in accordance with section 108, under the direct supervision of an individual
holding a residential building inspector certification.

104.2.3.2 Residential plumbing inspector. A residential plumbing inspector is responsible to determine plumbing system compliance with approved residential construction documents in accordance with section 108.

A residential plumbing inspector trainee is designated to determine plumbing system compliance with approved residential construction documents, in accordance with section 108, under the direct supervision of an individual holding a residential plumbing inspector certification.

104.2.3.3 Electrical safety inspector. An electrical safety inspector is responsible to determine electrical systems compliance with approved construction documents in accordance with section 108.

An electrical safety inspector trainee is designated to determine electrical systems compliance with approved construction documents, in accordance with section 108, under the direct supervision of an individual holding an electrical safety inspector certification.

104.2.3.4 Elective inspectors. Residential building departments may elect to employ inspectors designated as responsible for making inspections to determine that work is performed in compliance with approved construction documents certified as follows:

104.2.3.4.1 Residential mechanical inspector. A residential mechanical inspector is responsible to determine compliance with the approved residential construction documents for heating, ventilating and air conditioning (HVAC) systems, and the associated refrigeration, fuel gas, and heating piping systems in accordance with section 108.

If the residential department does not have in its employ or under contract persons holding the residential mechanical inspector certification, then the enforcement of the mechanical provisions shall be done by the residential building inspector;

A residential mechanical inspector trainee is designated to determine
compliance with the approved residential construction documents for heating, ventilating and air conditioning (HVAC) systems, and the associated refrigeration, fuel gas, and heating piping systems, in accordance with section 108, under the direct supervision of an individual holding a residential mechanical inspector certification.

104.2.4 Liability. Liability of certified residential building department personnel for any tortious act will be determined by Ohio courts to the applicable provisions of Chapter 2744. of the Revised Code.

104.3 Violation of duties. Any person affected by the improper actions of any residential building department, residential building official, residential plans examiner, residential inspector, or fire protection system designer certified by the board of building standards may file a written complaint with the board. Complaints will be processed by the board in accordance with the procedures outlined in the applicable certification rule found in division 4101:7 of the Administrative Code.

SECTION 105
APPROVALS

105.1 Approvals required. Any owner or authorized agent who intends to construct, enlarge, alter, repair, move, or change the occupancy of a residential building or structure, or portion thereof, or to erect, install, enlarge, alter, repair, remove, convert or replace any electrical, gas, mechanical, plumbing system, other residential building service equipment, or piping system the installation of which is regulated by this code, or to cause any such work to be done, shall first make application to the residential building official of a certified residential building department and obtain the required approval.

105.1.1 Nonconformance approval. When residential construction documents are submitted which do not conform with the requirements of the rules of the board, such documents may be approved by the residential building official provided such nonconformance is not considered to result in a serious hazard and the owner or owner’s representative subsequently submits revised residential construction documents showing evidence of compliance with the applicable provisions of the rules of the board. In the event such residential construction documents are not received within thirty days, the residential building official shall issue an adjudication order revoking the plan approval.
105.1.2 Conditional approval. When residential construction documents are submitted which cannot be approved under the other provisions of this rule, the residential building official, may at the request of the owner or owner’s representative, issue a conditional plan approval when an objection to any portion of the residential construction documents results from conflicting interpretations of the code, or compliance requires only minor modifications to the building design or construction. No conditional approval shall be issued where the objection is to the application of specific technical requirements of the code or correction of the objection would cause extensive changes in the building design or construction. A conditional approval is a conditional license to proceed with construction or materials up to the point where construction or materials objected to by the agency are to be incorporated into the building. The conditions objected to shall be in writing from the residential building official which shall be an adjudication order denying the issuance of a license and may be appealed in accordance with section 3781.19 of the Revised Code.

In the absence of fraud or a serious safety or sanitation hazard, all items previously examined shall be conclusively presumed to comply with Chapters 3781. and 3791. of the Revised Code and the rules of the board. Reexamination of the residential construction documents shall be limited to those items in the adjudication order. A conditional plan approval is not a phased plan approval.

105.1.3 Previous approvals. This code shall not require changes in the residential construction documents, construction or designated occupancy of a structure for which a lawful approval has previously been issued or otherwise lawfully authorized, and the construction of which has been pursued in good faith within one year of the approval of residential construction documents. One extension shall be granted for an additional year if requested by the owner at least ten days in advance of the expiration of the approval and upon payment of any fee not to exceed one hundred dollars.

If, after the start of construction, work is delayed or suspended for more than six months, the approval is invalid. Two extensions shall be granted for six months if requested by the owner at least ten days in advance of the expiration of the approval and upon payment of any fee for each extension not to exceed one hundred dollars.
105.1.4 Phased approval. The residential building official shall issue an approval for the residential construction of foundations or any other part of a building, structure, or building service equipment before the residential construction documents for the whole building, structure or building service equipment have been submitted, provided that adequate information and detailed statements have been filed complying with applicable requirements of this code. The holder of such approval for the foundation or other parts of a building or structure shall proceed at the holder's own risk with the building operation and without assurance that an approval for the entire structure will be granted. Such approvals shall be issued for various stages in the sequence of construction provided that all information and data required by the code for that portion of the building or structure has been submitted. The holder of a phased plan approval may proceed only to the point for which approval has been given.

105.2 Validity of approval. The construction, erection, and alteration of a building, and any addition thereto, and the equipment and maintenance thereof, shall conform to required plans which have been approved by the residential building official, except for minor deviations which do not involve a violation of the rules of the board. In the absence of fraud or a serious safety or sanitation hazard, any residential structure built in accordance with approved plans shall be conclusively presumed to comply with Chapters 3781. and 3791. of the Revised Code and the rules of the board.

Exception: Industrialized units shall be constructed to conform to the plans approved by the board.

105.3 Expiration. The approval of plans or drawings and specifications or data in accordance with this rule is invalid if construction, erection, alteration, or other work upon the building has not commenced within twelve months of the approval of the residential construction documents.

One extension shall be granted for an additional twelve-month period if requested by the owner at least ten days in advance of the expiration of the approval and upon payment of a fee not to exceed one hundred dollars.

105.4 Extension. If, in the course of construction, work is delayed or suspended for more than six months, the approval of residential construction documents is
4101:8-1-01

invalid. Two extensions shall be granted for six months each if requested by the owner at least ten days in advance of the expiration of the approval and upon payment of a fee for each extension of not more than one hundred dollars.

105.5 Certificate of plan approval. After residential construction documents have been approved in accordance with section 107, the residential building official shall furnish the owner/applicant a certificate of plan approval.

105.5.1 Content. The form of the certificate shall be as prescribed by the residential building official and shall show the serial number of the certificate, the address at which the building or equipment under consideration is or is to be located, the name and address of the owner, the signature of the residential building official who issued the certificate, and such other information as is necessary to facilitate and ensure the proper enforcement of the rules of the board.

105.5.2 Duplicate issued upon request. Upon application by the owner, the residential building official shall issue a duplicate certificate of plan approval to replace a lost or destroyed original.

SECTION 106
CONSTRUCTION DOCUMENTS

106.1 Submittal documents. Residential construction documents and other data shall be submitted in two or more sets with each application for an approval. Before beginning the construction of any building for which construction documents are required under section 105, the owner or the owner’s representative shall submit construction documents to the residential building official of a certified residential building department for approval. When construction documents have been found to be in compliance with the rules of the board of building standards in accordance with section 107 by a certified residential building department, that determination of compliance shall be deemed sufficient to obtain approval for construction pursuant to section 105.2 and the residential building official shall issue the certificate of plan approval. Construction documents for the installation of industrialized units shall be submitted to the residential building official for approval in accordance with the provisions of section 106.1.4.

106.1.1 Professionally prepared construction documents. Construction
documents which have been prepared by a registered design professional
who prepared the same as conforming to the requirements of the rules of the
board pertaining to design loads, stresses, strength, and stability, or other
requirements involving technical analysis, need be examined only to the
extent necessary to determine conformity of such residential construction
documents with other requirements of this code.

106.1.2 Residential fire protection system construction documents.
Residential construction documents for fire protection systems authorized to
be submitted by individuals certified pursuant to Chapter 4101:2-87 of the
Administrative Code shall:

1. When submitted under the signature of an individual certified under
section 3781.105 of the Revised Code, be processed in the same manner
as construction documents submitted under the signature of a registered
design professional. Any statistical data, reports, explanations, plan
description, or information that would not also be required for a similar
submission by a registered design professional need not be submitted by
a certified designer.

2. If certified by a registered design professional or individual certified
under section 3781.105 of the Revised Code as conforming to
requirements of the rules of the board pertaining to design loads,
stresses, strength, stability, or other requirements involving technical
analysis, be examined by the building department official only to the
extent necessary to determine conformity of such construction documents
with other requirements of this Code.

3. Indicate thereon the individual and company installing the fire protection
systems who shall be certified by the fire marshal pursuant to section
3737.65 of the Revised Code. In the event that the installer is not known
at the time of plan approval, partial plan approval shall be granted
subject to subsequent submission by addendum of the name of the
qualified installer prior to installation of any part of the fire protection
systems.

106.1.3 Information on construction documents. Residential construction
documents shall be dimensioned and drawn upon suitable material. Electronic
media documents are permitted to be submitted when approved by the
residential building official. Construction documents shall be coordinated and of sufficient clarity to indicate the location, nature and extent of the work proposed and show in detail that it will conform to the provisions of this code. Construction documents, adequate for the scope of the project, shall include information necessary to determine compliance with this code.

1. **Index.** An index of drawings located on the first sheet;

2. **Site plan.** A site plan showing a north orientation arrow, the size and location of new residential construction and all existing structures on the site, all property and interior lot line locations with setback and side yard dimensions and distances from buildings to lot lines, the locations of the nearest streets, the established street grades, the locations, types and sizes of all utility lines, the location of any fences, and the elevations of all proposed finished grades; and it shall be drawn in accordance with an accurate boundary line survey. In the case of demolition, the site plan shall show construction to be demolished and the location and size of existing structures and construction that are to remain on the site or plot. The residential building official is authorized to waive or modify the requirement for a site plan when the application for approval is for alteration or repair or when otherwise warranted.

2.1 **Residential buildings or structures located in flood hazard areas.** Construction documents submitted for residential buildings or structures located in communities with identified flood hazard areas, pursuant to section 1612, shall include the current FEMA “Flood Hazard Boundary Map” (FHBIM), “Flood Insurance Rate Map” (FIRM) or “Flood Boundary Floodway Map” (FBFM) for the project location. The required site plan shall include building elevations using the same datum as the related flood hazard map. The owner shall be responsible for the compliance with local flood damage prevention regulations for additional critical elevation information for the project site. The elevation certification and dry flood proofing certification, when required for buildings or structures located in communities with identified flood hazard areas, shall be submitted to the residential building official.

2.2 **Site accessibility plan.** For structures of four or more dwellings,
information in plan view and details shall be submitted indicating compliance with the accessibility provisions of this code for the exterior of the building in addition to any accessible features of the interior. When applicable, the plans shall include: the exterior accessible route between all facilities required to be connected; ramp locations and elevations along the exterior accessible route; number of and details for the required accessible van and car parking spaces and passenger loading areas; location and detail of required accessibility signage; grade/topographic elevations before and after proposed grading when site impracticality is intended to be applied.

3. **Floor plans.** Complete floor plans, including plans of full or partial basements and full or partial attics. Floor plans must show all relevant information such as door swings, stairs and ramps, windows, shafts, all portions of the means of egress, etc., and shall be sufficiently dimensioned to describe all relevant space sizes. Wall materials shall be described by cross-hatching (with explanatory key), by notation, or by other clearly understandable method. Spaces must be identified by how each space is intended to be used.

4. **Exterior wall envelope.** The exterior envelope shall be described in sufficient detail to determine compliance with this code and the referenced standards. Details or elevations shall be provided which describe floor to floor dimensions, flashing, intersections with dissimilar materials, corners, end details, control joints, intersections at roof, eaves, or parapets, means of drainage, water-resistant membrane, details around openings, location and type of vapor retarders, window and door “U”-values, and insulation location and “R”-values. The supporting documentation shall fully describe the exterior wall system, which was tested, where applicable, as well as the test procedure used.

5. **Sections.** Cross sections, wall sections, details including typical connections as required to fully describe the residential building construction showing wall, ceiling, floor and roof materials. Residential construction documents shall describe the exterior wall envelope in sufficient detail to determine compliance with this code.
6. **Structure.** Complete structural description of the residential building including size and location of all structural elements used in the design of the residential building and other data as required to fully describe the structural system.

7. **Ratings.** The fire-resistance ratings of all structural elements as required by this code, data substantiating all required fire-resistance ratings including details showing how penetrations will be made for electrical, mechanical, plumbing, and communication conduits, pipes, and systems, and the materials and methods for maintaining the required structural integrity, fire-resistance rating, and firestopping.

8. **System descriptions.** Description of the mechanical, plumbing and electrical systems, including: materials; location and type of fixtures and equipment; materials, and sizes of all ductwork; location and type of heating, ventilation, air conditioning and other mechanical equipment; and all lighting and power equipment.

9. **Accessibility provisions.** When non-required accessibility components are intended to be installed, indicate whether the project will comply with Type A, Type B, Type C (Visitable), or Accessible units in ICC/ANSI A117.1 listed in Chapter 44 as pursuant to Section 320.1.

10. **Additional information.** Additional graphic or text information as may be reasonably required by the residential building official to allow the review of special or extraordinary construction methods or equipment.

106.1.3.1 **Fire protection system drawings.** Construction documents for the fire protection system(s) shall be submitted to indicate conformance with this code and shall be approved prior to the start of system installation.

106.1.3.2 **Manufacturer’s installation instructions.** Manufacturer’s installation instructions, as required by this code, shall be available on the job site at the time of inspection.

106.1.4 **Industrialized units.** When construction includes the use of industrialized units approved by the board, documentation shall be provided
to the building official describing how they are to be used. Before these items are installed or used, the following shall be submitted:

1. A copy of the construction documents approved by the board; and

2. Details pertaining to on-site interconnection of modules or assemblies.

Exception: When construction includes the use of industrialized units for one-, two-, and three-family dwellings and their accessory structures, the documents shall be provided to the residential building official. If no residential department is certified in a jurisdiction, construction documents for one-, two-, or three-family dwellings comprised of industrialized units are not required to be submitted for approval.

106.1.4.1 Definitions.

Closed construction. An assembly of materials or products manufactured in such a manner that its structural, plumbing, electrical, environmental control, or fire protection elements or components are concealed and are not readily accessible for inspection at the site of its erection, without disassembly, damage, or destruction. Closed construction includes assemblies where only one of the components is not accessible for inspection. (For example, an accessory structure where all the electrical conductors and components are exposed for inspection and its roof and wall panels have exposed structural members but the floor panel structural members are not exposed.)

Industrialized units. Industrialized units are prefabricated components comprised of closed construction manufactured at a location remote from the site of intended use and transported to a building site for its subsequent use. Industrialized units are not restricted to housing for one-, two-, and three-family dwellings, but include all prefabricated forms of building elements and assembled construction units, intended for both structural and service equipment purposes in all buildings of all groups. Prefabricated shop assemblies may be shipped in structurally complete units ready for installation in the building structure or in knock-down and packaged form for assembly at the site.

106.1.4.2 General terms. Such terms as heart modules or cores,
modules, modulars, service cores, prefabs, sectional or sectionialized, panels or panelized construction, and specific terms including "prefabricated-subassembly, -building, -unit, -unit service equipment" shall be considered industrialized units. They may be self-sufficient or interdependent as a unit or group of units and used together or incorporated with standard construction methods to form a completed structural entity.

For a complete description of the Ohio industrialized unit program refer to OBC Section 113.

106.2 Evidence of responsibility. Required residential construction documents, when submitted for review as required under section 107, shall bear the identification of the person primarily responsible for their preparation.

106.3 Amended construction documents. If substantive changes to the residential building are contemplated after first document submission, or during construction, those changes must be submitted to the residential building official for review and approval prior to those changes being executed. The residential building official may waive this requirement in the instance of an emergency repair, or similar instance.

106.4 Alternative materials and methods of construction and equipment. For approval of a device, material or assembly that does not conform to the performance requirements in this code, section 114 shall apply.

106.5 Alternative engineered design. The design, documentation, inspection, testing and approval of an alternative engineered system shall comply with sections 106.5.1 to 106.5.3.

106.5.1 Design criteria. An alternative engineered design shall conform to the intent of the provisions of this code and shall provide an equivalent level of quality, strength, effectiveness, fire resistance, durability and safety. Materials, equipment or components shall be designed and installed in accordance with the manufacturer’s installation instructions.

106.5.2 Submittal. A registered design professional shall indicate on the application that the system is an alternative engineered design. The approval and permanent approval records shall indicate that an alternative engineered
design was part of the approved installation. Where special conditions exist, the residential building official is authorized to require additional construction documents to be prepared by a registered design professional.

106.5.3 Technical data. The registered design professional shall submit sufficient technical data to substantiate the proposed alternative engineered design and to prove that the performance meets the intent of this code.

Exception: Approval of alternative materials, products, assemblies and methods of construction in accordance with Section 114.3.2.

SECTION 107
PLAN APPROVAL PROCESS

107.1 Plan review required. Where the rules of the board are applicable under section 101.2, before a residential building or addition to a residential building is constructed or erected, and before a residential building is altered or relocated, or residential building equipment is installed, or a resubmission of construction documents is required or received, residential construction documents relating to the work and equipment under consideration shall be prepared in conformity with section 106 and be submitted to the residential building department for examination and approval.

107.2 Application for plan approval. To obtain a plan approval, the owner or the owner’s representative shall first file an application in writing on a form furnished by the residential building department for that purpose. Such application shall:

1. Identify and describe the work to be covered for which application is made for approval.

2. Describe the land on which the proposed work is to be done, street address or similar description that will readily identify and locate the proposed building or work.

3. Be accompanied by residential construction documents and other information as required in section 106.1.

4. Be signed by the owner, or the owner’s authorized agent.
5. Give such other data and information as required by the residential building official.

6. Identify and clearly indicate whether the project or portion of a project intends to utilize an industrialized unit.

7. Identify and clearly indicate whether the project or portion of a project intends to utilize an assembly of individually listed or labeled products.

107.2.1 Time limitation of application. The approval of construction documents under this section is a “license” and the failure to approve such construction documents as submitted within thirty days after filing or the disapproval of such construction documents is an “adjudication order denying the issuance of a license” requiring the opportunity for an “adjudication hearing” as provided by sections 119.07 to 119.13 of the Revised Code and as modified by sections 3781.031 and 3781.19 of the Revised Code. In accordance with section 109, an adjudication order denying the issuance of a license shall specify the reasons for such denial.

If residential construction documents have been reviewed for compliance with the rules of the board, an adjudication order has been issued to the owner and the owner’s representative, and the owner has neither exercised the right to appeal pursuant to section 110 nor resubmitted corrected documents, the application is invalid six months from the date of the issuance of the adjudication order.

107.3 Order of plan review. Residential construction documents submitted for approval shall be examined for compliance with the rules of the board in the order received, unless otherwise consented to by the building owners affected by deferred examination.

107.4 Review of plans. When residential construction documents have been submitted to the residential building department for review and approval, the building official shall review as appropriate or shall cause the residential construction documents to be examined for compliance with the rules of the board by assigning the examination duty to an appropriately certified individual. The residential building official or plans examiner shall first determine whether the construction documents are adequate as required in section 106.
107.4.1 Inadequate construction documents. If residential construction documents are determined to be incomplete or inadequate for examination, the residential plans examiner shall report the findings to the residential building official. The residential plans examiner shall examine the construction documents to the extent possible and identify what information from section 106 is missing and needed to complete the required examination. Upon receipt and review of the report, the residential building official shall proceed as required in section 107.6.

107.4.2 Resubmitted documents. If residential construction documents are resubmitted in response to an adjudication order, the review for compliance shall be limited to determining that the item of non-compliance, and any work affected, has been corrected and shall not be deemed to authorize another review of unmodified construction documents previously determined to comply.

107.4.3 Sealed construction documents. Residential construction documents, if prepared by an Ohio registered design professional to conform to the requirements of the rules of the board pertaining to design loads, stresses, strength, and stability, or other requirements involving technical analysis, need be examined only to the extent necessary to determine conformity of such construction documents with other requirements of the rules of the board.

107.5 Plan review, compliance with rules of the board. If the residential construction documents are determined to comply with the rules of the board, the residential plans examiner shall communicate the findings and recommend the conditions and type of approval to the residential building official.

107.5.1 Residential building official approval. The residential building official shall evaluate the residential plans examiner’s recommendations. When the residential construction documents have been determined to conform to the applicable provisions of the rules of the board, the residential building official shall endorse or stamp such plans as approved and issue the certificate of plan approval in accordance with section 105.5.

107.5.2 Posting. The certificate of plan approval shall be posted in a conspicuous location on the site. The owner and the contractor shall preserve and keep the certificate posted until the final inspections have been completed.
107.6 Plan review, items of noncompliance. When the residential construction documents are examined and items of noncompliance with the rules of the board are found, the residential building official shall proceed as required in either section 107.6.1 or section 107.6.2.

107.6.1 Communication process for items of non-compliance.

1. Item(s) of non-compliance shall be communicated to the owner or the owner’s representative and the following options shall be offered:

 1.1 The owner will revise the construction documents and resubmit to the department.

 1.2 The items of noncompliance will not be brought into compliance and will be referred to the residential building official as indicated in item 4 below.

2. The owner or the owner’s representative shall indicate which option (item 1 above) will be exercised.

3. Notations of the communication shall be made on a plan review record. The notations shall include the residential plans examiner’s name, the date of the communication with the owner or the owner’s representative, the observed items of noncompliance, the code citation related to the item(s) of noncompliance, the action necessary to correct the item(s) of noncompliance, the option chosen by the owner or the owner’s representative, the name of the person communicated with, and the estimated dates of compliance and resubmission, if applicable.

4. If the owner or the owner’s representative indicates that the work will not be brought into compliance with the rules of the board or requests an adjudication order, the residential plans examiner shall report to the building official in accordance with section 107.6.2.

107.6.2 Residential building official determination of noncompliance. The residential building official shall evaluate the results of the plans examination and render a final determination as to whether the items of non-compliance are to be communicated to the owner in the form of an adjudication order
complying with section 109. The residential building official shall also determine whether any approvals are possible, and issue the appropriate approval as described in section 105.

107.7 Approved residential construction document sets. One set of approved residential construction documents shall be kept by the residential building official. The other set(s) shall be returned to the applicant, kept at the work site, along with manufacturers’ installation instructions and product information, and shall be available for use by the residential inspectors.

SECTION 108
INSPECTION PROCESS

108.1 General. After residential construction documents have been approved, construction or work may proceed in accordance with the approved documents. Construction or work for which an approval is required shall be subject to inspection. It shall be the duty of the owner or the owner’s duly authorized representative to notify the residential building department when work is ready for inspection. Access to and means for inspection of such work shall be provided for any inspections that are required by this code.

It shall be the duty of the owner or the owner’s authorized representative to cause the work to remain accessible and exposed for inspection purposes. Such construction or work shall remain accessible and exposed for inspection purposes until the work has been inspected to verify compliance with the approved construction documents, but failure of the inspectors to inspect the work within four days, exclusive of Saturdays, Sundays, and legal holidays, after the work is ready for inspection, allows the work to proceed.

Subsequent work is allowed to proceed only to the point of the next required inspection.

108.2 Required inspections. At the time that the certificate of plan approval is issued, the residential building official shall provide to the owner, or the owner’s representative, a list of all required inspections for each project. The required inspection list shall be created from the applicable inspections set forth in sections 108.2.1 to 108.2.12. The residential building official, upon notification from the owner or the owner’s agent that the work is ready for inspection, shall cause the inspections set forth in the required inspection list to be made by an
appropriately certified residential inspector in accordance with the approved residential construction documents.

108.2.1 **Lot line markers required.** Before any work is started in the construction of a residential building or an addition to a residential building to which the rules of the board are applicable under section 101.2, all boundary lines shall be clearly marked at their intersections with permanent markers or with markers which are offset at a distance which is of record with the owner.

108.2.2 **Footing or foundation inspection.** Footing and foundation inspections shall be made after excavations for footings are complete and any required reinforcing steel is in place. For concrete foundations, any required forms shall be in place prior to inspection. Materials for the foundation shall be on the job, except where concrete is ready mixed in accordance with “ASTM C 94”, the concrete need not be on the job.

108.2.3 **Concrete slab and under-floor inspection.** Concrete slab and under-floor inspections shall be made after in-slab and under-floor reinforcing steel and building service equipment, conduit, insulation, vapor retarder, piping accessories and other ancillary equipment items are in place, but before any concrete is placed or floor sheathing installed, including the subfloor.

108.2.4 **Lowest floor elevation.** The elevation certification required in section 322 shall be submitted to the residential building official.

108.2.5 **Frame inspection.** Framing inspections shall be made after the roof deck or sheathing, all framing, fire blocking and bracing are in place and pipes, chimneys and vents to be concealed are complete and the rough electrical, plumbing, heating wires, pipes and ducts are approved.

108.2.6 **Lath or gypsum board inspection.** Lath and gypsum board inspections shall be made after lathing and gypsum board, interior and exterior, is in place, but before any plastering is applied or before gypsum board joints and fasteners are taped and finished.

Exception: Gypsum board that is not part of a fire-resistive assembly or a shear assembly.
108.2.7 Fire-resistant penetrations. Protection of joints and penetrations in fire-resistance-rated assemblies shall not be concealed from view until inspected and approved.

108.2.8 Energy efficiency inspections. Inspections shall be made to determine compliance with Chapter 11 and shall include, but not be limited to, inspections for: envelope insulation “R” and “U” values, fenestration “U” value, duct system “R” value, infiltration air barriers, caulking/sealing of openings in envelope and ductwork, and “HVAC” and water heating equipment efficiency.

108.2.9 Testing of residential building service equipment. Inspections shall be made of all residential building services equipment to ensure that it has been installed in accordance with the approved construction documents, the equipment listings, and the manufacturer’s installation instructions. Inspections shall include, but not be limited to, inspections for the following systems and their associated components: mechanical heating and ventilating systems, mechanical exhaust systems, plumbing systems, fire protection systems, and electrical systems.

108.2.10 Other inspections. In addition to the inspections specified above, the residential building official is authorized to cause to be made or require other inspections of any residential construction work to be made to ascertain compliance with the provisions of this code.

Where applications are submitted for projects of unusual magnitude of construction, the building official may require inspections or full-time project representation by a registered design professional or inspection agency. This inspector/project representative shall keep daily records and submit reports as required by the building official.

Exception: Where the building official requires full-time project inspection, the installation of a fire protection system may be inspected by a person certified under section 3781.105 of the Revised Code. The person shall be certified in the appropriate subfield of fire protection systems being inspected – automatic sprinkler, fire alarm, or special hazards systems design.
108.2.11 Inspections, compliance with construction documents. When an inspector from the department having jurisdiction finds that completed work is in accordance with the approved construction documents, the inspector shall communicate the findings to the owner’s on-site representative, shall make a note of the satisfactory inspection on an on-site inspection record and in the inspector’s log, and communicate the findings to the residential building official. The residential building official, after review of the findings, shall issue the certificate of occupancy in accordance with section 111.

108.2.12 Industrialized unit inspections. If the project will include the use of industrialized units approved by the board, the residential building official shall cause inspections to be made for on-site construction to complete the installation of the industrialized unit in conformance with the applicable provisions of the rules of the board. Such inspections shall include:

1. Connection to on-site construction, interconnection of modules, connection to utilities. The inspections and conducting of required tests shall not require the destruction or disassembly of any factory-constructed component authorized by the board.

2. Inspection of the unit for damage resulting from transportation, improper protection of exposed parts from inclement weather or other causes. Damage shall be repaired as required by the residential building official to comply with the applicable provisions of the rules of the board;

3. Inspection of the unit to determine if it is marked by an insignia furnished by the board; and

4. Inspect the unit to determine if the floor plan, exterior elevations, and exposed details are in conformance with the construction documents approved by the board.

108.3 Inspection agencies. The residential building official is authorized to accept reports of approved inspection agencies, provided such agencies are approved in accordance with the rules of the board of building standards.

108.4 Right of entry. The residential building official, or the residential building official’s designee, is authorized to enter the structure or premises at reasonable
times to inspect or to perform the duties imposed by this code, provided that credentials are presented to the occupant and that entry is requested and obtained. Where permission to enter has not been obtained, is denied, or the residential building official has probable cause to believe that there exists in a structure or upon a premises a condition which is a serious hazard, the residential building official shall proceed as required in section 109 and shall also have recourse to the remedies provided by law to secure entry.

108.5 Inspections, compliance with residential construction documents. When an individual certified to make inspections from the residential department having jurisdiction finds that completed work is in accordance with the approved residential construction documents, the certified individual shall communicate the findings to the owner’s on-site representative, shall make a note of the satisfactory inspection on an on-site inspection record and in the residential inspector’s log, and communicate their findings to the residential building official. The residential building official, after review of the findings, shall issue the certificate of occupancy in accordance with section 111.

108.6 Inspections, observation of violations, unsafe conditions, or serious hazards. When an individual certified to make inspections from the residential department having jurisdiction finds that any work in connection with the location, erection, construction, repair, alteration, moving, or equipment of a residential building is contrary to the approved residential construction documents for the same, the residential building inspector shall proceed as required in either section 108.6.1 or 108.7.

108.6.1 Communication process for work contrary to approved construction documents.

1. Communicate the nature of the differences to the owner or the owner’s on-site representative and offer the following options

1.1 The owner will bring the item of noncompliance into compliance,

1.2 The owner will revise the construction documents and resubmit to the residential department,
1.3 The items of noncompliance will not be brought into compliance and will be referred to the residential building official as indicated in item 4 below.

2. The owner or the owner’s on-site representative shall indicate which option (item 1 above) will be exercised.

3. Notations on the on-site inspection record and in the residential inspector’s log shall be made. The notations shall include the name of the certified individual authorized to make the inspections, the date of the inspection, the type of inspection, the observed items of noncompliance, the option chosen by the owner or the owner’s on-site representative, the name of the person communicated with, and the estimated dates of compliance and follow-up inspections, if applicable.

4. If the owner or the owner’s on-site representative indicates that the work will not be brought into compliance with the approved residential construction documents, the individual certified to make inspections shall submit a report to the residential building official for the final determination of noncompliance in accordance with section 108.7.

108.6.2 Observation of violations not shown on plans. If an individual certified to make inspections, in the course of performing the assigned or requested inspections, observes a code violation that was either shown incorrectly or not adequately addressed or detailed in the approved residential construction documents, the certified individual shall communicate the finding to the residential building official so that the residential building official can make a determination of whether the code violation is of such significance to warrant communicating the finding to the owner or the owner’s representative as a recommended change.

108.6.3 Observation of unsafe conditions or serious hazards. If an individual certified to make inspections, in the course of performing the assigned or requested inspections, observes an unsafe condition or a serious hazard, the certified individual shall communicate that condition to the owner or the owner’s on-site representative and shall report the findings immediately to the residential building official so that the residential building official can make a final determination of whether the violation constitutes a serious hazard which requires the issuance of an adjudication order as required in section
108.6.4 Industrialized units, observations of noncompliance. When an individual certified to make inspections from the residential department having jurisdiction finds that a residential industrialized unit has been constructed contrary to the residential construction documents approved by the board, the certified individual shall report the nonconformance to the residential building official. The residential building official shall notify the board of all violations of section 108.2.13. The board or its designee and the residential building official shall determine the corrective action to be taken before the residential building is approved to be occupied.

108.7 Residential building official determination of noncompliance. The residential building official shall evaluate any report of items of noncompliance and render a final determination as to whether the items of non-compliance are to be communicated to the owner in the form of an adjudication order complying with section 109. The residential building official shall also determine whether any approvals are possible.

108.8 Acceptance, performance, and operational testing. Acceptance, performance, and operational testing shall be conducted as required in the applicable code or referenced standard. Advanced notice of the test schedule shall be given to the building official. The residential building official may require that the tests be conducted in the presence of the building official or certified residential inspector. Testing and inspection records shall be made available to the residential building official or inspector, upon request, at all times during the fabrication of the systems and the erection of the building.

108.8.1 New, altered, extended or repaired systems. New systems and parts of existing systems, which have been altered, extended, renovated or repaired, shall be tested as prescribed herein to disclose leaks and defects.

108.8.2 Apparatus, material and labor for tests. Apparatus, material and labor required for testing a system or part thereof shall be furnished by the owner or the owner’s representative. Required tests shall be conducted by and at the expense of the owner or the owner’s representative.
108.8.3 Reinspection and testing. Where any work or installation does not pass an initial test or inspection, the inspector shall proceed as outlined in section 108.6.

Section 109
Orders, Violations, and Unsafe Buildings

109.1 Adjudication orders required. When the residential building official denies any approval or takes action in response to findings of non-compliance, such action shall be initiated by issuing an adjudication order, prior to seeking any remedy, civil or criminal. Every adjudication order shall:

1. Clearly identify the section of law or rules violated;

1.1 Clearly identify, in a contrasting and obviously marked manner, all violations related to accessibility.

2. Specifically indicate which detail, installation, site preparation, material, appliance, device, addition, alteration to structures, residential construction documents, assemblages or procedures are necessary to change to comply with the order;

2.1 When issued to stop work, the order shall also clearly indicate the specific work that is required to cease, when the work must cease and the conditions under which the cited work will be permitted to resume. The order to stop work shall be given to the owner of the property involved, to the owner’s agent and the person doing the work.

3. Include notice of the procedure for appeal and right to a hearing if requested within thirty days of the mailing of the order. The order shall also indicate that, at the hearing, the owner may be represented by counsel, present arguments or contentions orally or in writing, and present evidence and examine witnesses appearing for or against the owner;

4. Specify a reasonable period of time in which to bring the item(s) on the order into compliance;

5. Include the signature of the residential building official;
The order shall be sent by certified mail, return receipt requested, to the owner and any individual designated as a representative or agent by the owner in such matters.

109.2 Response to orders. The person receiving an order shall exercise their right to appeal within 30 days of the mailing of the order, comply with the order, or otherwise be released from the order by the residential building official.

109.3 Prosecution and penalties. When an owner fails to comply with section 109.2, the owner may be prosecuted and is subject to a fine of not more than five hundred dollars as provided for in section 3791.04 of the Revised Code.

109.3.1 Unlawful continuance. Failure to cease work after receipt of an order to stop work is hereby declared a public nuisance.

109.4 Unsafe buildings. Structures or existing equipment that are unsafe or unsanitary due to inadequate means of egress facilities, inadequate light and ventilation, or which constitute a fire hazard, or are otherwise dangerous to human life, shall be deemed a serious hazard. Where a residential building is found to be a serious hazard, such hazard shall be eliminated or the residential building shall be vacated, and where such residential building, when vacated, remains a serious hazard, it shall be razed.

109.4.1 Orders, injunction proceedings. Where the residential building official finds that a residential building is a serious hazard and the owner of such building fails, in the time specified in an order from the residential building official, to eliminate such hazard, or to vacate or raze the residential building, the residential building official shall proceed under section 3781.15 of the Revised Code.

109.4.2 Restoration. Where the residential structure or equipment is determined to be unsafe by the residential building official, it is permitted to be restored to a safe condition. To the extent that repairs, alterations or additions are intended to be made or a change of occupancy occurs during the restoration of the structure, such repairs, alterations, additions or change of occupancy shall comply with this chapter.

SECTION 110
APPEALS

110.1 Hearing and right of appeal, local board of building appeals. In order to hear and decide appeals of orders, decisions, or determinations made by the residential building official relative to the application of this code, there shall be a local appeals process established within the certified jurisdiction. Adjudication hearings shall be in accordance with sections 119.09 to 119.13 of the Revised Code, as required by section 3781.031 of the Revised Code.

SECTION 111
CERTIFICATE OF OCCUPANCY

111.1 Approval required to occupy. No residential building or structure, in whole or in part, shall be used or occupied until the residential building official has issued an approval in the form of a certificate of occupancy. The certificate of occupancy shall indicate the conditions under which the residential building shall be used. The building owner shall only use the structure in compliance with the certificate of occupancy and any stated conditions. The residential structure and all approved building service equipment shall be maintained in accordance with the approval. When a residential building or structure is entitled thereto (constructed according to the approved construction documents, final tests and inspections are completed, and no orders of the building official are outstanding, or as permitted in this section), the residential building official shall issue a certificate of occupancy in a timely manner.

111.1.1 New residential buildings. A residential building or structure erected shall not be used or occupied, in whole or in part, until the certificate of occupancy has been issued by the residential building official. Occupancy of spaces within a residential building which are unaffected by the work of work shall be allowed to continue if the residential building official determines the existing spaces can be occupied safely until the completion of the work.

111.1.2 Residential building alterations or additions. A residential building or structure enlarged, extended or altered, in whole or in part, shall not be occupied or used until a certificate of occupancy has been issued. Occupancy of spaces within a building which are unaffected by the work of alteration shall be allowed to continue if the residential building official determines the existing spaces can be occupied safely until the completion of the alteration.
111.1.3 Partial occupancy. Upon the request of the owner or owner’s representative, a residential building official shall issue a certificate of occupancy before the completion of the entire work, provided that the residential building official determines that the space can be safely occupied prior to full completion of the residential building, structure, or portion without endangering life or public welfare. The certificate shall indicate the extent of the areas approved for occupancy and any time limits for completion of the work.

111.1.4 Time-limited occupancy. A residential building or structure hereafter changed in part from one occupancy to another for a limited time may receive a certificate of occupancy reflecting that time-limited occupancy provided:

1. There are no violations of law or orders of the residential building official pending;

2. It is established after inspection and investigation that the proposed use is not deemed to endanger public safety and welfare safely;

3. The residential building official has approved the use for an alternative purpose on a temporary basis;

4. The residential building official has issued a certificate of occupancy indicating any special conditions under which the building or part of the residential building can be used for the alternative purpose within the time limit specified.

111.1.5 Temporary structures occupancy. A residential building intended to be erected, placed and used for a period of time not to exceed one hundred eighty days that has been determined by the residential building official to be in compliance with section 102.9 shall be issued a “Certificate of Occupancy for Temporary Structures.” The residential building official is authorized to grant extensions for demonstrated cause.

111.2 Existing residential buildings. Upon written request from the owner of an existing residential building or structure, the residential building official shall issue a certificate of occupancy, provided there are not violations of law or orders of the residential building official pending, and it is established after inspection and investigation that the alleged occupancy of the residential building or
structure has previously existed. This code shall not require the removal, alteration or abandonment of, or prevent the continuance of, the occupancy of a lawfully existing residential building or structure, unless such use is deemed to endanger public safety and welfare.

111.3 Certificate issued. The certificate shall certify compliance with the provisions of this code, Chapters 3781. and 3791. of the Revised Code, and the purpose for which the residential building or structure may be used in its several parts. The certificate of occupancy shall contain the following:

1. The plan approval application number.

2. The name and address of the owner.

3. A description of that portion of the structure for which the certificate is issued.

4. The signature of all residential building officials having jurisdiction. When more than one residential building official has jurisdiction for a building (when the certification of the residential building department is limited for such systems as plumbing or piping systems) each shall sign the certificate of occupancy with an indication of the scope of their individual approvals.

2. The edition of the residential code under which the plan approval was issued.

3. When an automatic sprinkler system is provided, the type and description of the system shall be indicated.

4. Any special stipulations and conditions of the plan approval including any variances granted to the requirements of this code.

111.4 Validity of a certificate of occupancy. The certificate of occupancy represents an approval that is valid only when the residential building or structure is used as approved and certifies conformance with applicable provisions of the “Residential Code of Ohio for One-, Two-, and Three-family Dwellings” and Chapters 3781. and 3791. of the Revised Code. The approval is conditioned upon the building systems and equipment being maintained and tested in accordance with the approval, the “RCO”, and applicable equipment and systems schedules.
111.5 Connection of service utilities. No connections shall be made from a utility, source of energy, fuel or power to any residential building or system that is regulated by this code for which a plan approval and inspections are required, until approved by the residential building official.

111.6 Temporary connection. The residential building official shall approve the temporary connection of the residential building or system to the utility source of energy, fuel or power.

SECTION 112
CHANGES TO THE CODE

112.1 Changes, board of building standards. The board may adopt, amend, or rescind the rules of the board on its own motion or in response to an application for changes filed pursuant to this section.

112.2 Changes, application to the board. Any person may apply to the board to adopt, amend, or rescind rules of the board. The application for rule change shall be on forms and in format prescribed by the board. Twelve printed copies of the application shall be filed with the secretary of the board.

112.3 Changes, application to the residential construction advisory committee. In addition to section 112.2, any person may apply to the residential construction advisory committee to recommend to the board that it adopt, amend, or rescind provisions of the RCO. The application for rule change shall be on forms and in format prescribed by the board and directed to the chairperson of the residential construction advisory committee. Twelve printed copies of the application shall be filed with the secretary of the board.

112.4 Processing applications for changes. When the secretary of the board receives a conforming application for an adoption, amendment, or annulment of a provision of the rules of the board, the secretary shall promptly deliver or mail a copy of the application to each member of the board or to each member of the residential construction advisory committee for a recommendation to the board as appropriate.

After receiving an application for the adoption, amendment, or annulment of a provision of the rules of the board or a recommendation of the residential
construction advisory committee, the board shall proceed under sections 3781.101 and 3781.12 of the Revised Code.

SECTION 113
EXISTING BUILDINGS AND STRUCTURES

113.1 General. Provisions within this section shall control the alteration, repair, addition and change of occupancy if existing residential buildings.

113.2 Maintenance. Residential buildings, structures and the building equipment shall be maintained in a safe and sanitary condition and in accordance with the condition(s) established in current and any previous plan approvals and certificates of occupancy. Devices or safeguards which are required by this code shall be maintained in conformance with the code edition under which installed. The owner or the owner's designated agent shall be responsible for the maintenance.

The requirements of this chapter shall not provide the basis for removal or abrogation of fire protection and safety systems and devices in existing structures without approval of the residential building official.

113.3 Definitions. The following terms shall, for the purposes of this section and as used elsewhere in the code, have the following meanings:

CHANGE OF OCCUPANCY. A change in the purpose or level of activity within a structure that involves a change in the application of the requirements of the code.

HISTORIC BUILDINGS. A residential building meeting one of the following criteria:

1. Listed or preliminarily determined to be eligible for listing in the “National Register of Historic Places”; or

2. Determined by the secretary of the U.S. department of interior as contributing to the historical significance of a registered historic district or a district preliminarily determined to qualify as an historic district; or
3. Designated as historic under a state or local historic preservation program that is approved by the U.S. department of interior.

113.4 Additions and alterations. Additions or alterations to residential buildings shall conform with the requirements of the code for new construction and shall be approved by the residential building official. Additions or alterations shall not be made to an existing residential building or structure which will cause the existing residential building or structure to be in violation of any provisions of this code. Portions of the structure not altered and not affected by the alteration are not required to comply with the code requirements for a new structure.

Exception: For residential buildings and structures in flood hazard areas, any additions, alterations or repairs that constitute substantial improvement of the existing structure, shall comply with the flood design requirements for new construction and all aspects of the existing structure shall be brought into compliance with the requirements for new construction for flood design.

113.5 Alterations to and replacement of systems, components and materials. Alterations to and replacements of an existing system (egress, fire protection, mechanical, plumbing, etc.) and materials or building components not otherwise provided for in this section, shall conform to that required for new construction to the extent of the alteration. The existing systems, materials, or components shall not be required to comply with all of the requirements of this code for new construction except to the extent that they are affected by the alteration. Alterations to and replacements of existing systems, materials, or components shall not cause them to become unsafe, hazardous, overloaded, or become less effective than when originally installed, constructed, and/or approved.

113.6 Replacement and repairs to systems, components and materials. Replacement of residential building components, and repairs to existing systems and materials or building components not otherwise provided for in this section, shall not be required to meet the provisions for new construction, provided such work is done in accordance with the conditions of the existing approval in the same manner and arrangement as was in the existing system, is not less safe than when originally installed and is approved.

113.6.1 Door and window dimensions. Minor reductions in the clear opening dimensions of replacement doors and windows that result from the use of different materials shall be allowed, whether or not they are permitted by this
code.

113.6.2 Used materials and equipment. The use of used materials which meet the requirements of this code for new materials is permitted. Used equipment, appliances, and devices shall not be reused unless approved by the residential building official.

113.7 Changes in occupancy. A residential building, accessory structure, or space within a residential building shall not change in its use or purpose unless it is made to comply with the requirements of this code for such use and approved by the residential building official. An approval is not required when the code requirements are the same for both uses.

113.7.1 Use of a residential building for other purposes. No change of occupancy to uses within the scope of the OBC shall be made to any existing residential building, space within, or accessory structure unless such building is made to comply with the requirements of the OBC for such occupancy and approved by the building official with OBC enforcement authority.

113.7.2 Type A family day care homes. A residential building that is intended to be used in whole or in part as a licensed type A family day-care home shall be inspected in accordance with the type A family day-care home checklist (available from the board of building standards). The residential building official shall issue a report of the findings to the Ohio department of jobs and family services.

113.8 Moved structures. Residential structures moved shall be safe and sanitary and any repair, alteration, or change in occupancy shall comply with the provisions of this code for new structures. Field work, building location, foundations and foundation connections, wind loads, seismic loads, snow loads, and flood loads, shall comply with the requirements of this code.

The residential building official shall be authorized to inspect, or require inspection at the expense of the owner, the various components of a relocated building to verify that they have not sustained damage. Building service equipment, mechanical, plumbing, and fire protection systems shall be tested to assure that they are in operating condition. Any repairs or alterations required as a result of such inspections shall be approved and completed prior to issuance of the certificate of occupancy.
113.9 Historic buildings. The provisions of this code relating to the construction, repair, alteration, addition, restoration and movement of residential structures, and change of occupancy shall not be mandatory for historic buildings where such residential buildings are judged by the residential building official not to constitute a distinct life safety hazard.

113.9.1 Flood hazard areas. Within flood hazard areas established, the residential building shall be brought into conformance with section 322.

Exception: Historic buildings.

SECTION 114
PRODUCTS AND MATERIALS
Section 114
Products and materials

114.1 General. Any material, product, assembly or method of construction used in a building or structure shall be approved by the building official. The provisions of this section describe the product approval process intended by the board of building standards in accordance with Section 3781.10 (C) of the Revised Code.

114.2 Definitions. The following words and terms shall, for the purposes of this section, have the meanings shown herein:

Accreditation. The formal recognition of a conformity assessment body’s adherence and operation under a documented quality system whereby a third party (Accreditation Body) attests to technical competence and the specific scope of accreditation of the conformity assessment body.

Accreditation body. An authoritative body that is an established, independent, internationally recognized, third-party organization that performs accreditation to ascribe initial recognition and monitors, on an cyclical basis, the competency, integrity, and performance of conformity assessment bodies in accordance with established standards.
Assembly. A preassembled grouping of materials, products and/or components designed to act as a whole. This does not include industrialized units regulated by section 113.

Calibration laboratory. An established, independent, nationally recognized and accredited, third-party organization that regularly provides calibration services such as, but not limited to, tolerance testing to ensure the accuracy of measuring equipment used in construction.

Conformity assessment body. A body that performs conformity assessment services and can be an object of accreditation, such as a testing laboratory, inspection body, product certification body.

Evaluation service. An established, independent, nationally recognized and accredited, third-party conformity assessment body that is accredited as a product certification body and performs technical evaluations of building materials, products, and methods of construction where code requirements are not clear or the innovative products do not have national consensus standards. The evaluation of the product results in the issuance of a research report establishing the code compliance and conditions of its use based upon multiple sources of information including test reports, test data, performance data, or acceptance criteria, and can be approved for installation by the building official in accordance with the rules of the board.

Fabricator inspection agency. An established, independent, nationally recognized and accredited, third-party conformity assessment body regularly engaged in fabrication of construction materials and methods of construction.

Field evaluation body. An established, independent, nationally recognized and accredited, third-party conformity assessment body regularly engaged in furnishing field inspection, observation, testing, or reporting services for construction materials, products, and methods of construction.

Industry trade association certification program. A certification program operated by an established and nationally recognized
organization, founded and funded by businesses that operate in a specific industry, where the main focus is to monitor quality assurance among associated members.

Insignia. A mark or label prescribed in accordance with board procedures.

Inspection body. An established, independent, nationally recognized and accredited, third-party conformity assessment body regularly engaged in furnishing inspection, observation, testing, or reporting services for construction materials, products, and methods of construction. Such services include, but are not limited to geotechnical inspections, environmental inspections, mechanical and metallurgical analysis, non-destructive testing and evaluation, chemical analysis, and structural and product testing.

Listing agency. An established, independent, nationally recognized and accredited, third-party conformity assessment body that is accredited as a product certification body and conducts tests on materials, products, or methods of construction to certify products that meet the criteria for compliance with nationally recognized codes and standards. The product certification body allows its insignia of conformity to be placed on a material or product by the manufacturer, identifying that the material or product has been certified by the product certification body. The product certification body maintains a list or directory of all of the materials and products that they have certified and the conditions of their use.

Material. A manufactured form or substance designed to act as a whole.

Method of construction. A procedure or system intended to result in a finished building, structure or portion thereof.

Product. A material or device designed and manufactured to perform a predetermined function. Appliances, assemblies and equipment are also considered products.

Product certification body. An established, independent, nationally
recognized and accredited, third-party conformity assessment body regularly engaged in conducting evaluation services, inspections and tests on materials and products to certify compliance with nationally recognized codes and standards. Product Certification Bodies are sub-classified as either Evaluation Services or Listing Agencies.

Recognition. An acceptance by the board of building standards of an accreditation body, a conformity assessment body, or an industry trade association certification program in accordance with the rules of the board of building standards.

Special inspection agency. An established, independent, nationally recognized and accredited, third-party conformity assessment body regularly engaged in performing special inspections as required by Chapter 17.

Testing laboratory. An established, independent, nationally recognized and accredited, third-party conformity assessment body regularly engaged in conducting tests of materials, products, or methods of construction to determine compliance with a specification or testing standard. The testing laboratory issues a report documenting the test results.

Figure 114.2
114.3 Building official approval process. The building official shall approve the use of products in accordance with Sections 114.3.1 through 114.3.3.

114.3.1 Materials, products, assemblies and methods of construction prescribed in the code.

114.3.1.1 Testing laboratories. When test reports are required to be submitted or when the rules of the Board require materials, products, assemblies and methods of construction to conform to specific referenced standards, the building official shall verify that the proposed material, product, assembly, and method of construction has been tested by a testing laboratory recognized by the board and published on the list titled “Recognized Conformity Assessment Bodies” found on the board’s website at http://www.com.ohio.gov/dico/bbs/.
The building official shall verify that the testing laboratory is accredited to perform the specific tests prescribed in the code by verifying the testing laboratory’s “scope of accreditation” found on the testing laboratory’s website.

Exception: Acceptance, performance, and operational testing reports submitted in accordance with Section 108.8 are permitted to be prepared and submitted by the individual performing the acceptance, performance, and operational tests. Board recognition is not required for persons conducting acceptance, performance, or operational tests.

114.3.1.2 Listing agencies. When the rules of the Board require materials, products, assemblies and methods of construction to be marked or listed and labeled in accordance with a specific referenced standard, the building official shall verify that the proposed material, product, assembly, and method of construction has been listed and labeled by a listing agency recognized by the board and published on the list titled “Recognized Conformity Assessment Bodies” found on the board’s website at http://www.com.ohio.gov/dico/bbs/.

Building officials are authorized to approve listed and labeled materials, products, assemblies and methods of construction after verifying all of the following additional information:

1. The product is listed on the product certification body’s website directory.

2. The listing is current.

3. The product is proposed to be installed/used in accordance with the listing.

4. When used as an assembly, the assembly is proposed to be installed/used in compliance with this code.
5. The extent of the listing does not include in its scope, elements of design, construction or installation otherwise in conflict with the provisions of this code such as fire-resistance and structural design.

114.3.2 Alternative materials, products, assemblies and methods of construction not prescribed in the code. The provisions of this code are not intended to prevent the installation of any material or to prohibit any material, product, assembly or method of construction not specifically prescribed by this code, provided that any such alternative shall have a valid research report or listing from an evaluation service recognized by the board and published on a list titled “Recognized Conformity Assessment Bodies” found on the board’s website at http://www.com.ohio.gov/dico/bbs/.

The alternative material, product, assembly, or method of construction shall be deemed to be approved provided it complies with the conditions listed in the research report or listing found on the evaluation service’s website.

Exceptions:

1. Alternative materials, products, assemblies, or methods of construction submitted pursuant to section 106.5.
2. Industrialized units shall be approved and constructed in accordance with section 113.1 of this chapter.

114.3.3 Used materials and products. The use of used materials and products which meet the requirements of this code for new materials and products is permitted. Used products and materials shall not be reused unless approved by the building official.

114.4 Process for board-recognition of “Accreditation Bodies,” “Conformity Assessment Bodies,” and “Industry Trade Association Certification Programs.” All accreditation bodies, conformity assessment bodies, and industry trade association certification programs shall be recognized by the board in accordance with division 4101:7 of the Administrative Code.

Section 115
Board Organization

115.1 Meetings.

1. Meeting schedule. No later than December thirty-first of each year, the board shall establish a schedule of the dates, times, and locations of all regular board meetings and meetings of board committees for the following calendar year. Such schedule shall be posted on the board’s website: http://www.com.ohio.gov/dico/bbs/.

2. Meeting location. All meetings of the board shall be held in offices of the Ohio department of commerce, training room #1, 6606 Tussing Rd., Reynoldsburg, Ohio, 43068, unless otherwise designated.

115.2 Notices. Prior to all regular or special meetings of the board, the executive secretary shall distribute the agenda, including meeting date, time, and location, by electronic mail to any person who has requested such information.

115.3 Rules. All rules of the board shall be adopted in accordance with Chapter 119. of the Revised Code.

115.4 Board committees and duties. The board shall have three standing committees.

1. Code committee. The code committee provides general oversight of the board’s rule promulgation and code development activities. The committee reviews proposed rule changes and petitions for code changes and shall make recommendations to the board for action.

2. Education committee. The education committee provides general oversight to the board’s continuing education program. The committee reviews continuing education course applications submitted for approval pursuant to paragraph (G) of rule 4101:7-3-01 of the Administrative Code and shall make recommendations to the board for action on the applications.

3. Certification committee. The certification committee provides general oversight to the board’s personnel and building department certification program. The committee reviews personnel and building department certification applications submitted for approval pursuant to paragraph (G)
of rule 4101:7-3-01 of the Administrative Code and shall make recommendations to the board for action on the applications.
Effective: 01/01/2016

Five Year Review (FYR) Dates: 01/01/2018

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.01, 3781.06, 3781.10, 3781.11, 3791.04, 4740.14
Prior Effective Dates: 5/27/06, 7/1/07, 1/1/08, 1/1/09, 1/1/13, 1/1/15
4101:8-2-01 Definitions.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:8-44-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:8-1-01 of the Administrative Code.]

SECTION 201
GENERAL

201.1 Scope. Unless otherwise expressly stated, the following words and terms shall, for the purposes of this code, have the meanings indicated in this chapter.

201.2 Interchangeability. Words used in the present tense include the future; words in the masculine gender include the feminine and neuter; the singular number includes the plural and the plural, the singular.

201.3 Terms defined in other codes. Where terms are not defined in this code such terms shall have meanings ascribed to them in other codes adopted and referenced by the Board of Building Standards.

201.4 Terms not defined. Where terms are not defined through the methods authorized by this section, such terms shall have ordinarily accepted meanings such as the context implies.

SECTION 202
DEFINITIONS

ABOVE-GROUND STORAGE TANK. A vessel, intended for fixed installation above grade, at grade, or below grade without backfill, used for the purpose of bulk storage, dispensing, handling or processing of hazardous, flammable or combustible liquids or gases and not connected to and utilized for the operation of building service equipment.

ACCESSIBLE. Signifies access that requires the removal of an access panel or similar removable obstruction.

ACCESSIBLE, READILY. Signifies access without the necessity for removing a panel or similar obstruction.
ACCESSORY STRUCTURE. A building, the use of which is incidental to that of the dwelling(s) and which is located on the same lot.

ADDITION. An extension or increase in floor area or height of a building or structure.

ADHERED STONE OR MASONRY VENEER. Stone or masonry veneer secured and supported through the adhesion of an approved bonding material applied to an approved backing.

AIR ADMITTANCE VALVE. A one-way valve designed to allow air into the plumbing drainage system when a negative pressure develops in the piping. This device shall close by gravity and seal the terminal under conditions of zero differential pressure (no flow conditions) and under positive internal pressure.

AIR BARRIER. Material(s) assembled and joined together to provide a barrier to air leakage through the building envelope. An air barrier may be a single material, or a combination of materials.

AIR BREAK (DRAINAGE SYSTEM). An arrangement in which a discharge pipe from a fixture, appliance or device drains indirectly into a receptor below the flood-level rim of the receptor, and above the trap seal.

AIR CIRCULATION, FORCED. A means of providing space conditioning utilizing movement of air through ducts or plenums by mechanical means.

AIR-CONDITIONING SYSTEM. A system that consists of heat exchangers, blowers, filters, supply, exhaust and return-air systems, and shall include any apparatus installed in connection therewith.

AIR GAP, DRAINAGE SYSTEM. The unobstructed vertical distance through free atmosphere between the outlet of a waste pipe and the flood-level rim of the fixture or receptor into which it is discharging.

AIR GAP, WATER-DISTRIBUTION SYSTEM. The unobstructed vertical distance through free atmosphere between the lowest opening from a water supply discharge to the flood-level rim of a plumbing fixture.
AIR-IMPERMEABLE INSULATION. An insulation having an air permanence equal to or less than 0.02 L/s-m² at 75 Pa pressure differential tested according to ASTM E 2178 or E 283.

ALTERATION. The construction or renovation to an existing structure other than repair or addition.

ANCHORED STONE OR MASONRY VENEER. Stone or masonry veneer secured with approved mechanical fasteners to an approved backing.

ANCHORS. See “Supports.”

ANTISIPHON. A term applied to valves or mechanical devices that eliminate siphonage.

APPLIANCE. A device or apparatus that is manufactured and designed to utilize energy and for which this code provides specific requirements.

APPROVED. Refers to approval by the building official as the result of review, investigation, inspection and testing in accordance with the provisions of this code.

APPROVED AGENCY. An established and accredited testing laboratory, listing agency, inspection body, or field evaluation body recognized by the board of building standards providing services consistent with their accreditation and the code section requiring the approved agency service.

ASPECT RATIO. The ratio of longest to shortest perpendicular dimensions, or for wall sections, the ratio of height to length.

ATTIC. The unfinished space between the ceiling assembly of the top story and the roof assembly.

ATTIC, HABITABLE. A finished area, not considered a story, complying with all of the following requirements:

1. The occupiable floor area is at least 70 square feet (17 m²), in accordance with Section 304,

2. The occupiable floor area has a ceiling height in accordance with Section 305, and
3. The occupiable space is enclosed by the roof assembly above, knee walls (if applicable) on the sides and the floor-ceiling assembly below.

BACKFLOW, DRAINAGE. A reversal of flow in the drainage system.

BACKFLOW PREVENTER. A device or means to prevent backflow.

BACKFLOW PREVENTER, REDUCED-PRESSURE-ZONE TYPE. A backflow-prevention device consisting of two independently acting check valves, internally force loaded to a normally closed position and separated by an intermediate chamber (or zone) in which there is an automatic relief means of venting to atmosphere internally loaded to a normally open position between two tightly closing shutoff valves and with means for testing for tightness of the checks and opening of relief means.

BACKFLOW, WATER DISTRIBUTION. The flow of water or other liquids into the potable water-supply piping from any sources other than its intended source. Backsiphonage is one type of backflow.

BACKPRESSURE. Pressure created by any means in the water distribution system, which by being in excess of the pressure in the water supply mains causes a potential backflow condition.

BACKPRESSURE, LOW HEAD. A pressure less than or equal to 4.33 psi (29.88 kPa) or the pressure exerted by a 10-foot (3048 mm) column of water.

BACKSIPHONAGE. The flowing back of used or contaminated water from piping into a potable water-supply pipe due to a negative pressure in such pipe.

BACKWATER VALVE. A device installed in a drain or pipe to prevent backflow of sewage.

BASEMENT. That portion of a building that is partly or completely below grade (see “Story above grade”).

BASEMENT WALL. The opaque portion of a wall that encloses one side of a basement and has an average below grade wall area that is 50 percent or more of the total opaque and non-opaque area of that enclosing side.
BASIC WIND SPEED. Three-second gust speed at 33 feet (10 058 mm) above the ground in Exposure C (see Section 301.2.1) as given in Figure 301.2(4).

BATHROOM GROUP. A group of fixtures, including or excluding a bidet, consisting of a water closet, lavatory, and bathtub or shower. Such fixtures are located together on the same floor level.

BEND. A drainage fitting, designed to provide a change in direction of a drain pipe of less than the angle specified by the amount necessary to establish the desired slope of the line (see “Elbow” and “Sweep”).

BOILER. A closed vessel in which water is heated, steam is superheated, or any combination thereof, under pressure to vacuum for use externally to itself by the direct application of heat from the combustion of fuels, or from electricity or nuclear energy. The term boiler includes fired units for heating or vaporizing liquids other than water where these units are separate from processing systems and are complete within themselves.

BOND BEAM. A horizontal grouted element within masonry in which reinforcement is embedded.

BRACED WALL LINE. A straight line through the building plan that represents the location of the lateral resistance provided by the wall bracing.

BRACED WALL LINE, CONTINUOUSLY SHEATHED. A braced wall line with structural sheathing applied to all sheathable surfaces including the areas above and below openings.

BRACED WALL PANEL. A full-height section of wall constructed to resist in-plane shear loads through interaction of framing members, sheathing material and anchors. The panel’s length meets the requirements of its particular bracing method, and contributes toward the total amount of bracing required along its braced wall line in accordance with Section 602.10.1.

BRANCH. Any part of the piping system other than a riser, main or stack.

BRANCH, FIXTURE. See “Fixture branch, drainage.”

BRANCH, HORIZONTAL. See “Horizontal branch, drainage.”
BRANCH INTERVAL. A vertical measurement of distance, 8 feet (2438 mm) or more in developed length, between the connections of horizontal branches to a drainage stack. Measurements are taken down the stack from the highest horizontal branch connection.

BRANCH, MAIN. A water-distribution pipe that extends horizontally off a main or riser to convey water to branches or fixture groups.

BRANCH, VENT. A vent connecting two or more individual vents with a vent stack or stack vent.

BTU/H. The listed maximum capacity of an appliance, absorption unit or burner expressed in British thermal units input per hour.

BUILDING. Building shall mean any one-, two- and three-family dwelling detached from other structures used, or designed or intended to be used for human habitation, for living, sleeping, cooking or eating purposes, or any combination thereof, and shall include accessory structures thereto. For the purposes of this code, “building” may also mean structures comprised of multiple single-family dwellings when such structures qualify in accordance with OBC section 310.1.

BUILDING DRAIN. The lowest piping that collects the discharge from all other drainage piping inside the house and extends 30 inches (762 mm) in developed length of pipe, beyond the exterior walls and conveys the drainage to the building sewer.

BUILDING, EXISTING. Existing building is a building erected prior to the adoption of this code, or one for which a legal approval has been issued.

BUILDING LINE. The line established by law, beyond which a building shall not extend, except as specifically provided by law.

BUILDING OFFICIAL. An individual who has received and maintains a certification of “Residential Building Official” in accordance with rules of the board of building standards.

BUILDING SERVICE EQUIPMENT. Equipment, appliances, materials, devices, and systems integrated into a building that provide space heating, air conditioning, ventilation, fire protection, lighting, electricity, sanitation, water, water heating, cooking, medical gas, medical vacuum, and clothes drying.
Building service equipment begins from the connected stored source of liquid or gas fuel or electrical power supplying the equipment or the utility service point/point of delivery and extends through the point of use but does not include process equipment that may also be connected to the same source.

BUILDING SERVICES PIPING. Piping systems and their component parts that are part of a building system and that promote the safe, sanitary, and energy efficient occupancy of a building. “Building services piping” includes, but is not limited to, cold and hot potable water distribution for plumbing fixtures; sanitary lines leading from plumbing fixtures; nonflammable medical gas systems; medical oxygen systems; medical vacuum systems; fire protection piping systems and compressed air in dry systems; refrigeration, chilled water, condenser, cooling tower water, brine, and water/antifreeze systems; steam, steam condensate, and hot water piping systems; heating and cooling piping systems; and fuel oil piping and fuel gas piping for heating, cooling, and cooking applications.

BUILDING SEWER. That part of the drainage system that extends from the end of the building drain and conveys its discharge to a public sewer, private sewer, individual sewage-disposal system or other point of disposal.

BUILDING THERMAL ENVELOPE. The basement walls, exterior walls, floor, roof and any other building element that enclose conditioned spaces.

BUILT-UP ROOF COVERING. Two or more layers of felt cemented together and surfaced with a cap sheet, mineral aggregate, smooth coating or similar surfacing material.

CAP PLATE. The top plate of the double top plates used in structural insulated panel (SIP) construction. The cap plate is cut to match the panel thickness such that it overlaps the wood structural panel facing on both sides.

CEILING HEIGHT. The clear vertical distance from the finished floor to the finished ceiling.

CEMENT PLASTER. A mixture of portland or blended cement, portland cement or blended cement and hydrated lime, masonry cement or plastic cement and aggregate and other approved materials as specified in this code.

CHANGE OF OCCUPANCY. A change in the purpose or level of activity within a structure that involves a change in the application of the requirements of the code.
CHIMNEY. A primary vertical structure containing one or more flues, for the purpose of carrying gaseous products of combustion and air from a fuel-burning appliance to the outside atmosphere.

CHIMNEY CONNECTOR. A pipe that connects a fuel-burning appliance to a chimney.

CHIMNEY TYPES.

Residential-type appliance. An approved chimney for removing the products of combustion from fuel-burning, residential-type appliances producing combustion gases not in excess of 1,000°F (538°C) under normal operating conditions, but capable of producing combustion gases of 1,400°F (760°C) during intermittent forced firing for periods up to 1 hour. All temperatures shall be measured at the appliance flue outlet. Residential-type appliance chimneys include masonry and factory-built types.

CIRCUIT VENT. A vent that connects to a horizontal drainage branch and vents two traps to a maximum of eight traps or trapped fixtures connected into a battery.

CLADDING. The exterior materials that cover the surface of the building envelope that is directly loaded by the wind.

CLEANOUT. An accessible opening in the drainage system used for the removal of possible obstruction.

CLOSED CONSTRUCTION. An assembly of materials or products manufactured in such a manner that its structural, plumbing, electrical, environmental control, or fire protection elements or components are concealed and are not readily accessible for inspection at the site of its erection, without disassembly, damage, or destruction. Closed construction includes assemblies where only one of the components is not accessible for inspection. (For example, an equipment enclosure where all the electrical conductors and components are exposed for inspection and its roof and wall panels have exposed structural members but the floor panel structural members are not exposed, would be required to be approved by the board in accordance with section 113 of the “OBC”.) Also see definition of “Industrialized units”.

CLOSET. A small room or chamber used for storage.
CODE, BUILDING, MECHICAL AND PLUMBING. When reference is made within this code to building code, mechanical code or plumbing code, those references shall have the following meanings:

- **Building code or This code.** *The Residential Code of Ohio, this edition.*
- **Mechanical code.** *The current edition of the Ohio Mechanical Code.*
- **Plumbing code.** *The current edition of the Ohio Plumbing Code.*

COMBINATION WASTE AND VENT SYSTEM. A specially designed system of waste piping embodying the horizontal wet venting of one or more sinks or floor drains by means of a common waste and vent pipe adequately sized to provide free movement of air above the flow line of the drain.

COMBUSTIBLE MATERIAL. Any material not defined as noncombustible.

COMBUSTION AIR. The air provided to fuel-burning equipment including air for fuel combustion, draft hood dilution and ventilation of the equipment enclosure.

COMMON VENT. A single pipe venting two trap arms within the same branch interval, either back-to-back or one above the other.

CONDENSATE. The liquid that separates from a gas due to a reduction in temperature, e.g., water that condenses from flue gases and water that condenses from air circulating through the cooling coil in air conditioning equipment.

CONDENSING APPLIANCE. An appliance that condenses water generated by the burning of fuels.

CONDITIONED AIR. Air treated to control its temperature, relative humidity or quality.

CONDITIONED AREA. That area within a building provided with heating and/or cooling systems or appliances capable of maintaining, through design or heat loss/gain, 68°F (20°C) during the heating season and/or 80°F (27°C) during the cooling season, or has a fixed opening directly adjacent to a conditioned area.
CONDITIONED FLOOR AREA. The horizontal projection of the floors associated with the conditioned space.

CONDITIONED SPACE. An area or room within a building being heated or cooled, containing uninsulated ducts, or with a fixed opening directly into an adjacent conditioned space.

CONSTRUCTION DOCUMENTS. Written, graphic and pictorial documents prepared or assembled for describing the design, location and physical characteristics of the elements of a project necessary for obtaining an approval. Construction drawings shall be drawn to an appropriate scale.

CONTAMINATION. An impairment of the quality of the potable water that creates an actual hazard to the public health through poisoning or through the spread of disease by sewage, industrial fluids or waste.

CONTINUOUS WASTE. A drain from two or more similar adjacent fixtures connected to a single trap.

CONTROL, LIMIT. An automatic control responsive to changes in liquid flow or level, pressure, or temperature for limiting the operation of an appliance.

CONTROL, PRIMARY SAFETY. A safety control responsive directly to flame properties that senses the presence or absence of flame and, in event of ignition failure or unintentional flame extinguishment, automatically causes shutdown of mechanical equipment.

CONVECTOR. A system-incorporating heating element in an enclosure in which air enters an opening below the heating element, is heated and leaves the enclosure through an opening located above the heating element.

CORE. The light-weight middle section of the structural insulated panel composed of foam plastic insulation, which provides the link between the two facing shells.

CORROSION RESISTANCE. The ability of a material to withstand deterioration of its surface or its properties when exposed to its environment.

COURT. A space, open and unobstructed to the sky, located at or above grade level on a lot and bounded on three or more sides by walls or a building.
CRIPPLE WALL. A framed wall extending from the top of the foundation to the underside of the floor framing of the first story above grade plane.

CROSS CONNECTION. Any connection between two otherwise separate piping systems whereby there may be a flow from one system to the other.

DALLE GLASS. A decorative composite glazing material made of individual pieces of glass that are embedded in a cast matrix of concrete or epoxy.

DAMPER, VOLUME. A device that will restrict, retard or direct the flow of air in any duct, or the products of combustion of heat-producing equipment, vent connector, vent or chimney.

DEAD END. A branch leading from a DWV system terminating at a developed length of 2 feet (610 mm) or more. Dead ends shall be prohibited except as an approved part of a rough-in for future connection.

DEAD LOADS. The weight of all materials of construction incorporated into the building, including but not limited to walls, floors, roofs, ceilings, stairways, built-in partitions, finishes, cladding, and other similarly incorporated architectural and structural items, and fixed service equipment.

DECORATIVE GLASS. A carved, leaded or Dalle glass or glazing material whose purpose is decorative or artistic, not functional; whose coloring, texture or other design qualities or components cannot be removed without destroying the glazing material; and whose surface, or assembly into which it is incorporated, is divided into segments.

DESIGN PROFESSIONAL. See “Registered design professional.”

DEVELOPED LENGTH. The length of a pipeline measured along the center line of the pipe and fittings.

DIAMETER. Unless specifically stated, the term “diameter” is the nominal diameter as designated by the approved material standard.

DIAPHRAGM. A horizontal or nearly horizontal system acting to transmit lateral forces to the vertical resisting elements. When the term “diaphragm” is used, it includes horizontal bracing systems.
DILUTION AIR. Air that enters a draft hood or draft regulator and mixes with flue gases.

DIRECT-VENT APPLIANCE. A fuel-burning appliance with a sealed combustion system that draws all air for combustion from the outside atmosphere and discharges all flue gases to the outside atmosphere.

DRAFT. The pressure difference existing between the appliance or any component part and the atmosphere, that causes a continuous flow of air and products of combustion through the gas passages of the appliance to the atmosphere.

- **Induced draft.** The pressure difference created by the action of a fan, blower or ejector, that is located between the appliance and the chimney or vent termination.

- **Natural draft.** The pressure difference created by a vent or chimney because of its height, and the temperature difference between the flue gases and the atmosphere.

DRAFT HOOD. A device built into an appliance, or a part of the vent connector from an appliance, which is designed to provide for the ready escape of the flue gases from the appliance in the event of no draft, backdraft or stoppage beyond the draft hood; prevent a backdraft from entering the appliance; and neutralize the effect of stack action of the chimney or gas vent on the operation of the appliance.

DRAFT REGULATOR. A device that functions to maintain a desired draft in the appliance by automatically reducing the draft to the desired value.

DRAFT STOP. A material, device or construction installed to restrict the movement of air within open spaces of concealed areas of building components such as crawl spaces, floor-ceiling assemblies, roof-ceiling assemblies and attics.

DRAIN. Any pipe that carries soil and water-borne wastes in a building drainage system.

DRAINAGE FITTING. A pipe fitting designed to provide connections in the drainage system that have provisions for establishing the desired slope in the system. These fittings are made from a variety of both metals and plastics. The methods of coupling provide for required slope in the system (see “Durham fitting”).
DUCT SYSTEM. A continuous passageway for the transmission of air which, in addition to ducts, includes duct fittings, dampers, plenums, fans and accessory air-handling equipment and appliances.

DURHAM FITTING. A special type of drainage fitting for use in the durham systems installations in which the joints are made with recessed and tapered threaded fittings, as opposed to bell and spigot lead/oakum or solvent/cemented or soldered joints. The tapping is at an angle (not 90 degrees) to provide for proper slope in otherwise rigid connections.

DURHAM SYSTEM. A term used to describe soil or waste systems where all piping is of threaded pipe, tube or other such rigid construction using recessed drainage fittings to correspond to the types of piping.

DWELLING. Any building that exclusively contains one, two, or three dwelling units, each of which may be occupied by a family and no more than five lodgers or boarders, intended, or designed to be built, used, rented, leased, let or hired out to be occupied, or that is occupied for living purposes, physically separated from adjacent structures, and with an independent exit from each dwelling unit.

DWELLING, ONE-, TWO-, OR THREE-FAMILY. See Dwelling.

DWELLING UNIT. A single unit providing complete independent living facilities for one or more persons, including permanent provisions for living, sleeping, eating, cooking and sanitation. The dwelling unit may include any accessory space intended for the exclusive use of the occupants of an individual dwelling unit such as a private garage, greenhouse, etc.

DWV. Abbreviated term for drain, waste and vent piping as used in common plumbing practice.

EFFECTIVE OPENING. The minimum cross-sectional area at the point of water-supply discharge, measured or expressed in terms of diameter of a circle and if the opening is not circular, the diameter of a circle of equivalent cross-sectional area. (This is applicable to air gap.)

ELBOW. A pressure pipe fitting designed to provide an exact change in direction of a pipe run. An elbow provides a sharp turn in the flow path (see “Bend” and “Sweep”).
EMERGENCY ESCAPE AND RESCUE OPENING. An operable exterior window, door or similar device that provides for a means of escape and access for rescue in the event of an emergency.

ENGINE-MOUNTED TANK. A fuel tank furnished by the engine manufacturer or the emergency power system supplier and mounted on the engine, the engine-frame, or under as a subbase.

EQUIPMENT (OR FIXTURE). Any plumbing, heating, electrical, ventilating, air conditioning, refrigerating and fire protection devices and components of systems other than appliances, and elevators, dumb waiters, and other mechanical facilities or installations that are related to building services.

EQUIVALENT LENGTH. For determining friction losses in a piping system, the effect of a particular fitting equal to the friction loss through a straight piping length of the same nominal diameter.

ESCARPMENT. With respect to topographic wind effects, a cliff or steep slope generally separating two levels or gently sloping areas.

ESSENTIALLY NONTOXIC TRANSFER FLUIDS. Fluids having a Gosselin rating of 1, including propylene glycol; mineral oil; polydimethyloxane; hydrochlorofluorocarbon, chlorofluorocarbon and hydrofluorocarbon refrigerants; and FDA-approved boiler water additives for steam boilers.

ESSENTIALLY TOXIC TRANSFER FLUIDS. Soil, water or gray water and fluids having a Gosselin rating of 2 or more including ethylene glycol, hydrocarbon oils, ammonia refrigerants and hydrazine.

EVAPORATIVE COOLER. A device used for reducing air temperature by the process of evaporating water into an airstream.

EXCESS AIR. Air that passes through the combustion chamber and the appliance flue in excess of that which is theoretically required for complete combustion.

EXHAUST HOOD, FULL OPENING. An exhaust hood with an opening at least equal to the diameter of the connecting vent.
EXISTING INSTALLATIONS. Any plumbing system regulated by this code that was legally installed prior to the effective date of this code, or for which an approval has been issued.

EXIT. That portion of a means of egress system between the exit access and the exit discharge or public way. Exit components include exterior exit doors at the level of exit discharge, interior exit stairways, interior exit ramps, exit passageways, exterior exit stairways and exterior exit ramps and horizontal exits.

EXTERIOR INSULATION AND FINISH SYSTEMS (EIFS). EIFS are nonstructural, nonload-bearing exterior wall cladding systems that consist of an insulation board attached either adhesively or mechanically, or both, to the substrate; an integrally reinforced base coat; and a textured protective finish coat.

EXTERIOR INSULATION AND FINISH SYSTEMS (EIFS) WITH DRAINAGE. An EIFS that incorporates a means of drainage applied over a water-resistive barrier.

EXTERIOR WALL. An above-grade wall that defines the exterior boundaries of a building. Includes between-floor spandrels, peripheral edges of floors, roof and basement knee walls, dormer walls, gable end walls, walls enclosing a mansard roof and basement walls with an average below-grade wall area that is less than 50 percent of the total opaque and non-opaque area of that enclosing side.

FACING. The wood structural panel facings that form the two outmost rigid layers of the structural insulated panel.

FACTORY-BUILT CHIMNEY. A listed and labeled chimney composed of factory-made components assembled in the field in accordance with the manufacturer’s instructions and the conditions of the listing.

FENESTRATION. Skylights, roof windows, vertical windows (whether fixed or moveable); opaque doors; glazed doors; glass block; and combination opaque/glazed doors.

FIBER-CEMENT SIDING. A manufactured, fiber-reinforcing product made with an inorganic hydraulic or calcium silicate binder formed by chemical reaction and reinforced with discrete organic or inorganic nonasbestos fibers, or both. Additives which enhance manufacturing or product performance are permitted. Fiber-cement siding products have either smooth or textured faces and are intended for exterior wall and related applications.
FIREBLOCKING. Building materials installed to resist the free passage of flame to other areas of the building through concealed spaces.

FIREPLACE. An assembly consisting of a hearth and fire chamber of noncombustible material and provided with a chimney, for use with solid fuels.

- **Factory-built fireplace.** A listed and labeled fireplace and chimney system composed of factory-made components, and assembled in the field in accordance with manufacturer’s instructions and the conditions of the listing.

- **Masonry chimney.** A field-constructed chimney composed of solid masonry units, bricks, stones or concrete.

- **Masonry fireplace.** A field-constructed fireplace composed of solid masonry units, bricks, stones or concrete.

FIREPLACE STOVE. A free-standing, chimney-connected solid-fuel-burning heater designed to be operated with the fire chamber doors in either the open or closed position.

FIREPLACE THROAT. The opening between the top of the firebox and the smoke chamber.

FIRE-RETARDANT-TREATED WOOD. Pressure-treated lumber and plywood that exhibit reduced surface burning characteristics and resist propagation of fire.

- **Other means during manufacture.** A process where the wood raw material is treated with a fire-retardant formulation while undergoing creation as a finished product.

- **Pressure process.** A process for treating wood using an initial vacuum followed by the introduction of pressure above atmospheric.

FIRE SEPARATION DISTANCE. The distance measured from the building face to the closest interior lot line, to the centerline of a street, an alley or public way, or to an imaginary line between two buildings on the property. The distance shall be measured at a right angle from the face of the wall.

FIXTURE. See “Plumbing fixture.”
FIXTURE (OR EQUIPMENT). Any plumbing, heating, electrical, ventilating, air conditioning, refrigerating and fire protection devices and components of systems other than appliances, and elevators, dumb waiters, and other mechanical facilities or installations that are related to building services.

FIXTURE BRANCH, DRAINAGE. A drain serving two or more fixtures that discharges into another portion of the drainage system.

FIXTURE BRANCH, WATER-SUPPLY. A water-supply pipe between the fixture supply and a main water-distribution pipe or fixture group main.

FIXTURE DRAIN. The drain from the trap of a fixture to the junction of that drain with any other drain pipe.

FIXTURE FITTING.

Supply fitting. A fitting that controls the volume and/or directional flow of water and is either attached to or accessible from a fixture or is used with an open or atmospheric discharge.

Waste fitting. A combination of components that conveys the sanitary waste from the outlet of a fixture to the connection of the sanitary drainage system.

FIXTURE GROUP, MAIN. The main water-distribution pipe (or secondary branch) serving a plumbing fixture grouping such as a bath, kitchen or laundry area to which two or more individual fixture branch pipes are connected.

FIXTURE SUPPLY. The water-supply pipe connecting a fixture or fixture fitting to a fixture branch.

FIXTURE UNIT, DRAINAGE (d.f.u.). A measure of probable discharge into the drainage system by various types of plumbing fixtures, used to size DWV piping systems. The drainage fixture-unit value for a particular fixture depends on its volume rate of drainage discharge, on the time duration of a single drainage operation and on the average time between successive operations.

FIXTURE UNIT, WATER-SUPPLY (w.s.f.u.). A measure of the probable hydraulic demand on the water supply by various types of plumbing fixtures used to size water-piping systems. The water-supply fixture-unit value for a particular fixture depends on its volume rate of supply, on the time duration of a single supply operation and on the average time between successive operations.
FLAME SPREAD. The propagation of flame over a surface.

FLAME SPREAD INDEX. A comparative measure, expressed as a dimensionless number, derived from visual measurements of the spread of flame versus time for a material tested in accordance with ASTM E 84.

FLIGHT. A continuous run of rectangular treads or winders or combination thereof from one landing to another.

FLOOD-LEVEL RIM. The edge of the receptor or fixture from which water overflows.

FLOOR DRAIN. A plumbing fixture for recess in the floor having a floor-level strainer intended for the purpose of the collection and disposal of waste water used in cleaning the floor and for the collection and disposal of accidental spillage to the floor.

FLOOR FURNACE. A self-contained furnace suspended from the floor of the space being heated, taking air for combustion from outside such space, and with means for lighting the appliance from such space.

FLOW PRESSURE. The static pressure reading in the water-supply pipe near the faucet or water outlet while the faucet or water outlet is open and flowing at capacity.

FLUE. See “Vent.”

FLUE, APPLIANCE. The passages within an appliance through which combustion products pass from the combustion chamber to the flue collar.

FLUE COLLAR. The portion of a fuel-burning appliance designed for the attachment of a draft hood, vent connector or venting system.

FLUE GASES. Products of combustion plus excess air in appliance flues or heat exchangers.

FLUSH VALVE. A device located at the bottom of a flush tank that is operated to flush water closets.
FLUSHOMETER TANK. A device integrated within an air accumulator vessel that is designed to discharge a predetermined quantity of water to fixtures for flushing purposes.

FLUSHOMETER VALVE. A flushometer valve is a device that discharges a predetermined quantity of water to fixtures for flushing purposes and is actuated by direct water pressure.

FOAM BACKER BOARD. Foam plastic used in siding applications where the foam plastic is a component of the siding.

FOAM PLASTIC INSULATION. A plastic that is intentionally expanded by the use of a foaming agent to produce a reduced-density plastic containing voids consisting of open or closed cells distributed throughout the plastic for thermal insulating or acoustic purposes and that has a density less than 20 pounds per cubic foot (320 kg/m³) unless it is used as interior trim.

FOAM PLASTIC INTERIOR TRIM. Exposed foam plastic used as picture molds, chair rails, crown moldings, baseboards, handrails, ceiling beams, door trim and window trim and similar decorative or protective materials used in fixed applications.

FUEL-PIPING SYSTEM. All piping, tubing, valves and fittings used to connect fuel utilization equipment to the point of fuel delivery.

FUEL TANK. A tank containing fuel for an engine(s) or appliance.

FULLWAY VALVE. A valve that in the full open position has an opening cross-sectional area equal to a minimum of 85 percent of the cross-sectional area of the connecting pipe.

FURNACE. A completely self-contained heating unit that is designed to supply heated air to spaces remote from or adjacent to the appliance location.

GLAZING AREA. The interior surface area of all glazed fenestration, including the area of sash, curbing or other framing elements, that enclose conditioned space. Includes the area of glazed fenestration assemblies in walls bounding conditioned basements.

GRADE. The finished ground level adjoining the building at all exterior walls.
GRADE FLOOR OPENING. A window or other opening located such that the sill height of the opening is not more than 44 inches (1118 mm) above or below the finished ground level adjacent to the opening.

GRADE, PIPING. See “Slope.”

GRADE PLANE. A reference plane representing the average of the finished ground level adjoining the building at all exterior walls. Where the finished ground level slopes away from the exterior walls, the reference plane shall be established by the lowest points within the area between the building and the lot line or, where the lot line is more than 6 ft (1829 mm) from the building between the structure and a point 6 ft (1829 mm) from the building.

GRIDDED WATER DISTRIBUTION SYSTEM. A water distribution system where every water distribution pipe is interconnected so as to provide two or more paths to each fixture supply pipe.

GROSS AREA OF EXTERIOR WALLS. The normal projection of all exterior walls, including the area of all windows and doors installed therein.

GROUND-SOURCE HEAT PUMP LOOP SYSTEM. Piping buried in horizontal or vertical excavations or placed in a body of water for the purpose of transporting heat transfer liquid to and from a heat pump. Included in this definition are closed loop systems in which the liquid is recirculated and open loop systems in which the liquid is drawn from a well or other source.

GUARD. A building component or a system of building components located near the open sides of elevated walking surfaces that minimizes the possibility of a fall from the walking surface to the lower level.

HABITABLE SPACE. A space in a building for living, sleeping, eating or cooking. Bathrooms, toilet rooms, closets, halls, storage or utility spaces and similar areas are not considered habitable spaces.

HANDRAIL. A horizontal or sloping rail intended for grasping by the hand for guidance or support.

HANGERS. See “Supports.”

HAZARDOUS LOCATION. Any location considered to be a fire hazard for flammable vapors, dust, combustible fibers or other highly combustible substances.
HEAT PUMP. An appliance having heating or heating/cooling capability and that uses refrigerants to extract heat from air, liquid or other sources.

HEATING DEGREE DAYS (HDD). The sum, on an annual basis, of the difference between 65°F (18°C) and the mean temperature for each day as determined from “NOAA Annual Degree Days to Selected Bases Derived from the 1960-1990 Normals” or other weather data sources acceptable to the building official.

HEIGHT, BUILDING. The vertical distance from grade plane to the average height of the highest roof surface.

HEIGHT, STORY. The vertical distance from top to top of two successive tiers of beams or finished floor surfaces; and, for the topmost story, from the top of the floor finish to the top of the ceiling joists or, where there is not a ceiling, to the top of the roof rafters.

HIGH-EFFICACY LAMPS. Compact fluorescent lamps, T-8 or smaller diameter linear fluorescent lamps or lamps with a minimum efficacy of:

1. 60 lumens per watt for lamps over 40 watts.
2. 50 lumens per watt for lamps over 15 watts to 40 watts.
3. 40 lumens per watt for lamps 15 watts or less.

HIGH-TEMPERATURE (H.T.) CHIMNEY. A high temperature chimney complying with the requirements of UL 103. A Type H.T. chimney is identifiable by the markings “Type H.T.” on each chimney pipe section.

HILL. With respect to topographic wind effects, a land surface characterized by strong relief in any horizontal direction.

HISTORIC BUILDING. A residential building meeting one of the following criteria:

1. Listed or preliminarily determined to be eligible for listing in the “National Register of Historic Places”; or
2. Determined by the secretary of the U.S. department of interior as contributing to the historical significance of a registered historic district or a district preliminarily determined to qualify as an historic district; or

3. Designated as historic under a state or local historic preservation program that is approved by the U.S. department of interior.

HORIZONTAL BRANCH, DRAINAGE. A drain pipe extending laterally from a soil or waste stack or building drain, that receives the discharge from one or more fixture drains.

HORIZONTAL PIPE. Any pipe or fitting that makes an angle of less than 45 degrees (0.79 rad) with the horizontal.

HOT WATER. Water at a temperature greater than or equal to 110°F (43°C).

HURRICANE-PRONE REGIONS. Deleted.

HYDROGEN GENERATING APPLIANCE. A self-contained package or factory-matched packages of integrated systems for generating gaseous hydrogen. Hydrogen generating appliances utilize electrolysis, reformation, chemical, or other processes to generate hydrogen.

IGNITION SOURCE. A flame, spark or hot surface capable of igniting flammable vapors or fumes. Such sources include appliance burners, burner ignitions and electrical switching devices.

INDIRECT WASTE PIPE. A waste pipe that discharges into the drainage system through an air gap into a trap, fixture or receptor.

INDIVIDUAL SEWAGE DISPOSAL SYSTEM. A system for disposal of sewage by means of a septic tank or mechanical treatment, designed for use apart from a public sewer to serve a single establishment or building.

INDIVIDUAL VENT. A pipe installed to vent a single-fixture drain that connects with the vent system above or terminates independently outside the building.

INDIVIDUAL WATER SUPPLY. A supply other than an approved public water supply that serves one or more families.
INDUSTRIALIZED UNITS. Industrialized units are prefabricated components comprised of closed construction manufactured at a location remote from the site of intended use and transported to a building site for its subsequent use. Industrialized units are not restricted to housing for one-, two-, and three-family dwellings, but include all prefabricated forms of building elements and assembled construction units, intended for both structural and service equipment purposes in all buildings of all groups. Prefabricated shop assemblies may be shipped in structurally complete units ready for installation in the building structure or in knock-down and packaged form for assembly at the site. Industrialized units must be approved by the board in accordance with section 113 of the OBC. Also see definition of CLOSED CONSTRUCTION.

INSULATING CONCRETE FORM (ICF). A concrete forming system using stay-in-place forms of rigid foam plastic insulation, a hybrid of cement and foam insulation, a hybrid of cement and wood chips, or other insulating material for constructing cast-in-place concrete walls.

INSULATING SHEATHING. An insulating board having a minimum thermal resistance of R-2 of the core material.

JURISDICTION. The municipality, township or county governmental unit with a residential building department certified by the board of building standards.

KITCHEN. Kitchen shall mean an area used, or designated to be used, for the preparation of food.

LABEL. An identification applied on a product by the manufacturer which contains the name of the manufacturer, the function and performance characteristics of the product or material, and the name and identification of an approved agency and that indicates that the representative sample of the product or material has been tested and evaluated by an approved agency. (See also “Manufacturer’s designation” and “Mark.”)

LABELED. Devices, equipment or materials to which have been affixed a label, seal, symbol or other identifying mark of a testing laboratory, inspection agency or other organization concerned with product evaluation that maintains periodic inspection of the production of the above labeled items that attests to compliance with a specific standard.
LIGHT-FRAME CONSTRUCTION. A type of construction whose vertical and horizontal structural elements are primarily formed by a system of repetitive wood or cold-formed steel framing members.

LISTED AND LISTING. Terms referring to equipment that is shown in a list published by an approved testing agency qualified and equipped for experimental testing and maintaining an adequate periodic inspection of current productions and whose listing states that the equipment complies with nationally recognized standards when installed in accordance with the manufacturer’s installation instructions.

LIVE LOADS. Those loads produced by the use and occupancy of the building or other structure and do not include construction or environmental loads such as wind load, snow load, rain load, earthquake load, flood load or dead load.

LIVING SPACE. Space within a dwelling unit utilized for living, sleeping, eating, cooking, bathing, washing and sanitation purposes.

LOAD-BEARING ELEMENT. Any column, girder, beam, joist, truss, rafter, wall, floor or roof sheathing that supports any vertical load in addition to its own weight, and/or any lateral load.

LOT. A portion or parcel of land considered as a unit.

LOT LINE. A line dividing one lot from another, or from a street or any public place.

MACERATING TOILET SYSTEMS. A system comprised of a sump with macerating pump and with connections for a water closet and other plumbing fixtures, that is designed to accept, grind and pump wastes to an approved point of discharge.

MAIN. The principal pipe artery to which branches may be connected.

MAIN SEWER. See “Public sewer.”

MANIFOLD WATER DISTRIBUTION SYSTEMS. A fabricated piping arrangement in which a large supply main is fitted with multiple branches in close proximity in which water is distributed separately to fixtures from each branch.
MANUFACTURED HOME. A dwelling constructed under “24 CFR Part 3280,” “Manufactured Home Construction and Safety Standards”. [Note: Typically, a “Manufactured Home” will be constructed on a steel chassis and have a small (approximately 1-1/2” x 3”) metal plate with inscribed HUD regulation reference numbers attached to the exterior end wall of the unit.]

MANUFACTURER’S DESIGNATION. An identification applied on a product by the manufacturer indicating that a product or material complies with a specified standard or set of rules. (See also “Mark” and “Label.”)

MANUFACTURER’S INSTALLATION INSTRUCTIONS. Printed instructions included with equipment as part of the conditions of listing and labeling.

MARK. An identification applied on a product by the manufacturer indicating the name of the manufacturer and the function of a product or material. (See also “Manufacturer’s designation” and “Label.”)

MASONRY CHIMNEY. A field-constructed chimney composed of solid masonry units, bricks, stones or concrete.

MASONRY HEATER. A masonry heater is a solid fuel burning heating appliance constructed predominantly of concrete or solid masonry having a mass of at least 1,100 pounds (500 kg), excluding the chimney and foundation. It is designed to absorb and store a substantial portion of heat from a fire built in the firebox by routing exhaust gases through internal heat exchange channels in which the flow path downstream of the firebox includes at least one 180-degree (3.14-rad) change in flow direction before entering the chimney and which deliver heat by radiation through the masonry surface of the heater.

MASONRY, SOLID. Masonry consisting of solid masonry units laid contiguously with the joints between the units filled with mortar.

MASONRY UNIT. Brick, tile, stone, glass block or concrete block conforming to the requirements specified in Section 2103 of the Ohio Building Code.

Clay. A building unit larger in size than a brick, composed of burned clay, shale, fire clay or mixtures thereof.
Concrete. A building unit or block larger in size than 12 inches by 4 inches by 4 inches (305 mm by 102 mm by 102 mm) made of cement and suitable aggregates.

Glass. Nonload-bearing masonry composed of glass units bonded by mortar.

Hollow. A masonry unit whose net cross-sectional area in any plane parallel to the loadbearing surface is less than 75 percent of its gross cross-sectional area measured in the same plane.

Solid. A masonry unit whose net cross-sectional area in every plane parallel to the loadbearing surface is 75 percent or more of its cross-sectional area measured in the same plane.

MASS WALL. Masonry or concrete walls having a mass greater than or equal to 30 pounds per square foot (146 kg/m²), solid wood walls having a mass greater than or equal to 20 pounds per square foot (98 kg/m²), and any other walls having a heat capacity greater than or equal to 6 Btu/ft² · °F [266 J/(m² · K)].

MEAN ROOF HEIGHT. The average of the roof eave height and the height to the highest point on the roof surface, except that eave height shall be used for roof angle of less than or equal to 10 degrees (0.18 rad).

MECHANICAL DRAFT SYSTEM. A venting system designed to remove flue or vent gases by mechanical means, that consists of an induced draft portion under nonpositive static pressure or a forced draft portion under positive static pressure.

Forced-draft venting system. A portion of a venting system using a fan or other mechanical means to cause the removal of flue or vent gases under positive static pressure.

Induced draft venting system. A portion of a venting system using a fan or other mechanical means to cause the removal of flue or vent gases under nonpositive static vent pressure.

Power venting system. A portion of a venting system using a fan or other mechanical means to cause the removal of flue or vent gases under positive static vent pressure.

MECHANICAL EXHAUST SYSTEM. A system for removing air from a room or space by mechanical means.
MECHANICAL SYSTEM. A system specifically addressed and regulated in this code and composed of components, devices, appliances and equipment.

METAL ROOF PANEL. An interlocking metal sheet having a minimum installed weather exposure of at least 3 square feet (0.28 m2) per sheet.

METAL ROOF SHINGLE. An interlocking metal sheet having an installed weather exposure less than 3 square feet (0.28 m2) per sheet.

MEZZANINE, LOFT. An intermediate level or levels between the floor and ceiling of any story with an aggregate floor area of not more than one-third of the area of the room or space in which the level or levels are located.

MINOR REPAIR. See “Repair, Minor”.

MODIFIED BITUMEN ROOF COVERING. One or more layers of polymer modified asphalt sheets. The sheet materials shall be fully adhered or mechanically attached to the substrate or held in place with an approved ballast layer.

MULTIPLE STATION SMOKE ALARM. Two or more single station alarm devices that are capable of interconnection such that actuation of one causes all integral or separate audible alarms to operate.

NATURAL DRAFT SYSTEM. A venting system designed to remove flue or vent gases under nonpositive static vent pressure entirely by natural draft.

NATURALLY DURABLE WOOD. The heartwood of the following species with the exception that an occasional piece with corner sapwood is permitted if 90 percent or more of the width of each side on which it occurs is heartwood.

 Decay resistant. Redwood, cedar, black locust and black walnut.

 Termite resistant. Alaska yellow cedar, redwood, Eastern red cedar and Western red cedar including all sapwood of Western red cedar.

NONCOMBUSTIBLE MATERIAL. Materials that pass the test procedure for defining noncombustibility of elementary materials set forth in ASTM E 136.

NONCONDITIONED SPACE. A space that is not a conditioned space by insulated walls, floors or ceilings.
NOSING. The leading edge of treads of stairs and of landings at the top of stairway flights.

OCCUPIED SPACE. The total area of all buildings or structures on any lot or parcel of ground projected on a horizontal plane, excluding permitted projections as allowed by this code.

OFFSET. A combination of fittings that makes two changes in direction bringing one section of the pipe out of line but into a line parallel with the other section.

OWNER. Any person, agent, firm or corporation having a legal or equitable interest in the property.

PANEL THICKNESS. Thickness of core plus two layers of structural wood panel facings.

PELLET FUEL-BURNING APPLIANCE. A closed combustion, vented appliance equipped with a fuel feed mechanism for burning processed pellets of solid fuel of a specified size and composition.

PELLET VENT. A vent listed and labeled for use with a listed pellet fuel-burning appliance.

PERMIT. An approval indicated in an official document or certificate issued by the residential building official that authorizes performance of a specified activity. Also see “APPROVED”.

PERSON. An individual, heirs, executors, administrators or assigns, and also includes a firm, partnership or corporation, its or their successors or assigns, or the agent of any of the aforesaid.

PITCH. See “Slope.”

PLATFORM CONSTRUCTION. A method of construction by which floor framing bears on load bearing walls that are not continuous through the story levels or floor framing.

PLENUM. A chamber that forms part of an air-circulation system other than the occupied space being conditioned.
PLUMBING. The practice, materials and fixtures utilized in the installation, maintenance, extension and alteration of all piping, fixtures, appliances and appurtenances within or adjacent to any structure, in connection with sanitary drainage or storm drainage facilities; venting systems; and public or private water supply systems.

PLUMBING APPLIANCE. An energized household appliance with plumbing connections, such as a dishwasher, food-waste grinder, clothes washer or water heater.

PLUMBING APPURTENANCE. A device or assembly that is an adjunct to the basic plumbing system and demands no additional water supply nor adds any discharge load to the system. It is presumed that it performs some useful function in the operation, maintenance, servicing, economy or safety of the plumbing system. Examples include filters, relief valves and aerators.

PLUMBING FIXTURE. A receptor or device that requires both a water-supply connection and a discharge to the drainage system, such as water closets, lavatories, bathtubs and sinks. Plumbing appliances as a special class of fixture are further defined.

PLUMBING SYSTEM. Includes the water supply and distribution pipes, plumbing fixtures, supports and appurtenances; soil, waste and vent pipes; sanitary drains and building sewers to an approved point of disposal.

POLLUTION. An impairment of the quality of the potable water to a degree that does not create a hazard to the public health but that does adversely and unreasonably affect the aesthetic qualities of such potable water for domestic use.

PORTABLE-FUEL-CELL APPLIANCE. A fuel cell generator of electricity, which is not fixed in place. A portable-fuel-cell appliance utilizes a cord and plug connection to a grid-isolated load and has an integral fuel supply.

POSITIVE ROOF DRAINAGE. The drainage condition in which consideration has been made for all loading deflections of the roof deck, and additional slope has been provided to ensure drainage of the roof within 48 hours of precipitation.

POTABLE WATER. Water free from impurities present in amounts sufficient to cause disease or harmful physiological effects and conforming in bacteriological and chemical quality to the requirements of the public health authority having jurisdiction.
PRECAST CONCRETE. A structural concrete element cast elsewhere than its final position in the structure.

PRECAST CONCRETE FOUNDATION WALLS. Preengineered, precast concrete wall panels that are designed to withstand specified stresses and used to build below-grade foundations.

PRESSURE-RELIEF VALVE. A pressure-actuated valve held closed by a spring or other means and designed to automatically relieve pressure at the pressure at which it is set.

PUBLIC SEWER. A common sewer directly controlled by public authority.

PUBLIC WATER MAIN. A water-supply pipe for public use controlled by public authority.

PUBLIC WAY. Any street, alley or other parcel of land open to the outside air leading to a public street, which has been deeded, dedicated or otherwise permanently appropriated to the public for public use and that has a clear width and height of not less than 10 feet (3048 mm).

PURGE. To clear of air, gas or other foreign substances.

QUICK-CLOSING VALVE. A valve or faucet that closes automatically when released manually or controlled by mechanical means for fast-action closing.

R-VALUE, THERMAL RESISTANCE. The inverse of the time rate of heat flow through a building thermal envelope element from one of its bounding surfaces to the other for a unit temperature difference between the two surfaces, under steady state conditions, per unit area (h · ft · °F/Btu).

RAMP. A walking surface that has a running slope steeper than 1 unit vertical in 20 units horizontal (5-percent slope).

RECEPTOR. A fixture or device that receives the discharge from indirect waste pipes.

REFRIGERANT. A substance used to produce refrigeration by its expansion or evaporation.
REFRIGERANT COMPRESSOR. A specific machine, with or without accessories, for compressing a given refrigerant vapor.

REFRIGERATING SYSTEM. A combination of interconnected parts forming a closed circuit in which refrigerant is circulated for the purpose of extracting, then rejecting, heat. A direct refrigerating system is one in which the evaporator or condenser of the refrigerating system is in direct contact with the air or other substances to be cooled or heated. An indirect refrigerating system is one in which a secondary coolant cooled or heated by the refrigerating system is circulated to the air or other substance to be cooled or heated.

REGISTERED DESIGN PROFESSIONAL. Any architect holding a certificate issued under sections 4703.10 and 4703.36 of the Revised Code or any engineer holding a certificate issued under section 4733.14 of the Revised Code.

RELIEF VALVE, VACUUM. A valve that automatically opens and closes a vent for relieving a vacuum within the hot water supply system, depending on whether the vacuum is above or below a predetermined value.

REPAIR. The reconstruction or renewal of any part of an existing building for the purpose of its maintenance.

REPAIR, MINOR. The reconstruction or renewal of any part of an existing building for the purpose of its maintenance when the work has limited impact on access, safety or health. Minor repairs do not include the cutting away of any wall, partition or portions of walls, the removal or cutting of any structural beam or load bearing support, or the removal or change of any required element of accessibility, means of egress, or rearrangement of parts of a structure affecting the egress requirements. Minor repairs do not include addition to, alteration of, replacement or relocation of any standpipe, water supply, sewer, drainage, drain leader, gas, soil, waste, vent or similar piping, electric wiring or mechanical or fire protection equipment.

REROOFING. The process of recovering or replacing an existing roof covering. See “Roof recover.”

RESIDENTIAL BUILDING. A one-family, two-family, or three-family dwelling house, and any accessory structure incidental to that dwelling house. “Residential building” includes a one-family, two-family, or three-family dwelling house that is used as a model to promote the sale of a similar dwelling house. “Residential building” does not include an industrialized unit as defined
by division (C)(3) of Section 3781.06 of the Revised Code, a manufactured home as defined by division (C)(4) of Section 3781.06 of the Revised Code, or a mobile home as defined by division (O) of Section 4501.01 of the Revised Code.

RESIDENTIAL BUILDING OFFICIAL. An individual who has received and maintains a certification of “Residential Building Official” in accordance with rules of the board of building standards.

RETURN AIR. Air removed from an approved conditioned space or location and recirculated or exhausted.

RIDGE. With respect to topographic wind effects, an elongated crest of a hill characterized by strong relief in two directions.

RISER. A water pipe that extends vertically one full story or more to convey water to branches or to a group of fixtures.

ROOF ASSEMBLY. A system designed to provide weather protection and resistance to design loads. The system consists of a roof covering and roof deck or a single component serving as both the roof covering and the roof deck. A roof assembly includes the roof deck, vapor retarder, substrate or thermal barrier, insulation, vapor retarder, and roof covering.

ROOF COVERING. The covering applied to the roof deck for weather resistance, fire classification or appearance.

ROOF COVERING SYSTEM. See “Roof assembly.”

ROOF DECK. The flat or sloped surface not including its supporting members or vertical supports.

ROOF RECOVER. The process of installing an additional roof covering over a prepared existing roof covering without removing the existing roof covering.

ROOF REPAIR. Reconstruction or renewal of any part of an existing roof for the purposes of its maintenance.

ROOFTOP STRUCTURE. An enclosed structure on or above the roof of any part of a building.
ROOM HEATER. A freestanding heating appliance installed in the space being heated and not connected to ducts.

ROUGH-IN. The installation of all parts of the plumbing system that must be completed prior to the installation of fixtures. This includes DWV, water supply and built-in fixture supports.

RUNNING BOND. The placement of masonry units such that head joints in successive courses are horizontally offset at least one-quarter the unit length.

SAFE. As applied to a building, means free from danger or hazard to the life, safety, health or welfare of persons occupying or frequenting it, or of the public, and from danger of settlement, movement, disintegration, or collapse, whether such danger arises from the method or materials of its construction or from equipment installed therein, for the purpose of lighting, heating, the transmission or utilization of electric current, or from its location or otherwise.

SANITARY. As applied to a building, means free from danger or hazard to the health of persons occupying or frequenting it or to that of the public, if such danger arises from the method or materials of its construction or from any equipment installed therein for the purpose of lighting, heating, ventilating, or plumbing.

SANITARY SEWER. A sewer that carries sewage and excludes storm, surface and groundwater.

SCUPPER. An opening in a wall or parapet that allows water to drain from a roof.

SEISMIC DESIGN CATEGORY (SDC). A classification assigned to a structure based on its occupancy category and the severity of the design earthquake ground motion at the site.

SEPTIC TANK. A water-tight receptor that receives the discharge of a building sanitary drainage system and is constructed so as to separate solids from the liquid, digest organic matter through a period of detention, and allow the liquids to discharge into the soil outside of the tank through a system of open joint or perforated piping or a seepage pit.

SERIOUS HAZARD. A hazard of considerable consequence to safety or health through the design, location, construction, or equipment of a building, or the
condition thereof, which hazard has been established through experience to be of certain or probable consequence, or which can be determined to be, or which is obviously such a hazard.

SEWAGE. Any liquid waste containing animal matter, vegetable matter or other impurity in suspension or solution.

SEWAGE PUMP. A permanently installed mechanical device for removing sewage or liquid waste from a sump.

SHALL. The term, when used in the code, is construed as mandatory.

SHEAR WALL. A general term for walls that are designed and constructed to resist racking from seismic and wind by use of masonry, concrete, cold-formed steel or wood framing in accordance with Chapter 6 of this code and the applicable limitations in Section 301.2 of this code.

SIDE VENT. A vent connecting to the drain pipe through a fitting at an angle less than 45 degrees (0.79 rad) to the horizontal.

SINGLE PLY MEMBRANE. A roofing membrane that is field applied using one layer of membrane material (either homogeneous or composite) rather than multiple layers.

SINGLE STATION SMOKE ALARM. An assembly incorporating the detector, control equipment and alarm sounding device in one unit that is operated from a power supply either in the unit or obtained at the point of installation.

SKYLIGHT AND SLOPED GLAZING. See Section 308.6.1.

SKYLIGHT, UNIT. See Section 308.6.1.

SLIP JOINT. A mechanical-type joint used primarily on fixture traps. The joint tightness is obtained by compressing a friction-type washer such as rubber, nylon, neoprene, lead or special packing material against the pipe by the tightening of a (slip) nut.

SLOPE. The fall (pitch) of a line of pipe in reference to a horizontal plane. In drainage, the slope is expressed as the fall in units vertical per units horizontal (percent) for a length of pipe.
SMOKE-DEVELOPED INDEX. A comparative measure, expressed as a dimensionless number, derived from measurements of smoke obscuration versus time for a material tested in accordance with ASTM E 84.

SOIL STACK OR PIPE. A pipe that conveys sewage containing fecal material.

SOLAR HEAT GAIN COEFFICIENT (SHGC). The solar heat gain through a fenestration or glazing assembly relative to the incident solar radiation (Btu/h· ft²· °F).

SOLID MASONRY. Load-bearing or nonload-bearing construction using masonry units where the net cross-sectional area of each unit in any plane parallel to the bearing surface is not less than 75 percent of its gross cross-sectional area. Solid masonry units shall conform to ASTM C 55, C 62, C 73, C 145 or C 216.

SPLINE. A strip of wood structural panel cut from the same material used for the panel facings, used to connect two structural insulated panels. The strip (spline) fits into a groove cut into the vertical edges of the two structural insulated panels to be joined. Splines are used behind each facing of the structural insulated panels being connected as shown in Figure 613.8.

STACK. Any main vertical DWV line, including offsets, that extends one or more stories as directly as possible to its vent terminal.

STACK BOND. The placement of masonry units in a bond pattern is such that head joints in successive courses are vertically aligned. For the purpose of this code, requirements for stack bond shall apply to all masonry laid in other than running bond.

STACK VENT. The extension of soil or waste stack above the highest horizontal drain connected.

STACK VENTING. A method of venting a fixture or fixtures through the soil or waste stack without individual fixture vents.

STAIR. A change in elevation, consisting of one or more risers.

STAIRWAY. One or more flights of stairs, either interior or exterior, with the necessary landings and platforms connecting them to form a continuous and uninterrupted passage from one level to another within or attached to a building, porch or deck.
STANDARD TRUSS. Any construction that does not permit the roof/ceiling insulation to achieve the required R-value over the exterior walls.

STATIONARY FUEL CELL POWER PLANT. A self-contained package or factory-matched packages which constitute an automatically-operated assembly of integrated systems for generating useful electrical energy and recoverable thermal energy that is permanently connected and fixed in place.

STORM SEWER, DRAIN. A pipe used for conveying rainwater, surface water, subsurface water and similar liquid waste.

STORY. That portion of a building included between the upper surface of a floor and the upper surface of the floor or roof next above.

STORY ABOVE GRADE PLANE. Any story having its finished floor surface entirely above grade plane, except that a basement shall be considered as a story above grade plane where the finished surface of the floor above the basement meets any one of the following:

1. Is more than 6 feet (1829 mm) above grade plane.

2. Is more than 6 feet (1829 mm) above the finished ground level for more than 50 percent of the total building perimeter.

3. Is more than 12 feet (3658 mm) above the finished ground level at any point.

STRUCTURAL INSULATED PANEL (SIP). A structural sandwich panel that consists of a light-weight foam plastic core securely laminated between two thin, rigid wood structural panel facings.

STRUCTURE. That which is built or constructed.

SUBSOIL DRAIN. A drain that collects subsurface water or seepage water and conveys such water to a place of disposal.

SUMP. A tank or pit that receives sewage or waste, located below the normal grade of the gravity system and that must be emptied by mechanical means.
SUMP PUMP. A pump installed to empty a sump. These pumps are used for removing storm water only. The pump is selected for the specific head and volume of the load and is usually operated by level controllers.

SUNROOM. A one-story structure attached to a dwelling with a glazing area in excess of 40 percent of the gross area of the structure’s exterior walls and roof.

SUPPLY AIR. Air delivered to a conditioned space through ducts or plenums from the heat exchanger of a heating, cooling or ventilating system.

SUPPORTS. Devices for supporting, hanging and securing pipes, fixtures and equipment.

SWEEP. A drainage fitting designed to provide a change in direction of a drain pipe of less than the angle specified by the amount necessary to establish the desired slope of the line. Sweeps provide a longer turning radius than bends and a less turbulent flow pattern (see “Bend” and “Elbow”).

TEMPERATURE-AND-PRESSURE-RELIEF (T AND P) VALVE. A combination relief valve designed to function as both a temperature-relief and pressure-relief valve.

TEMPERATURE-RELIEF VALVE. A temperature-actuated valve designed to discharge automatically at the temperature at which it is set.

TERMITE-RESISTANT MATERIAL. Pressure-preservative treated wood in accordance with the AWPA standards in Section 318.1, naturally durable termite-resistant wood, steel, concrete, masonry or other approved material.

THERMAL ISOLATION. Physical and space conditioning separation from conditioned space(s) consisting of existing or new walls, doors and/or windows. The conditioned space(s) shall be controlled as separate zones for heating and cooling or conditioned by separate equipment.

THERMAL RESISTANCE, R-VALUE. The inverse of the time rate of heat flow through a body from one of its bounding surfaces to the other for a unit temperature difference between the two surfaces, under steady state conditions, per unit area ($h \cdot \text{ft}^2 \cdot \text{°F}/\text{Btu}$).

THERMAL TRANSMITTANCE, U-FACTOR. The coefficient of heat transmission (air to air) through a building envelope component or assembly,
equal to the time rate of heat flow per unit area and unit temperature difference between the warm side and cold side air films (Btu/h· ft²· °F).

TOWNHOUSE. A single-family dwelling unit constructed in a group of three or more attached units in which each unit extends from foundation to roof.

TRAP. A fitting, either separate or built into a fixture, that provides a liquid seal to prevent the emission of sewer gases without materially affecting the flow of sewage or waste water through it.

TRAP ARM. That portion of a fixture drain between a trap weir and the vent fitting.

TRAP PRIMER. A device or system of piping to maintain a water seal in a trap, typically installed where infrequent use of the trap would result in evaporation of the trap seal, such as floor drains.

TRAP SEAL. The trap seal is the maximum vertical depth of liquid that a trap will retain, measured between the crown weir and the top of the dip of the trap.

TRIM. Picture molds, chair rails, baseboards, handrails, door and window frames, and similar decorative or protective materials used in fixed applications.

TRUSS DESIGN DRAWING. The graphic depiction of an individual truss, which describes the design and physical characteristics of the truss.

TYPE L VENT. A listed and labeled vent conforming to UL 641 for venting oil-burning appliances listed for use with Type L vents or with gas appliances listed for use with Type B vents.

U-FACTOR, THERMAL TRANSMITTANCE. The coefficient of heat transmission (air to air) through a building envelope component or assembly, equal to the time rate of heat flow per unit area and unit temperature difference between the warm side and cold side air films (Btu/h· ft²· °F).

UNDERLAYMENT. One or more layers of felt, sheathing paper, nonbituminous saturated felt, or other approved material over which a roof covering, with a slope of 2 to 12 (17-percent slope) or greater, is applied.

VACUUM BREAKERS. A device which prevents backsiphonage of water by admitting atmospheric pressure through ports to the discharge side of the device.
VAPOR PERMEABLE MEMBRANE. A material or covering having a permeance rating of 5 perms \((2.9 \times 10^{-10} \text{ kg/Pa· s· m}^2) \) or greater, when tested in accordance with the desiccant method using Procedure A of ASTM E 96. A vapor permeable material permits the passage of moisture vapor.

VAPOR RETARDER CLASS. A measure of the ability of a material or assembly to limit the amount of moisture that passes through that material or assembly. Vapor retarder class shall be defined using the desiccant method with Procedure A of ASTM E 96 as follows:

- **Class I**: 0.1 perm or less
- **Class II**: \(0.1 < \text{perm} \leq 1.0\) perm
- **Class III**: \(1.0 < \text{perm} \leq 10\) perm

VEHICULAR ACCESS DOOR. A door that is used primarily for vehicular traffic at entrances of buildings such as garages and parking lots, and that is not generally used for pedestrian traffic.

VENT. A passageway for conveying flue gases from fuel-fired appliances, or their vent connectors, to the outside atmosphere.

VENT COLLAR. See “Flue collar.”

VENT CONNECTOR. That portion of a venting system which connects the flue collar or draft hood of an appliance to a vent.

VENT DAMPER DEVICE, AUTOMATIC. A device intended for installation in the venting system, in the outlet of an individual, automatically operated fuel burning appliance and that is designed to open the venting system automatically when the appliance is in operation and to close off the venting system automatically when the appliance is in a standby or shutdown condition.

VENT GASES. Products of combustion from fuel-burning appliances, plus excess air and dilution air, in the venting system above the draft hood or draft regulator.

VENT STACK. A vertical vent pipe installed to provide circulation of air to and from the drainage system and which extends through one or more stories.
VENT SYSTEM. Piping installed to equalize pneumatic pressure in a drainage system to prevent trap seal loss or blow-back due to siphonage or back pressure.

VENTILATION. The natural or mechanical process of supplying conditioned or unconditioned air to, or removing such air from, any space.

VENTING. Removal of combustion products to the outdoors.

VENTING SYSTEM. A continuous open passageway from the flue collar of an appliance to the outside atmosphere for the purpose of removing flue or vent gases. A venting system is usually composed of a vent or a chimney and vent connector, if used, assembled to form the open passageway.

VERTICAL PIPE. Any pipe or fitting that makes an angle of 45 degrees (0.79 rad) or more with the horizontal.

Vinyl Siding. A shaped material, made principally from rigid polyvinyl chloride (PVC), that is used to cover exterior walls of buildings.

Wall, Retaining. A wall not laterally supported at the top, that resists lateral soil load and other imposed loads.

Walls. Walls shall be defined as follows:

Load-bearing wall is a wall supporting any vertical load in addition to its own weight.

Nonbearing wall is a wall which does not support vertical loads other than its own weight.

Waste. Liquid-borne waste that is free of fecal matter.

Waste Pipe or Stack. Piping that conveys only liquid sewage not containing fecal material.

WATER-DISTRIBUTION SYSTEM. Piping which conveys water from the service to the plumbing fixtures, appliances, appurtenances, equipment, devices or other systems served, including fittings and control valves.
WATER HEATER. Any heating appliance or equipment that heats potable water and supplies such water to the potable hot water distribution system.

WATER MAIN. A water-supply pipe for public use.

WATER OUTLET. A valved discharge opening, including a hose bibb, through which water is removed from the potable water system supplying water to a plumbing fixture or plumbing appliance that requires either an air gap or backflow prevention device for protection of the supply system.

WATER-RESISTIVE BARRIER. A material behind an exterior wall covering that is intended to resist liquid water that has penetrated behind the exterior covering from further intruding into the exterior wall assembly.

WATER-SERVICE PIPE. The outside pipe from the water main or other source of potable water supply to the water-distributing system inside the building, terminating at the service valve.

WATER-Supply SYSTEM. The water-service pipe, the water-distributing pipes and the necessary connecting pipes, fittings, control valves and all appurtenances in or adjacent to the building or premises.

WEATHER-RESISTIVE. Protection of exterior wall and roof assemblies of a building providing resistance to wind, precipitation and other weather conditions.

WET VENT. A vent that also receives the discharge of wastes from other fixtures.

WIND-BORNE DEBRIS REGION. Deleted.

WINNER. A tread with nonparallel edges.

WOOD/PLASTIC COMPOSITE. A composite material made primarily from wood or cellulose-based materials and plastic.

WOOD STRUCTURAL PANEL. A panel manufactured from veneers; or wood strands or wafers; bonded together with waterproof synthetic resins or other suitable bonding systems. Examples of wood structural panels are plywood, OSB or composite panels.
YARD. An open space, other than a court, unobstructed from the ground to the sky, except where specifically provided by this code, on the lot on which a building is situated.
Effective: 01/01/2016

Five Year Review (FYR) Dates: 01/01/2018

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.01, 3781.06, 3781.10, 3781.11, 3791.04, 4740.14
Prior Effective Dates: 5/27/06, 7/1/07, 1/1/13, 7/1/14
4101:8-3-01 Building planning.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:8-44-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:8-1-01 of the Administrative Code.]

SECTION 301
DESIGN CRITERIA

301.1 Application. Buildings and structures, and all parts thereof, shall be constructed to safely support all loads, including dead loads, live loads, roof loads, flood loads, snow loads, wind loads and seismic loads as prescribed by this code. The construction of buildings and structures in accordance with the provisions of this code shall result in a system that provides a complete load path that meets all requirements for the transfer of all loads from their point of origin through the load-resisting elements to the foundation. Buildings and structures constructed as prescribed by this code are deemed to comply with the requirements of this section.

301.1.1 Alternative provisions. As an alternative to the requirements in Section 301.1 the following standards are permitted subject to the limitations of this code and the limitations therein. Where engineered design is used in conjunction with these standards, the design shall comply with the Ohio Building Code.

301.1.2 Construction systems. The requirements of this code are based on platform and balloon-frame construction for light-frame buildings. The requirements for concrete and masonry buildings are based on a balloon
framing system. Other systems must have equivalent detailing to ensure force transfer, continuity and compatible deformations.

301.1.3 Engineered design. When a building of otherwise conventional construction contains structural elements exceeding the limits of Section 301 or otherwise not conforming to this code, these elements shall be designed in accordance with accepted engineering practice. The extent of such design need only demonstrate compliance of nonconventional elements with other applicable provisions and shall be compatible with the performance of the conventional framed system. Engineered design in accordance with the Ohio Building Code is permitted for all buildings and structures, and parts thereof, included in the scope of this code.

301.2 Climatic and geographic design criteria. Buildings shall be constructed in accordance with the provisions of this code as limited by the provisions of this section. Additional criteria shall be established by the local jurisdiction and set forth in Table 301.2(1).

301.2.1 Wind limitations. Buildings and portions thereof shall be limited by wind speed, as defined in Table 301.2(1) and construction methods in accordance with this code. Basic wind speeds shall be determined from Figure 301.2(4). Where different construction methods and structural materials are used for various portions of a building, the applicable requirements of this section for each portion shall apply. Where loads for wall coverings, curtain walls, roof coverings, exterior windows, skylights, garage doors and exterior doors are not otherwise specified, the loads listed in Table 301.2(2) adjusted for height and exposure using Table 301.2(3) shall be used to determine design load performance requirements for wall coverings, curtain walls, roof coverings, exterior windows, skylights, garage doors and exterior doors. Asphalt shingles shall be designed for wind speeds in accordance with Section 905.2.6.

301.2.1.1 Design criteria. In regions where the basic wind speeds from Figure 301.2(4) equal or exceed 100 miles per hour (45 m/s) in hurricane-prone regions, or 110 miles per hour (49 m/s) elsewhere, the design of buildings shall be in accordance with one of the following methods. The elements of design not addressed by those documents in Items 1 through 4 shall be in accordance with this code.
1. American Forest and Paper Association (AF&PA) Wood Frame Construction Manual for One-and Two-Family Dwellings (WFCM); or

2. International Code Council (ICC) Standard for Residential Construction in High Wind Regions (ICC-600); or

3. Minimum Design Loads for Buildings and Other Structures (ASCE-7); or

4. American Iron and Steel Institute (AISI), Standard for Cold-Formed Steel Framing—Prescriptive Method For One-and Two-Family Dwellings (AISI S230).

5. Concrete construction shall be designed in accordance with the provisions of this code.

6. Structural insulated panel (SIP) walls shall be designed in accordance with the provisions of this code.

TABLE 301.2(1)

<table>
<thead>
<tr>
<th>GROUND SNOW LOAD</th>
<th>WIND DESIGN</th>
<th>SEISMIC DESIGN CATEGORY</th>
<th>SUBJECT TO DAMAGE FROM</th>
<th>WINTER DESIGN TEMP</th>
<th>ICE BARRIER UNDERLAYMENT REQUIRED</th>
<th>FLOOD HAZARDS</th>
<th>AIR FREEZING INDEX</th>
<th>MEAN ANNUAL TEMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refer to Figure 301.2(5)</td>
<td>90</td>
<td>Moderate to Heavy</td>
<td>Frost line depth</td>
<td>Severe</td>
<td>Yes</td>
<td>Refer to Figure 403.3(2) or Table 403.3(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 pound per square foot = 0.0479 kPa, 1 mile per hour = 0.447 m/s.

a. Weathering may require a higher strength concrete or grade of masonry than necessary to satisfy the structural requirements of this code. The grade of masonry units shall be determined from ASTM C 34, C 55, C 62, C 73, C 90, C 129, C 145, C 216 or C 652.

b. The jurisdiction shall fill in the frost line depth column with the minimum depth of footing below finish grade.

c. Indicates the need for protection depending on whether there has been a history of local subterranean termite damage.

d. Wind exposure category shall be determined on a site-specific basis in accordance with Section 301.2.1.4.

e. The outdoor design dry-bulb temperature shall be determined from the following table:

### HEATING DEGREE DAYS (Yearly Total)	DESIGN TEMPERATURES	DEGREES NORTH LATITUDE
Akron-Canton | 6,037 | 6° | 41°00’
Cincinnati | 4,410 | 6° | 39°10’
Cleveland | 6,351 | 5° | 41°20’
Columbus | 5,660 | 5° | 41°00’
Dayton | 5,622 | 4° | 39°50’
Mansfield | 6,403 | 5° | 41°50’
Sandusky | 5,796 | 6° | 41°50’
from the tabulated temperatures shall be permitted to reflect local climates or local weather experience as documented by the building official.

f. The seismic design category shall be determined from Section 301.2.2.1.

g. The jurisdiction shall fill in this part of the table with (a) the date of the jurisdiction’s entry into the National Flood Insurance Program (date of adoption of the first code or ordinance for management of flood hazard areas), (b) the date(s) of the Flood Insurance Study and (c) the panel numbers and dates of all currently effective FIRMs and FBFMs or other flood hazard map adopted by the authority having jurisdiction, as amended.

h. In accordance with Sections 905.2.7.1, 905.4.3.1, 905.5.3.1, 905.6.3.1, 905.7.3.1 and 905.8.3.1.

i. The air freezing index shall also be permitted to be determined from the 100-year (99%) value on the National Climatic Data Center data table “Air Freezing Index- USA Method (Base 32°C)” at www.ncdc.noaa.gov/fpsf.html.

j. The jurisdiction shall fill in this part of the table with the mean annual temperature from the National Climatic Data Center data table “Air Freezing Index-USA Method (Base 32°F)” at www.ncdc.noaa.gov/fpsf.html.

k. In accordance with Section 301.2.1 where there is local historical data documenting structural damage to buildings due to topographic wind speed-up effects, the jurisdiction shall fill in this part of the table with “YES.” Otherwise, the jurisdiction shall indicate “NO” in this part of the table.
Roof > 30 to 45 degrees

1 10 11.9 -13.0 13.3 -14.6 16.5 -18.0 18.2 -19.8 19.9 -21.8 23.7 -25.9 25.7 -28.1 27.8 -30.4 32.3 -35.3 34.6 -37.8 37.0 -40.5 47.6 -52.0
1 20 11.6 -14.5 13.0 -16.3 16.0 -20.1 17.6 -22.2 19.4 -24.3 23.0 -29.0 25.0 -31.4 27.0 -34.0 31.4 -37.8 34.6 -42.5 44.5 -54.6
1 50 11.1 -13.7 12.5 -15.3 15.4 -18.9 17.0 -20.8 18.6 -22.9 22.2 -27.2 24.1 -29.5 26.0 -32.0 30.2 -37.1 32.4 -39.8 34.6 -42.5 44.5 -54.6
1 100 10.8 -13.0 12.1 -14.6 14.9 -18.0 16.5 -19.8 18.1 -21.8 21.5 -25.9 23.3 -28.1 25.2 -30.4 29.3 -35.3 31.4 -37.8 33.6 -40.5 43.2 -52.0

2 10 11.9 -15.2 13.3 -17.0 16.5 -21.0 18.2 -23.2 19.9 -25.5 23.7 -30.3 25.7 -32.9 27.8 -35.6 32.3 -41.2 34.6 -44.2 37.0 -47.3 47.6 -60.8
2 20 11.6 -14.5 13.0 -16.3 16.0 -20.1 17.6 -22.2 19.4 -24.3 23.0 -29.0 25.0 -31.4 27.0 -34.0 31.4 -39.4 33.7 -42.3 36.0 -45.3 46.3 -58.1
2 50 11.1 -13.7 12.5 -15.3 15.4 -18.9 17.0 -20.8 18.6 -22.9 22.2 -27.2 24.1 -29.5 26.0 -32.0 30.2 -37.1 32.4 -39.8 34.6 -42.5 44.5 -54.5
2 100 10.8 -13.0 12.1 -14.6 14.9 -18.0 16.5 -19.8 18.1 -21.8 21.5 -25.9 23.3 -28.1 25.2 -30.4 29.3 -35.3 31.4 -37.8 33.6 -40.5 43.2 -52.0

3 10 11.9 -15.2 13.3 -17.0 16.5 -21.0 18.2 -23.2 19.9 -25.5 23.7 -30.3 25.7 -32.9 27.8 -35.6 32.3 -41.2 34.6 -44.2 37.0 -47.3 47.6 -60.8
3 20 11.6 -14.5 13.0 -16.3 16.0 -20.1 17.6 -22.2 19.4 -24.3 23.0 -29.0 25.0 -31.4 27.0 -34.0 31.4 -39.4 33.7 -42.3 36.0 -45.3 46.3 -58.1
3 50 11.1 -13.7 12.5 -15.3 15.4 -18.9 17.0 -20.8 18.6 -22.9 22.2 -27.2 24.1 -29.5 26.0 -32.0 30.2 -37.1 32.4 -39.8 34.6 -42.5 44.5 -54.5
3 100 10.8 -13.0 12.1 -14.6 14.9 -18.0 16.5 -19.8 18.1 -21.8 21.5 -25.9 23.3 -28.1 25.2 -30.4 29.3 -35.3 31.4 -37.8 33.6 -40.5 43.2 -52.0

4 10 13.0 -14.1 14.6 -15.8 18.0 -19.5 19.8 -21.5 21.8 -23.6 25.9 -28.1 28.1 -30.5 30.4 -33.0 35.3 -38.2 37.8 -41.0 40.5 -43.9 52.0 -56.4
4 20 12.4 -13.5 13.9 -15.1 17.2 -18.7 18.9 -20.6 20.8 -22.6 24.7 -26.9 26.8 -29.2 29.0 -31.6 33.7 -36.7 36.1 -39.3 38.7 -42.1 49.6 -54.1
4 50 11.6 -12.7 13.0 -14.3 16.1 -17.6 17.8 -19.4 19.5 -21.3 23.2 -25.4 25.2 -27.5 27.2 -29.8 31.6 -34.6 33.9 -37.1 36.2 -39.7 46.6 -51.0
4 100 11.1 -12.2 12.4 -13.6 15.3 -16.8 16.9 -18.5 18.5 -20.4 22.0 -24.2 23.9 -26.3 25.9 -28.4 30.0 -33.0 32.2 -35.4 34.4 -37.8 44.2 -48.6
5 10 13.0 -14.1 14.6 -15.8 18.0 -19.5 19.8 -21.5 21.8 -23.6 25.9 -28.1 28.1 -30.5 30.4 -33.0 35.3 -38.2 37.8 -41.0 40.5 -43.9 52.0 -56.4
5 20 12.4 -13.5 13.9 -15.1 17.2 -18.7 18.9 -20.6 20.8 -22.6 24.7 -26.9 26.8 -29.2 29.0 -31.6 33.7 -36.7 36.1 -39.3 38.7 -42.1 49.6 -54.1
5 50 11.6 -13.7 13.0 -15.1 15.3 -18.7 16.9 -20.6 18.5 -22.6 22.0 -26.9 23.9 -29.2 25.9 -31.6 30.0 -36.7 32.2 -39.3 34.4 -42.1 44.2 -54.1
5 100 11.1 -13.5 13.4 -15.1 15.3 -18.7 16.9 -20.6 18.5 -22.6 22.0 -26.9 23.9 -29.2 25.9 -31.6 30.0 -36.7 32.2 -39.3 34.4 -42.1 44.2 -54.1

For SI: 1 foot = 304.8 mm, 1 square foot = 0.0929 m², 1 mile per hour = 0.447 m/s, 1 pound per square foot = 0.0479 kPa.

Notes:
a. The effective wind area shall be equal to the span length multiplied by an effective width. This width shall be permitted to be not less than one-third the span length. For cladding fasteners, the effective wind area shall not be greater than the area that is tributary to an individual fastener.
b. For effective areas between those given above, the load may be interpolated; otherwise, use the load associated with the lower effective area.
c. Table values shall be adjusted for height and exposure by multiplying by the adjustment coefficient in Table 301.2(3).
d. See Figure 301.2(7) for location of zones.
e. Plus and minus signs signify pressures acting toward and away from the building surfaces.

<table>
<thead>
<tr>
<th>MEAN ROOF HEIGHT</th>
<th>EXPOSURE</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>1.00</td>
<td>1.21</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.00</td>
<td>1.29</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.00</td>
<td>1.35</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1.00</td>
<td>1.40</td>
<td>1.66</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1.05</td>
<td>1.45</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1.09</td>
<td>1.49</td>
<td>1.74</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1.12</td>
<td>1.53</td>
<td>1.78</td>
<td></td>
</tr>
</tbody>
</table>
For SI: °C = [(°F)-32]/1.8.

FIGURE 301.2(1)
ISOLINES OF THE 97½ PERCENT WINTER (DECEMBER, JANUARY AND FEBRUARY) DESIGN TEMPERATURES (°F)
FIGURE 301.2(2)
SEISMIC DESIGN CATEGORIES—SITE CLASS D
a. Note: Lines defining areas are approximate only. Local conditions may be more or less severe than indicated by the regional classification. A severe classification is where weather conditions result in significant snowfall combined with extended periods during which there is little or no natural thawing causing deicing salts to be used extensively.

FIGURE 301.2(3)
WEATHERING PROBABILITY MAP FOR CONCRETE
FIGURE 301.2(4)
BASIC WIND SPEEDS FOR 50-YEAR MEAN RECURRENCE INTERVAL

For SI: 1 foot = 304.8 mm, 1 mile per hour = 0.447 m/s.
a. Values are nominal design 3-second gust wind speeds in miles per hour at 33 feet above ground for Exposure C category.
b. Linear interpolation between wind contours is permitted.
c. Islands and coastal areas outside the last contour shall use the last wind speed contour of the coastal area.
d. Mountainous terrain, gorges, ocean promontories and special wind regions shall be examined for unusual wind conditions.
e. Enlarged view of Eastern and Southern seaboards are on the following pages.
For SI: 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa, 1 mile = 1.61 km

a. In CS areas, site-specific Case Studies are required to establish ground snow loads. Extreme local variations in the ground snow loads in areas preclude mapping at this scale.

b. Numbers in parentheses represent the upper elevation limits in feet for the ground snow load values presented below. Site-specific case studies are required to establish ground snow loads at elevations not covered.

To convert lb/sq ft to kN/m², multiply by 0.0479.
To convert feet to meters, multiply by 0.3048.

FIGURE 301.2(5)
GROUND SNOW LOADS, P_g, FOR THE UNITED STATES (lb/ft²)
Note: Lines defining areas are approximate only. Local conditions may be more or less severe than indicated by the regional classification.

FIGURE 301.2(6)
TERMITE INFESTATION PROBABILITY MAP
301.2.1.2 Protection of openings. Windows in buildings located in windborne debris regions shall have glazed openings protected from windborne debris. Glazed opening protection for windborne debris shall meet the requirements of the Large Missile Test of ASTM E 1996 and ASTM E 1886 referenced therein. Garage door glazed opening protection for windborne debris shall meet the requirements of an approved impact resisting standard or ANSI/DASMA 115.
Exception: Wood structural panels with a minimum thickness of \(\frac{7}{16}\) inch (11 mm) and a maximum span of 8 feet (2438 mm) shall be permitted for opening protection in one-and two-story buildings. Panels shall be precut and so that they can be attached to the framing surrounding the opening containing the product with the glazed opening. Panels shall be predrilled as required for the anchorage method and shall be secured with the attachment hardware provided. Attachments shall be designed to resist the component and cladding loads determined in accordance with either Table 301.2(2) or ASCE 7, with the permanent corrosion-resistant attachment hardware provided and anchors permanently installed on the building. Attachment in accordance with Table 301.2.1.2 is permitted for buildings with a mean roof height of 33 feet (10 058 mm) or less where windspeeds do not exceed 130 miles per hour (58 m/s).

TABLE 301.2.1.2

WINDBORNE DEBRIS PROTECTION FASTENING SCHEDULE

FOR WOOD STRUCTURAL PANELS

<table>
<thead>
<tr>
<th>FASTENER TYPE</th>
<th>FASTENER SPACING (inches)(^{a, b})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panel span ≤ 4 feet 4 feet < panel span ≤ 6 feet 6 feet < panel span ≤ 8 feet</td>
</tr>
<tr>
<td>No. 8 wood screw based anchor with 2-inch embedment length</td>
<td>16</td>
</tr>
<tr>
<td>No. 10 wood screw based anchor with 2-inch embedment length</td>
<td>16</td>
</tr>
<tr>
<td>(\frac{1}{4})-inch lag screw based anchor with 2-inch embedment length</td>
<td>16</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound = 4.448 N, 1 mile per hour = 0.447 m/s.

a. This table is based on 130 mph wind speeds and a 33-foot mean roof height.
b. Fasteners shall be installed at opposing ends of the wood structural panel. Fasteners shall be located a minimum of 1 inch from the edge of the panel.
c. Anchors shall penetrate through the exterior wall covering with an embedment length of 2 inches minimum into the building frame. Fasteners shall be located a minimum of 2\(\frac{1}{2}\) inches from the edge of concrete block or concrete.
d. Where panels are attached to masonry or masonry/stucco, they shall be attached using vibration-resistant anchors having a minimum ultimate withdrawal capacity of 1500 pounds.

301.2.1.3 Wind speed conversion. When referenced documents are based on fastest mile wind speeds, the three-second gust wind velocities of
Figure 301.2(4) shall be converted to fastest mile wind velocities using Table 301.2.1.3.

TABLE 301.2.1.3
EQUIVALENT BASIC WIND SPEEDS

<table>
<thead>
<tr>
<th>3-second gust</th>
<th>85</th>
<th>90</th>
<th>100</th>
<th>105</th>
<th>110</th>
<th>120</th>
<th>125</th>
<th>130</th>
<th>140</th>
<th>145</th>
<th>150</th>
<th>160</th>
<th>170</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastest mile</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>105</td>
<td>110</td>
<td>120</td>
<td>125</td>
<td>130</td>
<td>140</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 mile per hour = 1.609 km/h.

a. Linear interpolation is permitted.

301.2.1.4 Exposure category

For each wind direction considered, an exposure category that adequately reflects the characteristics of ground surface irregularities shall be determined for the site at which the building or structure is to be constructed. For a site located in the transition zone between categories, the category resulting in the largest wind forces shall apply. Account shall be taken of variations in ground surface roughness that arise from natural topography and vegetation as well as from constructed features. For any given wind direction, the exposure in which a specific building or other structure is sited shall be assessed as being one of the following categories:

1. **Exposure A.** Large city centers with at least 50 percent of the buildings having a height in excess of 70 feet (21 336 mm). Use of this exposure category shall be limited to those areas for which terrain representative of Exposure A prevails in the upwind direction for a distance of at least 0.5 mile (0.8 km) or 10 times the height of the building or other structure, whichever is greater. Possible channeling effects or increased velocity pressures due to the building or structure being located in the wake of adjacent buildings shall be taken into account.

2. **Exposure B.** Urban and suburban areas, wooded areas, or other terrain with numerous closely spaced obstructions having the size of single-family dwellings or larger. Exposure B shall be assumed unless the site meets the definition of another type exposure.

3. **Exposure C.** Open terrain with scattered obstructions, including surface undulations or other irregularities, having heights generally less than 30 feet (9144 mm) extending more than 1,500 feet (457 m) from the building site in any quadrant. This exposure shall also apply to any building located within Exposure B type terrain where the building is directly adjacent to open areas of Exposure C type
terrain in any quadrant for a distance of more than 600 feet (183 m). This category includes flat open country, grasslands and shorelines in hurricane prone regions.

4. Exposure D. Flat, unobstructed areas exposed to wind flowing over open water (excluding shorelines in hurricane prone regions) for a distance of at least 1 mile (1.61 km). Shorelines in Exposure D include inland waterways, the Great Lakes, and coastal areas of California, Oregon, Washington and Alaska. This exposure shall apply only to those buildings and other structures exposed to the wind coming from over the water. Exposure D extends inland from the shoreline a distance of 1500 feet (457 m) or 10 times the height of the building or structure, whichever is greater.

301.2.1.5 Deleted.

301.2.1.5.1 Deleted.

301.2.2 Seismic provisions. The seismic provisions of this code shall apply to buildings constructed in Seismic Design Categories C, D₀, D₁ and D₂, as determined in accordance with this section.

Exception: Detached one-, two, and three-family dwellings located in Seismic Design Category C are exempt from the seismic requirements of this code.

301.2.2.1 Determination of seismic design category. Buildings shall be assigned a seismic design category in accordance with Figure 301.2(2).

301.2.2.1.1 Alternate determination of seismic design category. The Seismic Design Categories and corresponding Short Period Design Spectral Response Accelerations, S_{DS} shown in Figure 301.2(2) are based on soil Site Class D, as defined in Section 1613.5.2 of the Ohio Building Code. If soil conditions are other than Site Class D, the Short Period Design Spectral Response Accelerations, S_{DS}, for a site can be determined according to Section 1613.5 of the Ohio Building Code. The value of S_{DS} determined according to Section 1613.5 of the Ohio Building Code is permitted to be used to set the seismic design category according to Table 301.2.2.1.1, and to interpolate between values in Tables 602.10.3(3), 603.9.2(1) and other seismic design requirements of this code.
TABLE 301.2.2.1.1
SEISMIC DESIGN CATEGORY DETERMINATION

<table>
<thead>
<tr>
<th>CALCULATED S_{DS}</th>
<th>SEISMIC DESIGN CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{DS} \leq 0.17g$</td>
<td>A</td>
</tr>
<tr>
<td>$0.17g < S_{DS} \leq 0.33g$</td>
<td>B</td>
</tr>
<tr>
<td>$0.33g < S_{DS} \leq 0.50g$</td>
<td>C</td>
</tr>
<tr>
<td>$0.50g < S_{DS} \leq 0.67g$</td>
<td>D₀</td>
</tr>
<tr>
<td>$0.67g < S_{DS} \leq 0.83g$</td>
<td>D₁</td>
</tr>
<tr>
<td>$0.83g < S_{DS} \leq 1.17g$</td>
<td>D₂</td>
</tr>
<tr>
<td>$1.17g < S_{DS}$</td>
<td>E</td>
</tr>
</tbody>
</table>

301.2.2.1.2 Alternative determination of Seismic Design Category
E. Buildings located in Seismic Design Category E in accordance with Figure 301.2(2) are permitted to be reclassified as being in Seismic Design Category D₂ provided one of the following is done:

1. A more detailed evaluation of the seismic design category is made in accordance with the provisions and maps of the *Ohio Building Code*. Buildings located in Seismic Design Category E per Table R301.2.2.1.1, but located in Seismic Design Category D per the *Ohio Building Code*, may be designed using the Seismic Design Category D₂ requirements of this code.

2. Buildings located in Seismic Design Category E that conform to the following additional restrictions are permitted to be constructed in accordance with the provisions for Seismic Design Category D₂ of this code:

 2.1. All exterior shear wall lines or braced wall panels are in one plane vertically from the foundation to the uppermost story.

 2.2. Floors shall not cantilever past the exterior walls.

 2.3. The building is within all of the requirements of Section 301.2.2.2.5 for being considered as regular.

301.2.2.2 Seismic Design Category C. Structures assigned to Seismic Design Category C shall conform to the requirements of this section.
301.2.2.1 **Weights of materials.** Average dead loads shall not exceed 15 pounds per square foot (720 Pa) for the combined roof and ceiling assemblies (on a horizontal projection) or 10 pounds per square foot (480 Pa) for floor assemblies, except as further limited by Section 301.2.2. Dead loads for walls above grade shall not exceed:

1. Fifteen pounds per square foot (720 Pa) for exterior light-frame wood walls.

2. Fourteen pounds per square foot (670 Pa) for exterior light-frame cold-formed steel walls.

3. Ten pounds per square foot (480 Pa) for interior light-frame wood walls.

4. Five pounds per square foot (240 Pa) for interior light-frame cold-formed steel walls.

5. Eighty pounds per square foot (3830 Pa) for 8-inch-thick (203 mm) masonry walls.

6. Eighty-five pounds per square foot (4070 Pa) for 6-inch-thick (152 mm) concrete walls.

7. Ten pounds per square foot (480 Pa) for SIP walls.

Exceptions:

1. Roof and ceiling dead loads not exceeding 25 pounds per square foot (1190 Pa) shall be permitted provided the wall bracing amounts in Chapter 6 are increased in accordance with Table 301.2.2.2.1.

2. Light-frame walls with stone or masonry veneer shall be permitted in accordance with the provisions of Sections 702.1 and 703.

3. Fireplaces and chimneys shall be permitted in accordance with Chapter 10.
TABLE 301.2.2.2.1
WALL BRACING ADJUSTMENT FACTORS BY ROOF COVERING DEAD LOAD

<table>
<thead>
<tr>
<th>WALL SUPPORTING</th>
<th>ROOF/CEILING DEAD LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 psf or less</td>
</tr>
<tr>
<td>Roof only</td>
<td>1.0</td>
</tr>
<tr>
<td>Roof plus one or two stories</td>
<td>1.0</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square foot = 0.0479 kPa.
a. Linear interpolation shall be permitted.

301.2.2.2 Stone and masonry veneer. Anchored stone and masonry veneer shall comply with the requirements of Sections 702.1 and 703.

301.2.2.3 Masonry construction. Masonry construction shall comply with the requirements of Section 606.11.2.

301.2.2.4 Concrete construction. Detached one-, two and three-family dwellings with exterior above-grade concrete walls shall comply with the requirements of Section 611, PCA 100 or shall be designed in accordance with ACI 318. Townhouses with above-grade exterior concrete walls shall comply with the requirements of PCA 100 or shall be designed in accordance with ACI 318.

301.2.2.5 Irregular buildings. Prescriptive construction as regulated by this code shall not be used for irregular structures located in Seismic Design Categories C, D₀, D₁ and D₂. Irregular portions of structures shall be designed in accordance with accepted engineering practice to the extent the irregular features affect the performance of the remaining structural system. When the forces associated with the irregularity are resisted by a structural system designed in accordance with accepted engineering practice, design of the remainder of the building shall be permitted using the provisions of this code. A building or portion of a building shall be considered to be irregular when one or more of the following conditions occur:

1. When exterior shear wall lines or braced wall panels are not in one plane vertically from the foundation to the uppermost story in which they are required.
Exception: For wood light-frame construction, floors with cantilevers or setbacks not exceeding four times the nominal depth of the wood floor joists are permitted to support braced wall panels that are out of plane with braced wall panels below provided that:

1. Floor joists are nominal 2 inches by 10 inches (51 mm by 254 mm) or larger and spaced not more than 16 inches (406 mm) on center.

2. The ratio of the back span to the cantilever is at least 2 to 1.

3. Floor joists at ends of braced wall panels are doubled.

4. For wood-frame construction, a continuous rim joist is connected to ends of all cantilever joists. When spliced, the rim joists shall be spliced using a galvanized metal tie not less than 0.058 inch (1.5 mm) (16 gage) and 1½ inches (38 mm) wide fastened with six 16d nails on each side of the splice or a block of the same size as the rim joist of sufficient length to fit securely between the joist space at which the splice occurs fastened with eight 16d nails on each side of the splice; and

5. Gravity loads carried at the end of cantilevered joists are limited to uniform wall and roof loads and the reactions from headers having a span of 8 feet (2438 mm) or less.

2. When a section of floor or roof is not laterally supported by shear walls or braced wall lines on all edges.

Exception: Portions of floors that do not support shear walls or braced wall panels above, or roofs, shall be permitted to extend no more than 6 feet (1829 mm) beyond a shear wall or braced wall line.
3. When the end of a braced wall panel occurs over an opening in the wall below and ends at a horizontal distance greater than 1 foot (305 mm) from the edge of the opening. This provision is applicable to shear walls and braced wall panels offset in plane and to braced wall panels offset out of plane as permitted by the exception to Item 1 above.

Exception: For wood light-frame wall construction, one end of a braced wall panel shall be permitted to extend more than 1 foot (305 mm) over an opening not more than 8 feet (2438 mm) wide in the wall below provided that the opening includes a header in accordance with the following:

1. The building width, loading condition and framing member species limitations of Table 502.5(1) shall apply; and

2. Not less than one 2 ×12 or two 2 ×10 for an opening not more than 4 feet (1219 mm) wide; or

3. Not less than two 2 ×12 or three 2 ×10 for an opening not more than 6 feet (1829 mm) wide; or

4. Not less than three 2 ×12 or four 2 ×10 for an opening not more than 8 feet (2438 mm) wide; and

5. The entire length of the braced wall panel does not occur over an opening in the wall below.

4. When an opening in a floor or roof exceeds the lesser of 12 feet (3658 mm) or 50 percent of the least floor or roof dimension.

5. When portions of a floor level are vertically offset.

Exceptions:

1. Framing supported directly by continuous foundations at the perimeter of the building.
2. For wood light-frame construction, floors shall be permitted to be vertically offset when the floor framing is lapped or tied together as required by Section 502.6.1.

6. When shear walls and braced wall lines do not occur in two perpendicular directions.

7. When stories above-grade partially or completely braced by wood wall framing in accordance with Section 602 or steel wall framing in accordance with Section 603 include masonry or concrete construction. When this irregularity applies, the entire story shall be designed in accordance with accepted engineering practice.

Exception: Fireplaces, chimneys and masonry veneer as permitted by this code.

301.2.2.3 Seismic Design Categories D₀, D₁ and D₂. Structures assigned to Seismic Design Categories D₀, D₁ and D₂ shall conform to the requirements for Seismic Design Category C and the additional requirements of this section.

301.2.2.3.1 Height limitations. Wood framed buildings shall be limited to three stories above grade or the limits given in Table 602.10.3(3). Cold-formed steel framed buildings shall be limited to less than or equal to three stories above grade in accordance with AISI S230. Mezzanines as defined in Section 202 shall not be considered as stories. Structural insulated panel buildings shall be limited to two stories above grade.

301.2.2.3.2 Stone and masonry veneer. Anchored stone and masonry veneer shall comply with the requirements of Sections 702.1 and 703.

301.2.2.3.3 Masonry construction. Masonry construction in Seismic Design Categories D₀ and D₁ shall comply with the requirements of Section 606.12.3. Masonry construction in Seismic Design Category D₂ shall comply with the requirements of Section 606.12.4.
301.2.3.4 Concrete construction. Buildings with exterior above-grade concrete walls shall comply with PCA 100 or shall be designed in accordance with ACI 318.

301.2.3.5 Cold-formed steel framing in Seismic Design Categories D₀, D₁ and D₂. In Seismic Design Categories D₀, D₁ and D₂ in addition to the requirements of this code, cold-formed steel framing shall comply with the requirements of AISI S230.

301.2.3.6 Masonry chimneys. Masonry chimneys shall be reinforced and anchored to the building in accordance with Sections 1003.3 and 1003.4.

301.2.3.7 Anchorage of water heaters. Water heaters shall be anchored against movement and overturning in accordance with Section 1307.2.

301.2.4 Seismic Design Category E. Buildings in Seismic Design Category E shall be designed in accordance with the Ohio Building Code, except when the seismic design category is reclassified to a lower seismic design category in accordance with Section 301.2.2.1.

301.2.3 Snow loads. Wood framed construction, cold-formed steel framed construction and masonry and concrete construction, and structural insulated panel construction in regions with ground snow loads 70 pounds per square foot (3.35 kPa) or less, shall be in accordance with Chapters 5, 6 and 8. Buildings in regions with ground snow loads greater than 70 pounds per square foot (3.35 kPa) shall be designed in accordance with accepted engineering practice.

301.2.4 Floodplain construction. Buildings and structures constructed in whole or in part in flood hazard areas (including A or V Zones) as established in Table 301.2(1) shall be designed and constructed in accordance with Section 322.

Exception: Buildings and structures located in whole or in part in identified floodways shall be designed and constructed in accordance with ASCE 24.

301.2.4.1 Alternative provisions. As an alternative to the requirements in Section 322.3 for buildings and structures located in
whole or in part in coastal high hazard areas (V Zones), ASCE 24 is permitted subject to the limitations of this code and the limitations therein.

301.3 Story height. Buildings constructed in accordance with these provisions shall be limited to story heights of not more than the following:

1. For wood wall framing, the laterally unsupported bearing wall stud height permitted by Table 602.3(5) plus a height of floor framing not to exceed 16 inches (406 mm).

 Exception: For wood framed wall buildings with bracing in accordance with Tables 602.10.3(1) and 602.10.3(2), the wall stud clear height used to determine the maximum permitted story height may be increased to 12 feet (3658 mm) without requiring an engineered design for the building wind and seismic force resisting systems provided that the length of bracing required by Table 602.10.3(1) is increased by multiplying by a factor of 1.10 and the length of bracing required by Table 602.10.3(2) is increased by multiplying by a factor of 1.20. Wall studs are still subject to the requirements of this section.

2. For steel wall framing, a stud height of 10 feet (3048 mm), plus a height of floor framing not to exceed 16 inches (406 mm).

3. For masonry walls, a maximum bearing wall clear height of 12 feet (3658 mm) plus a height of floor framing not to exceed 16 inches (406 mm).

 Exception: An additional 8 feet (2438 mm) is permitted for gable end walls.

4. For insulating concrete form walls, the maximum bearing wall height per story as permitted by Section 611 tables plus a height of floor framing not to exceed 16 inches (406 mm).

5. For structural insulated panel (SIP) walls, the maximum bearing wall height per story as permitted by Section 614 tables shall not exceed 10 feet (3048 mm) plus a height of floor framing not to exceed 16 inches (406 mm).
Individual walls or walls studs shall be permitted to exceed these limits as permitted by Chapter 6 provisions, provided story heights are not exceeded. Floor framing height shall be permitted to exceed these limits provided the story height does not exceed 11 feet 7 inches (3531 mm). An engineered design shall be provided for the wall or wall framing members when they exceed the limits of Chapter 6. Where the story height limits are exceeded, an engineered design shall be provided in accordance with the Ohio Building Code for the overall wind and seismic force resisting systems.

301.4 Dead load. The actual weights of materials and construction shall be used for determining dead load with consideration for the dead load of fixed service equipment.

301.5 Live load. The minimum uniformly distributed live load shall be as provided in Table 301.5.

<table>
<thead>
<tr>
<th>TABLE 301.5</th>
<th>MINIMUM UNIFORMLY DISTRIBUTED LIVE LOADS (in pounds per square foot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USE</td>
<td>LIVE LOAD</td>
</tr>
<tr>
<td>Attics without storage<sup>b</sup></td>
<td>10</td>
</tr>
<tr>
<td>Attics with limited storage<sup>b,g</sup></td>
<td>20</td>
</tr>
<tr>
<td>Habitable attics and attics served with fixed stairs</td>
<td>30</td>
</tr>
<tr>
<td>Balconies (exterior) and decks<sup>e</sup></td>
<td>40</td>
</tr>
<tr>
<td>Fire escapes</td>
<td>40</td>
</tr>
<tr>
<td>Guardrails and handrails<sup>d</sup></td>
<td>200<sup>b</sup></td>
</tr>
<tr>
<td>Guardrail in-fill components<sup>f</sup></td>
<td>50<sup>b</sup></td>
</tr>
<tr>
<td>Passenger vehicle garages<sup>a</sup></td>
<td>50<sup>a</sup></td>
</tr>
<tr>
<td>Rooms other than sleeping room</td>
<td>40</td>
</tr>
<tr>
<td>Sleeping rooms</td>
<td>30</td>
</tr>
<tr>
<td>Stairs</td>
<td>40<sup>e</sup></td>
</tr>
</tbody>
</table>

For SI: 1 pound per square foot = 0.0479 kPa, 1 square inch = 645 mm², 1 pound = 4.45 N.

a. Elevated garage floors shall be capable of supporting a 2,000-pound load applied over a 20-square-inch area.

b. Attics without storage are those where the maximum clear height between joist and rafter is less than 42 inches, or where there are not two or more adjacent trusses with the same web configuration capable of containing a rectangle 42 inches high by 2 feet wide, or greater, located within the plane of the truss. For attics without storage, this live load need not be assumed to act concurrently with any other live load requirements.

c. Individual stair treads shall be designed for the uniformly distributed live load or a 300-pound concentrated load acting over an area of 4 square inches, whichever produces the greater stresses.

d. A single concentrated load applied in any direction at any point along the top.
e. See Section 502.2.2 for decks attached to exterior walls.
f. Guard in-fill components (all those except the handrail), balusters and panel fillers shall be designed to withstand a horizontally applied normal load of 50 pounds on an area equal to 1 square foot. This load need not be assumed to act concurrently with any other live load requirement.
g. For attics with limited storage and constructed with trusses, this live load need be applied only to those portions of the bottom chord where there are two or more adjacent trusses with the same web configuration capable of containing a rectangle 42 inches high or greater by 2 feet wide or greater, located within the plane of the truss. The rectangle shall fit between the top of the bottom chord and the bottom of any other truss member, provided that each of the following criteria is met.
 1. The attic area is accessible by a pull-down stairway or framed opening in accordance with Section 807.1.
 2. The truss has a bottom chord pitch less than 2:12.
 3. Required insulation depth is less than the bottom chord member depth.

The bottom chords of trusses meeting the above criteria for limited storage shall be designed for the greater of the actual imposed dead load or 10 psf, uniformly distributed over the entire span.

h. Glazing used in handrail assemblies and guards shall be designed with a safety factor of 4. The safety factor shall be applied to each of the concentrated loads applied to the top of the rail, and to the load on the in-fill components. These loads shall be determined independent of one another, and loads are assumed not to occur with any other live load.

301.6 Roof load

The roof shall be designed for the live load indicated in Table 301.6 or the snow load indicated in Table 301.2(1), whichever is greater.

<table>
<thead>
<tr>
<th>ROOF SLOPE</th>
<th>TRIBUTARY LOADED AREA IN SQUARE FEET FOR ANY STRUCTURAL MEMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 to 200</td>
</tr>
<tr>
<td>Flat or rise less than 4 inches per foot (1:3)</td>
<td>20</td>
</tr>
<tr>
<td>Rise 4 inches per foot (1:3) to less than 12 inches per foot (1:1)</td>
<td>16</td>
</tr>
<tr>
<td>Rise 12 inches per foot (1:1) and greater</td>
<td>12</td>
</tr>
</tbody>
</table>

For SI: 1 square foot = 0.0929 m², 1 pound per square foot = 0.0479 kPa, 1 inch per foot = 83.3 mm/m.

301.7 Deflection

The allowable deflection of any structural member under the live load listed in Sections 301.5 and 301.6 shall not exceed the values in Table 301.7.

<table>
<thead>
<tr>
<th>ALLOWABLE DEFLECTION OF STRUCTURAL MEMBERS</th>
<th>a, b, c, d, e</th>
</tr>
</thead>
</table>
STRUCTURAL MEMBER

<table>
<thead>
<tr>
<th>STRUCTURAL MEMBER</th>
<th>ALLOWABLE DEFLECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rafters having slopes greater than 3:12 with no finished ceiling attached to rafters</td>
<td>L/180</td>
</tr>
<tr>
<td>Interior walls and partitions</td>
<td>H/180</td>
</tr>
<tr>
<td>Floors and plastered ceilings</td>
<td>L/360</td>
</tr>
<tr>
<td>All other structural members</td>
<td>L/240</td>
</tr>
<tr>
<td>Exterior walls with plaster or stucco finish</td>
<td>H/360</td>
</tr>
<tr>
<td>Exterior walls—wind loads with brittle finishes</td>
<td>H/240</td>
</tr>
<tr>
<td>Exterior walls—wind loads with flexible finishes</td>
<td>L/120<sup>a</sup></td>
</tr>
<tr>
<td>Lintels supporting masonry veneer walls<sup>c</sup></td>
<td>L/600</td>
</tr>
</tbody>
</table>

Note: L = span length, H = span height.

- a. The wind load shall be permitted to be taken as 0.7 times the Component and Cladding loads for the purpose of the determining deflection limits herein.
- b. For cantilever members, L shall be taken as twice the length of the cantilever.
- c. For aluminum structural members or panels used in roofs or walls of sunroom additions or patio covers, not supporting edge of glass or sandwich panels, the total load deflection shall not exceed L/60. For continuous aluminum structural members supporting edge of glass, the total load deflection shall not exceed L/175 for each glass lite or L/60 for the entire length of the member, whichever is more stringent. For sandwich panels used in roofs or walls of sunroom additions or patio covers, the total load deflection shall not exceed L/120.
- d. Deflection for exterior walls with interior gypsum board finish shall be limited to an allowable deflection of H/180.
- e. Refer to Section 703.7.2.

301.8 Nominal sizes

For the purposes of this code, where dimensions of lumber are specified, they shall be deemed to be nominal dimensions unless specifically designated as actual dimensions.

SECTION 302

FIRE-RESISTANT CONSTRUCTION

302.1 Exterior walls

Construction, projections, openings and penetrations of exterior walls of dwellings and accessory buildings shall comply with Table 302.1.

Exceptions:

1. Walls, projections, openings or penetrations in walls perpendicular to the line used to determine the fire separation distance.

2. Walls of dwellings and accessory structures located on the same lot.
3. Detached tool sheds and storage sheds, playhouses and similar structures exempted from approval by Section 102.10 are not required to provide wall protection based on location on the lot. Projections beyond the exterior wall shall not extend over the lot line.

4. Detached garages accessory to a dwelling located within 2 feet (610 mm) of a lot line are permitted to have roof eave projections not exceeding 4 inches (102 mm).

5. Foundation vents installed in compliance with this code are permitted.

6. Detached garages accessory to a dwelling with an exterior wall located greater than or equal to 3 feet from a lot line.

Where referenced in this code, an unoccupied space on an adjoining property may be included in the required fire separation distance, provided that the adjoining property is dedicated or deeded so as to preclude, for the life of the structure, the erection of any building or structure on such space (see section 3781.02 of the Revised Code).

302.2 Residential structures with more than two dwelling units. In structures with more than two dwelling units, each grouping of two dwelling units shall be separated from an adjacent dwelling unit or an adjacent grouping of two dwelling units by two wall assemblies, each having a fire resistance rating of one hour when tested in accordance with ASTM E119 or UL 263 and/or a floor ceiling assembly having a fire resistance rating of two hours when tested in accordance with ASTM E119 or UL 263.

Alternatively, each grouping of two dwelling units shall be separated from an adjacent dwelling unit or an adjacent grouping of two dwelling units by a common wall assembly having a fire resistance rating of not less than two hours when tested in accordance with ASTM E119 or UL 263 and/or a floor ceiling assembly having a fire resistance rating of two hours when tested in accordance with ASTM E119 or UL 263. This option is only permissible if the common wall does not contain plumbing or mechanical equipment, ducts or vents in the cavity of the common wall. The common wall shall be rated for fire exposure from both sides and shall extend to and be tight against exterior walls and the underside of the roof sheathing. Penetrations of electrical outlet boxes shall be in accordance with Section 302.4.
Additionally, within any grouping of two dwelling units, separated as indicated above, the individual dwelling units shall be separated vertically and horizontally from adjacent dwelling units by wall and/or floor assemblies having a fire resistance rating of not less than one hour when tested in accordance with ASTM E119 or UL 263.

When assemblies are required to be fire-resistance-rated, the supporting construction of such assemblies shall have an equal or greater fire-resistant rating.

302.2.1 Continuity. The fire-resistance-rated wall or assembly separating townhouses shall be continuous from the foundation to the underside of the roof sheathing, deck or slab. The fire-resistance rating shall extend the full length of the wall or assembly, including wall extensions through and separating attached enclosed accessory structures.

302.2.2 Parapets. Parapets constructed in accordance with Section 302.2.3 shall be constructed for townhouses as an extension of exterior walls or common walls in accordance with the following:

1. Where roof surfaces adjacent to the wall or walls are at the same elevation, the parapet shall extend not less than 30 inches (762 mm) above the roof surfaces.

2. Where roof surfaces adjacent to the wall or walls are at different elevations and the higher roof is not more than 30 inches (762 mm) above the lower roof, the parapet shall extend not less than 30 inches (762 mm) above the lower roof surface.

Exception: A parapet is not required in the two cases above when the roof is covered with a minimum class C roof covering, and the roof decking or sheathing is of noncombustible materials or approved fire-retardant-treated wood for a distance of 4 feet (1219 mm) on each side of the wall or walls, or one layer of 5/8-inch (15.9 mm) Type X gypsum board is installed directly beneath the roof decking or sheathing, supported by a minimum of nominal 2-inch (51 mm) ledgers attached to the sides of the roof framing members, for a minimum distance of 4 feet (1219 mm) on each side of the wall or walls.
3. A parapet is not required where roof surfaces adjacent to the wall or walls are at different elevations and the higher roof is more than 30 inches (762 mm) above the lower roof. The common wall construction from the lower roof to the underside of the higher roof deck shall have not less than a 1-hour fire-resistance rating. The wall shall be rated for exposure from both sides.

| TABLE 302.1 |
| EXTERIOR WALLS |

<table>
<thead>
<tr>
<th>EXTERIOR WALL ELEMENT</th>
<th>MINIMUM FIRE-RESISTANCE RATING</th>
<th>MINIMUM FIRE SEPARATION DISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls</td>
<td>(Fire-resistance rated) 1 hour-tested in accordance with ASTM E 119 or UL 263 with exposure from both sides</td>
<td>< 5 feet</td>
</tr>
<tr>
<td></td>
<td>(Not fire-resistance rated) 0 hours</td>
<td>≥ 5 feet</td>
</tr>
<tr>
<td>Projections</td>
<td>(Fire-resistance rated) 1 hour on the underside</td>
<td>≥ 2 feet to 5 feet</td>
</tr>
<tr>
<td></td>
<td>(Not fire-resistance rated) 0 hours</td>
<td>5 feet</td>
</tr>
<tr>
<td>Openings in walls</td>
<td>Not allowed</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>25% maximum of wall area</td>
<td>< 3 feet</td>
</tr>
<tr>
<td></td>
<td>Unlimited</td>
<td>3 feet</td>
</tr>
<tr>
<td>Penetrations</td>
<td>All Comply with Section 302.4</td>
<td>< 5 feet</td>
</tr>
<tr>
<td></td>
<td>None required</td>
<td>5 feet</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm.
N/A = Not Applicable.

302.2.3 Parapet construction. Parapets shall have the same fire-resistance rating as that required for the supporting wall or walls. On any side adjacent to a roof surface, the parapet shall have noncombustible faces for the uppermost 18 inches (457 mm), to include counterflashings and coping materials. Where the roof slopes toward a parapet at slopes greater than 2 units vertical in 12 units horizontal (16.7-percent slope), the parapet shall extend to the same height as any portion of the roof within a distance of 3 feet (914 mm), but in no case shall the height be less than 30 inches (762 mm).

302.2.4 Structural independence. Each individual dwelling unit shall be structurally independent.

Exceptions:

1. Foundations supporting exterior walls or common walls.
2. Structural roof and wall sheathing from each unit may fasten to the common wall framing.

3. Nonstructural wall and roof coverings.

4. Flashing at termination of roof covering over common wall.

5. *Dwelling units* separated by a common 2-hour fire-resistance-rated wall as provided in Section 302.2.

6. *Dwelling units stacked vertically.*

302.3 Two-family dwellings. Dwelling units in two-family dwellings shall be separated from each other by wall and/or floor assemblies having not less than a 1-hour fire-resistance rating when tested in accordance with ASTM E 119 or UL 263. Fire-resistance-rated floor-ceiling and wall assemblies shall extend to and be tight against the exterior wall, and wall assemblies shall extend from the foundation to the underside of the roof sheathing.

Exceptions:

A fire-resistance rating of ½ hour shall be permitted in buildings equipped throughout with an automatic sprinkler system installed in accordance with NFPA 13.

302.3.1 Supporting construction. When floor assemblies are required to be fire-resistance rated, the supporting construction of such assemblies shall have an equal or greater fire-resistance rating.

302.4 Dwelling unit rated penetrations. Penetrations of wall or floor/ceiling assemblies required to be fire-resistance rated in accordance with Section 302.2 or 302.3 shall be protected in accordance with this section.

302.4.1 Through penetrations. Through penetrations of fire-resistance-rated wall or floor assemblies shall comply with Section 302.4.1.1 or 302.4.1.2.

Exception: Where the penetrating items are steel, ferrous or copper pipes, tubes or conduits, the annular space shall be protected as follows:

1. In concrete or masonry wall or floor assemblies, concrete, grout or mortar shall be permitted where installed to the full thickness of
the wall or floor assembly or the thickness required to maintain the fire-resistance rating, provided:

1.1 The nominal diameter of the penetrating item is a maximum of 6 inches (152 mm); and

1.2 The area of the opening through the wall does not exceed 144 square inches (92,900 mm2).

2 The material used to fill the annular space shall prevent the passage of flame and hot gases sufficient to ignite cotton waste where subjected to ASTM E 119 or UL 263 time temperature fire conditions under a minimum positive pressure differential of 0.01 inch of water (3 Pa) at the location of the penetration for the time period equivalent to the fire resistance rating of the construction penetrated.

302.4.1 Fire-resistance-rated assembly. Penetrations shall be installed as tested in the approved fire-resistance-rated assembly.

302.4.1.2 Penetration firestop system. Penetrations shall be protected by an approved penetration firestop system installed as tested in accordance with ASTM E 814 or UL 1479, with a minimum positive pressure differential of 0.01 inch of water (3 Pa) and shall have an F rating of not less than the required fire-resistance rating of the wall or floor/ceiling assembly penetrated.

302.4.2 Membrane penetrations. Membrane penetrations shall comply with Section 302.4.1. Where walls are required to have a fire-resistance rating, recessed fixtures shall be installed so that the required fire-resistance rating will not be reduced.

Exceptions:

1. Membrane penetrations of maximum 2-hour fire-resistance-rated walls and partitions by steel electrical boxes that do not exceed 16 square inches (0.0103 m2) in area provided the aggregate area of the openings through the membrane does not exceed 100 square inches (0.0645 m2) in any 100 square feet (9.29 m2) of wall area. The annular space between the wall membrane and the box shall
not exceed \(\frac{1}{8} \) inch (3.1 mm). Such boxes on opposite sides of the wall shall be separated by one of the following:

1.1. By a horizontal distance of not less than 24 inches (610 mm) where the wall or partition is constructed with individual noncommunicating stud cavities;

1.2. By a horizontal distance of not less than the depth of the wall cavity when the wall cavity is filled with cellulose loose-fill, rockwool or slag mineral wool insulation;

1.3. By solid fire blocking in accordance with Section 302.11;

1.4. By protecting both boxes with listed putty pads; or

1.5. By other listed materials and methods.

2. Membrane penetrations by listed electrical boxes of any materials provided the boxes have been tested for use in fire-resistance-rated assemblies and are installed in accordance with the instructions included in the listing. The annular space between the wall membrane and the box shall not exceed \(\frac{1}{8} \) inch (3.1 mm) unless listed otherwise. Such boxes on opposite sides of the wall shall be separated by one of the following:

2.1. By the horizontal distance specified in the listing of the electrical boxes;

2.2. By solid fireblocking in accordance with Section 302.11;

2.3. By protecting both boxes with listed putty pads; or

2.4. By other listed materials and methods.

3. The annular space created by the penetration of a fire sprinkler provided it is covered by a metal escutcheon plate.

302.5 Dwelling/garage opening/penetration protection. Openings and penetrations through the walls or ceilings separating the dwelling from the garage shall be in accordance with Sections 302.5.1 through 302.5.3.
302.5.1 Opening protection. Openings from a private garage directly into a room used for sleeping purposes shall not be permitted. Other openings between the garage and residence shall be equipped with solid wood doors not less than $1\frac{3}{8}$ inches (35 mm) in thickness, solid or honeycomb core steel doors not less than $1\frac{3}{8}$ inches (35 mm) thick, or 20-minute fire-rated doors.

302.5.2 Duct penetration. Ducts in the garage and ducts penetrating the walls or ceilings separating the dwelling from the garage shall be constructed of a minimum No. 26 gage (0.48 mm) sheet steel or other approved material and shall have no openings into the garage.

302.5.3 Other penetrations. Penetrations through the separation required in Section 302.6 shall be protected as required by Section 302.11, Item 4.

302.6 Dwelling/garage fire separation. The garage shall be separated as required by Table 302.6. Openings in garage walls shall comply with Section 302.5. This provision does not apply to garage walls that are perpendicular to the adjacent dwelling unit wall.

<table>
<thead>
<tr>
<th>TABLE 302.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWELLING/GARAGE SEPARATION</td>
</tr>
<tr>
<td>SEPARATION</td>
</tr>
<tr>
<td>From the residence and attics</td>
</tr>
<tr>
<td>From all habitable rooms above the garage</td>
</tr>
<tr>
<td>Structure(s) supporting floor/ceiling assemblies used for separation required by this section</td>
</tr>
<tr>
<td>Garages located less than 3 feet from a dwelling unit on the same lot</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.
1. To determine fire resistance equivalents, refer to section 302.14

302.7 Under-stair protection. Enclosed accessible space under stairs shall have walls, under-stair surface and any soffits protected on the enclosed side with $\frac{1}{2}$-inch (12.7 mm) gypsum board.

302.8 Foam plastics. For requirements for foam plastics see Section 316.

302.9 Flame spread index and smoke-developed index for wall and ceiling finishes. Flame spread and smoke index for wall and ceiling finishes shall be in accordance with Sections 302.9.1 through 302.9.4.
302.9.1 **Flame spread index.** Wall and ceiling finishes shall have a flame spread index of not greater than 200.

Exception: Flame spread index requirements for finishes shall not apply to trim defined as picture molds, chair rails, baseboards and handrails; to doors and windows or their frames; or to materials that are less than $\frac{1}{28}$ inch (0.91 mm) in thickness cemented to the surface of walls or ceilings if these materials exhibit flame spread index values no greater than those of paper of this thickness cemented to a noncombustible backing.

302.9.2 **Smoke-developed index.** Wall and ceiling finishes shall have a smoke-developed index of not greater than 450.

302.9.3 **Testing.** Tests shall be made in accordance with ASTM E 84 or UL 723.

302.9.4 **Alternate test method.** As an alternate to having a flame-spread index of not greater than 200 and a smoke-developed index of not greater than 450 when tested in accordance with ASTM E 84 or UL 723, wall and ceiling finishes, other than textiles, shall be permitted to be tested in accordance with NFPA 286. Materials tested in accordance with NFPA 286 shall meet the following criteria:

During the 40 kW exposure, the interior finish shall comply with Item 1.
During the 160 kW exposure, the interior finish shall comply with Item 2.
During the entire test, the interior finish shall comply with Item 3.

1. During the 40 kW exposure, flames shall not spread to the ceiling.

2. During the 160 kW exposure, the interior finish shall comply with the following:

 2.1 Flame shall not spread to the outer extremity of the sample on any wall or ceiling.

 2.2 Flashover, as defined in NFPA 286, shall not occur.

3. The total smoke released throughout the NFPA 286 test shall not exceed 1,000 m2.

302.10 **Flame spread index and smoke developed index for insulation.** Flame spread and smoke developed index for insulation shall be in accordance with Sections 302.10.1 through 302.10.5.

302.10.1 **Insulation.** Insulation materials, including facings, such as vapor retarders and vapor-permeable membranes installed within floor-ceiling assemblies, roof-ceiling assemblies, wall assemblies, crawl spaces and attics shall have a flame spread index not to exceed 25 with an accompanying smoke-developed index not to exceed 450 when tested in accordance with ASTM E 84 or UL 723.

Exceptions:

1. When such materials are installed in concealed spaces, the flame spread index and smoke-developed index limitations do not apply to the facings, provided that the facing is installed in substantial contact with the unexposed surface of the ceiling, floor or wall finish.

2. Cellulose loose-fill insulation, which is not spray applied, complying with the requirements of Section 302.10.3, shall only be required to meet the smoke-developed index of not more than 450.

302.10.2 **Loose-fill insulation.** Loose-fill insulation materials that cannot be mounted in the ASTM E 84 or UL 723 apparatus without a screen or artificial supports shall comply with the flame spread and smoke-developed limits of Section 302.10.1 when tested in accordance with CAN/ULC S102.2.

Exception: Cellulose loose-fill insulation shall not be required to be tested in accordance with CAN/ULC S102.2, provided such insulation complies with the requirements of Section 302.10.1 and Section 302.10.3.

302.10.3 **Cellulose loose-fill insulation.** Cellulose loose-fill insulation shall comply with CPSC 16 CFR, Parts 1209 and 1404. Each package of such insulating material shall be clearly labeled in accordance with CPSC 16 CFR, Parts 1209 and 1404.

302.10.4 **Exposed attic insulation.** All exposed insulation materials installed on attic floors shall have a critical radiant flux not less than 0.12 watt per square centimeter.
302.10.5 Testing. Tests for critical radiant flux shall be made in accordance with ASTM E 970.

302.11 Fireblocking. In combustible construction, fireblocking shall be provided to cut off all concealed draft openings (both vertical and horizontal) and to form an effective fire barrier between stories, and between a top story and the roof space.

Fireblocking shall be provided in wood-frame construction in the following locations:

1. In concealed spaces of stud walls and partitions, including furred spaces and parallel rows of studs or staggered studs, as follows:

 1.1 Vertically at the ceiling and floor levels.

 1.2 Horizontally at intervals not exceeding 10 feet (3048 mm).

2. At all interconnections between concealed vertical and horizontal spaces such as occur at soffits, drop ceilings and cove ceilings.

3. In concealed spaces between stair stringers at the top and bottom of the run. Enclosed spaces under stairs shall comply with Section 302.7.

4. At openings around vents, pipes, ducts, cables and wires at ceiling and floor level, with an approved material to resist the free passage of flame and products of combustion. The material filling this annular space shall not be required to meet the ASTM E 136 requirements.

5. For the fireblocking of chimneys and fireplaces, see Section 1003.19.

6. In buildings or structures with more than one dwelling, fireblocking of cornices is required at the line of dwelling unit separation.

302.11.1 Fireblocking materials. Except as provided in Section 302.11, Item 4, fireblocking shall consist of the following materials:

1. Two-inch (51 mm) nominal lumber.

2. Two thicknesses of 1-inch (25.4 mm) nominal lumber with broken lap joints.
3. One thickness of \(\frac{23}{32} \)-inch (18.3 mm) wood structural panels with joints backed by \(\frac{23}{32} \)-inch (18.3 mm) wood structural panels.

4. One thickness of \(\frac{3}{4} \)-inch (19.1 mm) particleboard with joints backed by \(\frac{3}{4} \)-inch (19.1 mm) particleboard.

5. One-half-inch (12.7 mm) gypsum board.

6. One-quarter-inch (6.4 mm) cement-based millboard.

7. Batts or blankets of mineral wool or glass fiber or other approved materials installed in such a manner as to be securely retained in place.

302.11.1.1 Batts or blankets of mineral or glass fiber. Batts or blankets of mineral or glass fiber or other approved nonrigid materials shall be permitted for compliance with the 10-foot (3048 mm) horizontal fireblocking in walls constructed using parallel rows of studs or staggered studs.

302.11.1.2 Unfaced fiberglass. Unfaced fiberglass batt insulation used as fireblocking shall fill the entire cross section of the wall cavity to a minimum height of 16 inches (406 mm) measured vertically. When piping, conduit or similar obstructions are encountered, the insulation shall be packed tightly around the obstruction.

302.11.1.3 Loose-fill insulation material. Loose-fill insulation material shall not be used as a fireblock unless specifically tested in the form and manner intended for use to demonstrate its ability to remain in place and to retard the spread of fire and hot gases.

302.11.2 Fireblocking integrity. The integrity of all fireblocks shall be maintained.

302.12 Draftstopping. In combustible construction where there is usable space both above and below the concealed space of a floor/ceiling assembly, draftstops shall be installed so that the area of the concealed space does not exceed 1,000 square feet (92.9 m\(^2\)). Draftstopping shall divide the concealed space into approximately equal areas. Where the assembly is enclosed by a floor membrane above and a ceiling membrane below, draftstopping shall be provided in floor/ceiling assemblies under the following circumstances:
1. Ceiling is suspended under the floor framing.

2. Floor framing is constructed of truss-type open-web or perforated members.

302.12.1 Materials. Draftstopping materials shall not be less than ½-inch (12.7 mm) gypsum board, 3/8-inch (9.5 mm) wood structural panels or other approved materials adequately supported. Draftstopping shall be installed parallel to the floor framing members unless otherwise approved by the building official. The integrity of the draftstopping shall be maintained.

302.13 Combustible insulation clearance. Combustible insulation shall be separated a minimum of 3 inches (76 mm) from recessed luminaires, fan motors and other heat-producing devices.

Exception: Where heat-producing devices are listed for lesser clearances, combustible insulation complying with the listing requirements shall be separated in accordance with the conditions stipulated in the listing.

Recessed luminaires installed in the building thermal envelope shall meet the requirements of Section 1102.4.5.

302.14 Fire resistance determination for assemblies and materials. When this chapter requires a fire resistive assembly or component, and there is no available evidence matching the assembly or component to a rated assembly or component tested in accordance with ASTM E 119 or UL 263, the fire resistance rating of the assembly or component can be evaluated by using section 721 in the “Ohio Building Code” or “Resource A, Guidelines on Fire Ratings of Archaic Materials and Assemblies in the International Existing Buildings Code.”

When this code requires an assembly or component to serve in a fire resistive manner but the assembly or component is not required to be fire resistance rated, equivalent fire resistive values can be derived from section 721 in the “Ohio Building Code” or “Resource A, Guidelines on Fire Ratings of Archaic Materials and Assemblies in the International Existing Building Code.”

SECTION 303

LIGHT, VENTILATION AND HEATING
303.1 Habitable rooms. All habitable rooms shall have an aggregate glazing area of not less than 8 percent of the floor area of such rooms. Natural ventilation shall be through windows, doors, louvers or other approved openings to the outdoor air. Such openings shall be provided with ready access or shall otherwise be readily controllable by the building occupants.

The minimum openable area to the outdoors shall be 4 percent of the floor area being ventilated.

Exceptions:

1. The glazed areas need not be openable where the opening is not required by Section 310 and an approved mechanical ventilation system capable of producing 0.35 air change per hour in the room is installed or a whole-house mechanical ventilation system is installed capable of supplying outdoor ventilation air of 15 cubic feet per minute (cfm) (78 L/s) per occupant computed on the basis of two occupants for the first bedroom and one occupant for each additional bedroom.

2. The glazed areas need not be installed in rooms where Exception 1 above is satisfied and artificial light is provided capable of producing an average illumination of 6 footcandles (65 lux) over the area of the room at a height of 30 inches (762 mm) above the floor level.

3. Use of sunroom additions and patio covers, as defined in Section 202, shall be permitted for natural ventilation if in excess of 40 percent of the exterior sunroom walls are open, or are enclosed only by insect screening.

303.2 Adjoining rooms. For the purpose of determining light and ventilation requirements, any room shall be considered as a portion of an adjoining room when at least one-half of the area of the common wall is open and unobstructed and provides an opening of not less than one-tenth of the floor area of the interior room but not less than 25 square feet (2.3 m²).

Exception: Openings required for light and/or ventilation shall be permitted to open into a thermally isolated sunroom addition or patio cover, provided that there is an openable area between the adjoining room and the sunroom addition or patio cover of not less than one-tenth of the floor area of the
interior room but not less than 20 square feet (2 m\(^2\)). The minimum openable area to the outdoors shall be based upon the total floor area being ventilated.

303.3 Bathrooms. Bathrooms, water closet compartments and other similar rooms shall be provided with aggregate glazing area in windows of not less than 3 square feet (0.3 m\(^2\)), one-half of which must be openable.

Exception: The glazed areas shall not be required where artificial light and a mechanical ventilation system are provided. The minimum ventilation rates shall be 50 cubic feet per minute (24 L/s) for intermittent ventilation or 20 cubic feet per minute (10 L/s) for continuous ventilation. Ventilation air from the space shall be exhausted directly to the outside.

303.4 Opening location. Outdoor intake and exhaust openings shall be located in accordance with Sections 303.4.1 and 303.4.2.

303.4.1 Intake openings. Mechanical and gravity outdoor air intake openings shall be located a minimum of 10 feet (3048 mm) from any hazardous or noxious contaminant, such as vents, chimneys, plumbing vents, streets, alleys, parking lots and loading docks, except as otherwise specified in this code. Where a source of contaminant is located within 10 feet (3048 mm) of an intake opening, such opening shall be located a minimum of 2 feet (610 mm) below the contaminant source.

For the purpose of this section, the exhaust from dwelling unit toilet rooms, bathrooms and kitchens shall not be considered as hazardous or noxious.

303.4.2 Exhaust openings. Exhaust air shall not be directed onto walkways.

303.5 Outside opening protection. Air exhaust and intake openings that terminate outdoors shall be protected with corrosion-resistant screens, louvers or grilles having a minimum opening size of \(\frac{1}{4}\) inch (6 mm) and a maximum opening size of \(\frac{1}{2}\) inch (13 mm), in any dimension. Openings shall be protected against local weather conditions. Outdoor air exhaust and intake openings shall meet the provisions for exterior wall opening protectives in accordance with this code.

303.6 Stairway illumination. All interior and exterior stairways shall be provided with a means to illuminate the stairs, including the landings and treads. Interior stairways shall be provided with an artificial light source located in the immediate vicinity of each landing of the stairway. For interior stairs the artificial light
sources shall be capable of illuminating treads and landings to levels not less than 1 foot-candle (11 lux) measured at the center of treads and landings. Exterior stairways shall be provided with an artificial light source located in the immediate vicinity of the top landing of the stairway. Exterior stairways providing access to a basement from the outside grade level shall be provided with an artificial light source located in the immediate vicinity of the bottom landing of the stairway.

Exception: An artificial light source is not required at the top and bottom landing, provided an artificial light source is located directly over each stairway section.

303.6.1 Light activation. Where lighting outlets are installed in interior stairways, there shall be a wall switch at each floor level to control the lighting outlet where the stairway has six or more risers. The illumination of exterior stairways shall be controlled from inside the dwelling unit.

Exception: Lights that are continuously illuminated or automatically controlled.

303.7 Required glazed openings. Required glazed openings shall open directly onto a street or public alley, or a yard or court located on the same lot as the building.

Exceptions:

1. Required glazed openings may face into a roofed porch where the porch abuts a street, yard or court and the longer side of the porch is at least 65 percent unobstructed and the ceiling height is not less than 7 feet (2134 mm).

2. Eave projections shall not be considered as obstructing the clear open space of a yard or court.

3. Required glazed openings may face into the area under a deck, balcony, bay or floor cantilever provided a clear vertical space at least 36 inches (914 mm) in height is provided.

303.7.1 Sunroom additions. Required glazed openings shall be permitted to open into sunroom additions or patio covers that abut a street, yard or court if in excess of 40 percent of the exterior sunroom walls are open, or are enclosed
only by insect screening, and the ceiling height of the sun-room is not less
than 7 feet (2134 mm).

303.8 Required heating. When the winter design temperature in Table 301.2(1)
is below 60°F (16°C), every dwelling unit shall be provided with heating facilities
capable of maintaining a minimum room temperature of 68°F (20°C) at a point 3
feet (914 mm) above the floor and 2 feet (610 mm) from exterior walls in all
habitable rooms at the design temperature. The installation of one or more
portable space heaters shall not be used to achieve compliance with this section.

SECTION 304
MINIMUM ROOM AREAS

304.1 Minimum area. Every dwelling unit shall have at least one habitable room
that shall have not less than 120 square feet (11 m²) of gross floor area.

304.2 Other rooms. Other habitable rooms shall have a floor area of not less than
70 square feet (6.5 m²).

 Exception: Kitchens.

304.3 Minimum dimensions. Habitable rooms shall not be less than 7 feet (2134
mm) in any horizontal dimension.

 Exception: Kitchens.

304.4 Height effect on room area. Portions of a room with a sloping ceiling
measuring less than 5 feet (1524 mm) or a furred ceiling measuring less than 7
feet (2134 mm) from the finished floor to the finished ceiling shall not be
considered as contributing to the minimum required habitable area for that room.

SECTION 305
CEILING HEIGHT

305.1 Minimum height. Habitable space, hallways, bathrooms, toilet rooms,
laundry rooms and portions of basements containing these spaces shall have a
ceiling height of not less than 7 feet (2134 mm).

 Exceptions:
1. For rooms with sloped ceilings, at least 50 percent of the required floor area of the room must have a ceiling height of at least 7 feet (2134 mm) and no portion of the required floor area may have a ceiling height of less than 5 feet (1524 mm).

2. Bathrooms shall have a minimum ceiling height of 6 feet 8 inches (2032 mm) at the center of the front clearance area for fixtures as shown in Figure 307.1. The ceiling height above fixtures shall be such that the fixture is capable of being used for its intended purpose. A shower or tub equipped with a showerhead shall have a minimum ceiling height of 6 feet 8 inches (2032 mm) above a minimum area 30 inches (762 mm) by 30 inches (762 mm) at the showerhead.

305.1.1 Basements

Portions of basements that do not contain habitable space, hallways, bathrooms, toilet rooms and laundry rooms shall have a ceiling height of not less than 6 feet 8 inches (2032 mm).

Exceptions:

1. Beams, girders, ducts or other obstructions may project to within 6 feet 4 inches (1931 mm) of the finished floor.

2. *Habitable spaces created in existing basements shall be permitted to have ceiling heights of not less than 6 feet 8 inches (2032 mm). Obstructions may project to within 6 feet, 4 inches of the basement floor.*

SECTION 306

SANITATION

306.1 Toilet facilities. Every dwelling unit shall be provided with a water closet, lavatory, and a bathtub or shower.

306.2 Kitchen. Each dwelling unit shall be provided with a kitchen area and every kitchen area shall be provided with a sink.

306.3 Sewage disposal. All plumbing fixtures shall be connected to a sanitary sewer or to an approved private sewage disposal system.

306.4 Water supply to fixtures. All plumbing fixtures shall be connected to an approved water supply. Kitchen sinks, lavatories, bathtubs, showers, bidets,
laundry tubs and washing machine outlets shall be provided with hot and cold water.

SECTION 307
TOILET, BATH AND SHOWER SPACES

307.1 Space required. Fixtures shall be spaced in accordance with Figure 307.1, and in accordance with the requirements of the plumbing code.

For SI: 1 inch = 25.4 mm.

FIGURE 307.1
MINIMUM FIXTURE CLEARANCES

307.2 Bathtub and shower spaces. Bathtub and shower floors and walls above bathtubs with installed shower heads and in shower compartments shall be finished with a nonabsorbent surface. Such wall surfaces shall extend to a height of not less than 6 feet (1829 mm) above the floor.

SECTION 308
GLAZING
308.1 Identification. Except as indicated in Section 308.1.1 each pane of glazing installed in hazardous locations as defined in Section 308.4 shall be provided with a manufacturer’s designation specifying who applied the designation, designating the type of glass and the safety glazing standard with which it complies, which is visible in the final installation. The designation shall be acid etched, sandblasted, ceramic-fired, laser etched, embossed, or be of a type which once applied cannot be removed without being destroyed. A label shall be permitted in lieu of the manufacturer’s designation.

Exceptions:

1. For other than tempered glass, manufacturer’s designations are not required provided the building official approves the use of a certificate, affidavit or other evidence confirming compliance with this code.
2. Tempered spandrel glass is permitted to be identified by the manufacturer with a removable paper designation.

308.1.1 Identification of multiple assemblies. Multipane assemblies having individual panes not exceeding 1 square foot (0.09 m²) in exposed area shall have at least one pane in the assembly identified in accordance with Section 308.1. All other panes in the assembly shall be labeled “CPSC 16 CFR 1201” or “ANSI Z97.1” as appropriate.

308.2 Louvered windows or jalousies. Regular, float, wired or patterned glass in jalousies and louvered windows shall be no thinner than nominal $\frac{3}{16}$ inch (5 mm) and no longer than 48 inches (1219 mm). Exposed glass edges shall be smooth.

308.2.1 Wired glass prohibited. Wired glass with wire exposed on longitudinal edges shall not be used in jalousies or louvered windows.

308.3 Human impact loads. Individual glazed areas, including glass mirrors in hazardous locations such as those indicated as defined in Section 308.4, shall pass the test requirements of Section 308.3.1.

Exceptions:

1. Louvered windows and jalousies shall comply with Section 308.2.
2. Mirrors and other glass panels mounted or hung on a surface that provides a continuous backing support.
3. Glass unit masonry complying with Section 610.

308.3.1 Impact test. Where required by other sections of the code, glazing shall be tested in accordance with CPSC 16 CFR 1201. Glazing shall comply with the test criteria for Category I or II as indicated in Table 308.3.1(1).

Exception: Glazing not in doors or enclosures for hot tubs, whirlpools, saunas, steam rooms, bathtubs and showers shall be permitted to be tested in accordance with ANSI Z97.1. Glazing shall comply with the test criteria for Class A or B as indicated in Table 308.3.1(2).

<table>
<thead>
<tr>
<th>EXPOSED SURFACE AREA OF ONE SIDE OF ONE LITE</th>
<th>GLAZING IN STORM OR COMBINATION DOORS (Category Class)</th>
<th>GLAZING IN DOORS (Category Class)</th>
<th>GLAZED PANELS REGULATED BY ITEM 23 OF SECTION 308.4 (Category Class)</th>
<th>GLAZED PANELS REGULATED BY ITEM 62 OF SECTION 308.4 (Category Class)</th>
<th>GLAZING IN DOORS AND ENCLOSURES REGULATED BY ITEM 5 OF SECTION 308.4 (Category Class)</th>
<th>SLIDING GLASS DOORS PATIO TYPE (Category Class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 square feet or less</td>
<td>I</td>
<td>I</td>
<td>NR</td>
<td>I</td>
<td>II</td>
<td>II</td>
</tr>
<tr>
<td>More than 9 square feet</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>II</td>
</tr>
</tbody>
</table>

For SI: 1 square foot = 0.0929 m².
NR means “No Requirement.”

<table>
<thead>
<tr>
<th>EXPOSED SURFACE AREA OF ONE SIDE OF ONE LITE</th>
<th>GLAZED PANELS REGULATED BY ITEM 23 OF SECTION 308.4 (Category Class)</th>
<th>GLAZED PANELS REGULATED BY ITEM 62 OF SECTION 308.4 (Category Class)</th>
<th>DOORS AND ENCLOSURES REGULATED BY ITEM 5 OF SECTION 308.4 (Category Class)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 square feet or less</td>
<td>No requirement</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>More than 9 square feet</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

For SI: 1 square foot = 0.0929 m².
a. Use is permitted only by the exception to Section 308.3.1.

308.4 Hazardous locations. The following shall be considered specific hazardous locations for the purposes of glazing:

1. Glazing in all fixed and operable panels of swinging, sliding and bifold doors.

Exceptions:
1. Glazed openings of a size through which a 3-inch diameter (76 mm) sphere is unable to pass.

2. Decorative glazing.

2. Glazing in an individual fixed or operable panel adjacent to a door where the nearest vertical edge is within a 24-inch (610 mm) arc of the door in a closed position and whose bottom edge is less than 60 inches (1524 mm) above the floor or walking surface.

Exceptions:

1. Decorative glazing.

2. When there is an intervening wall or other permanent barrier between the door and the glazing.

3. Glazing in walls on the latch side of and perpendicular to the plane of the door in a closed position.

4. Glazing adjacent to a door where access through the door is to a closet or storage area 3 feet (914 mm) or less in depth.

5. Glazing that is adjacent to the fixed panel of patio doors.

3. Glazing in an individual fixed or operable panel that meets all of the following conditions:

3.1 The exposed area of an individual pane is larger than 9 square feet (0.836 m²); and

3.2 The bottom edge of the glazing is less than 18 inches (457 mm) above the floor; and

3.3 The top edge of the glazing is more than 36 inches (914 mm) above the floor; and

3.4 One or more walking surfaces are within 36 inches (914 mm), measured horizontally and in a straight line, of the glazing.

Exceptions:
1. Decorative glazing.

2. When a horizontal rail is installed on the accessible side(s) of the glazing 34 to 38 inches (864 to 965) above the walking surface. The rail shall be capable of withstanding a horizontal load of 50 pounds per linear foot (730 N/m) without contacting the glass and be a minimum of 1½ inches (38 mm) in cross sectional height.

3. Outboard panes in insulating glass units and other multiple glazed panels when the bottom edge of the glass is 25 feet (7620 mm) or more above grade, a roof, walking surfaces or other horizontal [within 45 degrees (0.79 rad) of horizontal] surface adjacent to the glass exterior.

4. All glazing in railings regardless of area or height above a walking surface. Included are structural baluster panels and nonstructural infill panels.

5. Glazing in enclosures for or walls facing hot tubs, whirlpools, saunas, steam rooms, bathtubs and showers where the bottom exposed edge of the glazing is less than 60 inches (1524 mm) measured vertically above any standing or walking surface.

 Exception: Glazing that is more than 60 inches (1524 mm), measured horizontally and in a straight line, from the waters edge of a hot tub, whirlpool or bathtub.

6. Glazing in walls and fences adjacent to indoor and outdoor swimming pools, hot tubs and spas where the bottom edge of the glazing is less than 60 inches (1524 mm) above a walking surface and within 60 inches (1524 mm), measured horizontally and in a straight line, of the water’s edge. This shall apply to single glazing and all panes in multiple glazing.

7. Glazing adjacent to stairways, landings and ramps within 36 inches (914 mm) horizontally of a walking surface when the exposed surface of the glazing is less than 60 inches (1524 mm) above the plane of the adjacent walking surface.

 Exceptions:
1. When a rail is installed on the accessible side(s) of the glazing 34 to 38 inches (864 to 965 mm) above the walking surface. The rail shall be capable of withstanding a horizontal load of 50 pounds per linear foot (730 N/m) without contacting the glass and be a minimum of 1½ inches (38 mm) in cross sectional height.

2. The side of the stairway has a guardrail or handrail, including balusters or in-fill panels, complying with Sections 311.7.7 and 312 and the plane of the glazing is more than 18 inches (457 mm) from the railing; or

3. When a solid wall or panel extends from the plane of the adjacent walking surface to 34 inches (863 mm) to 36 inches (914 mm) above the walking surface and the construction at the top of that wall or panel is capable of withstanding the same horizontal load as a guard.

8. Glazing adjacent to stairways within 60 inches (1524 mm) horizontally of the bottom tread of a stairway in any direction when the exposed surface of the glazing is less than 60 inches (1524 mm) above the nose of the tread.

Exceptions:

1. The side of the stairway has a guardrail or handrail, including balusters or in-fill panels, complying with Sections 311.7.7 and 312 and the plane of the glass is more than 18 inches (457 mm) from the railing; or

2. When a solid wall or panel extends from the plane of the adjacent walking surface to 34 inches (864 mm) to 36 inches (914 mm) above the walking surface and the construction at the top of that wall or panel is capable of withstanding the same horizontal load as a guard.

308.5 Site built windows. Site built windows shall comply with Section 2404 of the Ohio Building Code.

308.6 Skylights and sloped glazing. Skylights and sloped glazing shall comply with the following sections.
308.6.1 Definitions.

SKYLIGHTS AND SLOPED GLAZING. Glass or other transparent or translucent glazing material installed at a slope of 15 degrees (0.26 rad) or more from vertical. Glazing materials in skylights, including unit skylights, solariums, sunrooms, roofs and sloped walls are included in this definition.

UNIT SKYLIGHT. A factory assembled, glazed fenestration unit, containing one panel of glazing material, that allows for natural daylighting through an opening in the roof assembly while preserving the weather-resistant barrier of the roof.

308.6.2 Permitted materials. The following types of glazing may be used:

1. Laminated glass with a minimum 0.015-inch (0.38 mm) polyvinyl butyral interlayer for glass panes 16 square feet (1.5 m2) or less in area located such that the highest point of the glass is not more than 12 feet (3658 mm) above a walking surface or other accessible area; for higher or larger sizes, the minimum interlayer thickness shall be 0.030 inch (0.76 mm).

2. Fully tempered glass.

3. Heat-strengthened glass.

4. Wired glass.

5. Approved rigid plastics.

308.6.3 Screens, general. For fully tempered or heat-strengthened glass, a retaining screen meeting the requirements of Section 308.6.7 shall be installed below the glass, except for fully tempered glass that meets either condition listed in Section 308.6.5.

308.6.4 Screens with multiple glazing. When the inboard pane is fully tempered, heat-strengthened or wired glass, a retaining screen meeting the requirements of Section 308.6.7 shall be installed below the glass, except for either condition listed in Section 308.6.5. All other panes in the multiple glazing may be of any type listed in Section 308.6.2.
308.6.5 Screens not required. Screens shall not be required when fully tempered glass is used as single glazing or the inboard pane in multiple glazing and either of the following conditions are met:

1. Glass area 16 square feet (1.49 m²) or less. Highest point of glass not more than 12 feet (3658 mm) above a walking surface or other accessible area, nominal glass thickness not more than \(\frac{3}{16}\) inch (4.8 mm), and (for multiple glazing only) the other pane or panes fully tempered, laminated or wired glass.

2. Glass area greater than 16 square feet (1.49 m²). Glass sloped 30 degrees (0.52 rad) or less from vertical, and highest point of glass not more than 10 feet (3048 mm) above a walking surface or other accessible area.

308.6.6 Glass in greenhouses. Any glazing material is permitted to be installed without screening in the sloped areas of greenhouses, provided the greenhouse height at the ridge does not exceed 20 feet (6096 mm) above grade.

308.6.7 Screen characteristics. The screen and its fastenings shall be capable of supporting twice the weight of the glazing, be firmly and substantially fastened to the framing members, and have a mesh opening of no more than 1 inch by 1 inch (25 mm by 25 mm).

308.6.8 Curbs for skylights. All unit skylights installed in a roof with a pitch flatter than three units vertical in 12 units horizontal (25-percent slope) shall be mounted on a curb extending at least 4 inches (102 mm) above the plane of the roof unless otherwise specified in the manufacturer’s installation instructions.

308.6.9 Testing and labeling. Unit skylights shall be tested by an approved independent laboratory, and bear a label identifying manufacturer, performance grade rating and approved inspection agency to indicate compliance with the requirements of AAMA/WDMA/CSA 101/I.S.2/A440.

SECTION 309
GARAGES AND CARPORTS

309.1 Floor surface. Garage floor surfaces shall be of approved noncombustible material.
The area of floor used for parking of automobiles or other vehicles shall be sloped to facilitate the movement of liquids to a drain or toward the main vehicle entry doorway.

309.2 Carports. Carports shall be open on at least two sides. Carport floor surfaces shall be of approved noncombustible material. Carports not open on at least two sides shall be considered a garage and shall comply with the provisions of this section for garages.

Exception: Asphalt surfaces shall be permitted at ground level in carports.

The area of floor used for parking of automobiles or other vehicles shall be sloped to facilitate the movement of liquids to a drain or toward the main vehicle entry doorway.

309.3 Flood hazard areas. For buildings located in flood hazard areas as established by Table 301.2(1), garage floors shall be:

1. Elevated to or above the design flood elevation as determined in Section 322; or

2. Located below the design flood elevation provided they are at or above grade on at least one side, are used solely for parking, building access or storage, meet the requirements of Section 322 and are otherwise constructed in accordance with this code.

309.4 Automatic garage door openers. Automatic garage door openers, if provided, shall be listed in accordance with UL 325.

SECTION 310

EMERGENCY ESCAPE AND RESCUE OPENINGS

310.1 Emergency escape and rescue required. Every sleeping room shall have at least one operable emergency escape and rescue opening. Where emergency escape and rescue openings are provided they shall have a sill height of not more than 44 inches (1118 mm) above the floor. Where a door opening having a threshold below the adjacent ground elevation serves as an emergency escape and rescue opening and is provided with a bulkhead enclosure, the bulkhead enclosure shall comply with Section 310.3. The net clear opening dimensions required by this section shall be obtained by the normal operation of the emergency escape
and rescue opening from the inside. Emergency escape and rescue openings with a finished sill height below the adjacent ground elevation shall be provided with a window well in accordance with Section 310.2.

310.1.1 Minimum opening area. All emergency escape and rescue openings shall have a minimum net clear opening of 5.7 square feet (0.530 m²).

Exception: Grade floor openings shall have a minimum net clear opening of 5 square feet (0.465 m²).

310.1.2 Minimum opening height. The minimum net clear opening height shall be 24 inches (610 mm).

310.1.3 Minimum opening width. The minimum net clear opening width shall be 20 inches (508 mm).

310.1.4 Operational constraints. Emergency escape and rescue openings shall be operational from the inside of the room without the use of keys, tools or special knowledge.

310.1.5 Replacement windows. Replacement windows installed in accordance with Section 113.6.1 shall not be required to comply with sections 310.1.1 through 310.1.3.

310.2 Window wells. The minimum horizontal area of the window well shall be 9 square feet (0.9 m²), with a minimum horizontal projection and width of 36 inches (914 mm). The area of the window well shall allow the emergency escape and rescue opening to be fully opened.

Exception: The ladder or steps required by Section 310.2.1 shall be permitted to encroach a maximum of 6 inches (152 mm) into the required dimensions of the window well.

310.2.1 Ladder and steps. Window wells with a vertical depth greater than 44 inches (1118 mm) shall be equipped with a permanently affixed ladder or steps usable with the window in the fully open position. Ladders or steps required by this section shall not be required to comply with Sections 311.7 and 311.8. Ladders or rungs shall have an inside width of at least 12 inches (305 mm), shall project at least 3 inches (76 mm) from the wall and shall be spaced not more than 18 inches (457 mm) on center vertically for the full height of the window well.
310.3 Bulkhead enclosures. Bulkhead enclosures shall provide direct access to the basement. The bulkhead enclosure with the door panels in the fully open position shall provide the minimum net clear opening required by Section 310.1.1. Bulkhead enclosures shall also comply with Section 311.7.9.2.

310.4 Bars, grilles, covers and screens. Bars, grilles, covers, screens or similar devices are permitted to be placed over emergency escape and rescue openings, bulkhead enclosures, or window wells that serve such openings, provided the minimum net clear opening size complies with Sections 310.1.1 to 310.1.3, and such devices shall be releasable or removable from the inside without the use of a key, tool, special knowledge or force greater than that which is required for normal operation of the escape and rescue opening.

310.5 Emergency escape windows under decks and porches. Emergency escape windows are allowed to be installed under decks and porches provided the location of the deck allows the emergency escape window to be fully opened and provides a path not less than 36 inches (914 mm) in height to a yard or court.

SECTION 311
MEANS OF EGRESS

311.1 Means of egress. All dwellings shall be provided with a means of egress as provided in this section. The means of egress shall provide a continuous and unobstructed path of vertical and horizontal egress travel from all portions of the dwelling to the exterior of the dwelling at the required egress door without requiring travel through a garage.

311.2 Egress door. At least one egress door shall be provided for each dwelling unit. The egress door shall be side-hinged, and shall provide a minimum clear width of 32 inches (813 mm) when measured between the face of the door and the stop, with the door open 90 degrees (1.57 rad). The minimum clear height of the door opening shall not be less than 78 inches (1981 mm) in height measured from the top of the threshold to the bottom of the stop. Other doors shall not be required to comply with these minimum dimensions. Egress doors shall be readily openable from inside the dwelling without the use of a key or special knowledge or effort.

311.2.1 Garage access doors. Garages shall be served by at least one side-hinged door not less than 2 feet 6 inches (760 mm) in width and 6 feet 8
inches (2032 mm) in height. Such door located between a dwelling and an attached garage shall be acceptable for meeting this requirement.

311.3 Floors and landings at exterior doors

There shall be a landing or floor on each side of each exterior door. The width of each landing shall not be less than the door served. Every landing shall have a minimum dimension of 36 inches (914 mm) measured in the direction of travel. Exterior landings shall be permitted to have a slope not to exceed ¼ unit vertical in 12 units horizontal (2-percent).

Exception: Exterior balconies less than 60 square feet (5.6 m²) and only accessible from a door are permitted to have a landing less than 36 inches (914 mm) measured in the direction of travel.

311.3.1 Floor elevations at the required egress doors

Landings or floors at the required egress door shall not be more than 1½ inches (38 mm) lower than the top of the threshold.

Exception: The exterior landing or floor shall not be more than 8 ¼ inches (196 mm) below the top of the threshold provided the door does not swing over the landing or floor.

When exterior landings or floors serving the required egress door are not at grade, they shall be provided with access to grade by means of a ramp in accordance with Section 311.8 or a stairway in accordance with Section 311.7.

311.3.2 Floor elevations for other exterior doors

Doors other than the required egress door shall be provided with landings or floors not more than 8 ¼ inches (196 mm) below the top of the threshold.

Exception: A landing is not required where a stairway of two or fewer risers is located on the exterior side of the door, provided the door does not swing over the stairway.

311.3.3 Storm and screen doors

Storm and screen doors shall be permitted to swing over all exterior stairs and landings.

311.4 Vertical egress

Egress from finished levels including attics and basements not provided with an egress door in accordance with Section 311.2 shall be by a ramp in accordance with Section 311.8 or a stairway in accordance with Section 311.7.
311.5 Construction.

311.5.1 Attachment. Exterior landings, decks, balconies, stairs and similar facilities shall be positively anchored to the primary structure to resist both vertical and lateral forces or shall be designed to be self-supporting. Attachment shall not be accomplished by use of toenails or nails subject to withdrawal.

311.6 Hallways. The minimum width of a hallway shall be not less than 3 feet (914 mm).

311.7 Stairways.

311.7.1 Width. Stairways shall not be less than 36 inches (914 mm) in clear width at all points above the permitted handrail height and below the required headroom height. Handrails shall not project more than 4.5 inches (114 mm) on either side of the stairway and the minimum clear width of the stairway at and below the handrail height, including treads and landings, shall not be less than 31½ inches (787 mm) where a handrail is installed on one side and 27 inches (698 mm) where handrails are provided on both sides.

Exception: The width of spiral stairways shall be in accordance with Section 311.7.9.1.

311.7.2 Headroom. The minimum headroom in all parts of the stairway shall not be less than 6 feet 8 inches (2032 mm) measured vertically from the sloped line adjoining the tread nosing or from the floor surface of the landing or platform on that portion of the stairway.

Exception: Where the nosings of treads at the side of a flight extend under the edge of a floor opening through which the stair passes, the floor opening shall be allowed to project horizontally into the required headroom a maximum of 4½ inches (121 mm).

311.7.3 Walkline. The walkline across winder treads shall be concentric to the curved direction of travel through the turn and located 12 inches (305 mm) from the side where the winders are narrower. The 12-inch (305 mm) dimension shall be measured from the widest point of the clear stair width at the walking surface of the winder. If winders are adjacent within the flight, the point of the widest clear stair width of the adjacent winders shall be used.
311.7.4 **Stair treads and risers.** Stair treads and risers shall meet the requirements of this section. For the purposes of this section all dimensions and dimensioned surfaces shall be exclusive of carpets, rugs or runners.

311.7.4.1 **Riser height.** The maximum riser height shall be 8 ¼ inches (196 mm). The riser shall be measured vertically between leading edges of the adjacent treads. The greatest riser height within any flight of stairs shall not exceed the smallest by more than \(\frac{3}{8}\) inch (9.5 mm).

311.7.4.2 **Tread depth.** The minimum tread depth shall be 9 inches (254 mm). The tread depth shall be measured horizontally between the vertical planes of the foremost projection of adjacent treads and at a right angle to the tread's leading edge. The greatest tread depth within any flight of stairs shall not exceed the smallest by more than \(\frac{3}{8}\) inch (9.5 mm). Consistently shaped winders at the walkline shall be allowed within the same flight of stairs as rectangular treads and do not have to be within \(\frac{3}{8}\) inch (9.5 mm) of the rectangular tread depth.

Winder treads shall have a minimum tread depth of 9 40/100 inches (254 mm) measured between the vertical planes of the foremost projection of adjacent treads at the intersections with the walkline. Winder treads shall have a minimum tread depth of 6 inches (152 mm) at any point within the clear width of the stair. Within any flight of stairs, the largest winder tread depth at the walkline shall not exceed the smallest winder tread by more than \(\frac{3}{8}\) inch (9.5 mm).

311.7.4.3 **Profile.** The radius of curvature at the nosing shall be no greater than \(\frac{9}{16}\) inch (14 mm). A nosing not less than \(\frac{3}{4}\) inch (19 mm) but not more than 1¼ inches (32 mm) shall be provided on stairways with solid risers. The greatest nosing projection shall not exceed the smallest nosing projection by more than \(\frac{3}{8}\) inch (9.5 mm) between two stories, including the nosing at the level of floors and landings. Beveling of nosings shall not exceed \(\frac{1}{2}\) inch (12.7 mm). Risers shall be vertical or sloped under the tread above from the underside of the nosing above at an angle not more than 30 degrees (0.51 rad) from the vertical. Open risers are permitted, provided that the opening between treads does not permit the passage of a 4-inch diameter (102 mm) sphere.

Exceptions:
1. A nosing is not required where the tread depth is a minimum of 11 inches (279 mm).

2. The opening between adjacent treads is not limited on stairs with a total rise of 30 inches (762 mm) or less.

311.7.4 Exterior wood/plastic composite stair treads. Wood/plastic composite stair treads shall comply with the provisions of Section 317.4.

311.7.5 Landings for stairways. There shall be a floor or landing at the top and bottom of each stairway. A flight of stairs shall not have a vertical rise larger than 12 feet (3658 mm) between floor levels or landings. The width of each landing shall not be less than the width of the stairway served. Every landing shall have a minimum dimension of 36 inches (914 mm) measured in the direction of travel.

Exception: A floor or landing is not required at the top of an interior flight of stairs, including stairs in an enclosed garage, provided a door does not swing over the stairs.

311.7.6 Stairway walking surface. The walking surface of treads and landings of stairways shall be sloped no steeper than one unit vertical in 48 inches horizontal (2-percent slope).

311.7.7 Handrails. Handrails shall be provided on at least one side of each continuous run of treads or flight with four or more risers.

311.7.7.1 Height. Handrail height, measured vertically from the sloped plane adjoining the tread nosing, or finish surface of ramp slope, shall be not less than 34 inches (864 mm) and not more than 38 inches (965 mm).

Exceptions:

1. The use of a volute, turnout or starting easing shall be allowed over the lowest tread.

2. When handrail fittings or bendings are used to provide continuous transition between flights, the transition from handrail to guardrail, or used at the start of a flight, the handrail height at the fittings or bendings shall be permitted to exceed the maximum height.
311.7.7.2 Continuity. Handrails for stairways shall be continuous for the full length of the flight, from a point directly above the top riser of the flight to a point directly above the lowest riser of the flight. Handrail ends shall be returned or shall terminate in newel posts or safety terminals. Handrails adjacent to a wall shall have a space of not less than 1½ inch (38 mm) between the wall and the handrails.

Exceptions:

1. Handrails shall be permitted to be interrupted by a newel post at the turn.

2. The use of a volute, turnout, starting easing or starting newel shall be allowed over the lowest tread.

3. Two or more separate rails shall be considered continuous if the termination of the rails occurs over a single tread and positioned within 4 inches of each other. If the transition occurs between a wall mounted handrail and handrail/guardrail combination, the wall mounted handrail shall return into the wall.

311.7.7.3 Grip-size. All required handrails shall be of one of the following types or provide equivalent graspability.

1. Type I. Handrails with a circular cross section shall have an outside diameter of at least 1¼ inches (32 mm) and not greater than 2 inches (51 mm). If the handrail is not circular, it shall have a perimeter dimension of at least 4 inches (102 mm) and not greater than 6¼ inches (160 mm) with a maximum cross section of dimension of 2¼ inches (57 mm). Edges shall have a minimum radius of 0.01 inch (0.25 mm).

2. Type II. Handrails with a perimeter greater than 6¼ inches (160 mm) shall have a graspable finger recess area on both sides of the profile. The finger recess shall begin within a distance of ¾ inch (19 mm) measured vertically from the tallest portion of the profile and achieve a depth of at least 5/16 inch (8 mm) within 7/8 inch (22 mm) below the widest portion of the profile. This required depth shall continue for at least 3½ inch (10 mm) to a level that is not less
than 1¾ inches (45 mm) below the tallest portion of the profile. The minimum width of the handrail above the recess shall be 1¼ inches (32 mm) to a maximum of 2¼ inches (70 mm). Edges shall have a minimum radius of 0.01 inch (0.25 mm).

311.7.7.4 Exterior wood/plastic composite handrails. Wood/plastic composite handrails shall comply with the provisions of Section 317.4.

311.7.8 Illumination. All stairs shall be provided with illumination in accordance with Section 303.6.

311.7.9 Special stairways. Spiral stairways and bulkhead enclosure stairways shall comply with all requirements of Section 311.7 except as specified below.

311.7.9.1 Spiral stairways. Spiral stairways are permitted, provided the minimum clear width at and below the handrail shall be 26 inches (660 mm) with each tread having a 7½-inch (190 mm) minimum tread depth at 12 inches (914 mm) from the narrower edge. All treads shall be identical, and the rise shall be no more than 9½ inches (241 mm). A minimum headroom of 6 feet 6 inches (1982 mm) shall be provided.

311.7.9.2 Bulkhead enclosure stairways. Stairways serving bulkhead enclosures, not part of the required building egress, providing access from the outside grade level to the basement shall be exempt from the requirements of Sections 311.3 and 311.7 where the maximum height from the basement finished floor level to grade adjacent to the stairway does not exceed 8 feet (2438 mm) and the grade level opening to the stairway is covered by a bulkhead enclosure with hinged doors or other approved means.

311.8 Ramps.

311.8.1 Maximum slope. Ramps shall have a maximum slope of 1 unit vertical in 8 units horizontal (12.5 percent slope).

311.8.2 Landings required. A minimum 3-foot-by-3-foot (914 mm by 914 mm) landing shall be provided:

1. At the top and bottom of ramps.

2. Where doors open onto ramps.
3. Where ramps change direction.

311.8.3 Handrails required. Handrails shall be provided on at least one side of all ramps exceeding a slope of one unit vertical in 12 units horizontal (8.33-percent slope).

311.8.3.1 Height. Handrail height, measured above the finished surface of the ramp slope, shall be not less than 34 inches (864 mm) and not more than 38 inches (965 mm).

311.8.3.2 Grip size. Handrails on ramps shall comply with Section 311.7.7.3.

311.8.3.3 Continuity. Handrails where required on ramps shall be continuous for the full length of the ramp. Handrail ends shall be returned or shall terminate in newel posts or safety terminals. Handrails adjacent to a wall shall have a space of not less than 1½ inches (38 mm) between the wall and the handrails.

SECTION 312
GUARDS

312.1 Where required. Guards shall be located along open-sided walking surfaces, including stairs, ramps and landings, that are located more than 30 inches (762 mm) measured vertically to the floor or grade below at any point within 36 inches (914 mm) horizontally to the edge of the open side. Insect screening shall not be considered as a guard.

Exception: Guards are not required where a protective bar is installed 34 inches to 38 inches (864 mm to 965 mm) above the porch or deck on the interior side of the screening. The protective bar shall be capable of resisting a horizontal load of 50 pounds per linear foot (730 N/m) without contacting the screen and be a minimum of 1½ inches (38 mm) in height.

312.2 Height. Required guards at open-sided walking surfaces, including stairs, porches, balconies or landings, shall be not less than 36 inches (914 mm) high measured vertically above the adjacent walking surface, adjacent fixed seating or the line connecting the leading edges of the treads.

Exceptions:
1. Guards on the open sides of stairs shall have a height not less than 34 inches (864 mm) measured vertically from a line connecting the leading edges of the treads.

2. Where the top of the guard also serves as a handrail on the open sides of stairs, the top of the guard shall not be not less than 34 inches (864 mm) and not more than 38 inches (965 mm) measured vertically from a line connecting the leading edges of the treads.

312.3 Opening limitations. Required guards shall not have openings from the walking surface to the required guard height which allow passage of a sphere 4 inches (102 mm) in diameter.

Exceptions:

1. The triangular openings at the open side of a stair, formed by the riser, tread and bottom rail of a guard, shall not allow passage of a sphere 6 inches (153 mm) in diameter.

2. Guards on the open sides of stairs shall not have openings which allow passage of a sphere $4\frac{3}{8}$ inches (111 mm) in diameter.

312.4 Exterior woodplastic composite guards. Woodplastic composite guards shall comply with the provisions of Section 317.4.

SECTION 313
AUTOMATIC FIRE SPRINKLER SYSTEMS

313.1 Townhouse automatic fire sprinkler systems. An automatic residential fire sprinkler system is not required to be installed in townhouses or other R-3 occupancy designs using this code.

313.1.1 Design and installation for non-required systems. When a non-required automatic residential fire sprinkler system is intended to be installed within a townhouse or a dwelling in another R-3 occupancy using this code, the system shall be designed and installed in accordance with Section 2904, NFPA 13, NFPA 13R or NFPA 13D as referenced in Chapter 44 of this code.
313.2 One-, two- and three-family dwellings automatic fire systems. An automatic residential fire sprinkler system is not required to be installed in one-, two-, or three-family dwellings.

313.2.1 Design and installation for non-required systems. When an automatic residential fire sprinkler systems is intended to be installed, it shall be designed and installed in accordance with Section 2904, NFPA 13, NFPA 13R or NFPA 13D as referenced in Chapter 44 of this code.

313.3 Design and installation of non-required fire sprinkler systems. Any full or partial fire sprinkler system not required by this code shall be permitted to be installed for partial or complete protection provided that such system meets the requirements of this code to the extent of the intended installation.

SECTION 314
SMOKE ALARMS

314.1 Smoke detection and notification Listing, Installation, and Technology. All smoke alarms shall be listed in accordance with UL 217 and installed in accordance with the provisions of this code and the household fire warning equipment provisions of NFPA 72. On each level within each dwelling unit smoke alarms utilizing photoelectric and ionization technologies shall be installed. Separate or dual-sensing smoke alarms may be used. A smoke alarm located in accordance with section 314.3(2) shall include photoelectric technology.

Exception: A system meeting the requirements of Section 314.2 is not required to include both technologies.

314.2 Smoke detection systems. Household fire alarm systems installed in accordance with NFPA 72 that include smoke alarms, or a combination of smoke detector and audible notification device installed as required by this section for smoke alarms, shall be permitted. The household fire alarm system shall provide the same level of smoke detection and alarm as required by this section for smoke alarms. Where a household fire warning system is installed using a combination of smoke detector and audible notification device(s), it shall become a permanent fixture of the occupancy and owned by the homeowner. The system shall be maintained in accordance with NFPA 72.
Exception: Where separate smoke alarms are provided meeting all other the requirements of Section 314.4 this section, the smoke detection system is not required to be a permanent fixture of the occupancy or owned by the homeowner.

314.3 Location. Smoke alarms shall be installed in the following locations:

1. In each sleeping room.

2. Outside each separate sleeping area in the immediate vicinity of the sleeping rooms.

3. On each additional story of the dwelling, including basements and habitable attics but not including crawl spaces and uninhabitable attics. In dwellings or dwelling units with split levels and without an intervening door between the adjacent levels, a smoke alarm installed on the upper level shall suffice for the adjacent lower level provided that the lower level is less than one full story below the upper level.

When more than one smoke alarm is required to be installed within an individual dwelling unit the alarm devices shall be interconnected in such a manner that the actuation of one alarm will activate all of the alarms in the individual unit.

314.3.1 Alterations, repairs and additions. When alterations, repairs or additions requiring an approval are made to the spaces described in items 1 and 2 of Section 314.3, smoke alarms shall be provided in those spaces as required for a new dwelling. When one or more sleeping rooms are added or created in existing dwellings, the new sleeping rooms and the immediate vicinity outside each sleeping room shall be equipped with smoke alarms as required for new dwellings.

Exceptions:

1. Work involving the exterior surfaces of dwellings, such as the replacement of roofing or siding, or the addition or replacement of windows or doors, or the addition of a porch or deck are exempt from the requirements of this section.

2. Installation or alteration of plumbing or mechanical systems are exempt from the requirements of this section.
314.4 **Power source.** Smoke alarms shall receive their primary power from the building wiring when such wiring is served from a commercial source, and when primary power is interrupted, shall receive power from a battery. Wiring shall be permanent and without a disconnecting switch other than those required for overcurrent protection. Smoke alarms shall be interconnected.

Exceptions:

1. Smoke alarms shall be permitted to be battery operated when installed in buildings without commercial power.

2. Interconnection and hard-wiring of smoke alarms in existing areas shall not be required where the alterations or repairs do not result in the removal of interior wall or ceiling finishes exposing the structure, unless there is an attic, crawl space or basement available which could provide access for hard wiring and interconnection without the removal of interior finishes.

SECTION 315

CARBON MONOXIDE ALARMS

315.1 **When required.** Carbon monoxide alarms are required to be installed only in new and existing dwelling units having fuel-fired appliances or having attached garages and only when any of the conditions described in this section apply.

315.1.1 **New dwelling units.** In new dwelling units, carbon monoxide alarms are required to be installed in the locations described in Section 315.2.

315.1.2 **Existing dwelling units.** In existing dwelling units, where an application for approval is required for work involving any of the following areas or systems within that dwelling unit, carbon monoxide alarms are required to be installed in the locations described in Section 315.2.

1. The addition or creation of a new sleeping room;
2. An alteration of a sleeping room;
3. An alteration in the immediate vicinity outside of a sleeping room;
4. An addition of, or an alteration to, an attached garage;
5. An addition, alteration, repair or replacement of a fuel-fired appliance.
315.2 Where required. In new dwelling units and in existing dwelling units meeting any of the conditions described in Section 315.1.2, an approved carbon monoxide alarm shall be installed outside of each separate sleeping area in the immediate vicinity of the sleeping rooms in those dwelling units.

315.3 Alarm requirements. Single station carbon monoxide alarms shall be listed as complying with UL 2034 and shall be installed in accordance with this code and the manufacturer’s installation instructions.

SECTION 316
FOAM PLASTIC

316.1 General. The provisions of this section shall govern the materials, design, application, construction and installation of foam plastic materials.

316.2 Labeling and identification. Packages and containers of foam plastic insulation and foam plastic insulation components delivered to the job site shall bear the label of an approved agency showing the manufacturer’s name, the product listing, product identification and information sufficient to determine that the end use will comply with the requirements.

316.3 Surface burning characteristics. Unless otherwise allowed in Section 316.5 or 316.6, all foam plastic or foam plastic cores used as a component in manufactured assemblies used in building construction shall have a flame spread index of not more than 75 and shall have a smoke-developed index of not more than 450 when tested in the maximum thickness intended for use in accordance with ASTM E 84 or UL 723. Loose-fill type foam plastic insulation shall be tested as board stock for the flame spread index and smoke-developed index.

Exception: Foam plastic insulation more than 4 inches (102 mm) thick shall have a maximum flame spread index of 75 and a smoke-developed index of 450 where tested at a minimum thickness of 4 inches (102 mm), provided the end use is approved in accordance with Section 316.6 using the thickness and density intended for use.

316.4 Thermal barrier. Unless otherwise allowed in Section 316.5 or Section 316.6, foam plastic shall be separated from the interior of a building by an approved thermal barrier of minimum ½ inch (12.7 mm) gypsum wallboard or an approved finish material equivalent to a thermal barrier material that will limit the average temperature rise of the unexposed surface to no more than 250°F (139°C) after 15 minutes of fire exposure complying with the ASTM E 119 or UL 263
standard time temperature curve. The thermal barrier shall be installed in such a manner that it will remain in place for 15 minutes based on NFPA 286 with the acceptance criteria of Section 302.9.4, FM 4880, UL 1040 or UL 1715.

316.5 Specific requirements. The following requirements shall apply to these uses of foam plastic unless specifically approved in accordance with Section 316.6 or by other sections of the code or the requirements of Sections 316.2 through 316.4 have been met.

316.5.1 Masonry or concrete construction. The thermal barrier specified in Section 316.4 is not required in a masonry or concrete wall, floor or roof when the foam plastic insulation is separated from the interior of the building by a minimum 1-inch (25 mm) thickness of masonry or concrete.

316.5.2 Roofing. The thermal barrier specified in Section 316.4 is not required when the foam plastic in a roof assembly or under a roof covering is installed in accordance with the code and the manufacturer’s installation instructions and is separated from the interior of the building by tongue-and-groove wood planks or wood structural panel sheathing in accordance with Section 803, not less than \(\frac{15}{32} \) inch (11.9 mm) thick bonded with exterior glue and identified as Exposure 1, with edges supported by blocking or tongue-and-groove joints or an equivalent material. The smoke-developed index for roof applications shall not be limited.

316.5.3 Attics. The thermal barrier specified in Section 316.4 is not required where all of the following apply:

1. Attic access is required by Section 807.1.
2. The space is entered only for purposes of maintenance.
3. The foam plastic insulation is protected against ignition using one of the following ignition barrier materials:
 3.1. 1½-inch-thick (38 mm) mineral fiber insulation;
 3.2. ¼-inch-thick (6.4 mm) wood structural panels;
 3.3. ³⁄₈-inch (9.5 mm) particleboard;
 3.4. ¼-inch (6.4 mm) hardboard;
3.5. \(\frac{3}{8}\text{-inch (9.5 mm)}\) gypsum board; or

3.6. Corrosion-resistant steel having a base metal thickness of 0.016 inch (0.406 mm).

The above ignition barrier is not required where the foam plastic insulation has been tested in accordance with Section 316.6.

316.5.4 Crawl spaces.

The thermal barrier specified in Section 316.4 is not required where all of the following apply:

1. Crawlspace access is required by Section 408.4
2. Entry is made only for purposes of repairs or maintenance.
3. The foam plastic insulation is protected against ignition using one of the following ignition barrier materials:
 3.1. \(1\frac{1}{2}\text{-inch-thick (38 mm)}\) mineral fiber insulation;
 3.2. \(\frac{1}{4}\text{-inch-thick (6.4 mm)}\) wood structural panels;
 3.3. \(\frac{3}{8}\text{-inch (9.5 mm)}\) particleboard;
 3.4. \(\frac{1}{4}\text{-inch (6.4 mm)}\) hardboard;
 3.5. \(\frac{3}{8}\text{-inch (9.5 mm)}\) gypsum board; or
 3.6. Corrosion-resistant steel having a base metal thickness of 0.016 inch (0.406 mm).

The above ignition barrier is not required where the foam plastic insulation has been tested in accordance with Section 316.6.

316.5.5 Foam-filled exterior doors.

Foam-filled exterior doors are exempt from the requirements of Sections 316.3 and 316.4.

316.5.6 Foam-filled garage doors.

Foam-filled garage doors in attached or detached garages are exempt from the requirements of Sections 316.3 and 316.4.
316.5.7 **Foam backer board.** The thermal barrier specified in Section 316.4 is not required where siding backer board foam plastic insulation has a maximum thickness of 0.5 inch (12.7 mm) and a potential heat of not more than 2000 Btu per square foot (22 720 kJ/m²) when tested in accordance with NFPA 259 provided that:

1. The foam plastic insulation is separated from the interior of the building by not less than 2 inches (51 mm) of mineral fiber insulation or

2. The foam plastic insulation is installed over existing exterior wall finish in conjunction with re-siding or

3. The foam plastic insulation has been tested in accordance with Section 316.6.

316.5.8 **Re-siding.** The thermal barrier specified in Section 316.4 is not required where the foam plastic insulation is installed over existing exterior wall finish in conjunction with re-siding provided the foam plastic has a maximum thickness of 0.5 inch (12.7 mm) and a potential heat of not more than 2000 Btu per square foot (22 720 kJ/m²) when tested in accordance with NFPA 259.

316.5.9 **Interior trim.** The thermal barrier specified in Section 316.4 is not required for exposed foam plastic interior trim, provided all of the following are met:

1. The minimum density is 20 pounds per cubic foot (320 kg/m³).

2. The maximum thickness of the trim is 0.5 inch (12.7 mm) and the maximum width is 8 inches (204 mm).

3. The interior trim shall not constitute more than 10 percent of the aggregate wall and ceiling area of any room or space.

4. The flame spread index does not exceed 75 when tested per ASTM E 84. The smoke-developed index is not limited.

316.5.10 **Interior finish.** Foam plastics shall be permitted as interior finish where approved in accordance with Section 316.6. Foam plastics that are used
as interior finish shall also meet the flame spread index and smoke-developed index requirements of Sections 302.9.1 and 302.9.2.

316.5.11 Sill plates and headers. Foam plastic shall be permitted to be spray applied to a sill plate and header without the thermal barrier specified in Section 316.4 subject to all of the following:

1. The maximum thickness of the foam plastic shall be 3¼ inches (83 mm).

2. The density of the foam plastic shall be in the range of 0.5 to 2.0 pounds per cubic foot (8 to 32 kg/m³).

3. The foam plastic shall have a flame spread index of 25 or less and an accompanying smoke developed index of 450 or less when tested in accordance with ASTM E 84.

316.5.12 Sheathing. Foam plastic insulation used as sheathing shall comply with Section 316.3 and Section 316.4. Where the foam plastic sheathing is exposed to the attic space at a gable or kneewall, the provisions of Section 316.5.3 shall apply.

316.6 Specific approval. Foam plastic not meeting the requirements of Sections 316.3 through 316.5 shall be specifically approved on the basis of one of the following approved tests: NFPA 286 with the acceptance criteria of Section 302.9.4, FM4880, UL 1040 or UL 1715, or fire tests related to actual end-use configurations. The specific approval shall be based on the actual end use configuration and shall be performed on the finished foam plastic assembly in the maximum thickness intended for use. Assemblies tested shall include seams, joints and other typical details used in the installation of the assembly and shall be tested in the manner intended for use.

316.7 Termite damage. The use of foam plastics in areas of “very heavy” termite infestation probability shall be in accordance with Section 318.4.

SECTION 317
PROTECTION OF WOOD AND WOOD BASED PRODUCTS AGAINST DECAY

317.1 Location required. Protection of wood and wood based products from decay shall be provided in the following locations by the use of naturally durable wood or wood that is preservative-treated in accordance with AWPA U1 for the
species, product, preservative and end use. Preservatives shall be listed in Section 4 of AWPA U1.

1. Wood joists or the bottom of a wood structural floor when closer than 18 inches (457 mm) or wood girders when closer than 12 inches (305 mm) to the exposed ground in crawl spaces or unexcavated area located within the periphery of the building foundation.

2. All wood framing members that rest on concrete or masonry exterior foundation walls and are less than 8 inches (203 mm) from the exposed ground.

3. Sills and sleepers on a concrete or masonry slab that is in direct contact with the ground unless separated from such slab by an impervious moisture barrier.

4. The ends of wood girders entering exterior masonry or concrete walls having clearances of less than ½ inch (12.7 mm) on tops, sides and ends.

5. Wood siding, sheathing and wall framing on the exterior of a building having a clearance of less than 6 inches (152 mm) from the ground or less than 2 inches (51 mm) measured vertically from concrete steps, porch slabs, patio slabs, and similar horizontal surfaces exposed to the weather.

6. Wood structural members supporting moisture-permeable floors or roofs that are exposed to the weather, such as concrete or masonry slabs, unless separated from such floors or roofs by an impervious moisture barrier.

7. Wood furring strips or other wood framing members attached directly to the interior of exterior masonry walls or concrete walls below grade except where an approved vapor retarder is applied between the wall and the furring strips or framing members.

317.1.1 Field treatment. Deleted.

317.1.2 Ground contact. All wood in contact with the ground, embedded in concrete in direct contact with the ground or embedded in concrete exposed to the weather that supports permanent structures intended for human occupancy shall be approved pressure-preservative-treated wood suitable for ground contact use, except untreated wood may be used where entirely below groundwater level or continuously submerged in fresh water.
317.1.3 Geographical areas. In geographical areas where experience has demonstrated a specific need, approved naturally durable or pressure-preservative-treated wood shall be used for those portions of wood members that form the structural supports of buildings, balconies, porches or similar permanent building appurtenances when those members are exposed to the weather without adequate protection from a roof, eave, overhang or other covering that would prevent moisture or water accumulation on the surface or at joints between members. Depending on local experience, such members may include:

1. Horizontal members such as girders, joists and decking.
2. Vertical members such as posts, poles and columns.
3. Both horizontal and vertical members.

317.1.4 Wood columns. Wood columns shall be approved wood of natural decay resistance or approved pressure-preservative-treated wood.

Exceptions:

1. Columns exposed to the weather or in basements when supported by concrete piers or metal pedestals projecting 1 inch (25.4 mm) above a concrete floor or 6 inches (152 mm) above exposed earth and the earth is covered by an approved impervious moisture barrier.

2. Columns in enclosed crawl spaces or unexcavated areas located within the periphery of the building when supported by a concrete pier or metal pedestal at a height more than 8 inches (203 mm) from exposed earth and the earth is covered by an impervious moisture barrier.

317.1.5 Exposed glued-laminated timbers. The portions of glued-laminated timbers that form the structural supports of a building or other structure and are exposed to weather and not properly protected by a roof, eave or similar covering shall be pressure treated with preservative, or be manufactured from naturally durable or preservative-treated wood.
317.2 Quality mark. Lumber and plywood required to be pressure-preservative-treated in accordance with Section 318.1 shall bear the quality mark of an approved inspection agency that maintains continuing supervision, testing and inspection over the quality of the product and that has been approved by an accreditation body that complies with the requirements of the American Lumber Standard Committee treated wood program.

317.2.1 Required information. The required quality mark on each piece of pressure-preservative-treated lumber or plywood shall contain the following information:

1. Identification of the treating plant.
2. Type of preservative.
3. The minimum preservative retention.
4. End use for which the product was treated.
5. Standard to which the product was treated.
6. Identity of the approved inspection agency.
7. The designation “Dry,” if applicable.

Exception: Quality marks on lumber less than 1 inch (25.4 mm) nominal thickness, or lumber less than nominal 1 inch by 5 inches (25.4 mm by 127 mm) or 2 inches by 4 inches (51 mm by 102 mm) or lumber 36 inches (914 mm) or less in length shall be applied by stamping the faces of exterior pieces or by end labeling not less than 25 percent of the pieces of a bundled unit.

317.3 Fasteners and connectors in contact with preservative-treated and fire-retardant-treated wood. Fasteners and connectors in contact with preservative-treated wood and fire-retardant-treated wood shall be in accordance with this section. The coating weights for zinc-coated fasteners shall be in accordance with ASTM A 153.

317.3.1 Fasteners for preservative-treated wood. Fasteners for preservative-treated wood shall be of hot dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper. Coating types and weights for connectors in
contact with preservative-treated wood shall be in accordance with the connector manufacturer’s recommendations. In the absence of manufacturer’s recommendations, a minimum of ASTM A 653 type G185 zinc-coated galvanized steel, or equivalent, shall be used.

Exceptions:

1. One-half-inch (12.7 mm) diameter or greater steel bolts.

2. Fasteners other than nails and timber rivets shall be permitted to be of mechanically deposited zinc coated steel with coating weights in accordance with ASTM B 695, Class 55 minimum.

317.3.2 Fastenings for wood foundations. Fastenings for wood foundations shall be as required in AF&PA PWF.

317.3.3 Fasteners for fire-retardant-treated wood used in exterior applications or wet or damp locations. Fastenings for fire-retardant-treated wood used in exterior applications or wet or damp locations shall be of hot-dipped zinc-coated galvanized steel, stainless steel, silicon bronze or copper. Fasteners other than nails and timber rivets shall be permitted to be of mechanically deposited zinc-coated steel with coating weights in accordance with ASTM B 695, Class 55 minimum.

317.3.4 Fasteners for fire-retardant-treated wood used in interior applications. Fasteners for fire-retardant-treated wood used in interior locations shall be in accordance with the manufacturer’s recommendations. In the absence of the manufacturer’s recommendations, Section 317.3.3 shall apply.

317.4 Wood/plastic composites. Wood/plastic composites used in exterior deck boards, stair treads, handrails and guardrail systems shall bear a label indicating the required performance levels and demonstrating compliance with the provisions of ASTM D 7032.

317.4.1 Wood/plastic composites shall be installed in accordance with the manufacturer’s instructions.

SECTION 318
PROTECTION AGAINST SUBTERRANEAN TERMITES
318.1 **Subterranean termite control methods.** In areas subject to damage from termites as indicated by Table 301.2(1), methods of protection shall be one of the following methods or a combination of these methods:

1. Chemical termiticide treatment, as provided in Section 318.2.

2. Termite baiting system installed and maintained according to the label.

3. Pressure-preservative-treated wood in accordance with the provisions of Section 317.1.

4. Naturally durable termite-resistant wood and used in locations as specified in Section 318.1.

5. Physical barriers as provided in Section 318.3.

6. Cold-formed steel framing in accordance with Sections 505.2.1 and 603.2.1.

318.1.1 Quality mark. Lumber and plywood required to be pressure-preservative-treated in accordance with Section 318.1 shall bear the quality mark of an approved inspection agency which maintains continuing supervision, testing and inspection over the quality of the product and which has been approved by an accreditation body which complies with the requirements of the American Lumber Standard Committee treated wood program.

318.1.2 Field treatment. *Deleted.*

318.2 Chemical termiticide treatment. Chemical termiticide treatment shall include soil treatment and/or field applied wood treatment. The concentration, rate of application and method of treatment of the chemical termiticide shall be in strict accordance with the termiticide label.

318.3 Barriers. Approved physical barriers, such as metal or plastic sheeting or collars specifically designed for termite prevention, shall be installed in a manner to prevent termites from entering the structure. Shields placed on top of an exterior foundation wall are permitted to be used only if in combination with another method of protection.
318.4 **Foam plastic protection.** In areas where the probability of termite infestation is “very heavy” as indicated in Figure 301.2(6), extruded and expanded polystyrene, polyisocyanurate and other foam plastics shall not be installed on the exterior face or under interior or exterior foundation walls or slab foundations located below grade. The clearance between foam plastics installed above grade and exposed earth shall be at least 6 inches (152 mm).

Exceptions:

1. Buildings where the structural members of walls, floors, ceilings and roofs are entirely of noncombustible materials or pressure-preservative-treated wood.

2. When in addition to the requirements of Section 318.1, an approved method of protecting the foam plastic and structure from subterranean termite damage is used.

3. On the interior side of basement walls.

SECTION 319

SITE ADDRESS

319.1 **Address numbers.** Buildings shall have approved address numbers, building numbers or approved building identification placed in a position that is plainly legible and visible from the street or road fronting the property.

SECTION 320

ACCESSIBILITY

320.1 **Scope.** Where there are four or more dwelling units or sleeping units in a single structure, and the design qualifies for this code to apply, the provisions of section 320 shall apply.

In structures with 1, 2 or 3 dwelling units, the accessibility provisions of this code are not required but when non-required accessibility components are intended to be installed inside the dwellings, they shall comply with the provisions for Type A, Type B, Type C (Visitable), or Accessible units in ICC/ANSI A117.1 listed in Chapter 44 to the extent of the installation.

320.2 **Applicability.** Where there are four or more dwelling units or sleeping units intended to be occupied as residences in a single structure, every dwelling
unit shall be a Type B unit designed and constructed for accessibility in accordance with section 320 and the provisions for Type B units in Chapter 10 of the ICC/ANSI A117.1 listed in Chapter 44.

Exception: The number of Type B units is permitted to be reduced in accordance with Section 320.4.

When this code applies to structures of four or more dwellings and Type B units are required, the common and public use areas serving the Type B dwellings and the accessible route connecting the common and public use areas to the Type B units shall comply with ICC/ANSI A117.1 listed in Chapter 44.

320.3 Accessible route. At least one accessible route shall connect accessible building or facility entrances with the primary entrance of each Type B unit within the building or facility and with those exterior and interior spaces and facilities that serve the Type B units.

Exception:

1. If due to circumstances outside the control of the owner, either the slope of the finished ground level between accessible facilities and buildings exceeds one unit vertical in 12 units horizontal (1:12), or where physical barriers or legal restrictions prevent the installation of an accessible route, a vehicular route with parking that complies with ICC/ANSI A117.1 listed in Chapter 44 at each public or common use facility or building is permitted in place of the accessible route.

320.4 General exceptions. The required number of Type B units is permitted to be reduced in accordance with Sections 320.4.1 through 320.4.5.

320.4.1 Structures without elevator service. Where no elevator service is provided in a structure, only the dwelling units that are located on stories indicated in Sections 320.4.1.1 and 320.4.1.2 are required to be Type B units, respectively.

320.4.1.1 One story with Type B units required. At least one story containing dwelling units or sleeping units intended to be occupied as a residence shall be provided with an accessible entrance from the exterior of the structure and all units intended to be occupied as a residence on that story shall be Type B units.
320.4.1.2 Additional stories with Type B units. On all other stories that have a building entrance in proximity to arrival points intended to serve units on that story, as indicated in Items 1 and 2, all dwelling units intended to be occupied as a residence served by that entrance on that story shall be Type B units.

1. Where the slopes of the undisturbed site measured between the planned entrance and all vehicular or pedestrian arrival points within 50 feet (15 240 mm) of the planned entrance are 10 percent or less, and

2. Where the slopes of the planned finished grade measured between the entrance and all vehicular or pedestrian arrival points within 50 feet (15 240 mm) of the planned entrance are 10 percent or less.

Where no such arrival points are within 50 feet (15 240 mm) of the entrance, the closest arrival point shall be used unless that arrival point serves the story required by Section 320.4.1.1.

320.4.2 Multistory units. A multistory dwelling which is not provided with elevator service is not required to be a Type B unit. Where a multistory unit is provided with external elevator service to only one floor, the floor provided with elevator service shall be the primary entry to the unit, shall comply with the requirements for a Type B unit and a toilet facility shall be provided on that floor.

For purposes of applying section 320, multistory units are dwellings with finished, habitable space on more than one level of the unit.

320.4.3 Elevator service to the lowest story with units. Where elevator service in the building provides an accessible route only to the lowest story containing dwelling or sleeping units intended to be occupied as a residence, only the units on that story which are intended to be occupied as a residence are required to be Type B units.

320.4.4 Site impracticality. On a site with multiple non-elevator buildings, the number of units required by Section 320.4.1 to be Type B units is permitted to be reduced to a percentage which is equal to the percentage of the entire site having grades, prior to development, which are less than 10 percent, provided that all of the following conditions are met:
1. Not less than 20 percent of the units required by Section 320.4.1 on the site are Type B units;

2. Units required by Section 320.4.1, where the slope between the building entrance serving the units on that story and a pedestrian or vehicular arrival point is no greater than 8.33 percent, are Type B units;

3. Units required by Section 320.4.1, where an elevated walkway is planned between a building entrance serving the units on that story and a pedestrian or vehicular arrival point and the slope between them is 10 percent or less are Type B units; and

4. Units served by an elevator in accordance with Section 320.4.3 are Type B units.

320.4.5 Design flood elevation. The required number of Type B units shall not apply to a site where the required elevation of the lowest floor or the lowest horizontal structural building members of non-elevator buildings are at or above the design flood elevation resulting in:

1. A difference in elevation between the minimum required floor elevation at the primary entrances and vehicular and pedestrian arrival points within 50 feet (15 240 mm) exceeding 30 inches (762 mm), and

2. A slope exceeding 10 percent between the minimum required floor elevation at the primary entrances and vehicular and pedestrian arrival points within 50 feet (15.24 m).

Where no such arrival points are within 50 feet (15.24 m) of the primary entrances, the closest arrival points shall be used.

SECTION 321
ELEVATORS AND PLATFORM LIFTS

321.1 Elevators. Where provided, passenger elevators, limited-use/limited-application elevators or private residence elevators shall comply with ASME A17.1.
321.2 Platform lifts. Where provided, platform lifts shall comply with ASME A18.1.

321.3 Accessibility. Elevators or platform lifts that are part of an accessible route, shall also comply with ICC/ANSI A117.1.

SECTION 322
FLOOD-RESISTANT CONSTRUCTION

322.1 General. Except where approved by the Flood Plain Administrator having jurisdiction or by variance granted, buildings and structures constructed in whole or in part in flood hazard areas (including A or V Zones) as established in Table 301.2(1) shall be designed and constructed in accordance with the provisions contained in this section.

Exception: Buildings and structures located in whole or in part in identified floodways shall be designed and constructed in accordance with ASCE 24.

322.1.1 Alternative provisions. As an alternative to the requirements in Section 322.3 for buildings and structures located in whole or in part in coastal high-hazard areas (V Zones), ASCE 24 is permitted subject to the limitations of this code and the limitations therein.

322.1.2 Structural systems. All structural systems of all buildings and structures shall be designed, connected and anchored to resist flotation, collapse or permanent lateral movement due to structural loads and stresses from flooding equal to the design flood elevation.

322.1.3 Flood-resistant construction. All buildings and structures erected in areas prone to flooding shall be constructed by methods and practices that minimize flood damage.

322.1.4 Establishing the design flood elevation. The design flood elevation shall be used to define areas prone to flooding. At a minimum, the design flood elevation is the higher of:

1. The base flood elevation at the depth of peak elevation of flooding (including wave height) which has a 1 percent (100-year flood) or greater chance of being equaled or exceeded in any given year, or
2. The elevation of the design flood associated with the area designated on a flood hazard map adopted by the community, or otherwise legally designated.

322.1.4.1 Determination of design flood elevations. If design flood elevations are not specified, the building official is authorized to require the applicant to:

1. Obtain and reasonably use data available from a federal, state or other source; or

2. Determine the design flood elevation in accordance with accepted hydrologic and hydraulic engineering practices used to define special flood hazard areas. Determinations shall be undertaken by a registered design professional who shall document that the technical methods used reflect currently accepted engineering practice. Studies, analyses and computations shall be submitted in sufficient detail to allow thorough review and approval.

322.1.4.2 Determination of impacts. In riverine flood hazard areas where design flood elevations are specified but floodways have not been designated, the applicant shall demonstrate that the effect of the proposed buildings and structures on design flood elevations, including fill, when combined with all other existing and anticipated flood hazard area encroachments, will not increase the design flood elevation more than 1 foot (305 mm) at any point within the jurisdiction.

322.1.5 Lowest floor. The lowest floor shall be the floor of the lowest enclosed area, including basement, but excluding any unfinished flood-resistant enclosure that is useable solely for vehicle parking, building access or limited storage provided that such enclosure is not built so as to render the building or structure in violation of this section.

322.1.6 Protection of mechanical and electrical systems. Electrical systems, equipment and components; heating, ventilating, air conditioning; plumbing appliances and plumbing fixtures; duct systems; and other service equipment shall be located at or above the elevation required in Section 322.2 (flood hazard areas including A Zones) or 322.3 (coastal high-hazard areas including V Zones). If replaced as part of a substantial improvement, electrical systems, equipment and components; heating, ventilating, air conditioning and plumbing appliances and plumbing fixtures; duct systems; and other service
equipment shall meet the requirements of this section. Systems, fixtures, and equipment and components shall not be mounted on or penetrate through walls intended to break away under flood loads.

Exception: Locating electrical systems, equipment and components; heating, ventilating, air conditioning; plumbing appliances and plumbing fixtures; duct systems; and other service equipment is permitted below the elevation required in Section 322.2 (flood hazard areas including A Zones) or 322.3 (coastal high-hazard areas including V Zones) provided that they are designed and installed to prevent water from entering or accumulating within the components and to resist hydrostatic and hydrodynamic loads and stresses, including the effects of buoyancy, during the occurrence of flooding to the design flood elevation in accordance with ASCE 24. Electrical wiring systems are permitted to be located below the required elevation provided they conform to the provisions of the electrical part of this code for wet locations.

322.1.7 Protection of water supply and sanitary sewage systems. New and replacement water supply systems shall be designed to minimize or eliminate infiltration of flood waters into the systems in accordance with the plumbing code. New and replacement sanitary sewage systems shall be designed to minimize or eliminate infiltration of floodwaters into systems and discharges from systems into floodwaters in accordance with the plumbing code.

322.1.8 Flood-resistant materials. Building materials used below the elevation required in Section 322.2 (flood hazard areas including A Zones) or 322.3 (coastal high-hazard areas including V Zones) shall comply with the following:

1. All wood, including floor sheathing, shall be pressure-preservative-treated in accordance with AWPA U1 for the species, product, preservative and end use or be the decay-resistant heartwood of redwood, black locust or cedars. Preservatives shall be listed in Section 4 of AWPA U1.

2. Materials and installation methods used for flooring and interior and exterior walls and wall coverings shall conform to the provisions of FEMA/FIA-TB-2.

322.1.9 Manufactured homes. *Deleted.*
322.10 As-built elevation documentation. A registered design professional shall prepare documentation of the elevations specified in Section 322.2 or 322.3.

322.2 Flood hazard areas (including A Zones). All areas that have been determined to be prone to flooding but not subject to high velocity wave action shall be designated as flood hazard areas. Flood hazard areas that have been delineated as subject to wave heights between 1½ feet (457 mm) and 3 feet (914 mm) shall be designated as Coastal A Zones. All building and structures constructed in whole or in part in flood hazard areas shall be designed and constructed in accordance with Sections 322.2.1 through 322.2.3.

322.2.1 Elevation requirements.

1. Buildings and structures in flood hazard areas not designated as Coastal A Zones shall have the lowest floors elevated to or above the design flood elevation.

2. Buildings and structures in flood hazard areas designated as Coastal A Zones shall have the lowest floors elevated to or above the base flood elevation plus 1 foot (305 mm), or to the design flood elevation, whichever is higher.

3. In areas of shallow flooding (AO Zones), buildings and structures shall have the lowest floor (including basement) elevated at least as high above the highest adjacent grade as the depth number specified in feet on the FIRM, or at least 2 feet (610 mm) if a depth number is not specified.

4. Basement floors that are below grade on all sides shall be elevated to or above the design flood elevation.

Exception: Enclosed areas below the design flood elevation, including basements whose floors are not below grade on all sides, shall meet the requirements of Section 322.2.2.

322.2.2 Enclosed area below design flood elevation. Enclosed areas, including crawl spaces, that are below the design flood elevation shall:

1. Be used solely for parking of vehicles, building access or storage.
2. Be provided with flood openings that meet the following criteria:

 There shall be a minimum of two openings on different sides of each enclosed area; if a building has more than one enclosed area below the design flood elevation, each area shall have openings on exterior walls.

 The total net area of all openings shall be at least 1 square inch (645 mm2) for each square foot (0.093 m2) of enclosed area, or the openings shall be designed and the construction documents shall include a statement by a registered design professional that the design of the openings will provide for equalization of hydrostatic flood forces on exterior walls by allowing for the automatic entry and exit of floodwaters as specified in Section 2.6.2.2 of ASCE 24.

 The bottom of each opening shall be 1 foot (305 mm) or less above the adjacent ground level.

 Openings shall be not less than 3 inches (76 mm) in any direction in the plane of the wall.

 Any louvers, screens or other opening covers shall allow the automatic flow of floodwaters into and out of the enclosed area.

 Openings installed in doors and windows, that meet requirements 2.1 through 2.5, are acceptable; however, doors and windows without installed openings do not meet the requirements of this section.

322.2.3 Foundation design and construction. Foundation walls for all buildings and structures erected in flood hazard areas shall meet the requirements of Chapter 4.

 Exception: Unless designed in accordance with Section 404:

 1. The unsupported height of 6-inch (152 mm) plain masonry walls shall be no more than 3 feet (914 mm).
2. The unsupported height of 8-inch (203 mm) plain masonry walls shall be no more than 4 feet (1219 mm).

3. The unsupported height of 8-inch (203 mm) reinforced masonry walls shall be no more than 8 feet (2438 mm).

For the purpose of this exception, unsupported height is the distance from the finished grade of the under-floor space and the top of the wall.

322.3 Coastal high-hazard areas (including V Zones). Areas that have been determined to be subject to wave heights in excess of 3 feet (914 mm) or subject to high-velocity wave action or wave-induced erosion shall be designated as coastal high-hazard areas. Buildings and structures constructed in whole or in part in coastal high-hazard areas shall be designed and constructed in accordance with Sections 322.3.1 through 322.3.6.

322.3.1 Location and site preparation.

1. New buildings and buildings that are determined to be substantially improved pursuant to Section 113.4, shall be located landward of the reach of mean high tide.

2. For any alteration of sand dunes and other coastal features the building official shall require submission of an engineering analysis which demonstrates that the proposed alteration will not increase the potential for flood damage.

322.3.2 Elevation requirements.

1. All buildings and structures erected within coastal high hazard areas shall be elevated so that the lowest portion of all structural members supporting the lowest floor, with the exception of mat or raft foundations, piling, pile caps, columns, grade beams and bracing, is:

 1.1 Located at or above the design flood elevation, if the lowest horizontal structural member is oriented parallel to the direction of wave approach, where parallel shall mean less than or equal to 20 degrees (0.35 rad) from the direction of approach, or
1.2 Located at the base flood elevation plus 1 foot (305 mm), or the design flood elevation, whichever is higher, if the lowest horizontal structural member is oriented perpendicular to the direction of wave approach, where perpendicular shall mean greater than 20 degrees (0.35 rad) from the direction of approach.

2. Basement floors that are below grade on all sides are prohibited.

3. The use of fill for structural support is prohibited.

4. Minor grading, and the placement of minor quantities of fill, shall be permitted for landscaping and for drainage purposes under and around buildings and for support of parking slabs, pool decks, patios and walkways.

 Exception: Walls and partitions enclosing areas below the design flood elevation shall meet the requirements of Sections 322.3.4 and 322.3.5.

322.3.3 **Foundations.** Buildings and structures erected in coastal high-hazard areas shall be supported on pilings or columns and shall be adequately anchored to those pilings or columns. Pilings shall have adequate soil penetrations to resist the combined wave and wind loads (lateral and uplift). Water loading values used shall be those associated with the design flood. Wind loading values shall be those required by this code. Pile embedment shall include consideration of decreased resistance capacity caused by scour of soil strata surrounding the piling. Pile systems design and installation shall be certified in accordance with Section 322.3.6. Mat, raft or other foundations that support columns shall not be permitted where soil investigations that are required in accordance with Section 401.4 indicate that soil material under the mat, raft or other foundation is subject to scour or erosion from wave-velocity flow conditions. Slabs, pools, pool decks and walkways shall be located and constructed to be structurally independent of buildings and structures and their foundations to prevent transfer of flood loads to the buildings and structures during conditions of flooding, scour or erosion from wave-velocity flow conditions, unless the buildings and structures and their foundation are designed to resist the additional flood load.

322.3.4 **Walls below design flood elevation.** Walls and partitions are permitted below the elevated floor, provided that such walls and partitions are not part of the structural support of the building or structure and:
1. Electrical, mechanical, and plumbing system components are not to be mounted on or penetrate through walls that are designed to break away under flood loads; and

2. Are constructed with insect screening or open lattice; or

3. Are designed to break away or collapse without causing collapse, displacement or other structural damage to the elevated portion of the building or supporting foundation system. Such walls, framing and connections shall have a design safe loading resistance of not less than 10 (479 Pa) and no more than 20 pounds per square foot (958 Pa); or

4. Where wind loading values of this code exceed 20 pounds per square foot (958 Pa), the construction documents shall include documentation prepared by a registered design professional that:

 4.1. The walls and partitions below the design flood elevation have been designed to collapse from a water load less than that which would occur during the design flood.

 4.2. The elevated portion of the building and supporting foundation system have been designed to withstand the effects of wind and flood loads acting simultaneously on all building components (structural and nonstructural). Water loading values used shall be those associated with the design flood. Wind loading values shall be those required by this code.

322.3.5 Enclosed areas below design flood elevation. Enclosed areas below the design flood elevation shall be used solely for parking of vehicles, building access or storage.

322.3.6 Construction documents. The construction documents shall include documentation that is prepared by a registered design professional that the design and methods of construction to be used meet the applicable criteria of this section.

SECTION 323
STORM SHELTERS
323.1 General. This section applies to the construction of storm shelters when constructed as separate detached buildings or when constructed as safe rooms within buildings for the purpose of providing safe refuge from storms that produce high winds, such as tornados and hurricanes. In addition to other applicable requirements in this code, storm shelters shall be constructed in accordance with ICC/NSSA-500.

SECTION 324

POST FRAME ACCESSORY STRUCTURES

324.1 Post frame accessory structures. The following requirements serve as minimum standards for post and frame structures within all of the following structural limitations:

1. **Residential accessory structures,**
2. **Single story,**
3. **Solid exterior structural sheathing or metal roof, and solid wall panels,**
4. **No attic storage,**
5. **Maximum building width of thirty six feet including the overhang,**
6. **Maximum wall height of sixteen feet,**
7. **Maximum mean roof height of twenty feet,** and
8. **Maximum post spacing of eight feet.**

Post and frame structures and portions thereof outside the above structural limitations of this standard shall be accompanied by structural calculations as required by the residential building official or designed under the provisions of section 106.5 of the Residential Code of Ohio (RCO). Post and frame structures shall comply with the structural design requirements of section 301 of the RCO.

324.2 Definition. Post frame accessory structures consist of primary members (wood posts, beams & single span roof trusses or ceiling joist and rafters) and secondary members (wood roof purlins, wall girts, bracing & sheathing) where all loads are transmitted from the sheathing and the secondary members to the
primary members which transfer all combined loads to the soil through vertical posts bearing on footings embedded in the ground. See Figure 324.

324.3 Footings and foundations

Footings and foundations shall comply with applicable provisions of 401. Post frame structures shall have poured in-place concrete footings installed below all posts. The top of the footing shall be a minimum of 48 inches below finished grade and have footing diameters complying with Table 324.3.

<table>
<thead>
<tr>
<th>Building width (length of truss) including overhang (feet)</th>
<th>24</th>
<th>28</th>
<th>32</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter (inches) 20# roof snow load</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Diameter (inches) 30# roof snow load</td>
<td>18</td>
<td>22</td>
<td>24</td>
<td>26</td>
</tr>
</tbody>
</table>

1. Pier footing thickness shall be a minimum one-half of the diameter of the footing.
2. Based upon 2000 PSF soil bearing capacity and truss loads of 20 or 30 PSF live or snow load top chord, 10 PSF dead load top chord, 5 PSF dead load on the bottom chord and no live load on the bottom chord.
3. Fractional widths shall be rounded to the next higher pier footing diameter.
4. Table not to be used in Ohio case study areas.

324.4 Post and wall construction

Posts shall be three (3) ply un-spliced, reinforced spliced or solid wood and shall not be less than 4 inch by 6 inch nominal size. Posts shall comply with the requirements of Section 317.

324.4.1 Uplift protection

Posts shall have uplift protection by one of the following methods:

1. Two 2x6x12 inch post uplift protection blocks attached to each side of the base of the post. The post uplift blocks shall be placed horizontally, attached per Table 324.7 and comply with Section 317;

2. 12 inch high, concrete collar poured on top of footing around the post, with 2-#5x9 inch rebar placed through the post at 3 inches and 9 inches from bottom of post in opposite directions. The rebar ends must be 1 ½ inches from the soil. See Figure 324.1;

324.4.2 Post Spacing

The maximum spacing for posts shall be (eight) 8 feet on center.
FIGURE 324
POST AND FRAME WALL SECTION.
(NO SCALE)
324.4.3 Skirt Boards. Skirt boards shall be treated lumber meeting the requirements of Section 317 and attached per Table 324.7.

324.4.4 Wall girts. Wall girts shall be not less than 2 x 4 inches nominal and spaced not more than twenty-four (24) inches on center.

324.4.5 Load bearing beams and headers: Load bearing beams and headers shall comply with Table 502.5(1).

Exceptions.

1. Bearing beams are not required if the trusses or ceiling joists and rafters bear directly on the posts.

2. Headers in the gable-end wall which do not support more than five square feet of wall area per lineal foot of header shall be sized per Table 324.4.5.

<table>
<thead>
<tr>
<th>Opening Width (feet)</th>
<th>10</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header Size (inches)</td>
<td>2-2x8</td>
<td>2-2x10</td>
<td>2-2x12</td>
</tr>
</tbody>
</table>

324.4.6 Bracing. Wall bracing shall be provided to resist all racking and shearing forces and must comply with the applicable provisions of section...
602.10 or by installing 2x6 diagonal cross braces in the bays between adjacent posts as described in this section. The diagonal cross braces shall be placed from the top header or girt to the next adjacent post at the skirt board. The cross bracing shall be placed or installed on all sides of the building and shall be spaced at a maximum of 25 feet on center and within 12 feet of the corners of the building and attached per Table 324.7. Any splices of the diagonal brace required due to excessive length, must lap over two consecutive wall girts.

324.4.7 Beams supporting trusses or rafters and ceiling joists attachment to column. Bearing beams supporting roof trusses or rafters and ceiling joists shall be connected to the posts by one of the following methods:

1. Bolts that are ½ inch diameter through-bolted to the side of the post;
2. Bolts that are ½ inch diameter, directly attached to a 3-ply post notch, enclosing the truss or rafter at the top of post; or
3. Other fasteners with minimum shear or withdraw values stated in Table 324.4.7

324.4.7.1 Number of fasteners. The minimum numbers of through bolts or other fasteners with minimum shears or withdraw values required per Table 324.4.7.

<table>
<thead>
<tr>
<th>TABLE 324.4.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEAM OR TRUSS CONNECTION AT POSTS MINIMUM FASTENERS OR TOTAL SHEAR OR WITHDRAW VALUES<sup>a,b,c</sup></td>
</tr>
<tr>
<td>Building Width (Length of Truss) including overhang (feet)</td>
</tr>
<tr>
<td>Shear or withdraw (pounds)</td>
</tr>
<tr>
<td>Number of Bolts, 20 lb snow load</td>
</tr>
<tr>
<td>Shear or withdraw (pounds)</td>
</tr>
<tr>
<td>Number of Bolts, 30 lb roof snow load</td>
</tr>
</tbody>
</table>

^a Based upon truss loads of 20 or 30 PSF live or snow load top chord, 10 PSF dead load top chord, 5 PSF live load on the bottom chord and no live load on the bottom chord.

^b Based upon post spacing at intervals not exceeding 8 feet.

^c When beams are attached at each side of the column and fasteners do not extend through both beams such as through-bolts, the required values are one-half the amount shown above for each beam.
324.5 Roof purlins. Roof purlins shall be a minimum of 4x2 SPF#2 laid flat for spans up to 4 feet, and 4x2 SPF#2 laid on edge for spans up to 8 feet. Roof purlins shall be spaced not more than 24 inches on center.

324.6 Knee bracing: A 2x6 brace shall extend from the post to the top chord of the truss or rafter adjacent to the post at a 45 degree angle. The vertical distance down from the bottom chord of the truss or ceiling joist to the point where the brace attaches to the posts shall be in compliance with Table 324.6 as shown on Figure 324. Trusses or rafters must be spaced such that they align with the post intervals. Attachment of knee brace shall be per Table 324.7.

TABLE 324.6

<table>
<thead>
<tr>
<th>Wall Height</th>
<th>Vertical Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>8'-0" and 9'-0"</td>
<td>1'-6"</td>
</tr>
<tr>
<td>10'-0" and 11'-0"</td>
<td>2'-0"</td>
</tr>
<tr>
<td>12'-0" and 13'-0"</td>
<td>3'-0"</td>
</tr>
<tr>
<td>14'-0" through 16'-0"</td>
<td>4'-0"</td>
</tr>
</tbody>
</table>

324.7 Attachment details. Structural fastener details for post and frame buildings shall comply with Table 324.7.

TABLE 324.7

<table>
<thead>
<tr>
<th>Structural Fasteners</th>
<th>Number and Type of Fastener</th>
<th>Attachment type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplift blocking to post</td>
<td>5-16d Hot Dipped Galvanized</td>
<td>Each block</td>
</tr>
<tr>
<td>Skirt board to post</td>
<td>2-16d Hot Dipped Galvanized</td>
<td>Face nail</td>
</tr>
<tr>
<td>Wall girt to post</td>
<td>2-16d Hot Dipped Galvanized</td>
<td>Face nail</td>
</tr>
<tr>
<td>Diagonal cross bracing to post</td>
<td>2-16d Hot Dipped Galvanized</td>
<td>Face nail</td>
</tr>
<tr>
<td>Diagonal cross bracing to skirt board</td>
<td>2-10d Hot Dipped Galvanized</td>
<td>Face nail</td>
</tr>
<tr>
<td>Diagonal cross bracing to wall girts, beam, or header</td>
<td>2-10d</td>
<td>Face nail</td>
</tr>
<tr>
<td>Knee brace to post</td>
<td>3-16d Hot Dipped Galvanized</td>
<td>Face nail</td>
</tr>
<tr>
<td>Knee brace to top chord of truss or rafter</td>
<td>3-10d</td>
<td>Face nail</td>
</tr>
<tr>
<td>Knee brace to bottom chord of truss or ceiling joist</td>
<td>3-10d</td>
<td>Face nail</td>
</tr>
<tr>
<td>Roof purlin to truss or rafter with span of 2’ or 4’</td>
<td>2-16d</td>
<td>Face nail</td>
</tr>
<tr>
<td>Roof purlin to truss or rafter with span of 8’</td>
<td>Mechanical fastener with uplift protection greater than 225 pounds.</td>
<td>Per manufacturer installation manual</td>
</tr>
</tbody>
</table>
324.8 Roof trusses. Engineered roof trusses, where used, shall be accompanied by drawings sealed by the registered design professional responsible for their preparation and shall be submitted to the residential building official for approval prior to the framing inspection. The truss design shall comply with Sections 802.10 and 802.11 and shall account for all loads imposed on the truss as a result of the prescriptive requirements of this section.
Effective: 01/01/2016

Five Year Review (FYR) Dates: 01/01/2018

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.01, 3781.06, 3781.10, 3781.11, 3791.04, 4740.14
Prior Effective Dates: 5/27/06, 1/1/13, 7/1/14
4101:8-4-01 Foundations.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:8-44-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:8-1-01 of the Administrative Code.]

SECTION 401
GENERAL

401.1 Application. The provisions of this chapter shall control the design and construction of the foundation and foundation spaces for all buildings. In addition to the provisions of this chapter, the design and construction of foundations in areas prone to flooding as established by Table 301.2(1) shall meet the provisions of Section 322. Wood foundations shall be designed and installed in accordance with AF&PA PWF.

Exception: The provisions of this chapter shall be permitted to be used for wood foundations only in the following situations:

1. In buildings that have no more than two floors and a roof.

2. When interior basement and foundation walls are constructed at intervals not exceeding 50 feet (15 240 mm).

Wood foundations in Seismic Design Category D₀, D₁ or D₂ shall be designed in accordance with accepted engineering practice.

401.2 Requirements. Foundation construction shall be capable of accommodating all loads according to Section 301 and of transmitting the resulting loads to the supporting soil. Fill soils that support footings and foundations shall be designed, installed and tested in accordance with accepted engineering practice. Gravel fill used as footings for wood and precast concrete foundations shall comply with Section 403.

401.3 Drainage. Surface drainage shall be diverted to a storm sewer conveyance or other approved point of collection that does not create a hazard. Lots shall be graded to drain surface water away from foundation walls. The grade shall fall a minimum of 6 inches (152 mm) within the first 10 feet (3048 mm).
Exception: Where lot lines, walls, slopes or other physical barriers prohibit 6 inches (152 mm) of fall within 10 feet (3048 mm), drains or swales shall be constructed to ensure drainage away from the structure. Impervious surfaces within 10 feet (3048 mm) of the building foundation shall be sloped a minimum of 2 percent away from the building.

401.4 Soil tests. Where quantifiable data created by accepted soil science methodologies indicate expansive, compressible, shifting or other questionable soil characteristics are likely to be present, the building official may determine whether to require a soil test to determine the soil’s characteristics at a particular location. This test shall be done by an approved agency using an approved method.

401.4.1 Geotechnical evaluation. In lieu of a complete geotechnical evaluation, the load-bearing values in Table 401.4.1 shall be assumed.

<table>
<thead>
<tr>
<th>TABLE 401.4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESUMPTIVE LOAD-BEARING VALUES OF FOUNDATION MATERIALS<sup>a</sup></td>
</tr>
<tr>
<td>CLASS OF MATERIAL</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Crystalline bedrock</td>
</tr>
<tr>
<td>Sedimentary and foliated rock</td>
</tr>
<tr>
<td>Sandy gravel and/or gravel (GW and GP)</td>
</tr>
<tr>
<td>Sand, silty sand, clayey sand, silty gravel and clayey gravel (SW, SP, SM, SC, GM and GC)</td>
</tr>
<tr>
<td>Clay, sandy clay, silty clay, clayey silt, silt and sandy silt (CL, ML, MH and CH)</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square foot = 0.0479 kPa.

^a When soil tests are required by Section R401.4, the allowable bearing capacities of the soil shall be part of the recommendations.

^b Where the building official determines that in-place soils with an allowable bearing capacity of less than 1,500 psf are likely to be present at the site, the allowable bearing capacity shall be determined by a soils investigation.

401.4.2 Controlled low-strength material (CLSM). Where footings will bear on controlled low-strength material (CLSM), the CLSM shall comply with the provisions of an approved report. The report shall contain the following:

1. Specifications for the preparation of the site prior to placement of CLSM.

2. Specifications for the CLSM.
3. Laboratory or field test method(s) to be used to determine the compressive strength or bearing capacity of the CLSM.

4. Test methods for determining the acceptance of the CLSM in the field.

5. Number and frequency of field tests required to determine compliance with Item 4.

401.5 Compressible or shifting soil. Instead of a complete geotechnical evaluation, when top or subsoils are compressible or shifting, they shall be removed to a depth and width sufficient to assure stable moisture content in each active zone and shall not be used as fill or stabilized within each active zone by chemical, dewatering or presaturation.

SECTION 402
MATERIALS

402.1 Wood foundations. Wood foundation systems shall be designed and installed in accordance with the provisions of this code.

402.1.1 Fasteners. Fasteners used below grade to attach plywood to the exterior side of exterior basement or crawl-space wall studs, or fasteners used in knee wall construction, shall be of Type 304 or 316 stainless steel. Fasteners used above grade to attach plywood and all lumber-to-lumber fasteners except those used in knee wall construction shall be of Type 304 or 316 stainless steel, silicon bronze, copper, hot-dipped galvanized (zinc coated) steel nails, or hot-tumbled galvanized (zinc coated) steel nails. Electrogalvanized steel nails and galvanized (zinc coated) steel staples shall not be permitted.

402.1.2 Wood treatment. All lumber and plywood shall be pressure-preservative treated and dried after treatment in accordance with AWPA U1 (Commodity Specification A, Use Category 4B and Section 5.2), and shall bear the label of an accredited agency. Where lumber and/or plywood is cut or drilled after treatment, the treated surface shall be field treated with copper naphthenate, the concentration of which shall contain a minimum of 2 percent copper metal, by repeated brushing, dipping or soaking until the wood absorbs no more preservative.
402.2 Concrete. Concrete shall have a minimum specified compressive strength of f'_c, as shown in Table 402.2. Concrete subject to moderate or severe weathering as indicated in Table 301.2(1) shall be air entrained as specified in Table 402.2. The maximum weight of fly ash, other pozzolans, silica fume, slag or blended cements that is included in concrete mixtures for garage floor slabs and for exterior porches, carport slabs and steps that will be exposed to deicing chemicals shall not exceed the percentages of the total weight of cementitious materials specified in Section 4.2.3 of ACI 318. Materials used to produce concrete and testing thereof shall comply with the applicable standards listed in Chapter 3 of ACI 318 or ACI 332.

<table>
<thead>
<tr>
<th>TYPE OR LOCATION OF CONCRETE CONSTRUCTION</th>
<th>MINIMUM SPECIFIED COMRESSIVE STRENGTH f'_c</th>
<th>Weathering Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basement walls, foundations and other concrete not exposed to the weather</td>
<td>2,500</td>
<td>2,500</td>
</tr>
<tr>
<td>Basement slabs and interior slabs on grade, except garage floor slabs</td>
<td>2,500</td>
<td>2,500</td>
</tr>
<tr>
<td>Basement walls, foundation walls, exterior walls and other vertical concrete work exposed to the weather</td>
<td>2,500</td>
<td>3,000d</td>
</tr>
<tr>
<td>Porches, carport slabs and steps exposed to the weather, and garage floor slabs</td>
<td>2,500</td>
<td>3,000$^d, e, f$</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square inch = 6.895 kPa.

a. Strength at 28 days psi.
b. See Table 301.2(1) for weathering potential.c. Concrete in these locations that may be subject to freezing and thawing during construction shall be air-entrained concrete in accordance with Footnote d.
d. Concrete shall be air-entrained. Total air content (percent by volume of concrete) shall be not less than 5 percent or more than 7 percent.
e. See Section 402.2 for maximum cementitious materials content.
f. For garage floors with a steel troweled finish, reduction of the total air content (percent by volume of concrete) to not less than 3 percent is permitted if the specified compressive strength of the concrete is increased to not less than 4,000 psi.

402.3 Precast concrete. Precast concrete foundations shall be designed in accordance with Section 404.5 and shall be installed in accordance with the provisions of this code and the manufacturer’s installation instructions.

402.3.1 Precast concrete foundation materials. Materials used to produce precast concrete foundations shall meet the following requirements.

1. All concrete used in the manufacture of precast concrete foundations shall have a minimum compressive strength of 5,000 psi (34 470 kPa)
Concrete exposed to a freezing and thawing environment shall be air entrained with a minimum total air content of 5 percent.

2. Structural reinforcing steel shall meet the requirements of ASTM A 615, A 706 or A 996. The minimum yield strength of reinforcing steel shall be 40,000 psi (Grade 40) (276 MPa). Steel reinforcement for precast concrete foundation walls shall have a minimum concrete cover of ¾ inch (19.1 mm).

3. Panel-to-panel connections shall be made with Grade II steel fasteners.

4. The use of nonstructural fibers shall conform to ASTM C 1116.

5. Grout used for bedding precast foundations placed upon concrete footings shall meet ASTM C 1107.

SECTION 403
FOOTINGS

403.1 General. All exterior walls shall be supported on continuous solid or fully grouted masonry or concrete footings, crushed stone footings, wood foundations, or other approved structural systems which shall be of sufficient design to accommodate all loads according to Section 301 and to transmit the resulting loads to the soil within the limitations as determined from the character of the soil. Footings shall be supported on undisturbed natural soils, controlled low-strength material (CLSM), or engineered fill. Concrete footings shall be designed and constructed in accordance with the provisions of Section 403 or in accordance with ACI 332.

403.1.1 Minimum size. Minimum sizes for concrete and masonry footings shall be as set forth in Table 403.1 and Figure 403.1(1). The footing width, W, shall be based on the load-bearing value of the soil in accordance with Table 401.4.1. Spread footings shall be at least 6 inches (152 mm) in thickness, T. Footing projections, P, shall be at least 2 inches (51 mm) and shall not exceed the thickness of the footing. The size of footings supporting piers and columns shall be based on the tributary load and allowable soil pressure in accordance with Table 401.4.1. Footings for wood foundations shall be in accordance with the details set forth in Section 403.2, and Figures 403.1(2) and 403.1(3).

TABLE 403.1
MINIMUM WIDTH OF CONCRETE, PRECAST OR MASONRY FOOTINGS (inches)
<table>
<thead>
<tr>
<th>LOAD-BEARING VALUE OF SOIL (psf)</th>
<th>1,500</th>
<th>2,000</th>
<th>3,000</th>
<th>4,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional light-frame construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-story</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2-story</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3-story</td>
<td>23</td>
<td>17</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>4-inch brick veneer over light frame or 8-inch hollow concrete masonry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-story</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2-story</td>
<td>21</td>
<td>16</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3-story</td>
<td>32</td>
<td>24</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>8-inch solid or fully grouted masonry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-story</td>
<td>16</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2-story</td>
<td>29</td>
<td>21</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>3-story</td>
<td>42</td>
<td>32</td>
<td>21</td>
<td>16</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479kPa.

a. Where minimum footing width is 12 inches, use of a single wythe of solid or fully grouted 12-inch nominal concrete masonry units is permitted.

403.1.2 Continuous footing in Seismic Design Categories D₀, D₁ and D₂. Deleted.

403.1.3 Seismic reinforcing. Deleted.

403.1.3.1 Foundations with stemwalls. Foundations with stem walls shall have installed a minimum of one No. 4 bar within 12 inches (305 mm) of the top of the wall and one No. 4 bar located 3 inches (76 mm) to 4 inches (102 mm) from the bottom of the footing. Deleted.

403.1.3.2 Slabs-on-ground with turned-down footings. Slabs on ground with turned down footings shall have a minimum of one No. 4 bar at the top and the bottom of the footing.

Exception: For slabs on ground cast monolithically with the footing, locating one No. 5 bar or two No. 4 bars in the middle third of the footing depth shall be permitted as an alternative to placement at the footing top and bottom.

Where the slab is not cast monolithically with the footing, No. 3 or larger vertical dowels with standard hooks on each end shall be provided in accordance with Figure 403.1.3.2. Standard hooks shall comply with Section 611.5.4.5. Deleted.
403.1.4 Minimum depth. All exterior footings shall be placed at least 12 inches (305 mm) below the undisturbed ground surface. Where applicable, the depth of footings shall also conform to Sections 403.1.4.1 through 403.1.4.2.

403.1.4.1 Frost protection. Except where otherwise protected from frost, foundation walls, piers and other permanent supports of buildings and structures shall be protected from frost by one or more of the following methods:

1. Extended below the frost line specified in Table 301.2.(1);
2. Constructing in accordance with Section 403.3;
3. Constructing in accordance with ASCE 32; or
4. Erected on solid rock.

Exceptions:

1. Protection of freestanding accessory structures with an area of 600 square feet (56 m²) or less, of light-frame construction, with an eave height of 10 feet (3048 mm) or less shall not be required.

2. Protection of freestanding accessory structures with an area of 400 square feet (37 m²) or less, of other than light-frame construction, with an eave height of 10 feet (3048 mm) or less shall not be required.

3. Decks not supported by a dwelling need not be provided with footings that extend below the frost line.

Footings shall not bear on frozen soil unless the frozen condition is permanent.

403.1.4.2 Seismic conditions. Deleted.
For SI: 1 inch = 25.4 mm.

FIGURE 403.1(1)
CONCRETE AND MASONRY FOUNDATION DETAILS
403.1.5 Slope. The top surface of footings shall be level. The bottom surface of footings shall not have a slope exceeding one unit vertical in 10 units horizontal (10-percent slope). Footings shall be stepped where it is necessary to change the elevation of the top surface of the footings or where the slope of the bottom surface of the footings will exceed one unit vertical in ten units horizontal (10-percent slope).

403.1.6 Foundation anchorage. Sill plates and walls supported directly on continuous foundations shall be anchored to the foundation in accordance with this section.

Wood sole plates at all exterior walls on monolithic slabs, wood sole plates of braced wall panels at building interiors on monolithic slabs and all wood sill plates shall be anchored to the foundation with anchor bolts spaced a maximum of 6 feet (1829 mm) on center. Bolts shall be at least ½ inch (12.7 mm) in diameter and shall extend a minimum of 7 inches (178 mm) into concrete or grouted cells of concrete masonry units. A nut and washer shall be tightened on each anchor bolt. There shall be a minimum of two bolts per plate section with one bolt located not more than 12 inches (305 mm) or less than seven bolt diameters from each end of the plate section. Interior bearing wall sole plates on monolithic slab foundation that are not part of a braced wall panel shall be positively anchored with approved fasteners. Sill plates and sole plates shall be protected against decay and termites where required by Sections 317 and 318. Cold-formed steel framing systems shall be fastened
to wood sill plates or anchored directly to the foundation as required in Section 505.3.1 or 603.3.1.

Exceptions:

1. Foundation anchorage, spaced as required to provide equivalent anchorage to ½-inch-diameter (12.7 mm) anchor bolts.

2. Walls 24 inches (610 mm) total length or shorter connecting offset braced wall panels shall be anchored to the foundation with a minimum of one anchor bolt located in the center third of the plate section and shall be attached to adjacent braced wall panels at corners.

3. Connection of walls 12 inches (305 mm) total length or shorter connecting offset braced wall panels to the foundation without anchor bolts shall be permitted. The wall shall be attached to adjacent braced wall panels at corners.

403.1.6.1 Foundation anchorage in Seismic Design Categories C, D₀, D₁ and D₂. Deleted.

403.1.7 Footings on or adjacent to slopes. The placement of buildings and structures on or adjacent to slopes steeper than one unit vertical in three units horizontal (33.3-percent slope) shall conform to Sections 403.1.7.1 through 403.1.7.4.

403.1.7.1 Building clearances from ascending slopes. In general, buildings below slopes shall be set a sufficient distance from the slope to provide protection from slope drainage, erosion and shallow failures. Except as provided in Section 403.1.7.4 and Figure 403.1.7.1, the following criteria will be assumed to provide this protection. Where the existing slope is steeper than one unit vertical in one unit horizontal (100-percent slope), the toe of the slope shall be assumed to be at the intersection of a horizontal plane drawn from the top of the foundation and a plane drawn tangent to the slope at an angle of 45 degrees (0.79 rad) to the horizontal. Where a retaining wall is constructed at the toe of the slope, the height of the slope shall be measured from the top of the wall to the top of the slope.
403.1.7.2 Footing setback from descending slope surfaces. Footings on or adjacent to slope surfaces shall be founded in material with an embedment and setback from the slope surface sufficient to provide vertical and lateral support for the footing without detrimental settlement. Except as provided for in Section 403.1.7.4 and Figure 403.1.7.1, the following setback is deemed adequate to meet the criteria. Where the slope is steeper than one unit vertical in one unit horizontal (100-percent slope), the required setback shall be measured from an imaginary plane 45 degrees (0.79 rad) to the horizontal, projected upward from the toe of the slope.

![Diagram of footing setback from slope]

For SI: 1 foot = 304.8 mm.

FIGURE 403.1.7.1

FOUNDATION CLEARANCE FROM SLOPES

403.1.7.3 Foundation elevation. On graded sites, the top of any exterior foundation shall extend above the elevation of the street gutter at point of discharge or the inlet of an approved drainage device a minimum of 12 inches (305 mm) plus 2 percent. Alternate elevations are permitted subject to the approval of the building official, provided it can be demonstrated that required drainage to the point of discharge and away from the structure is provided at all locations on the site.

403.1.7.4 Alternate setback and clearances. Alternate setbacks and clearances are permitted, subject to the approval of the building official. The building official is permitted to require an investigation and recommendation of a qualified engineer to demonstrate that the intent of this section has been satisfied. Such an investigation shall include consideration of material, height of slope, slope gradient, load intensity and erosion characteristics of slope material.
403.1.8 Foundations on expansive soils. Foundation and floor slabs for buildings located on expansive soils shall be designed in accordance with Section 1808.6 of the Ohio Building Code.

Exception: Slab-on-ground and other foundation systems which have performed adequately in soil conditions similar to those encountered at the building site are permitted subject to the approval of the building official.

403.1.8.1 Expansive soils classifications. Soils meeting all four of the following provisions shall be considered expansive, except that tests to show compliance with Items 1, 2 and 3 shall not be required if the test prescribed in Item 4 is conducted:

1. Plasticity Index (PI) of 15 or greater, determined in accordance with ASTM D 4318.

2. More than 10 percent of the soil particles pass a No. 200 sieve (75 \(\mu m \)), determined in accordance with ASTM D 422.

3. More than 10 percent of the soil particles are less than 5 micrometers in size, determined in accordance with ASTM D 422.

4. Expansion Index greater than 20, determined in accordance with ASTM D 4829.

403.2 Footings for wood foundations. Footings for wood foundations shall be in accordance with Figures 403.1(2) and 403.1(3). Gravel shall be washed and well graded. The maximum size stone shall not exceed ¾ inch (19.1 mm). Gravel shall be free from organic, clayey or silty soils. Sand shall be coarse, not smaller than \(\frac{1}{16} \) -inch (1.6 mm) grains and shall be free from organic, clayey or silty soils. Crushed stone shall have a maximum size of ½ inch (12.7 mm).

403.3 Frost protected shallow foundations. For buildings where the monthly mean temperature of the building is maintained at a minimum of 64°F (18°C), footings are not required to extend below the frost line when protected from frost by insulation in accordance with Figure 403.3(1) and Table 403.3(1). Foundations protected from frost in accordance with Figure 403.3(1) and Table 403.3(1) shall not be used for unheated spaces such as porches, utility rooms, garages and carports, and shall not be attached to basements or crawl spaces that are not maintained at a minimum monthly mean temperature of 64°F (18°C).
Materials used below grade for the purpose of insulating footings against frost shall be labeled as complying with ASTM C 578.

403.3.1 Foundations adjoining frost protected shallow foundations. Foundations that adjoin frost protected shallow foundations shall be protected from frost in accordance with Section 403.1.4.

403.3.1.1 Attachment to unheated slab-on-ground structure. Vertical wall insulation and horizontal insulation of frost protected shallow foundations that adjoin a slab-on-ground foundation that does not have a monthly mean temperature maintained at a minimum of 64°F (18°C) shall be in accordance with Figure 403.3(3) and Table 403.3(1). Vertical wall insulation shall extend between the frost protected shallow foundation and the adjoining slab foundation. Required horizontal insulation shall be continuous under the adjoining slab foundation and through any foundation walls adjoining the frost protected shallow foundation. Where insulation passes through a foundation wall, it shall either be of a type complying with this section and having bearing capacity equal to or greater than the structural loads imposed by the building, or the building shall be designed and constructed using beams, lintels, cantilevers or other
For SI: 1 inch = 25.4 mm.

a. See Table 403.3(1) for required dimensions and R-values for vertical and horizontal insulation and minimum footing depth.

FIGURE 403.3(1)
INSULATION PLACEMENT FOR FROST PROTECTED FOOTINGS IN HEATED BUILDINGS

TABLE 403.3(1)
MINIMUM FOOTING DEPTH AND INSULATION REQUIREMENTS FOR FROST-PROTECTED FOOTINGS IN HEATED BUILDINGS

<table>
<thead>
<tr>
<th>AIR FREEZING INDEX (°F-days)</th>
<th>MINIMUM FOOTING DEPTH, D (inches)</th>
<th>VERTICAL INSULATION R-VALUE</th>
<th>HORIZONTAL INSULATION R-VALUE</th>
<th>HORIZONTAL INSULATION DIMENSIONS PER FIGURE 403.3(1) (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Along walls At corners</td>
</tr>
<tr>
<td>1,500 or less</td>
<td>12</td>
<td>4.5</td>
<td>Not required</td>
<td>Not required Not required Not required Not required Not required</td>
</tr>
<tr>
<td>2,000</td>
<td>14</td>
<td>5.6</td>
<td>Not required</td>
<td>Not required Not required Not required Not required Not required</td>
</tr>
<tr>
<td>2,500</td>
<td>16</td>
<td>6.7</td>
<td>1.7</td>
<td>4.9 12 24 40</td>
</tr>
<tr>
<td>3,000</td>
<td>16</td>
<td>7.8</td>
<td>6.5</td>
<td>8.6 12 24 40</td>
</tr>
<tr>
<td>3,500</td>
<td>16</td>
<td>9.0</td>
<td>8.0</td>
<td>11.2 24 30 60</td>
</tr>
<tr>
<td>4,000</td>
<td>16</td>
<td>10.1</td>
<td>10.5</td>
<td>13.1 24 36 60</td>
</tr>
</tbody>
</table>

a. Insulation requirements are for protection against frost damage in heated buildings. Greater values may be required to meet energy conservation standards.

b. See Figure 403.3(2) or Table 403.3(2) for Air Freezing Index values.

c. Insulation materials shall provide the stated minimum R-values under long-term exposure to moist, below-ground conditions in freezing climates. The following R-values shall be used to determine insulation thicknesses required for this application: Type II expanded polystyrene—2.4R per inch; Type IV extruded polystyrene—4.5R per inch; Type VI extruded polystyrene—4.5R per inch; Type IX expanded polystyrene—3.2R per inch; Type X extruded polystyrene—4.5R per inch.

d. Vertical insulation shall be expanded polystyrene insulation or extruded polystyrene insulation.

e. Horizontal insulation shall be extruded polystyrene insulation.

TABLE 403.3(2)
AIR-FREEZING INDEX FOR OHIO LOCATIONS BY COUNTY

<table>
<thead>
<tr>
<th>STATE</th>
<th>AIR-FREEZING INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500 or less 2000 2500 3000 3500 4000</td>
</tr>
<tr>
<td>Ohio</td>
<td>All counties not listed</td>
</tr>
<tr>
<td></td>
<td>Ashland, Crawford, Defiance, Holmes, Huron, Knox, Licking, Morrow, Paulding, Putnam, Richland, Seneca, Williams</td>
</tr>
<tr>
<td></td>
<td>—</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. See Table 403.3(1) for required dimensions and R-values for vertical and horizontal insulation and minimum footing depth.
For SI: $C = \frac{[F] - 32}{1.8}$.

Note: The air-freezing index is defined as cumulative degree days below 32F. It is used as a measure of the combined magnitude and duration of air temperature below freezing. The index was computed over a 12-month period (July-June) for each of the 3,044 stations used in the above analysis. Data from the 1951-80 period were fitted to a Weibull probability distribution to produce an estimate of the 100-year return period.

FIGURE 403.3(2)

AIR-FREEZING INDEX
AN ESTIMATE OF THE 100-YEAR RETURN PERIOD
For SI: 1 inch = 25.4 mm.

a See Table R403.3(1) for required dimensions and R-values for vertical and horizontal insulation.

FIGURE R403.3(3)
INSULATION PLACEMENT FOR FROST-PROTECTED FOOTINGS ADJACENT TO UNHEATED SLAB-ON-GROUND STRUCTURE
403.3.1.2 Attachment to heated structure. Where a frost protected shallow foundation abuts a structure that has a monthly mean temperature maintained at a minimum of 64°F (18°C), horizontal insulation and vertical wall insulation shall not be required between the frost protected shallow foundation and the adjoining structure. Where the frost protected shallow foundation abuts the heated structure, the horizontal insulation and vertical wall insulation shall extend along the adjoining foundation in accordance with Figure 403.3(4) a distance of not less than Dimension A in Table 403.3(1).

Exception: Where the frost protected shallow foundation abuts the heated structure to form an inside corner, vertical insulation extending along the adjoining foundation is not required.

403.3.2 Protection of horizontal insulation below ground. Horizontal insulation placed less than 12 inches (305 mm) below the ground surface or that portion of horizontal insulation extending outward more than 24 inches (610 mm) from the foundation edge shall be protected against damage by use of a concrete slab or asphalt paving on the ground surface directly above the insulation or by cementitious board, plywood rated for below-ground use, or other approved materials placed below ground, directly above the top surface of the insulation.

403.3.3 Drainage. Final grade shall be sloped in accordance with Section R401.3. In other than Group I Soils, as detailed in Table 405.1, gravel or crushed stone beneath horizontal insulation below ground shall drain by gravity or mechanical means into an approved drainage system or other location that complies with the Ohio Plumbing Code.

403.3.4 Termite damage. The use of foam plastic in areas of “very heavy” termite infestation probability shall be in accordance with Section R318.4.

403.4 Footings for precast concrete foundations. Footings for precast concrete foundations shall comply with Section 403.4.

403.4.1 Crushed stone footings. Clean crushed stone shall be free from organic, clayey or silty soils. Crushed stone shall be angular in nature and meet ASTM C 33, with the maximum size stone not to exceed ½ inch (12.7 mm) and the minimum stone size not to be smaller than 1/16-inch (1.6 mm). Crushed stone footings for precast foundations shall be installed in accordance with Figure 403.4(1) and Table 403.4. Crushed stone footings shall be
consolidated using a vibratory plate in a maximum of 8-inch lifts. Crushed stone footings shall be limited to Seismic Design Categories A, B and C.

403.4.2 Concrete footings
Concrete footings shall be installed in accordance with Section 403.1 and Figure 403.4(2).

403.5 Exterior deck footings
Exterior deck footings of poured-in-place concrete shall be a minimum of 8 inches (203 mm) thick and extend below the frost depth per Table 301.2(1). The diameter or width of the footing shall comply with Table 403.5.

TABLE 403.4
MINIMUM DEPTH OF CRUSHED STONE FOOTINGS (D), (inches)

<table>
<thead>
<tr>
<th>LOAD BEARING VALUE OF SOIL (psf)</th>
<th>MH, CH, CL, ML</th>
<th>SC, GC, SM, GM, SP, SW</th>
<th>GP, GW</th>
<th>Wall width (inches)</th>
<th>Wall width (inches)</th>
<th>Wall width (inches)</th>
<th>Wall width (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>3000</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

Conventional light-frame construction

<table>
<thead>
<tr>
<th>Story</th>
<th>Load (plf)</th>
<th>Wall width (inches)</th>
<th>Wall width (inches)</th>
<th>Wall width (inches)</th>
<th>Wall width (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-story</td>
<td>1100</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2-story</td>
<td>1800</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3-story</td>
<td>2900</td>
<td>16</td>
<td>14</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

4-inch brick veneer over light-frame or 8-inch hollow concrete masonry

<table>
<thead>
<tr>
<th>Story</th>
<th>Load (plf)</th>
<th>Wall width (inches)</th>
<th>Wall width (inches)</th>
<th>Wall width (inches)</th>
<th>Wall width (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-story</td>
<td>1500</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2-story</td>
<td>2700</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>3-story</td>
<td>4000</td>
<td>20</td>
<td>12</td>
<td>14</td>
<td>12</td>
</tr>
</tbody>
</table>

8-inch solid or fully grouted masonry

<table>
<thead>
<tr>
<th>Story</th>
<th>Load (plf)</th>
<th>Wall width (inches)</th>
<th>Wall width (inches)</th>
<th>Wall width (inches)</th>
<th>Wall width (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-story</td>
<td>2000</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>2-story</td>
<td>3600</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>3-story</td>
<td>5300</td>
<td>32</td>
<td>28</td>
<td>26</td>
<td>22</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 plf = 14.6 N/m², 1 pounds per square foot = 47.9 N/m²
FIGURE 403.3(4)
INSULATION PLACEMENT FOR FROST-PROTECTED FOOTINGS ADJACENT TO HEATED STRUCTURE
TABLE 403.5
MINIMUM FOOTING SIZE FOR DECK FOOTTINGS WITHOUT ROOF LOADS
EXTERIOR DECK AND PORCH FOOTING SIZE IN INCHES a,b

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Square</th>
<th>Maximum Tributary Area Allowed Per Post (square feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>8 x 8</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>9 x 9</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>11 x 11</td>
<td>31.6</td>
</tr>
<tr>
<td>14</td>
<td>13 x 13</td>
<td>42.8</td>
</tr>
<tr>
<td>16</td>
<td>15 x 15</td>
<td>56</td>
</tr>
<tr>
<td>18</td>
<td>16 x 16</td>
<td>70.8</td>
</tr>
<tr>
<td>20</td>
<td>18 x 18</td>
<td>87.2</td>
</tr>
</tbody>
</table>

a. Based upon 2000 lbs. per square foot soil bearing capacity.
b. Based upon 40 lbs. per square foot live load and a 10 lbs. per square foot dead load.

SECTION 404
FOUNDATION AND RETAINING WALLS

404.1 Concrete and masonry foundation walls. Concrete foundation walls shall be selected and constructed in accordance with the provisions of Section 404.1.2. Masonry foundation walls shall be selected and constructed in accordance with the provisions of Section 404.1.1.

404.1.1 Design of masonry foundation walls. Masonry foundation walls shall be designed and constructed in accordance with the provisions of this section or in accordance with the provisions of TMS 402/ACI 530/ASCE 5 or NCMA TR68-A.

TABLE 404.1.1(1)
PLAIN MASONRY FOUNDATION WALLS

<table>
<thead>
<tr>
<th>MAXIMUM WALL HEIGHT (feet)</th>
<th>MAXIMUM UNBALANCED BACKFILL HEIGHT (feet)</th>
<th>PLAIN MASONRY a MINIMUM NOMINAL WALL THICKNESS (inches)</th>
<th>Soil classes b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GW, GP, SW and SP</td>
<td>GM, GC, SM, SM-SC and ML</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6 solid d or 8</td>
<td>6 solid d or 8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6 solid d or 8</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6 solid d or 8</td>
<td>6 solid d or 8</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6 solid d or 8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6 solid d or 8</td>
<td>8</td>
</tr>
</tbody>
</table>

d. Solid masonry walls are composed of a single layer of masonry units. Solid walls are distinguished from cavity walls which have an air gap between masonry units.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 Pa.
a. Mortar shall be Type M or S and masonry shall be laid in running bond. Ungrouted hollow masonry units are permitted except where otherwise indicated.
b. Soil classes are in accordance with the Unified Soil Classification System. Refer to Table 405.1.
c. Unbalanced backfill height is the difference in height between the exterior finish ground level and the lower of the top of the concrete footing that supports the foundation wall or the interior finish ground level. Where an interior concrete slab-on-grade is provided and is in contact with the interior surface of the foundation wall, measurement of the unbalanced backfill height from the exterior finish ground level to the top of the interior concrete slab is permitted.
d. Solid grouted hollow units or solid masonry units.
e. Wall construction shall be in accordance with either Table 404.1.1(2), Table 404.1.1(3), Table 404.1.1(4), or a design shall be provided.

<table>
<thead>
<tr>
<th>Wall Height</th>
<th>Height of Unbalanced Backfill</th>
<th>Minimum Vertical Reinforcement and Spacing (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 feet 8 inches</td>
<td>4 feet (or less)</td>
<td>#4 at 48</td>
</tr>
<tr>
<td>5 feet</td>
<td>#4 at 48</td>
<td></td>
</tr>
<tr>
<td>6 feet 8 inches</td>
<td>#4 at 48</td>
<td></td>
</tr>
<tr>
<td>7 feet 4 inches</td>
<td>4 feet (or less)</td>
<td>#4 at 48</td>
</tr>
<tr>
<td>5 feet</td>
<td>#4 at 48</td>
<td></td>
</tr>
<tr>
<td>6 feet</td>
<td>#4 at 48</td>
<td></td>
</tr>
<tr>
<td>7 feet 4 inches</td>
<td>#4 at 48</td>
<td></td>
</tr>
<tr>
<td>8 feet</td>
<td>4 feet (or less)</td>
<td>#5 at 48</td>
</tr>
<tr>
<td>5 feet</td>
<td>#5 at 48</td>
<td></td>
</tr>
<tr>
<td>6 feet</td>
<td>#5 at 48</td>
<td></td>
</tr>
<tr>
<td>7 feet 8 inches</td>
<td>#5 at 48</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 Pa.

a. Mortar shall be Type M or S and masonry shall be laid in running bond. Ungrouted hollow masonry units are permitted except where otherwise indicated.
b. Soil classes are in accordance with the Unified Soil Classification System. Refer to Table 405.1.
c. Unbalanced backfill height is the difference in height between the exterior finish ground level and the lower of the top of the concrete footing that supports the foundation wall or the interior finish ground level. Where an interior concrete slab-on-grade is provided and is in contact with the interior surface of the foundation wall, measurement of the unbalanced backfill height from the exterior finish ground level to the top of the interior concrete slab is permitted.
d. Solid grouted hollow units or solid masonry units.
e. Wall construction shall be in accordance with either Table 404.1.1(2), Table 404.1.1(3), Table 404.1.1(4), or a design shall be provided.

| Table 404.1.1(2) 8-Inch Masonry Foundation Walls with Reinforcing Where d > 5 Inches |
|---|---|---|
| Soil Classes and Lateral Soil Load (psf per foot below grade) | GW, GP, SW and SP soils 30 | GM, GC, SM, SM-SC and ML soils 45 | SC, ML-CL and Inorganic CL soils 60 |
| 6 feet 8 inches | #4 at 48 | #4 at 48 | #4 at 48 |
| 7 feet 4 inches | #4 at 48 | #5 at 48 | #6 at 48 |
| 8 feet | #5 at 48 | #6 at 48 | #6 at 32 |
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot per foot = 0.157 kPa/mm.

a. Mortar shall be Type M or S and masonry shall be laid in running bond.

b. Alternative reinforcing bar sizes and spacings having an equivalent cross-sectional area of reinforcement per lineal foot of wall shall be permitted provided the spacing of the reinforcement does not exceed 72 inches.

c. Vertical reinforcement shall be Grade 60 minimum. The distance, \(d \), from the face of the soil side of the wall to the center of vertical reinforcement shall be at least 5 inches.

d. Soil classes are in accordance with the Unified Soil Classification System and design lateral soil loads are for moist conditions without hydrostatic pressure. Refer to Table 405.1.

e. Unbalanced backfill height is the difference in height between the exterior finish ground level and the lower of the top of the concrete footing that supports the foundation wall or the interior finish ground level. Where an interior concrete slab-on-grade is provided and is in contact with the interior surface of the foundation wall, measurement of the unbalanced backfill height from the exterior finish ground level to the top of the interior concrete slab is permitted.

TABLE 404.1.1(3)

10-INCH MASONRY FOUNDATION WALLS WITH REINFORCING

WHERE \(d > 6.75 \) INCHES

<table>
<thead>
<tr>
<th>WALL HEIGHT</th>
<th>HEIGHT OF UNBALANCED BACKFILL</th>
<th>MINIMUM VERTICAL REINFORCEMENT AND SPACING (INCHES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GW, GP, SW and SP soils 30</td>
<td>GM, GC, SM, SM-SC and ML soils 45</td>
</tr>
<tr>
<td>6 feet 8 inches</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
</tr>
<tr>
<td>5 feet</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
</tr>
<tr>
<td>6 feet 8 inches</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
</tr>
<tr>
<td>7 feet 4 inches</td>
<td>#4 at 56</td>
<td>#5 at 56</td>
</tr>
<tr>
<td>4 feet (or less)</td>
<td>#4 at 56</td>
<td>#4 at 56</td>
</tr>
<tr>
<td>5 feet</td>
<td>#4 at 56</td>
<td>#5 at 56</td>
</tr>
<tr>
<td>6 feet</td>
<td>#4 at 56</td>
<td>#5 at 56</td>
</tr>
<tr>
<td>7 feet</td>
<td>#5 at 56</td>
<td>#5 at 56</td>
</tr>
<tr>
<td>8 feet</td>
<td>#6 at 40</td>
<td>#6 at 40</td>
</tr>
<tr>
<td>9 feet</td>
<td>#6 at 40</td>
<td>#6 at 40</td>
</tr>
<tr>
<td>10 feet</td>
<td>#6 at 40</td>
<td>#6 at 40</td>
</tr>
</tbody>
</table>

a. Mortar shall be Type M or S and masonry shall be laid in running bond.

b. Alternative reinforcing bar sizes and spacings having an equivalent cross-sectional area of reinforcement per lineal foot of wall shall be permitted provided the spacing of the reinforcement does not exceed 72 inches.

c. Vertical reinforcement shall be Grade 60 minimum. The distance, \(d \), from the face of the soil side of the wall to the center of vertical reinforcement shall be at least 5 inches.

d. Soil classes are in accordance with the Unified Soil Classification System and design lateral soil loads are for moist conditions without hydrostatic pressure. Refer to Table 405.1.

e. Unbalanced backfill height is the difference in height between the exterior finish ground level and the lower of the top of the concrete footing that supports the foundation wall or the interior finish ground level. Where an interior concrete slab-on-grade is provided and is in contact with the interior surface of the foundation wall, measurement of the unbalanced backfill height from the exterior finish ground level to the top of the interior concrete slab is permitted.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot per foot = 0.157 kPa/mm.
a. Mortar shall be Type M or S and masonry shall be laid in running bond.
b. Alternative reinforcing bar sizes and spacings having an equivalent cross-sectional area of reinforcement per lineal foot of wall shall be permitted provided the spacing of the reinforcement does not exceed 72 inches.
c. Vertical reinforcement shall be Grade 60 minimum. The distance, \(d \), from the face of the soil side of the wall to the center of vertical reinforcement shall be at least 6.75 inches.
d. Soil classes are in accordance with the Unified Soil Classification System and design lateral soil loads are for moist conditions without hydrostatic pressure. Refer to Table 405.1.
e. Unbalanced backfill height is the difference in height between the exterior finish ground level and the lower of the top of the concrete footing that supports the foundation wall or the interior finish ground level. Where an interior concrete slab-on-grade is provided and is in contact with the interior surface of the foundation wall, measurement of the unbalanced backfill height from the exterior finish ground level to the top of the interior concrete slab is permitted.

TABLE 404.1.1(4)

12-INCH MASONRY FOUNDATION WALLS WITH REINFORCING

Where \(d > 8.75 \) INCHES\(^{a,b,c}\)

<table>
<thead>
<tr>
<th>WALL HEIGHT</th>
<th>HEIGHT OF UNBALANCED BACKFILL</th>
<th>MINIMUM VERTICAL REINFORCEMENT AND SPACING (INCHES)(^{b,c})</th>
<th>Soil classes and lateral soil load(^d) (psf per foot below grade)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>#4 at 56</td>
<td>GW, GP, SW and SP soils 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#4 at 56</td>
<td>GM, GC, SM, SM-SC and ML soils 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#6 at 48</td>
<td>SC, ML-CL and inorganic CL soils 60</td>
</tr>
<tr>
<td>6 feet 8 inches</td>
<td>4 feet (or less)</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>5 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>6 feet</td>
<td>#4 at 72</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>8 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>8 feet 8 inches</td>
<td>4 feet (or less)</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>5 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>6 feet</td>
<td>#5 at 72</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>7 feet</td>
<td>#5 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td></td>
<td>8 feet</td>
<td>#5 at 72</td>
<td>#6 at 48</td>
</tr>
<tr>
<td></td>
<td>9 feet 8 inches</td>
<td>#6 at 56</td>
<td>#6 at 48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#6 at 48</td>
<td>#6 at 48</td>
</tr>
<tr>
<td>9 feet 4 inches</td>
<td>4 feet (or less)</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>5 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>6 feet</td>
<td>#5 at 72</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>7 feet</td>
<td>#5 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td></td>
<td>8 feet</td>
<td>#5 at 72</td>
<td>#6 at 40</td>
</tr>
<tr>
<td></td>
<td>9 feet 4 inches</td>
<td>#6 at 56</td>
<td>#6 at 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#6 at 40</td>
<td>#6 at 24</td>
</tr>
<tr>
<td>10 feet</td>
<td>4 feet (or less)</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>5 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td></td>
<td>6 feet</td>
<td>#5 at 72</td>
<td>#5 at 72</td>
</tr>
<tr>
<td></td>
<td>7 feet</td>
<td>#5 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td></td>
<td>8 feet</td>
<td>#5 at 72</td>
<td>#6 at 48</td>
</tr>
<tr>
<td></td>
<td>9 feet</td>
<td>#6 at 56</td>
<td>#6 at 40</td>
</tr>
<tr>
<td></td>
<td>10 feet</td>
<td>#6 at 56</td>
<td>#6 at 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>#6 at 32</td>
<td>#6 at 24</td>
</tr>
<tr>
<td>7 feet 4 inches</td>
<td>8 feet</td>
<td>8 feet 8 inches</td>
<td>9 feet 4 inches</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>4 feet (or less)</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>5 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>6 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>7 feet 4 inches</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>4 feet (or less)</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>5 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>6 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>7 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>8 feet</td>
<td>#5 at 72</td>
<td>#5 at 72</td>
<td>#5 at 72</td>
</tr>
<tr>
<td>4 feet (or less)</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>5 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>6 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>7 feet</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
<td>#4 at 72</td>
</tr>
<tr>
<td>8 feet</td>
<td>#5 at 72</td>
<td>#5 at 72</td>
<td>#5 at 72</td>
</tr>
<tr>
<td>9 feet 4 inches</td>
<td>#5 at 72</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>4 feet (or less)</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>5 feet</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>6 feet</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>7 feet</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>8 feet</td>
<td>#7 at 72</td>
<td>#7 at 72</td>
<td>#7 at 72</td>
</tr>
<tr>
<td>9 feet 4 inches</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>4 feet (or less)</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>5 feet</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>6 feet</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>7 feet</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
<td>#6 at 72</td>
</tr>
<tr>
<td>8 feet</td>
<td>#7 at 72</td>
<td>#7 at 72</td>
<td>#7 at 72</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot per foot = 0.157 kPa/mm.

a. Mortar shall be Type M or S and masonry shall be laid in running bond.
b. Alternative reinforcing bar sizes and spacings having an equivalent cross-sectional area of reinforcement per lineal foot of wall shall be permitted provided the spacing of the reinforcement does not exceed 72 inches.
c. Vertical reinforcement shall be Grade 60 minimum. The distance, \(d \), from the face of the soil side of the wall to the center of vertical reinforcement shall be at least 8.75 inches.
d. Soil classes are in accordance with the Unified Soil Classification System and design lateral soil loads are for moist conditions without hydrostatic pressure. Refer to Table 405.1.
e. Unbalanced backfill height is the difference in height between the exterior finish ground level and the lower of the top of the concrete footing that supports the foundation wall or the interior finish ground levels. Where an interior concrete slab-on-grade is provided and in contact with the interior surface of the foundation wall, measurement of the unbalanced backfill height is permitted to be measured from the exterior finish ground level to the top of the interior concrete slab is permitted.

404.1.1.1 Masonry foundation walls. Concrete masonry and clay masonry foundation walls shall be constructed as set forth in Table 404.1.1(1), 404.1.1(2), 404.1.1(3) or 404.1.1(4) and shall also comply with applicable provisions of Sections 606, 607 and 608. In buildings assigned to Seismic Design Categories D0, D1 and D2, concrete masonry and clay masonry foundation walls shall also comply with Section 404.1.4.1. Rubble stone masonry foundation walls shall be constructed in accordance
with Sections 404.1.8 and 607.2.2. Rubble stone masonry walls shall not be used in Seismic Design Categories D₀, D₁ and D₂.

404.1.2 Concrete foundation walls. Concrete foundation walls that support light-frame walls shall be designed and constructed in accordance with the provisions of this section, ACI 318, ACI 332 or PCA 100. Concrete foundation walls that support above-grade concrete walls that are within the applicability limits of Section 611.2 shall be designed and constructed in accordance with the provisions of this section, ACI 318, ACI 332 or PCA 100. Concrete foundation walls that support above-grade concrete walls that are not within the applicability limits of Section 611.2 shall be designed and constructed in accordance with the provisions of ACI 318, ACI 332 or PCA 100.

404.1.2.1 Concrete cross-section. Concrete walls constructed in accordance with this code shall comply with the shapes and minimum concrete cross-sectional dimensions required by Table 611.3. Other types of forming systems resulting in concrete walls not in compliance with this section and Table 611.3 shall be designed in accordance with ACI 318.

404.1.2.2 Reinforcement for foundation walls. Concrete foundation walls shall be laterally supported at the top and bottom. Horizontal reinforcement shall be provided in accordance with Table 404.1.2(1). Vertical reinforcement shall be provided in accordance with Table 404.1.2(2), 404.1.2(3), 404.1.2(4), 404.1.2(5), 404.1.2(6), 404.1.2(7) or 404.1.2(8). Vertical reinforcement for flat basement walls retaining 4 feet (1219 mm) or more of unbalanced backfill is permitted to be determined in accordance with Table 404.1.2(8). For basement walls supporting above-grade concrete walls, vertical reinforcement shall be the greater of that required by Tables 404.1.2(2) through 404.1.2(8) or by Section 611.6 for the above-grade wall. In buildings assigned to Seismic Design Category D₀, D₁ or D₂, concrete foundation walls shall also comply with Section 404.1.4.2.

404.1.2.2.1 Concrete foundation stem walls supporting above-grade concrete walls. Foundation stem walls that support above-grade concrete walls shall be designed and constructed in accordance with this section.

1. Stem walls not laterally supported at top. Concrete stem walls that are not monolithic with slabs-on-ground or are not
otherwise laterally supported by slabs-on-ground shall comply with this section. Where unbalanced backfill retained by the stem wall is less than or equal to 18 inches (457 mm), the stem wall and above-grade wall it supports shall be provided with vertical reinforcement in accordance with Section 611.6 and Table 611.6(1), 611.6(2) or 611.6(3) for above-grade walls. Where unbalanced backfill retained by the stem wall is greater than 18 inches (457 mm), the stem wall and above-grade wall it supports shall be provided with vertical reinforcement in accordance with Section 611.6 and Table 611.6(4).

2. Stem walls laterally supported at top. Concrete stem walls that are monolithic with slabs-on-ground or are otherwise laterally supported by slabs-on-ground shall be vertically reinforced in accordance with Section 611.6 and Table 611.6(1), 611.6(2) or 611.6(3) for above-grade walls. Where the unbalanced backfill retained by the stem wall is greater than 18 inches (457 mm), the connection between the stem wall and the slab-on-ground, and the portion of the slab-on-ground providing lateral support for the wall shall be designed in accordance with PCA 100 or in accordance with accepted engineering practice. Where the unbalanced backfill retained by the stem wall is greater than 18 inches (457 mm), the minimum nominal thickness of the wall shall be 6 inches (152 mm).

404.1.2.2 Concrete foundation stem walls supporting light-frame above-grade walls. Concrete foundation stem walls that support light-frame above-grade walls shall be designed and constructed in accordance with this section.

1. Stem walls not laterally supported at top. Concrete stem walls that are not monolithic with slabs-on-ground or are not otherwise laterally supported by slabs-on-ground and retain 48 inches (1219 mm) or less of unbalanced fill, measured from the top of the wall, shall be constructed in accordance with Section 404.1.2. Foundation stem walls that retain more than 48 inches (1219 mm) of unbalanced fill, measured from the top of the wall, shall be designed in accordance with Sections 404.1.3 and 404.4.
2. Stem walls laterally supported at top. Concrete stem walls that are monolithic with slabs-on-ground or are otherwise laterally supported by slabs-on-ground shall be constructed in accordance with Section 404.1.2. Where the unbalanced backfill retained by the stem wall is greater than 48 inches (1219 mm), the connection between the stem wall and the slab-on-ground, and the portion of the slab-on-ground providing lateral support for the wall shall be designed in accordance with PCA 100 or in accordance with accepted engineering practice.

TABLE 404.1.2(1)

<table>
<thead>
<tr>
<th>MINIMUM HORIZONTAL REINFORCEMENT FOR CONCRETE BASEMENT WALLS<sup>a, b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM UNSUPPORTED HEIGHT OF BASEMENT WALL (feet)</td>
</tr>
<tr>
<td>≤8</td>
</tr>
<tr>
<td>>8</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa.

a. Horizontal reinforcement requirements are for reinforcing bars with a minimum yield strength of 40,000 psi and concrete with a minimum concrete compressive strength 2,500 psi.

b. See Section 404.1.2.2 for minimum reinforcement required for foundation walls supporting above-grade concrete walls.

TABLE 404.1.2(2)

<table>
<thead>
<tr>
<th>MINIMUM VERTICAL REINFORCEMENT FOR 6-INCH NOMINAL FLAT CONCRETE BASEMENT WALLS<sup>b, c, d, e, g, h, i, j</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXIMUM UNSUPPORTED WALL HEIGHT (feet)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
For SI: 1 foot = 304.8 mm; 1 inch = 25.4 mm; 1 pound per square foot per foot = 0.1571 kPa/m, 1 pound per square inch = 6.895 kPa.
a. Soil classes are in accordance with the Unified Soil Classification System. Refer to Table 405.1.
b. Table values are based on reinforcing bars with a minimum yield strength of 60,000 psi concrete with a minimum specified compressive strength of 2,500 psi and vertical reinforcement being located at the centerline of the wall. See Section 404.1.2.3.7.2.
c. Vertical reinforcement with a yield strength of less than 60,000 psi and/or bars of a different size than specified in the table are permitted in accordance with Section 404.1.2.3.7.6 and Table 404.1.2(9).
d. Deflection criterion is $L/240$, where L is the height of the basement wall in inches.
e. Interpolation is not permitted.
f. Where walls will retain 4 feet or more of unbalanced backfill, they shall be laterally supported at the top and bottom before backfilling.
g. NR indicates no vertical wall reinforcement is required, except for 6-inch nominal walls formed with stay-in-place forming systems in which case vertical reinforcement shall be No. 4 @ 48 inches on center.
h. See Section 404.1.2.2 for minimum reinforcement required for basement walls supporting above-grade concrete walls.
i. See Table 611.3 for tolerance from nominal thickness permitted for flat walls.
j. DR means design is required in accordance with the applicable building code, or where there is no code, in accordance with ACI 318.

404.1.2.3 Concrete, materials for concrete, and forms

Materials used in concrete, the concrete itself and forms shall conform to requirements of this section or ACI 318.

404.1.2.3.1 Compressive strength

The minimum specified compressive strength of concrete, f'_c, shall comply with Section 402.2 and shall be not less than 2,500 psi (17.2 MPa) at 28 days in buildings assigned to Seismic Design Category A, B or C and 3000 psi (20.5 MPa) in buildings assigned to Seismic Design Category D_0, D_1 or D_2.

404.1.2.3.2 Concrete mixing and delivery

Mixing and delivery of concrete shall comply with ASTM C 94 or ASTM C 685.

404.1.2.3.3 Maximum aggregate size

The nominal maximum size of coarse aggregate shall not exceed one-fifth the narrowest distance
between sides of forms, or three-fourths the clear spacing between reinforcing bars or between a bar and the side of the form.

Exception: When approved, these limitations shall not apply where removable forms are used and workability and methods of consolidation permit concrete to be placed without honeycombs or voids.

TABLE 404.1.2(3)
MINIMUM VERTICAL REINFORCEMENT FOR 8-INCH (203 mm) NOMINAL FLAT CONCRETE BASEMENT WALLS\(^{b, c, d, e, f, h, i}\)

<table>
<thead>
<tr>
<th>MAXIMUM UNSUPPORTED WALL HEIGHT (feet)</th>
<th>MAXIMUM UNBALANCED BACKFILL HEIGHT(^g) (feet)</th>
<th>MINIMUM VERTICAL REINFORCEMENT—BAR SIZE AND SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Soil classes(^a) and design lateral soil (psf per foot of depth)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GW, GP, SW, SP 30</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6 @ 41</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6 @ 36</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6 @ 35</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6 @ 35</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6 @ 34</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6 @ 27</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm; 1 inch = 25.4 mm; 1 pound per square foot per foot = 0.1571 kPa/m, 1 pound per square inch = 6.895 kPa.

\(a\). Soil classes are in accordance with the Unified Soil Classification System. Refer to Table 405.1.

\(b\). Table values are based on reinforcing bars with a minimum yield strength of 60,000 psi (420 MPa), concrete with a minimum specified compressive strength of 2,500 psi and vertical reinforcement being located at the centerline of the wall. See Section 404.1.2.3.7.2.
c. Vertical reinforcement with a yield strength of less than 60,000 psi and/or bars of a different size than specified in the table are permitted in accordance with Section 404.1.2.3.7.6 and Table 404.1.2(9).

d. NR indicates no vertical reinforcement is required.

e. Deflection criterion is $L/240$, where L is the height of the basement wall in inches.

f. Interpolation is not permitted.

g. Where walls will retain 4 feet or more of unbalanced backfill, they shall be laterally supported at the top and bottom before backfilling.

h. See Section 404.1.2.2 for minimum reinforcement required for basement walls supporting above-grade concrete walls.

i. See Table 611.3 for tolerance from nominal thickness permitted for flat walls.

404.1.2.3.4 Proportioning and slump of concrete. Proportions of materials for concrete shall be established to provide workability and consistency to permit concrete to be worked readily into forms and around reinforcement under conditions of placement to be employed, without segregation or excessive bleeding. Slump of concrete placed in removable forms shall not exceed 6 inches (152 mm).

Exception: When approved, the slump is permitted to exceed 6 inches (152 mm) for concrete mixtures that are resistant to segregation, and are in accordance with the form manufacturer’s recommendations.

Slump of concrete placed in stay-in-place forms shall exceed 6 inches (152 mm). Slump of concrete shall be determined in accordance with ASTM C 143.

404.1.2.3.5 Consolidation of concrete. Concrete shall be consolidated by suitable means during placement and shall be worked around embedded items and reinforcement and into corners of forms. Where stay-in-place forms are used, concrete shall be consolidated by internal vibration.

Exception: When approved for concrete to be placed in stay-in-place forms, self-consolidating concrete mixtures with slumps equal to or greater than 8 inches (203 mm) that are specifically designed for placement without internal vibration need not be internally vibrated.

<table>
<thead>
<tr>
<th>Soil classes and design lateral soil (psf per foot of depth)</th>
<th>MINIMUM VERTICAL REINFORCEMENT—BAR SIZE AND SPACING (inches)</th>
</tr>
</thead>
</table>
| **MAXIMUM UNSUPPORTED** | **MAXIMUM UNBALANCED** | **TABLE 404.1.2(4)**
<p>| MINIMUM VERTICAL REINFORCEMENT FOR 10-INCH NOMINAL FLAT CONCRETE BASEMENT WALLSb, c, d, e, f, h, i | | |</p>
<table>
<thead>
<tr>
<th>WALL HEIGHT (feet)</th>
<th>BACKFILL HEIGHT* (feet)</th>
<th>GW, GP, SW, SP 30</th>
<th>GM, GC, SM, SM-SC and ML 45</th>
<th>SC, ML-CL and inorganic CL 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6 @ 48</td>
<td>6 @ 35</td>
<td>6 @ 28</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>NR</td>
<td>NR</td>
<td>6 @ 31</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>NR</td>
<td>6 @ 31</td>
<td>6 @ 28</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6 @ 37</td>
<td>6 @ 28</td>
<td>6 @ 24</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>NR</td>
<td>NR</td>
<td>6 @ 28</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>NR</td>
<td>6 @ 28</td>
<td>6 @ 28</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6 @ 33</td>
<td>6 @ 28</td>
<td>6 @ 21</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6 @ 28</td>
<td>6 @ 23</td>
<td>6 @ 17</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm; 1 inch = 25.4 mm; 1 pound per square foot per foot = 0.1571 kPa²/m, 1 pound per square inch = 6.895 kPa.

a. Soil classes are in accordance with the Unified Soil Classification System. Refer to Table 405.1.
b. Table values are based on reinforcing bars with a minimum yield strength of 60,000 psi concrete with a minimum specified compressive strength of 2,500 psi and vertical reinforcement being located at the centerline of the wall. See Section 404.1.2.3.7.2.
c. Vertical reinforcement with a yield strength of less than 60,000 psi and/or bars of a different size than specified in the table are permitted in accordance with Section 404.1.2.3.7.6 and Table 404.1.2(9).
d. NR indicates no vertical reinforcement is required.
e. Deflection criterion is \(L/240 \), where \(L \) is the height of the basement wall in inches.
f. Interpolation is not permitted.
g. Where walls will retain 4 feet or more of unbalanced backfill, they shall be laterally supported at the top and bottom before backfilling.
h. See Section 404.1.2.2 for minimum reinforcement required for basement walls supporting above-grade concrete walls.
i. See Table 611.3 for tolerance from nominal thickness permitted for flat walls.

404.1.2.3.6 Form materials and form ties.

Forms shall be made of wood, steel, aluminum, plastic, a composite of cement and foam insulation, a composite of cement and wood chips, or other approved material suitable for supporting and containing concrete. Forms shall provide sufficient strength to contain concrete during the concrete placement operation.
Form ties shall be steel, solid plastic, foam plastic, a composite of cement and wood chips, a composite of cement and foam plastic, or other suitable material capable of resisting the forces created by fluid pressure of fresh concrete.

404.1.2.3.6.1 Stay-in-place forms. Stay-in-place concrete forms shall comply with this section.

1. Surface burning characteristics. The flame-spread index and smoke-developed index of forming material, other than foam plastic, left exposed on the interior shall comply with Section 302. The surface burning characteristics of foam plastic used in insulating concrete forms shall comply with Section 316.3.

2. Interior covering. Stay-in-place forms constructed of rigid foam plastic shall be protected on the interior of the building as required by Section 316. Where gypsum board is used to protect the foam plastic, it shall be installed with a mechanical fastening system. Use of adhesives in addition to mechanical fasteners is permitted.

3. Exterior wall covering. Stay-in-place forms constructed of rigid foam plastics shall be protected from sunlight and physical damage by the application of an approved exterior wall covering complying with this code. Exterior surfaces of other stay-in-place forming systems shall be protected in accordance with this code.

4. Termite hazards. In areas where hazard of termite damage is very heavy in accordance with Figure 301.2(6), foam plastic insulation shall be permitted below grade on foundation walls in accordance with one of the following conditions:

 4.1. Where in addition to the requirements in Section 318.1, an approved method of protecting the foam plastic and structure from subterranean termite damage is provided.
4.2. The structural members of walls, floors, ceilings and roofs are entirely of noncombustible materials or pressure-preservative-treated wood.

4.3. On the interior side of basement walls.

TABLE 404.1.2(5)

MINIMUM VERTICAL WALL REINFORCEMENT FOR 6-INCH WAFFLE-GRID BASEMENT WALLS

<table>
<thead>
<tr>
<th>MAXIMUM UNSUPPORTED WALL HEIGHT (feet)</th>
<th>MAXIMUM UNBALANCED BACKFILL HEIGHT (feet)</th>
<th>MINIMUM VERTICAL REINFORCEMENT—BAR SIZE AND SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Soil classes and design lateral soil (psf per foot of depth)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GW, GP, SW, SP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4 @ 48</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4 @ 45</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5 @ 45</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6 @ 44</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6 @ 32</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4 @ 48</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4 @ 42</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5 @ 41</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6 @ 39</td>
</tr>
<tr>
<td></td>
<td>> 8</td>
<td>DR</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm; 1 inch = 25.4 mm; 1 pound per square foot per foot = 0.1571 kPa/m, 1 pound per square inch = 6.895 kPa.

a. Soil classes are in accordance with the Unified Soil Classification System. Refer to Table 405.1.

b. Table values are based on reinforcing bars with a minimum yield strength of 60,000 psi concrete with a minimum specified compressive strength of 2,500 psi and vertical reinforcement being located at the centerline of the wall. See Section 404.1.2.3.7.2.

c. Maximum spacings shown are the values calculated for the specified bar size. Where the bar used is Grade 60 and the size specified in the table, the actual spacing in the wall shall not exceed a whole-number multiple of 12 inches (i.e., 12, 24, 36 and 48) that is less than or equal to the tabulated spacing. Vertical reinforcement with a yield strength of less than 60,000 psi and/or bars of a different size than specified in the table are permitted in accordance with Section 404.1.2.3.7.6 and Table 404.1.2(9).

d. Deflection criterion is \(L/240 \), where \(L \) is the height of the basement wall in inches.

e. Interpolation is not permitted.
f. Where walls will retain 4 feet or more of unbalanced backfill, they shall be laterally supported at the top and bottom before backfilling.
g. See Section 404.1.2.2 for minimum reinforcement required for basement walls supporting above-grade concrete walls.
h. See Table 611.3 for thicknesses and dimensions of waffle-grid walls.
i. DR means design is required in accordance with the applicable building code, or where there is no code, in accordance with ACI 318.

TABLE 404.1.2(6)
MINIMUM VERTICAL REINFORCEMENT FOR 8-INCH WAFFLE-GRID BASEMENT WALLS

<table>
<thead>
<tr>
<th>MAXIMUM UNSUPPORTED WALL HEIGHT (feet)</th>
<th>MAXIMUM UNBALANCED BACKFILL HEIGHT(^\text{a}) (feet)</th>
<th>MINIMUM VERTICAL REINFORCEMENT—BAR SIZE AND SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Soil classes(^b) and design lateral soil (psf per foot of depth)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GW, GP, SW, SP 30</td>
</tr>
<tr>
<td>4</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>5</td>
<td>NR</td>
<td>5 @ 46</td>
</tr>
<tr>
<td>6</td>
<td>5 @ 48</td>
<td>5 @ 43</td>
</tr>
<tr>
<td>7</td>
<td>5 @ 46</td>
<td>6 @ 43</td>
</tr>
<tr>
<td>8</td>
<td>6 @ 48</td>
<td>6 @ 32</td>
</tr>
<tr>
<td>4</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>5</td>
<td>NR</td>
<td>5 @ 47</td>
</tr>
<tr>
<td>6</td>
<td>5 @ 46</td>
<td>5 @ 39</td>
</tr>
<tr>
<td>7</td>
<td>5 @ 42</td>
<td>6 @ 38</td>
</tr>
<tr>
<td>8</td>
<td>6 @ 44</td>
<td>6 @ 28</td>
</tr>
<tr>
<td>9</td>
<td>6 @ 34</td>
<td>6 @ 21</td>
</tr>
<tr>
<td>4</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>5</td>
<td>NR</td>
<td>5 @ 46</td>
</tr>
<tr>
<td>6</td>
<td>5 @ 46</td>
<td>5 @ 37</td>
</tr>
<tr>
<td>7</td>
<td>5 @ 38</td>
<td>6 @ 35</td>
</tr>
<tr>
<td>8</td>
<td>6 @ 39</td>
<td>6 @ 25</td>
</tr>
<tr>
<td>9</td>
<td>6 @ 30</td>
<td>DR</td>
</tr>
<tr>
<td>10</td>
<td>6 @ 24</td>
<td>DR</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm; 1 inch = 25.4 mm; 1 pound per square foot per foot = 0.1571 kPa\(^2\)/m, 1 pound per square inch = 6.895 kPa.

a. Soil classes are in accordance with the Unified Soil Classification System. Refer to Table 405.1.
b. Table values are based on reinforcing bars with a minimum yield strength of 60,000 psi concrete with a minimum specified compressive strength of 2,500 psi and vertical reinforcement being located at the centerline of the wall. See Section 404.1.2.3.7.2.
c. Maximum spacings shown are the values calculated for the specified bar size. Where the bar used is Grade 60 (420 MPa) and the size specified in the table, the actual spacing in the wall shall not exceed a whole-number multiple of 12 inches (i.e., 12, 24, 36 and 48) that is less than or equal to the tabulated spacing. Vertical reinforcement with a yield strength of less than 60,000 psi and/or bars of a different size than specified in the table are permitted in accordance with Section 404.1.2.3.7.6 and Table 404.1.2(9).
d. NR indicates no vertical reinforcement is required.
e. Deflection criterion is \(L/240 \), where \(L \) is the height of the basement wall in inches.
f. Interpolation shall not be permitted.
g. Where walls will retain 4 feet or more of unbalanced backfill, they shall be laterally supported at the top and bottom before backfilling.
h. See Section 404.1.2.2 for minimum reinforcement required for basement walls supporting above-grade concrete walls.
i. See Table 611.3 for thicknesses and dimensions of waffle-grid walls.
j. DR means design is required in accordance with the applicable building code, or where there is no code, in accordance with ACI 318.

TABLE 404.1.2(7)
MINIMUM VERTICAL REINFORCEMENT FOR 6-INCH (152 mm) SCREEN-GRID BASEMENT WALLS\(^{b, d, e, g, h, i}\)

<table>
<thead>
<tr>
<th>MAXIMUM UNSUPPORTED WALL HEIGHT (feet)</th>
<th>MAXIMUM UNBALANCED BACKFILL HEIGHT (feet)</th>
<th>MINIMUM VERTICAL REINFORCEMENT—BAR SIZE AND SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Soil classes(^{a}) and design lateral soil (psf per foot of depth)</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4 @ 48</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4 @ 48</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5 @ 48</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6 @ 48</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6 @ 36</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>4 @ 48</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4 @ 48</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5 @ 45</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6 @ 43</td>
</tr>
<tr>
<td></td>
<td>> 8</td>
<td>DR</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>4 @ 48</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4 @ 44</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5 @ 42</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6 @ 40</td>
</tr>
<tr>
<td></td>
<td>> 8</td>
<td>DR</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm; 1 inch = 25.4 mm; 1 pound per square foot per foot = 0.1571 kPa/m, 1 pound per square inch = 6.895 kPa.

a. Soil classes are in accordance with the Unified Soil Classification System. Refer to Table 405.1.
b. Table values are based on reinforcing bars with a minimum yield strength of 60,000 psi (420 MPa), concrete with a minimum specified compressive strength of 2,500 psi and vertical reinforcement being located at the centerline of the wall. See Section 404.1.2.3.7.2.
c. Maximum spacings shown are the values calculated for the specified bar size. Where the bar used is Grade 60 and the size specified in the table, the actual spacing in the wall shall not exceed a whole-number multiple of 12 inches (i.e., 12, 24, 36 and 48) that is less than or equal to the tabulated spacing. Vertical reinforcement with a yield strength of less than 60,000 psi and/or bars of a different size than specified in the table are permitted in accordance with Section 404.1.2.3.7.6 and Table 404.1.2(9).
d. Deflection criterion is \(L/240 \), where \(L \) is the height of the basement wall in inches.
e. Interpolation is not permitted.
f. Where walls will retain 4 feet or more of unbalanced backfill, they shall be laterally supported at the top and bottom before backfilling.
g. See Sections 404.1.2.2 for minimum reinforcement required for basement walls supporting above-grade concrete walls.
h. See Table 611.3 for thicknesses and dimensions of screen-grid walls.
i. DR means design is required in accordance with the applicable building code, or where there is no code, in accordance with ACI 318.

404.1.2.3.7 Reinforcement.

404.1.2.3.7.1 Steel reinforcement. Steel reinforcement shall comply with the requirements of ASTM A 615, A 706, or A 996. ASTM A 996 bars produced from rail steel shall be Type R. In buildings assigned to Seismic Design Category A, B or C, the minimum yield strength of reinforcing steel shall be 40,000 psi (Grade 40) (276 MPa). In buildings assigned to Seismic Design Category D₀, D₁ or D₂, reinforcing steel shall comply with the requirements of ASTM A 706 for low-alloy steel with a minimum yield strength of 60,000 psi (Grade 60) (414 MPa).

404.1.2.3.7.2 Location of reinforcement in wall. The center of vertical reinforcement in basement walls determined from Tables 404.1.2(2) through 404.1.2(7) shall be located at the center-line of the wall. Vertical reinforcement in basement walls determined from Table 404.1.2(8) shall be located to provide a maximum cover of 1.25 inches (32 mm) measured from the inside face of the wall. Regardless of the table used to determine vertical wall reinforcement, the center of the steel shall not vary from the specified location by more than the greater of 10 percent of the wall thickness and \(\frac{3}{8} \) inch (10 mm). Horizontal and vertical reinforcement shall be located in foundation walls to provide the minimum cover required by Section 404.1.2.3.7.4.

404.1.2.3.7.3 Wall openings. Vertical wall reinforcement required by Section 404.1.2.2 that is interrupted by wall openings shall have additional vertical reinforcement of the same size placed within 12 inches (305 mm) of each side of the opening.

<table>
<thead>
<tr>
<th>MAXIMUM WALL</th>
<th>MAXIMUM UNBALANCED</th>
<th>MINIMUM VERTICAL REINFORCEMENT—BAR SIZE AND SPACING (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil classes(^a) and design lateral soil (psf per foot of depth)</td>
<td>MINIMUM VERTICAL REINFORCEMENT FOR 6-, 8-, 10-INCH AND 12-INCH NOMINAL FLAT BASEMENT WALLS, b, c, d, e, f, h, i, k, n</td>
<td></td>
</tr>
</tbody>
</table>
Minimum nominal wall thickness (inches)

<table>
<thead>
<tr>
<th>HEIGHT (feet)</th>
<th>BACKFILL HEIGHT³ (feet)</th>
<th>GW, GP, SW, SP</th>
<th>GM, GC, SM, SM-SC and ML</th>
<th>SC, ML-CL and inorganic CL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

For SI: 1 foot = 304.8 mm; 1 inch = 25.4 mm; 1 pound per square foot per foot = 0.1571 kPa/m, 1 pound per square inch = 6.895 kPa.

a. Soil classes are in accordance with the Unified Soil Classification System. Refer to Table 405.1.
b. Table values are based on reinforcing bars with a minimum yield strength of 60,000 psi.
c. Vertical reinforcement with a yield strength of less than 60,000 psi and/or bars of a different size than specified in the table are permitted in accordance with Section 404.1.2.3.7.6 and Table 404.1.2(9).
d. NR indicates no vertical wall reinforcement is required, except for 6-inch nominal walls formed with stay-in-place forming systems in which case vertical reinforcement shall be #4 @ 48 inches on center.
e. Allowable deflection criterion is \(L/240\), where \(L\) is the unsupported height of the basement wall in inches.
f. Interpolation is not permitted.
g. Where walls will retain 4 feet or more of unbalanced backfill, they shall be laterally supported at the top and bottom before backfilling.
h. Vertical reinforcement shall be located to provide a cover of 1.25 inches measured from the inside face of the wall. The center of the steel shall not vary from the specified location by more than the greater of 10 percent of the wall thickness or \(3/8\)-inch.
i. Concrete cover for reinforcement measured from the inside face of the wall shall not be less than \(3/8\)-inch. Concrete cover for reinforcement...
measured from the outside face of the wall shall not be less than 1½ inches for No. 5 bars and smaller, and not less than 2 inches for larger bars.
j. DR means design is required in accordance with the applicable building code, or where there is no code in accordance with ACI 318.
k. Concrete shall have a specified compressive strength, f'_c, of not less than 2,500 psi at 28 days, unless a higher strength is required by footnote l or m.
l. The minimum thickness is permitted to be reduced 2 inches, provided the minimum specified compressive strength of concrete, f'_c, is 4,000 psi.
m. A plain concrete wall with a minimum nominal thickness of 12 inches is permitted, provided minimum specified compressive strength of concrete, f'_c, is 3,500 psi.
n. See Table 611.3 for tolerance from nominal thickness permitted for flat walls.

Table 404.1.2(9)

<table>
<thead>
<tr>
<th>BAR SPACING FROM APPLICABLE TABLE IN SECTION 404.1.2.2 (inches)</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAR SIZE FROM APPLICABLE TABLE IN SECTION 404.1.2.2</td>
<td>Alternate bar size and/or alternate grade of steel desired</td>
<td>Grade 60</td>
<td>Grade 40</td>
</tr>
<tr>
<td>#5</td>
<td>#6</td>
<td>#4</td>
<td>#5</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>14</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>17</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>19</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>22</td>
<td>31</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>23</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>25</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>26</td>
<td>37</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>40</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>29</td>
<td>42</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>31</td>
<td>44</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>33</td>
<td>46</td>
<td>14</td>
</tr>
<tr>
<td>22</td>
<td>34</td>
<td>48</td>
<td>15</td>
</tr>
<tr>
<td>23</td>
<td>36</td>
<td>48</td>
<td>15</td>
</tr>
<tr>
<td>24</td>
<td>37</td>
<td>48</td>
<td>16</td>
</tr>
<tr>
<td>25</td>
<td>39</td>
<td>48</td>
<td>17</td>
</tr>
<tr>
<td>26</td>
<td>40</td>
<td>48</td>
<td>17</td>
</tr>
<tr>
<td>27</td>
<td>42</td>
<td>48</td>
<td>18</td>
</tr>
<tr>
<td>28</td>
<td>43</td>
<td>48</td>
<td>19</td>
</tr>
<tr>
<td>29</td>
<td>45</td>
<td>48</td>
<td>19</td>
</tr>
<tr>
<td>30</td>
<td>47</td>
<td>48</td>
<td>20</td>
</tr>
<tr>
<td>31</td>
<td>48</td>
<td>48</td>
<td>21</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm, 1 pound per square inch = 6.895 kPa.
a. This table is for use with tables in Section 404.1.2.2 that specify the minimum bar size and maximum spacing of vertical wall reinforcement for foundation walls and above-grade walls. Reinforcement specified in tables in Sections 404.1.2.2 is based on Grade 60 steel reinforcement.
b. Bar spacing shall not exceed 48 inches on center and shall not be less than one-half the nominal wall thickness.
c. For Grade 50 steel bars (ASTM A 996, Type R), use spacing for Grade 40 bars or interpolate between Grades 40 and 60.

<table>
<thead>
<tr>
<th>32</th>
<th>48</th>
<th>48</th>
<th>21</th>
<th>33</th>
<th>47</th>
<th>21</th>
<th>45</th>
<th>14</th>
<th>21</th>
<th>30</th>
<th>15</th>
<th>23</th>
<th>10</th>
<th>15</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>48</td>
<td>48</td>
<td>22</td>
<td>34</td>
<td>48</td>
<td>21</td>
<td>47</td>
<td>14</td>
<td>22</td>
<td>31</td>
<td>15</td>
<td>23</td>
<td>10</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>34</td>
<td>48</td>
<td>48</td>
<td>23</td>
<td>35</td>
<td>48</td>
<td>22</td>
<td>48</td>
<td>15</td>
<td>23</td>
<td>32</td>
<td>15</td>
<td>24</td>
<td>10</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>35</td>
<td>48</td>
<td>48</td>
<td>23</td>
<td>36</td>
<td>48</td>
<td>23</td>
<td>48</td>
<td>15</td>
<td>23</td>
<td>33</td>
<td>16</td>
<td>25</td>
<td>11</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>36</td>
<td>48</td>
<td>48</td>
<td>24</td>
<td>37</td>
<td>48</td>
<td>23</td>
<td>48</td>
<td>15</td>
<td>24</td>
<td>34</td>
<td>16</td>
<td>25</td>
<td>11</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>37</td>
<td>48</td>
<td>48</td>
<td>25</td>
<td>38</td>
<td>48</td>
<td>24</td>
<td>48</td>
<td>16</td>
<td>25</td>
<td>35</td>
<td>17</td>
<td>26</td>
<td>11</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>38</td>
<td>48</td>
<td>48</td>
<td>25</td>
<td>39</td>
<td>48</td>
<td>25</td>
<td>48</td>
<td>16</td>
<td>25</td>
<td>36</td>
<td>17</td>
<td>27</td>
<td>12</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>39</td>
<td>48</td>
<td>48</td>
<td>26</td>
<td>40</td>
<td>48</td>
<td>25</td>
<td>48</td>
<td>17</td>
<td>26</td>
<td>37</td>
<td>18</td>
<td>27</td>
<td>12</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>40</td>
<td>48</td>
<td>48</td>
<td>27</td>
<td>41</td>
<td>48</td>
<td>26</td>
<td>48</td>
<td>17</td>
<td>27</td>
<td>38</td>
<td>18</td>
<td>28</td>
<td>12</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>41</td>
<td>48</td>
<td>48</td>
<td>27</td>
<td>42</td>
<td>48</td>
<td>26</td>
<td>48</td>
<td>18</td>
<td>27</td>
<td>39</td>
<td>19</td>
<td>29</td>
<td>12</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>42</td>
<td>48</td>
<td>48</td>
<td>28</td>
<td>43</td>
<td>48</td>
<td>27</td>
<td>48</td>
<td>18</td>
<td>28</td>
<td>40</td>
<td>19</td>
<td>30</td>
<td>13</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>43</td>
<td>48</td>
<td>48</td>
<td>29</td>
<td>44</td>
<td>48</td>
<td>28</td>
<td>48</td>
<td>18</td>
<td>29</td>
<td>41</td>
<td>20</td>
<td>30</td>
<td>13</td>
<td>20</td>
<td>29</td>
</tr>
<tr>
<td>44</td>
<td>48</td>
<td>48</td>
<td>29</td>
<td>45</td>
<td>48</td>
<td>28</td>
<td>48</td>
<td>19</td>
<td>29</td>
<td>42</td>
<td>20</td>
<td>31</td>
<td>13</td>
<td>21</td>
<td>29</td>
</tr>
<tr>
<td>45</td>
<td>48</td>
<td>48</td>
<td>30</td>
<td>47</td>
<td>48</td>
<td>29</td>
<td>48</td>
<td>19</td>
<td>30</td>
<td>43</td>
<td>20</td>
<td>32</td>
<td>14</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>46</td>
<td>48</td>
<td>48</td>
<td>31</td>
<td>48</td>
<td>48</td>
<td>30</td>
<td>48</td>
<td>20</td>
<td>31</td>
<td>44</td>
<td>21</td>
<td>32</td>
<td>14</td>
<td>22</td>
<td>31</td>
</tr>
<tr>
<td>47</td>
<td>48</td>
<td>48</td>
<td>32</td>
<td>48</td>
<td>48</td>
<td>31</td>
<td>48</td>
<td>21</td>
<td>32</td>
<td>45</td>
<td>22</td>
<td>34</td>
<td>15</td>
<td>23</td>
<td>32</td>
</tr>
</tbody>
</table>

404.1.2.3.7.4 **Support and cover.** Reinforcement shall be secured in the proper location in the forms with tie wire or other bar support system to prevent displacement during the concrete placement operation. Steel reinforcement in concrete cast against the earth shall have a minimum cover of 3 inches (75 mm). Minimum cover for reinforcement in concrete cast in removable forms that will be exposed to the earth or weather shall be 1½ inches (38 mm) for No. 5 bars and smaller, and 2 inches (50 mm) for No. 6 bars and larger. For concrete cast in removable forms that will not be exposed to the earth or weather, and for concrete cast in stay-in-place forms, minimum cover shall be ¾ inch (19 mm). The minus tolerance for cover shall not exceed the smaller of one-third the required cover or 3/8 inch (10 mm).

404.1.2.3.7.5 **Lap splices.** Vertical and horizontal wall reinforcement shall be the longest lengths practical. Where splices are necessary in reinforcement, the length of lap splice shall be in accordance with Table 611.5.4.(1) and Figure 611.5.4(1). The
maximum gap between noncontact parallel bars at a lap splice shall not exceed the smaller of one-fifth the required lap length and 6 inches (152 mm). See Figure 611.5.4(1).

404.1.2.3.7.6 Alternate grade of reinforcement and spacing. Where tables in Section 404.1.2.2 specify vertical wall reinforcement based on minimum bar size and maximum spacing, which are based on Grade 60 (414 MPa) steel reinforcement, different size bars and/or bars made from a different grade of steel are permitted provided an equivalent area of steel per linear foot of wall is provided. Use of Table 404.1.2(9) is permitted to determine the maximum bar spacing for different bar sizes than specified in the tables and/or bars made from a different grade of steel. Bars shall not be spaced less than one-half the wall thickness, or more than 48 inches (1219 mm) on center.

404.1.2.3.7.7 Standard hooks. Where reinforcement is required by this code to terminate with a standard hook, the hook shall comply with Section 611.5.4.5 and Figure 611.5.4(3).

404.1.2.3.7.8 Construction joint reinforcement. Construction joints in foundation walls shall be made and located to not impair the strength of the wall. Construction joints in plain concrete walls, including walls required to have not less than No. 4 bars at 48 inches (1219 mm) on center by Sections 404.1.2.2 and 404.1.4.2, shall be located at points of lateral support, and a minimum of one No. 4 bar shall extend across the construction joint at a spacing not to exceed 24 inches (610 mm) on center. Construction joint reinforcement shall have a minimum of 12 inches (305 mm) embedment on both sides of the joint. Construction joints in reinforced concrete walls shall be located in the middle third of the span between lateral supports, or located and constructed as required for joints in plain concrete walls.

Exception: Use of vertical wall reinforcement required by this code is permitted in lieu of construction joint reinforcement provided the spacing does not exceed 24 inches (610 mm), or the combination of wall reinforcement and No.4 bars described above does not exceed 24 inches (610 mm).
404.1.2.3.8 Exterior wall coverings. Requirements for installation of masonry veneer, stucco and other wall coverings on the exterior of concrete walls and other construction details not covered in this section shall comply with the requirements of this code.

404.1.2.4 Requirements for Seismic Design Category C. Deleted.

404.1.3 Design required. Concrete or masonry foundation walls shall be designed in accordance with accepted engineering practice when either of the following conditions exists:

1. Walls are subject to hydrostatic pressure from groundwater.

2. Walls supporting more than 48 inches (1219 mm) of unbalanced backfill that do not have permanent lateral support at the top or bottom.

404.1.4 Seismic Design Category D₀, D₁ or D₂. Deleted.

404.1.5 Foundation wall thickness based on walls supported. The thickness of masonry or concrete foundation walls shall not be less than that required by Section 404.1.5.1 or 404.1.5.2, respectively.

404.1.5.1 Masonry wall thickness. Masonry foundation walls shall not be less than the thickness of the wall supported, except that masonry foundation walls of at least 8-inch (203 mm) nominal thickness shall be permitted under brick veneered frame walls and under 10-inch-wide (254 mm) cavity walls where the total height of the wall supported, including gables, is not more than 20 feet (6096 mm), provided the requirements of Section 404.1.1 are met.

404.1.5.2 Concrete wall thickness. The thickness of concrete foundation walls shall be equal to or greater than the thickness of the wall in the story above. Concrete foundation walls with corbels, brackets or other projections built into the wall for support of masonry veneer or other purposes are not within the scope of the tables in this section.

Where a concrete foundation wall is reduced in thickness to provide a shelf for the support of masonry veneer, the reduced thickness shall be equal to or greater than the thickness of the wall in the story above. Vertical reinforcement for the foundation wall shall be based on Table
404.1.2(8) and located in the wall as required by Section 404.1.2.3.7.2 where that table is used. Vertical reinforcement shall be based on the thickness of the thinner portion of the wall.

Exception: Where the height of the reduced thickness portion measured to the underside of the floor assembly or sill plate above is less than or equal to 24 inches (610 mm) and the reduction in thickness does not exceed 4 inches (102 mm), the vertical reinforcement is permitted to be based on the thicker portion of the wall.

404.1.5.3 Pier and curtain wall foundations. Use of pier and curtain wall foundations shall be permitted to support light-frame construction not more than two stories in height, provided the following requirements are met:

1. All load-bearing walls shall be placed on continuous concrete footings placed integrally with the exterior wall footings.

2. The minimum actual thickness of a load-bearing masonry wall shall be not less than 4 inches (102 mm) nominal or 3 3/8 inches (92 mm) actual thickness, and shall be bonded integrally with piers spaced in accordance with Section 606.9.

3. Piers shall be constructed in accordance with Section 606.6 and Section 606.6.1, and shall be bonded into the load-bearing masonry wall in accordance with Section 608.1.1 or Section 608.1.1.2.

4. The maximum height of a 4-inch (102 mm) load-bearing masonry foundation wall supporting wood-frame walls and floors shall not be more than 4 feet (1219 mm).

5. Anchorage shall be in accordance with Section 403.1.6, Figure 404.1.5(1), or as specified by engineered design accepted by the building official.

6. The unbalanced fill for 4-inch (102 mm) foundation walls shall not exceed 24 inches (610 mm) for solid masonry or 12 inches (305 mm) for hollow masonry.

7. Deleted.
404.1.6 **Height above finished grade.** Concrete and masonry foundation walls shall extend above the finished grade adjacent to the foundation at all points a minimum of 4 inches (102 mm) where masonry veneer is used and a minimum of 6 inches (152 mm) elsewhere.

404.1.7 **Backfill placement.** Backfill shall not be placed against the wall until the wall has sufficient strength and has been anchored to the floor above, or has been sufficiently braced to prevent damage by the backfill.

Exception: Bracing is not required for walls supporting less than 4 feet (1219 mm) of unbalanced backfill.

404.1.8 **Rubble stone masonry.** Rubble stone masonry foundation walls shall have a minimum thickness of 16 inches (406 mm), shall not support an unbalanced backfill exceeding 8 feet (2438 mm) in height, shall not support a soil pressure greater than 30 pounds per square foot per foot (4.71 kPa/m), and shall not be constructed in Seismic Design Categories D₀, D₁, D₂ or townhouses in Seismic Design Category C, as established in Figure 301.2(2).

404.2 **Wood foundation walls.** Wood foundation walls shall be constructed in accordance with the provisions of Sections 404.2.1 through 404.2.6 and with the details shown in Figures 403.1(2) and 403.1(3).

404.2.1 **Identification.** All load-bearing lumber shall be identified by the grade mark of a lumber grading or inspection agency which has been approved by an accreditation body that complies with DOC PS 20. In lieu of a grade mark, a certificate of inspection issued by a lumber grading or inspection agency meeting the requirements of this section shall be accepted. Wood structural panels shall conform to DOC PS 1 or DOC PS 2 and shall be identified by a grade mark or certificate of inspection issued by an approved agency.

404.2.2 **Stud size.** The studs used in foundation walls shall be 2-inch by 6-inch (51 mm by 152 mm) members. When spaced 16 inches (406 mm) on center, a wood species with an F_b value of not less than 1,250 pounds per square inch (8619 kPa) as listed in AF&PA/NDS shall be used. When spaced 12 inches (305 mm) on center, an F_b of not less than 875 psi (6033 kPa) shall be required.

404.2.3 **Height of backfill.** For wood foundations that are not designed and installed in accordance with AF&PA PWF, the height of backfill against a
foundation wall shall not exceed 4 feet (1219 mm). When the height of fill is more than 12 inches (305 mm) above the interior grade of a crawl space or floor of a basement, the thickness of the plywood sheathing shall meet the requirements of Table 404.2.3.

404.2.4 Backfilling. Wood foundation walls shall not be backfilled until the basement floor and first floor have been constructed or the walls have been braced. For crawl space construction, backfill or bracing shall be installed on the interior of the walls prior to placing backfill on the exterior.

404.2.5 Drainage and dampproofing. Wood foundation basements shall be drained and dampproofed in accordance with Sections 405 and 406, respectively.

404.2.6 Fastening. Wood structural panel foundation wall sheathing shall be attached to framing in accordance with Table 602.3(1) and Section 402.1.1.

404.3 Wood sill plates. Wood sill plates shall be a minimum of 2-inch by 4-inch (51 mm by 102 mm) nominal lumber. Sill plate anchorage shall be in accordance with Sections 403.1.6 and 602.11.

404.4 Retaining walls. Retaining walls that are not laterally supported at the top and that retain in excess of 24 inches (610 mm) of unbalanced fill shall be designed to ensure stability against overturning, sliding, excessive foundation pressure and water uplift. Retaining walls shall be designed for a safety factor of 1.5 against lateral sliding and overturning.

404.5 Precast concrete foundation walls.

404.5.1 Design. Precast concrete foundation walls shall be designed in accordance with accepted engineering practice. The design and manufacture of precast concrete foundation wall panels shall comply with the materials requirements of Section 402.3 or ACI 318. The panel design drawings shall be in accordance with Section 106.5.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 degree = 0.0175 rad.

FIGURE 404.1.5(1)

FOUNDATION WALL CLAY MASONRY CURTAIN WALL WITH CONCRETE MASONRY PIERS
TABLE 404.2.3
PLYWOOD GRADE AND THICKNESS FOR WOOD FOUNDATION CONSTRUCTION
(30 pcf equivalent-fluid weight soil pressure)

<table>
<thead>
<tr>
<th>HEIGHT OF FILL (inches)</th>
<th>STUD SPACING (inches)</th>
<th>FACE GRAIN ACROSS STUDS</th>
<th>FACE GRAIN PARALLEL TO STUDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gradea</td>
<td>Minimum thickness (inches)</td>
<td>Span rating</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>12</td>
<td>B</td>
<td>15/32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>B</td>
<td>15/32</td>
</tr>
<tr>
<td>36</td>
<td>12</td>
<td>B</td>
<td>15/32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>B</td>
<td>15/32 c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>12</td>
<td>B</td>
<td>15/32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>B</td>
<td>19/32</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per cubic foot = 0.1572kN/m³.

a. Plywood shall be of the following minimum grades in accordance with DOC PS 1 or DOC PS 2:
 1. DOC PS 1 Plywood grades marked:
 1.1. Structural I C-D (Exposure 1)
 1.2. C-D (Exposure 1)
 2. DOC PS 2 Plywood grades marked:
 2.1. Structural I Sheathing (Exposure 1)
 2.2. Sheathing (Exposure 1)
 3. Where a major portion of the wall is exposed above ground and a better appearance is desired, the following plywood grades marked exterior are suitable:
 3.1. Structural I A-C, Structural I B-C or Structural I C-C (Plugged) in accordance with DOC PS 1
 3.2. A-C Group 1, B-C Group 1, C-C (Plugged) Group 1 or MDO Group 1 in accordance with DOC PS 1
 3.3. Single Floor in accordance with DOC PS 1 or DOC PS 2

b. Minimum thickness 15/32 inch, except crawl space sheathing may be 3/8 inch for face grain across studs 16 inches on center and maximum 2-foot depth of unequal fill.

c. For this fill height, thickness and grade combination, panels that are continuous over less than three spans (across less than three stud spacings) require blocking 16 inches above the bottom plate. Offset adjacent blocks and fasten through studs with two 16d corrosion-resistant nails at each end.
404.5.2 Precast concrete foundation design drawings. Precast concrete foundation wall design drawings shall be submitted to the building official and approved prior to installation. Drawings shall include, at a minimum, the information specified below:

1. Design loading as applicable;
2. Footing design and material;
3. Concentrated loads and their points of application;
4. Soil bearing capacity;
5. Maximum allowable total uniform load;
6. Seismic design category; and
7. Basic wind speed.

404.5.3 Identification. Precast concrete foundation wall panels shall be identified by a certificate of inspection label issued by an approved inspection agency.

SECTION 405
FOUNDATION DRAINAGE

405.1 Concrete or masonry foundations. Drains shall be provided around all concrete or masonry foundations that retain earth and enclose habitable or usable spaces located below grade. Drainage tiles, gravel or crushed stone drains, perforated pipe or other approved systems or materials shall be installed at or below the area to be protected and shall discharge by gravity or mechanical means into an approved drainage system or other location that complies with the Ohio Plumbing Code. Gravel or crushed stone drains shall extend at least 1 foot (305 mm) beyond the outside edge of the footing and 6 inches (152 mm) above the top of the footing and be covered with an approved filter membrane material. The top of open joints of drain tiles shall be protected with strips of building paper, and the drainage tiles or perforated pipe shall be placed on a minimum of 2 inches (51 mm) of washed gravel or crushed rock at least one sieve size larger than the tile joint opening or perforation and covered with not less than 6 inches (152 mm) of the same material.
Exception: A drainage system is not required when the foundation is installed on well-drained ground or sand-gravel mixture soils according to the Unified Soil Classification System, Group I Soils, as detailed in Table R405.1.

405.1.1 Precast concrete foundation. Precast concrete walls that retain earth and enclose habitable or use-able space located below-grade that rest on crushed stone footings shall have a perforated drainage pipe installed below the base of the wall on either the interior or exterior side of the wall, at least one foot (305 mm) beyond the edge of the wall. If the exterior drainage pipe is used, an approved filter membrane material shall cover the pipe. The drainage system shall discharge by gravity or mechanical means into an approved drainage system or other location that complies with the Ohio Plumbing Code.

405.2 Wood foundations. Wood foundations enclosing habitable or usable spaces located below grade shall be adequately drained in accordance with Sections 405.2.1 through 405.2.3.

405.2.1 Base. A porous layer of gravel, crushed stone or coarse sand shall be placed to a minimum thickness of 4 inches (102 mm) under the basement floor. Provision shall be made for automatic draining of this layer and the gravel or crushed stone wall footings.

405.2.2 Vapor retarder. A 6-mil-thick (0.15 mm) polyethylene vapor retarder shall be applied over the porous layer with the basement floor constructed over the polyethylene.

Table 405.1

<table>
<thead>
<tr>
<th>SOIL GROUP</th>
<th>UNIFIED SOIL CLASSIFICATION SYSTEM SYMBOL</th>
<th>SOIL DESCRIPTION</th>
<th>DRAINAGE CHARACTERISTICS<sup>a</sup></th>
<th>FROST HEAVE POTENTIAL</th>
<th>VOLUME CHANGE POTENTIAL EXPANSION<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>GW</td>
<td>Well-grounded gravels, gravel sand mixtures, little or no fines</td>
<td>Good</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>GP</td>
<td>Poorly graded gravels or gravel sand mixtures, little or no fines</td>
<td>Good</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>SW</td>
<td>Well-grounded sands, gravelly sands, little or no fines</td>
<td>Good</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>Poorly graded sands or gravelly sands, little or no fines</td>
<td>Good</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>GM</td>
<td>Silty gravels, gravel-sand-silt mixtures</td>
<td>Good</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>Silty sand, sand-silt mixtures</td>
<td>Good</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Group II</td>
<td>GC</td>
<td>Clayey gravels, gravel-sand-clay</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Groups</td>
<td>Mixtures</td>
<td>Potential Expansion</td>
<td>Permeability</td>
<td>Drainability</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------------------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>SC</td>
<td>Clayey sands, sand-clay mixture</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td>Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium to Low</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Inorganic clays of high plasticity, fat clays</td>
<td>Poor</td>
<td>Medium</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>MH</td>
<td>Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts</td>
<td>Poor</td>
<td>High</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>OL</td>
<td>Organic silts and organic silty clays of low plasticity</td>
<td>Poor</td>
<td>Medium</td>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>Organic clays of medium to high plasticity, organic silts</td>
<td>Unsatisfactory</td>
<td>Medium</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Pt</td>
<td>Peat and other highly organic soils</td>
<td>Unsatisfactory</td>
<td>Medium</td>
<td>High</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. The percolation rate for good drainage is over 4 inches per hour, medium drainage is 2 inches to 4 inches per hour, and poor is less than 2 inches per hour.
b. Soils with a low potential expansion typically have a plasticity index (PI) of 0 to 15, soils with a medium potential expansion have a PI of 10 to 35 and soils with a high potential expansion have a PI greater than 20.

405.2.3 Drainage system. In other than Group I soils, a sump shall be provided to drain the porous layer and footings. The sump shall be at least 24 inches (610 mm) in diameter or 20 inches square (0.0129 m²), shall extend at least 24 inches (610 mm) below the bottom of the basement floor and shall be capable of positive gravity or mechanical drainage to remove any accumulated water. The drainage system shall discharge by gravity or mechanical means into an approved drainage system or other location that complies with the Ohio Plumbing Code.

SECTION 406 FOUNDATION WATERPROOFING AND DAMPPROOFING

406.1 Concrete and masonry foundation dampproofing. Except where required by Section 406.2 to be waterproofed, foundation walls that retain earth and enclose interior spaces and floors below grade shall be dampproofed from the top of the footing to the finished grade. Masonry walls shall have not less than 3/8 inch (9.5 mm) portland cement parging applied to the exterior of the wall. The parging shall be dampproofed in accordance with one of the following:

1. Bituminous coating.
2. Three pounds per square yard (1.63 kg/m²) of acrylic modified cement.

3. One-eighth inch (3.2 mm) coat of surface-bonding cement complying with ASTM C 887.

4. Any material permitted for waterproofing in Section 406.2.

5. Other approved methods or materials.

Exception: Parging of unit masonry walls is not required where a material is approved for direct application to the masonry.

Concrete walls shall be dampproofed by applying any one of the above listed dampproofing materials or any one of the waterproofing materials listed in Section 406.2 to the exterior of the wall.

Exception: Existing foundations shall not be required to be dampproofed where a supplemental interior foundation drainage system is installed and connected to a sump pump.

406.2 Concrete and masonry foundation waterproofing.

In areas where a high water table or other severe soil-water conditions are known to exist, exterior foundation walls that retain earth and enclose interior spaces and floors below grade shall be waterproofed from the top of the footing to the finished grade. Walls shall be waterproofed in accordance with one of the following:

1. Two-ply hot-mopped felts.

2. Fifty five pound (25 kg) roll roofing.

3. Six-mil (0.15 mm) polyvinyl chloride.

4. Six-mil (0.15 mm) polyethylene.

5. Forty-mil (1 mm) polymer-modified asphalt.

6. Sixty-mil (1.5 mm) flexible polymer cement.

7. One-eighth inch (3 mm) cement-based, fiber-reinforced, waterproof coating.
8. Sixty-mil (0.22 mm) solvent-free liquid-applied synthetic rubber.

Exceptions:

1. Organic-solvent-based products such as hydrocarbons, chlorinated hydrocarbons, ketones and esters shall not be used for ICF walls with expanded polystyrene form material. Use of plastic roofing cements, acrylic coatings, latex coatings, mortars and pargings to seal ICF walls is permitted. Cold-setting asphalt or hot asphalt shall conform to type C of ASTM D 449. Hot asphalt shall be applied at a temperature of less than 200°F (93°C).

2. Where existing exterior or interior dampproofing exists, no waterproofing shall be required.

3. Where an existing home has a supplemental interior foundation drainage system connected to a sump pump, no waterproofing shall be required.

All joints in membrane waterproofing shall be lapped and sealed with an adhesive compatible with the membrane.

406.3 Dampproofing for wood foundations. Wood foundations enclosing habitable or usable spaces located below grade shall be dampproofed in accordance with Sections 406.3.1 through 406.3.4.

406.3.1 Panel joint sealed. Plywood panel joints in the foundation walls shall be sealed full length with a caulking compound capable of producing a moisture-proof seal under the conditions of temperature and moisture content at which it will be applied and used.

406.3.2 Below-grade moisture barrier. A 6-mil-thick (0.15 mm) polyethylene film shall be applied over the below-grade portion of exterior foundation walls prior to backfilling. Joints in the polyethylene film shall be lapped 6 inches (152 mm) and sealed with adhesive. The top edge of the polyethylene film shall be bonded to the sheathing to form a seal. Film areas at grade level shall be protected from mechanical damage and exposure by a pressure preservatively treated lumber or plywood strip attached to the wall several inches above finish grade level and extending approximately 9 inches (229 mm) below grade. The joint between the strip and the wall shall be caulked full length prior to fastening the strip to the wall. Other coverings
appropriate to the architectural treatment may also be used. The polyethylene film shall extend down to the bottom of the wood footing plate but shall not overlap or extend into the gravel or crushed stone footing.

406.3.3 Porous fill. The space between the excavation and the foundation wall shall be backfilled with the same material used for footings, up to a height of 1 foot (305 mm) above the footing for well-drained sites, or one-half the total back-fill height for poorly drained sites. The porous fill shall be covered with strips of 30-pound (13.6 kg) asphalt paper or 6-mil (0.15 mm) polyethylene to permit water seepage while avoiding infiltration of fine soils.

406.3.4 Backfill. The remainder of the excavated area shall be backfilled with the same type of soil as was removed during the excavation.

406.4 Precast concrete foundation system dampproofing. Except where required by Section 406.2 to be waterproofed, precast concrete foundation walls enclosing habitable or useable spaces located below grade shall be dampproofed in accordance with Section 406.1.

406.4.1 Panel joints sealed. Precast concrete foundation panel joints shall be sealed full height with a sealant meeting ASTM C 920, Type S or M, Grade NS, Class 25, Use NT, M or A. Joint sealant shall be installed in accordance with the manufacturer’s installation instructions.

SECTION 407
COLUMNS

407.1 Wood column protection. Wood columns shall be protected against decay as set forth in Section 317.

407.2 Steel column protection. All surfaces (inside and outside) of steel columns shall be given a shop coat of rust-inhibitive paint, except for corrosion-resistant steel and steel treated with coatings to provide corrosion resistance.

407.3 Structural requirements. The columns shall be restrained to prevent lateral displacement at the bottom end. Wood columns shall not be less in nominal size than 4 inches by 4 inches (102 mm by 102 mm). Steel columns shall not be less than 3-inch-diameter (76 mm) Schedule 40 pipe manufactured in accordance with ASTM A 53 Grade B or approved equivalent.
Exception: In Seismic Design Categories A, B and C, columns no more than 48 inches (1219 mm) in height on a pier or footing are exempt from the bottom end lateral displacement requirement within under-floor areas enclosed by a continuous foundation.

SECTION 408

UNDER-FLOOR SPACE

408.1 Ventilation. The under-floor space between the bottom of the floor joists and the earth under any building (except space occupied by a basement) shall have ventilation openings through foundation walls or exterior walls. The minimum net area of ventilation openings shall not be less than 1 square foot (0.0929 m²) for each 150 square feet (14 m²) of under-floor space area, unless the ground surface is covered by a Class 1 vapor retarder material. When a Class 1 vapor retarder material is used, the minimum net area of ventilation openings shall not be less than 1 square foot (0.0929 m²) for each 1,500 square feet (140 m²) of under-floor space area. One such ventilating opening shall be within 3 feet (914 mm) of each corner of the building.

408.2 Openings for under-floor ventilation. The minimum net area of ventilation openings shall not be less than 1 square foot (0.0929 m²) for each 150 square feet (14 m²) of under-floor area. One ventilation opening shall be within 3 feet (915 mm) of each corner of the building. Ventilation openings shall be covered for their height and width with any of the following materials provided that the least dimension of the covering shall not exceed ¼ inch (6.4 mm):

1. Perforated sheet metal plates not less than 0.070 inch (1.8 mm) thick.
2. Expanded sheet metal plates not less than 0.047 inch (1.2 mm) thick.
3. Cast-iron grill or grating.
4. Extruded load-bearing brick vents.
5. Hardware cloth of 0.035 inch (0.89 mm) wire or heavier.
6. Corrosion-resistant wire mesh, with the least dimension being 1/8 inch (3.2 mm) thick.

Exception: The total area of ventilation openings shall be permitted to be reduced to 1/1,500 of the under-floor area where the ground surface is covered.
with an approved Class I vapor retarder material and the required openings are placed to provide cross ventilation of the space. The installation of operable louvers shall not be prohibited.

408.3 Unvented crawl space. Ventilation openings in under-floor spaces specified in Sections 408.1 and 408.2 shall not be required where:

1. Exposed earth is covered with a continuous Class I vapor retarder. Joints of the vapor retarder shall overlap by 6 inches (152 mm) and shall be sealed or taped. The edges of the vapor retarder shall extend at least 6 inches (152 mm) up the stem wall and shall be attached and sealed to the stem wall; and

2. One of the following is provided for the under-floor space:

 2.1. Continuously operated mechanical exhaust ventilation at a rate equal to 1 cubic foot per minute (0.47 L/s) for each 50 square feet (4.7 m²) of crawlspace floor area, including an air pathway to the common area (such as a duct or transfer grille), and perimeter walls insulated in accordance with Section 1102.2.9;

 2.2. Conditioned air supply sized to deliver at a rate equal to 1 cubic foot per minute (0.47 L/s) for each 50 square feet (4.7 m²) of under-floor area, including a return air pathway to the common area (such as a duct or transfer grille), and perimeter walls insulated in accordance with Section 1102.2.9;

 2.3. Plenum in existing structures complying with Section 1601.5, if under-floor space is used as a plenum.

408.4 Access. Access shall be provided to all under-floor spaces. Access openings through the floor shall be a minimum of 18 inches by 24 inches (457 mm by 610 mm). Openings through a perimeter wall shall be not less than 16 inches by 24 inches (407 mm by 610 mm). When any portion of the through-wall access is below grade, an areaway not less than 16 inches by 24 inches (407 mm by 610 mm) shall be provided. The bottom of the areaway shall be below the threshold of the access opening. Through wall access openings shall not be located under a door to the residence. See Section 1305.1.4 for access requirements where mechanical equipment is located under floors.
408.5 Removal of debris. The under-floor grade shall be cleaned of all vegetation and organic material. All wood forms used for placing concrete shall be removed before a building is occupied or used for any purpose. All construction materials shall be removed before a building is occupied or used for any purpose.

408.6 Finished grade. The finished grade of under-floor surface may be located at the bottom of the footings; however, where there is evidence that the groundwater table can rise to within 6 inches (152 mm) of the finished floor at the building perimeter or where there is evidence that the surface water does not readily drain from the building site, the grade in the under-floor space shall be as high as the outside finished grade, unless an approved drainage system is provided.

408.7 Flood resistance. For buildings located in areas prone to flooding as established in Table 301.2(1) unless otherwise approved by the local flood plain administrator:

1. Walls enclosing the under-floor space shall be provided with flood openings in accordance with Section 322.2.2.

2. The finished ground level of the under-floor space shall be equal to or higher than the outside finished ground level on at least one side.

Exception: Under-floor spaces that meet the requirements of FEMA/FIA TB 11-1.

SECTION 409 FOUNDATION INSULATION

409.1 Protection of exposed foundation insulation. Foundation walls and the edges of slab-on-grade floors with exterior applied insulation shall have a rigid, opaque and weather-resistant protective covering to prevent the degradation of thermal performance. The protective covering shall cover the exposed insulation and extend to a minimum of 6 inches (153 mm) below grade.
Effective: 01/01/2016

Five Year Review (FYR) Dates: 01/01/2018

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.01, 3781.06, 3781.10, 3781.11, 3791.04, 4740.14
Prior Effective Dates: 5/27/06, 1/1/13, 7/1/14
4101:8-5-01 Floors.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:8-44-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:8-1-01 of the Administrative Code.]

SECTION 501
GENERAL

501.1 Application. The provisions of this chapter shall control the design and construction of the floors for all buildings including the floors of attic spaces used to house mechanical or plumbing fixtures and equipment.

501.2 Requirements. Floor construction shall be capable of accommodating all loads according to Section 301 and of transmitting the resulting loads to the supporting structural elements.

SECTION 502
WOOD FLOOR FRAMING

502.1 Identification. Load-bearing dimension lumber for joists, beams and girders shall be identified by a grade mark of a lumber grading or inspection agency that has been approved by an accreditation body that complies with DOC PS 20. In lieu of a grade mark, a certificate of inspection issued by an approved lumber grading or inspection agency meeting the requirements of this section shall be accepted.

502.1.1 Preservative-treated lumber. Preservative treated dimension lumber shall also be identified as required by Section 319.1-317.2.

502.1.2 Blocking and subflooring. Blocking shall be a minimum of utility grade lumber. Subflooring may be a minimum of utility grade lumber or No. 4 common grade boards.

502.1.3 End-jointed lumber. Approved end-jointed lumber identified by a grade mark conforming to Section 502.1 may be used interchangeably with solid-sawn members of the same species and grade.
502.1.4 Prefabricated wood I-joists. Structural capacities and design provisions for prefabricated wood I-joists shall be established and monitored in accordance with ASTM D 5055.

502.1.5 Structural glued laminated timbers. Glued laminated timbers shall be manufactured and identified as required in ANSI/AITC A190.1 and ASTM D 3737.

502.1.6 Structural log members. Stress grading of structural log members of nonrectangular shape, as typically used in log buildings, shall be in accordance with ASTM D 3957. Such structural log members shall be identified by the grade mark of an approved lumber grading or inspection agency. In lieu of a grade mark on the material, a certificate of inspection as to species and grade issued by an approved lumber-grading or inspection agency meeting the requirements of this section shall be accepted.

502.1.7 Exterior wood/plastic composite deck boards. Wood/plastic composites used in exterior deck boards shall comply with the provisions of Section 317.4.

502.2 Design and construction. Floors shall be designed and constructed in accordance with the provisions of this chapter, Figure 502.2 and Sections 317 and 318 or in accordance with AF&PA/NDS.

502.2.1 Framing at braced wall lines. A load path for lateral forces shall be provided between floor framing and braced wall panels located above or below a floor, as specified in Section 602.10.6 602.10.8.

502.2.2 Decks. Where supported by attachment to an exterior wall, decks shall be positively anchored to the primary structure and designed for both vertical and lateral loads as applicable. Such attachment shall not be accomplished by the use of toenails or nails subject to withdrawal. Where positive connection to the primary building structure cannot be verified during inspection, decks shall be self-supporting. For decks with cantilevered framing members, connections to exterior walls or other framing members, shall be designed and constructed to resist uplift resulting from the full live load specified in Table 301.5 acting on the cantilevered portion of the deck.

502.2.2.1 Deck ledger connection to band joist. For decks supporting a total design load of 50 pounds per square foot (2394 Pa) [40 pounds per square foot (1915 Pa) live load plus 10 pounds per square foot (479 Pa)
dead load], the connection between a deck ledger of pressure-preservative-treated Southern Pine, incised pressure-preservative-treated Hem-Fir or approved decay-resistant species, and a 2-inch (51 mm) nominal lumber band joist bearing on a sill plate or wall plate shall be constructed with ½-inch (12.7 m) lag screws or bolts with washers in accordance with Table 502.2.2.1. Lag screws, bolts and washers shall be hot-dipped galvanized or stainless steel.

502.2.2.1 Placement of lag screws or bolts in deck ledgers. The lag screws or bolts shall be placed 2 inches (51 mm) in from the bottom or top of the deck ledgers and between 2 and 5 inches (51 and 127 mm) in from the ends. The lag screws or bolts shall be staggered from the top to the bottom along the horizontal run of the deck ledger.

502.2.2 Alternate deck ledger connections. Deck ledger connections not conforming to Table 502.2.2.1 shall be designed in accordance with accepted engineering practice. Girders supporting deck joists shall not be supported on deck ledgers or band joists. Deck ledgers shall not be supported on stone or masonry veneer.

502.2.2.3 Deck lateral load connection. The lateral load connection required by Section 502.2.2 shall be permitted to be in accordance with Figure 502.2.2.3. Hold down tension devices shall be installed in not less than two locations per deck, and each device shall have an allowable stress design capacity of not less than 1500 pounds (6672 N). Deleted.

502.2.2.4 Exterior wood/plastic composite deck boards. Wood/plastic composite deck boards shall be installed in accordance with the manufacturer’s instructions.
For SI: 1 inch = 25.4 mm.

FIGURE 502.2
FLOOR CONSTRUCTION

TABLE 502.2.2.1
FASTENER SPACING FOR A SOUTHERN PINE OR HEM-FIR DECK LEDGER
AND A 2-INCH NOMINAL SOLID-SAWN SPRUCE-PINE-FIR BAND JOIST$^{c, f, g}$
(Deck live load = 40 psf, deck dead load = 10 psf)

<table>
<thead>
<tr>
<th>JOIST SPAN</th>
<th>6’ and less</th>
<th>6’ 1” to 8’</th>
<th>8’ 1” to 10’</th>
<th>10’ 1” to 12’</th>
<th>12’ 1” to 14’</th>
<th>14’ 1” to 16’</th>
<th>16’ 1” to 18’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection details</td>
<td>On-center spacing of fasteners$^{d, e}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>½ inch diameter lag screw with $\frac{11}{32}$ inch maximum sheathinga</td>
<td>30</td>
<td>23</td>
<td>18</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm. 1 pound per square foot = 0.0479 kPa.

a. The tip of the lag screw shall fully extend beyond the inside face of the band joist.
b. The maximum gap between the face of the ledger board and face of the wall sheathing shall be ½".
c. Ledgers shall be flashed to prevent water from contacting the house band joist.
d. Lag screws and bolts shall be staggered in accordance with Section 502.2.2.1.1.
e. Deck ledger shall be minimum 2×8 pressure-preservative-treated No.2 grade lumber, or other approved materials as established by standard engineering practice.
f. When solid-sawn pressure-preservative-treated deck ledgers are attached to a minimum 1 inch thick engineered wood product (structural composite lumber, laminated veneer lumber or wood structural panel band joist), the ledger attachment shall be designed in accordance with accepted engineering practice.
g. A minimum 1 ×9½ Douglas Fir laminated veneer lumber rimboard shall be permitted in lieu of the 2-inch nominal band joist.
h. Wood structural panel sheathing, gypsum board sheathing or foam sheathing not exceeding 1 inch in thickness shall be permitted. The maximum distance between the face of the ledger board and the face of the band joist shall be 1 inch.

502.3 Allowable joist spans. Spans for floor joists shall be in accordance with Tables 502.3.1(1) and 502.3.1(2). For other grades and species and for other loading conditions, refer to the AF&PA Span Tables for Joists and Rafters.
502.3.1 **Sleeping areas and attic joists.** Table 502.3.1(1) shall be used to determine the maximum allowable span of floor joists that support sleeping areas and attics that are accessed by means of a fixed stairway in accordance with Section 311.7 provided that the design live load does not exceed 30 pounds per square foot (1.44 kPa) and the design dead load does not exceed 20 pounds per square foot (0.96 kPa). The allowable span of ceiling joists that support attics used for limited storage or no storage shall be determined in accordance with Section 802.4.

502.3.2 **Other floor joists.** Table 502.3.1(2) shall be used to determine the maximum allowable span of floor joists that support all other areas of the building, other than sleeping rooms and attics, provided that the design live load does not exceed 40 pounds per square foot (1.92 kPa) and the design dead load does not exceed 20 pounds per square foot (0.96 kPa).

502.3.3 **Floor cantilevers.** Floor cantilever spans shall not exceed the nominal depth of the wood floor joist. Floor cantilevers constructed in accordance with Table 502.3.3(1) shall be permitted when supporting a light-frame bearing wall and roof only. Floor cantilevers supporting an exterior balcony are permitted to be constructed in accordance with Table 502.3.3(2).

502.4 **Joists under bearing partitions.** Joists under parallel bearing partitions shall be of adequate size to support the load. Double joists, sized to adequately support the load, that are separated to permit the installation of piping or vents shall be full depth solid blocked with lumber not less than 2 inches (51 mm) in nominal thickness spaced not more than 4 feet (1219 mm) on center. Bearing partitions perpendicular to joists shall not be offset from supporting girders, walls or partitions more than the joist depth unless such joists are of sufficient size to carry the additional load.

502.5 **Allowable girder spans.** The allowable spans of girders fabricated of dimension lumber shall not exceed the values set forth in Tables 502.5(1) and 502.5(2).

502.6 **Bearing.** The ends of each joist, beam or girder shall have not less than 1.5 inches (38 mm) of bearing on wood or metal and not less than 3 inches (76 mm) on masonry or concrete except where supported on a 1-inch-by-4-inch (25.4 mm by 102 mm) ribbon strip and nailed to the adjacent stud or by the use of approved joist hangers.
502.6.1 Floor systems. Joists framing from opposite sides over a bearing support shall lap a minimum of 3 inches (76 mm) and shall be nailed together with a minimum three 10d face nails. A wood or metal splice with strength equal to or greater than that provided by the nailed lap is permitted.

502.6.2 Joist framing. Joists framing into the side of a wood girder shall be supported by approved framing anchors or on ledger strips not less than nominal 2 inches by 2 inches (51 mm by 51 mm).

502.7 Lateral restraint at supports. Joists shall be supported laterally at the ends by full-depth solid blocking not less than 2 inches (51 mm) nominal in thickness; or by attachment to a full-depth header, band or rim joist, or to an adjoining stud or shall be otherwise provided with lateral support to prevent rotation.

Exceptions:

1. Trusses, structural composite lumber, structural glued-laminated members and I-joists shall be supported laterally as required by the manufacturer’s recommendations.

2. In Seismic Design Categories D₀, D₁ and D₂, lateral restraint shall also be provided at each intermediate support.

502.7.1 Bridging. Joists exceeding a nominal 2 inches by 12 inches (51 mm by 305 mm) shall be supported laterally by solid blocking, diagonal bridging (wood or metal), or a continuous 1-inch-by-3-inch (25.4 mm by 76 mm) strip nailed across the bottom of joists perpendicular to joists at intervals not exceeding 8 feet (2438 mm).

Exception: Trusses, structural composite lumber, structural glued-laminated members and I-joists shall be supported laterally as required by the manufacturer’s recommendations.

502.8 Drilling and notching. Structural floor members shall not be cut, bored or notched in excess of the limitations specified in this section. See Figure 502.8.

502.8.1 Sawn lumber. Notches in solid lumber joists, rafters and beams shall not exceed one-sixth of the depth of the member, shall not be longer than one-third of the depth of the member and shall not be located in the middle one-third of the span. Notches at the ends of the member shall not exceed one-fourth the depth of the member. The tension side of members 4 inches (102
mm) or greater in nominal thickness shall not be notched except at the ends of
the members. The diameter of holes bored or cut into members shall not
exceed one-third the depth of the member. Holes shall not be closer than 2
inches (51 mm) to the top or bottom of the member, or to any other hole
located in the member. Where the member is also notched, the hole shall not
be closer than 2 inches (51 mm) to the notch.

502.8.2 Engineered wood products. Cuts, notches and holes bored in trusses,
structural composite lumber, structural glue-laminated members or I-joists are
prohibited except where permitted by the manufacturer’s recommendations or
where the effects of such alterations are specifically considered in the design
of the member by a registered design professional.

502.9 Fastening. Floor framing shall be nailed in accordance with Table
602.3(1). Where posts and beam or girder construction is used to support floor
framing, positive connections shall be provided to ensure against uplift and lateral
displacement.

502.10 Framing of openings. Openings in floor framing shall be framed with a
header and trimmer joists. When the header joist span does not exceed 4 feet
(1219 mm), the header joist may be a single member the same size as the floor
joist. Single trimmer joists may be used to carry a single header joist that is
located within 3 feet (914 mm) of the trimmer joist bearing. When the header joist
span exceeds 4 feet (1219 mm), the trimmer joists and the header joist shall be
doubled and of sufficient cross section to support the floor joists framing into the
header. Approved hangers shall be used for the header joist to trimmer joist
connections when the header joist span exceeds 6 feet (1829 mm). Tail joists over
12 feet (3658 mm) long shall be supported at the header by framing anchors or on
ledger strips not less than 2 inches by 2 inches (51 mm by 51 mm).

<table>
<thead>
<tr>
<th>JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2x6</td>
<td>2x8</td>
</tr>
<tr>
<td></td>
<td>(ft - in.)</td>
<td>(ft - in.)</td>
<td>(ft - in.)</td>
</tr>
<tr>
<td>Maximum floor joist spans</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 502.3.1(1)
FLOOR JOIST SPANS FOR COMMON LUMBER SPECIES
(Residential sleeping areas, live load = 30 psf, L/ = 360)
<table>
<thead>
<tr>
<th>Species</th>
<th>12</th>
<th>16</th>
<th>19.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas fir-larch SS</td>
<td>12-6</td>
<td>16-6</td>
<td>21-0</td>
</tr>
<tr>
<td>Douglas fir-larch #1</td>
<td>12-0</td>
<td>15-10</td>
<td>20-3</td>
</tr>
<tr>
<td>Douglas fir-larch #2</td>
<td>11-10</td>
<td>15-7</td>
<td>19-10</td>
</tr>
<tr>
<td>Douglas fir-larch #3</td>
<td>9-8</td>
<td>12-4</td>
<td>15-0</td>
</tr>
<tr>
<td>Hem-fir SS #1</td>
<td>11-10</td>
<td>15-7</td>
<td>24-2</td>
</tr>
<tr>
<td>Hem-fir SS #2</td>
<td>11-7</td>
<td>13-5</td>
<td>19-5</td>
</tr>
<tr>
<td>Hem-fir #1</td>
<td>12-0</td>
<td>15-10</td>
<td>23-7</td>
</tr>
<tr>
<td>Hem-fir #2</td>
<td>11-0</td>
<td>14-6</td>
<td>18-6</td>
</tr>
<tr>
<td>Hem-fir #3</td>
<td>9-8</td>
<td>12-4</td>
<td>15-0</td>
</tr>
<tr>
<td>Southern pine SS #1</td>
<td>12-3</td>
<td>16-2</td>
<td>20-8</td>
</tr>
<tr>
<td>Southern pine #1</td>
<td>12-0</td>
<td>15-10</td>
<td>23-7</td>
</tr>
<tr>
<td>Southern pine #2</td>
<td>11-10</td>
<td>15-7</td>
<td>19-10</td>
</tr>
<tr>
<td>Southern pine #3</td>
<td>10-5</td>
<td>13-3</td>
<td>15-8</td>
</tr>
<tr>
<td>Spruce-pine-fir SS #1</td>
<td>11-10</td>
<td>15-7</td>
<td>23-7</td>
</tr>
<tr>
<td>Spruce-pine-fir #1</td>
<td>11-3</td>
<td>14-11</td>
<td>19-0</td>
</tr>
<tr>
<td>Spruce-pine-fir #2</td>
<td>11-3</td>
<td>14-11</td>
<td>19-0</td>
</tr>
<tr>
<td>Spruce-pine-fir #3</td>
<td>9-8</td>
<td>12-4</td>
<td>15-0</td>
</tr>
</tbody>
</table>
Table 502.3.1(2)
FLOOR JOIST SPANS FOR COMMON LUMBER SPECIES
(Residential living areas, live load = 40 psf, L/α = 360)\(^b\)

<table>
<thead>
<tr>
<th>JOIST SPACING (inches)</th>
<th>SPECIES AND GRADE</th>
<th>DEAD LOAD = 10 psf</th>
<th>DEAD LOAD = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2x6</td>
<td>2x8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ft - in.)</td>
<td>(ft - in.)</td>
</tr>
<tr>
<td>12</td>
<td>Douglas fir-larch SS</td>
<td>11-4</td>
<td>15-0</td>
</tr>
<tr>
<td></td>
<td>Douglas fir-larch #1</td>
<td>10-11</td>
<td>14-5</td>
</tr>
<tr>
<td></td>
<td>Douglas fir-larch #2</td>
<td>10-9</td>
<td>14-2</td>
</tr>
<tr>
<td></td>
<td>Douglas fir-larch #3</td>
<td>8-8</td>
<td>11-0</td>
</tr>
<tr>
<td></td>
<td>Hem-fir SS</td>
<td>10-9</td>
<td>14-2</td>
</tr>
<tr>
<td></td>
<td>Hem-fir #1</td>
<td>10-6</td>
<td>13-10</td>
</tr>
<tr>
<td></td>
<td>Hem-fir #2</td>
<td>10-0</td>
<td>13-2</td>
</tr>
<tr>
<td></td>
<td>Hem-fir #3</td>
<td>8-8</td>
<td>11-0</td>
</tr>
<tr>
<td></td>
<td>Southern pine SS</td>
<td>11-2</td>
<td>14-8</td>
</tr>
<tr>
<td></td>
<td>Southern pine #1</td>
<td>10-11</td>
<td>14-5</td>
</tr>
<tr>
<td></td>
<td>Southern pine #2</td>
<td>10-9</td>
<td>14-2</td>
</tr>
<tr>
<td></td>
<td>Southern pine #3</td>
<td>9-4</td>
<td>11-11</td>
</tr>
<tr>
<td></td>
<td>Spruce-pine-fir SS</td>
<td>10-6</td>
<td>13-10</td>
</tr>
<tr>
<td></td>
<td>Spruce-pine-fir #1</td>
<td>10-3</td>
<td>13-6</td>
</tr>
<tr>
<td></td>
<td>Spruce-pine-fir #2</td>
<td>10-3</td>
<td>13-6</td>
</tr>
<tr>
<td></td>
<td>Spruce-pine-fir #3</td>
<td>8-8</td>
<td>11-0</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.

Note: Check sources for availability of lumber in lengths greater than 20 feet.

a. Dead load limits for townhouses in Seismic Design Category C and all structures in Seismic Design Categories D₀, D₁ and D₂ shall be determined in accordance with Section 301.2.2.2.1.

b. As determined in accordance with Section 24.2.2.2.
<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Dead load limits for townhouses in Seismic Design Category C and all structures in Seismic Design Categories D₀, D₁, and D₂ shall be determined in accordance with Section 301.2.2.1.</td>
<td></td>
</tr>
<tr>
<td>a. End bearing length shall be increased to 2 inches.</td>
<td></td>
</tr>
<tr>
<td>For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.</td>
<td></td>
</tr>
<tr>
<td>Note: Check sources for availability of lumber in lengths greater than 20 feet.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wood Type</th>
<th>Grade</th>
<th>16</th>
<th>19.2</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas fir-larch</td>
<td>SS</td>
<td>10-4</td>
<td>13-7</td>
<td>17-4</td>
</tr>
<tr>
<td>Douglas fir-larch</td>
<td>#1</td>
<td>9-11</td>
<td>13-1</td>
<td>16-5</td>
</tr>
<tr>
<td>Douglas fir-larch</td>
<td>#2</td>
<td>9-9</td>
<td>12-7</td>
<td>15-5</td>
</tr>
<tr>
<td>Douglas fir-larch</td>
<td>#3</td>
<td>7-6</td>
<td>9-6</td>
<td>11-8</td>
</tr>
<tr>
<td>Hem-fir</td>
<td>SS</td>
<td>9-9</td>
<td>12-10</td>
<td>16-5</td>
</tr>
<tr>
<td>Hem-fir</td>
<td>#1</td>
<td>9-6</td>
<td>12-7</td>
<td>16-0</td>
</tr>
<tr>
<td>Hem-fir</td>
<td>#2</td>
<td>9-1</td>
<td>12-0</td>
<td>15-2</td>
</tr>
<tr>
<td>Hem-fir</td>
<td>#3</td>
<td>7-6</td>
<td>9-6</td>
<td>11-8</td>
</tr>
<tr>
<td>Southern pine</td>
<td>SS</td>
<td>10-2</td>
<td>13-4</td>
<td>17-0</td>
</tr>
<tr>
<td>Southern pine</td>
<td>#1</td>
<td>9-11</td>
<td>13-1</td>
<td>16-9</td>
</tr>
<tr>
<td>Southern pine</td>
<td>#2</td>
<td>9-9</td>
<td>12-10</td>
<td>16-1</td>
</tr>
<tr>
<td>Southern pine</td>
<td>#3</td>
<td>8-1</td>
<td>10-3</td>
<td>12-2</td>
</tr>
<tr>
<td>Spruce-pine-fir</td>
<td>SS</td>
<td>9-6</td>
<td>12-7</td>
<td>16-0</td>
</tr>
<tr>
<td>Spruce-pine-fir</td>
<td>#1</td>
<td>9-4</td>
<td>12-3</td>
<td>15-5</td>
</tr>
<tr>
<td>Spruce-pine-fir</td>
<td>#2</td>
<td>9-4</td>
<td>12-3</td>
<td>15-5</td>
</tr>
<tr>
<td>Spruce-pine-fir</td>
<td>#3</td>
<td>7-6</td>
<td>9-6</td>
<td>11-8</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.
TABLE 502.3.3(1)
CANTILEVER SPANS FOR FLOOR JOISTS SUPPORTING LIGHT-FRAME EXTERIOR BEARING WALL AND ROOF ONLY

(Floor Live Load <40 psf, Roof Live Load <20 psf)

<table>
<thead>
<tr>
<th>Member & Spacing</th>
<th>Maximum Cantilever Span (Uplift Force at Backspan Support in Lbs.)</th>
<th>Ground Snow Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 psf</td>
<td>30 psf</td>
</tr>
<tr>
<td>2 x 8 @ 12"</td>
<td>20" (177)</td>
<td>15" (227)</td>
</tr>
<tr>
<td>2 x 10 @ 16"</td>
<td>29" (228)</td>
<td>21" (297)</td>
</tr>
<tr>
<td>2 x 10 @ 12"</td>
<td>36" (166)</td>
<td>26" (219)</td>
</tr>
<tr>
<td>2 x 12 @ 16"</td>
<td>-</td>
<td>32" (287)</td>
</tr>
<tr>
<td>2 x 12 @ 12"</td>
<td>-</td>
<td>42" (209)</td>
</tr>
<tr>
<td>2 x 12 @ 8"</td>
<td>-</td>
<td>48" (136)</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479kPa.

- a. Tabulated values are for clear-span roof supported solely by exterior bearing walls.
- b. Spans are based on No. 2 Grade lumber of Douglas fir-larch, hem-fir, southern pine, and spruce-pine-fir for repetitive (3 or more) members.
- c. Ratio of backspan to cantilever span shall be at least 3:1.
- d. Connections capable of resisting the indicated uplift force shall be provided at the backspan support.
- e. Uplift force is for a backspan to cantilever span ratio of 3:1. Tabulated uplift values are permitted to be reduced by multiplying by a factor equal to 3 divided by the actual backspan ratio provided (3/backspan ratio).
- f. See Section 301.2.2.2.5, Item1, for additional limitations on cantilevered floor joists for detached one-, two- and three-family dwellings in Seismic Design Category D₀, D₁, or D₂ and townhouses in Seismic Design Category C, D₀, D₁, or D₂.
- g. A full-depth rim joist shall be provided at the unsupported end of the cantilever joists. Solid blocking shall be provided at the supported end.
- h. Linear interpolation shall be permitted for building widths and ground snow loads other than shown.

TABLE 502.3.3(2)
CANTILEVER SPANS FOR FLOOR JOISTS SUPPORTING EXTERIOR BALCONY

<table>
<thead>
<tr>
<th>Member Size</th>
<th>Spacing</th>
<th>Maximum Cantilever Span (Uplift Force at Backspan Support in Lbs.)</th>
<th>Ground Snow Load</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 psf</td>
<td>50 psf</td>
<td>70 psf</td>
</tr>
<tr>
<td>2 x 8</td>
<td>12"</td>
<td>42" (139)</td>
<td>39" (156)</td>
</tr>
<tr>
<td>2 x 8</td>
<td>16"</td>
<td>36" (151)</td>
<td>34" (171)</td>
</tr>
<tr>
<td>2 x 10</td>
<td>12"</td>
<td>61" (164)</td>
<td>57" (189)</td>
</tr>
<tr>
<td>2 x 10</td>
<td>16"</td>
<td>53" (180)</td>
<td>49" (208)</td>
</tr>
<tr>
<td>2 x 10</td>
<td>24"</td>
<td>43" (212)</td>
<td>40" (241)</td>
</tr>
<tr>
<td>2 x 12</td>
<td>16"</td>
<td>72" (228)</td>
<td>67" (260)</td>
</tr>
<tr>
<td>2 x 12</td>
<td>24"</td>
<td>58" (279)</td>
<td>54" (319)</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kPa.

a. Spans are based on No. 2 Grade lumber of Douglas fir-larch, hem-fir, southern pine, and spruce-pine-fir for repetitive (3 or more) members.
b. Ratio of backspan to cantilever span shall be at least 2:1.
c. Connections capable of resisting the indicated uplift force shall be provided at the backspan support.
d. Uplift force is for a backspan to cantilever span ratio of 2:1. Tabulated uplift values are permitted to be reduced by multiplying by a factor equal to 2 divided by the actual backspan ratio provided (2/backspan ratio).
e. A full-depth rim joist shall be provided at the unsupported end of the cantilever joists. Solid blocking shall be provided at the supported end.
f. Linear interpolation shall be permitted for ground snow loads other than shown.

TABLE 502.5(1)

GIRDER SPANS AND HEADER SPANS FOR EXTERIOR BEARING WALLS

(Maximum spans for Douglas fir-larch, hem-fir, southern pine and spruce-pine-fir and required number of jack studs)

<table>
<thead>
<tr>
<th>GIRDERS AND HEADERS SUPPORTING</th>
<th>GROUND SNOW LOAD (psf)²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Building width (feet)</td>
<td></td>
</tr>
</tbody>
</table>

Roof and ceiling

<table>
<thead>
<tr>
<th>SIZE</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2×4</td>
<td>3-6</td>
<td>1</td>
<td>3-2</td>
<td>1</td>
<td>2-10</td>
<td>1</td>
<td>3-2</td>
<td>1</td>
<td>2-9</td>
<td>1</td>
<td>2-6</td>
<td>1</td>
</tr>
<tr>
<td>2-2×6</td>
<td>5-5</td>
<td>1</td>
<td>4-8</td>
<td>1</td>
<td>4-2</td>
<td>1</td>
<td>4-8</td>
<td>1</td>
<td>4-1</td>
<td>1</td>
<td>3-8</td>
<td>1</td>
</tr>
<tr>
<td>2-2×8</td>
<td>6-10</td>
<td>1</td>
<td>5-11</td>
<td>2</td>
<td>5-4</td>
<td>2</td>
<td>5-11</td>
<td>2</td>
<td>5-2</td>
<td>2</td>
<td>4-7</td>
<td>2</td>
</tr>
<tr>
<td>2-2×10</td>
<td>8-5</td>
<td>2</td>
<td>7-3</td>
<td>2</td>
<td>6-6</td>
<td>2</td>
<td>7-3</td>
<td>2</td>
<td>6-3</td>
<td>2</td>
<td>5-7</td>
<td>2</td>
</tr>
<tr>
<td>2-2×12</td>
<td>9-9</td>
<td>2</td>
<td>8-5</td>
<td>2</td>
<td>7-6</td>
<td>2</td>
<td>8-5</td>
<td>2</td>
<td>7-3</td>
<td>2</td>
<td>6-6</td>
<td>2</td>
</tr>
<tr>
<td>3-2×8</td>
<td>8-4</td>
<td>1</td>
<td>7-5</td>
<td>1</td>
<td>6-8</td>
<td>1</td>
<td>7-5</td>
<td>1</td>
<td>6-5</td>
<td>2</td>
<td>5-9</td>
<td>2</td>
</tr>
<tr>
<td>3-2×10</td>
<td>10-6</td>
<td>1</td>
<td>9-1</td>
<td>2</td>
<td>8-2</td>
<td>2</td>
<td>9-1</td>
<td>2</td>
<td>7-10</td>
<td>2</td>
<td>7-0</td>
<td>2</td>
</tr>
<tr>
<td>3-2×12</td>
<td>12-2</td>
<td>2</td>
<td>10-7</td>
<td>2</td>
<td>9-5</td>
<td>2</td>
<td>10-7</td>
<td>2</td>
<td>9-2</td>
<td>2</td>
<td>8-2</td>
<td>2</td>
</tr>
<tr>
<td>4-2×8</td>
<td>9-2</td>
<td>1</td>
<td>8-4</td>
<td>1</td>
<td>7-8</td>
<td>1</td>
<td>8-4</td>
<td>1</td>
<td>7-5</td>
<td>1</td>
<td>6-8</td>
<td>1</td>
</tr>
<tr>
<td>4-2×10</td>
<td>11-8</td>
<td>1</td>
<td>10-6</td>
<td>1</td>
<td>9-5</td>
<td>2</td>
<td>10-6</td>
<td>1</td>
<td>9-1</td>
<td>2</td>
<td>8-2</td>
<td>2</td>
</tr>
<tr>
<td>4-2×12</td>
<td>14-1</td>
<td>1</td>
<td>12-2</td>
<td>2</td>
<td>10-11</td>
<td>2</td>
<td>12-2</td>
<td>2</td>
<td>10-7</td>
<td>2</td>
<td>9-5</td>
<td>2</td>
</tr>
</tbody>
</table>

Roof, ceiling and one center-bearing floor

<table>
<thead>
<tr>
<th>SIZE</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2×4</td>
<td>3-1</td>
<td>1</td>
<td>2-9</td>
<td>1</td>
<td>2-5</td>
<td>1</td>
<td>2-1</td>
<td>1</td>
<td>2-2</td>
<td>1</td>
</tr>
<tr>
<td>2-2×6</td>
<td>4-6</td>
<td>1</td>
<td>4-0</td>
<td>1</td>
<td>3-7</td>
<td>2</td>
<td>4-1</td>
<td>1</td>
<td>3-7</td>
<td>2</td>
</tr>
<tr>
<td>2-2×8</td>
<td>5-9</td>
<td>2</td>
<td>5-0</td>
<td>2</td>
<td>4-6</td>
<td>2</td>
<td>5-2</td>
<td>2</td>
<td>4-6</td>
<td>2</td>
</tr>
<tr>
<td>2-2×10</td>
<td>7-0</td>
<td>2</td>
<td>6-2</td>
<td>2</td>
<td>5-6</td>
<td>2</td>
<td>6-2</td>
<td>2</td>
<td>5-6</td>
<td>2</td>
</tr>
<tr>
<td>2-2×12</td>
<td>8-1</td>
<td>2</td>
<td>7-1</td>
<td>2</td>
<td>6-5</td>
<td>2</td>
<td>7-4</td>
<td>2</td>
<td>6-5</td>
<td>2</td>
</tr>
<tr>
<td>3-2×8</td>
<td>7-2</td>
<td>1</td>
<td>6-3</td>
<td>1</td>
<td>5-8</td>
<td>2</td>
<td>6-5</td>
<td>2</td>
<td>5-8</td>
<td>2</td>
</tr>
<tr>
<td>3-2×10</td>
<td>8-9</td>
<td>2</td>
<td>7-8</td>
<td>2</td>
<td>6-11</td>
<td>2</td>
<td>7-11</td>
<td>2</td>
<td>6-11</td>
<td>2</td>
</tr>
<tr>
<td>3-2×12</td>
<td>10-2</td>
<td>2</td>
<td>8-11</td>
<td>2</td>
<td>8-0</td>
<td>2</td>
<td>9-2</td>
<td>2</td>
<td>8-0</td>
<td>2</td>
</tr>
<tr>
<td>4-2×8</td>
<td>8-1</td>
<td>1</td>
<td>7-3</td>
<td>1</td>
<td>6-7</td>
<td>1</td>
<td>7-5</td>
<td>1</td>
<td>6-6</td>
<td>1</td>
</tr>
<tr>
<td>4-2×10</td>
<td>10-1</td>
<td>1</td>
<td>8-10</td>
<td>2</td>
<td>8-0</td>
<td>2</td>
<td>9-1</td>
<td>2</td>
<td>8-0</td>
<td>2</td>
</tr>
<tr>
<td>4-2×12</td>
<td>11-9</td>
<td>2</td>
<td>10-3</td>
<td>2</td>
<td>9-3</td>
<td>2</td>
<td>10-7</td>
<td>2</td>
<td>9-3</td>
<td>2</td>
</tr>
</tbody>
</table>

Roof, ceiling and one clear span floor

<table>
<thead>
<tr>
<th>SIZE</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
<th>Span</th>
<th>NJd</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2×4</td>
<td>2-8</td>
<td>1</td>
<td>2-1</td>
<td>1</td>
<td>2-7</td>
<td>1</td>
<td>2-3</td>
<td>1</td>
<td>2-0</td>
<td>1</td>
</tr>
<tr>
<td>2-2×6</td>
<td>3-11</td>
<td>1</td>
<td>3-5</td>
<td>2</td>
<td>3-0</td>
<td>2</td>
<td>3-4</td>
<td>2</td>
<td>3-0</td>
<td>2</td>
</tr>
<tr>
<td>2-2×8</td>
<td>5-0</td>
<td>2</td>
<td>4-4</td>
<td>2</td>
<td>3-10</td>
<td>2</td>
<td>4-10</td>
<td>2</td>
<td>4-2</td>
<td>2</td>
</tr>
<tr>
<td>2-2×10</td>
<td>6-1</td>
<td>2</td>
<td>5-3</td>
<td>2</td>
<td>4-8</td>
<td>2</td>
<td>5-11</td>
<td>2</td>
<td>5-1</td>
<td>2</td>
</tr>
<tr>
<td>2-2×12</td>
<td>7-1</td>
<td>2</td>
<td>6-1</td>
<td>3</td>
<td>5-5</td>
<td>3</td>
<td>6-10</td>
<td>2</td>
<td>5-11</td>
<td>3</td>
</tr>
<tr>
<td>3-2×8</td>
<td>6-3</td>
<td>2</td>
<td>5-5</td>
<td>2</td>
<td>4-10</td>
<td>2</td>
<td>6-1</td>
<td>2</td>
<td>5-3</td>
<td>2</td>
</tr>
</tbody>
</table>

a Note: The table values are for exterior bearing walls. For interior bearing walls, consult the local code or a structural engineer.
For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kPa.

a. Spans are given in feet and inches.

b. Tabulated values assume #2 grade lumber.

c. Building width is measured perpendicular to the ridge. For widths between those shown, spans are permitted to be interpolated.

d. NJ - Number of jack studs required to support each end. Where the number of required jack studs equals one, the header is permitted to be supported by an approved framing anchor attached to the full-height wall stud and to the header.

e. Use 30 psf ground snow load for cases in which ground snow load is less than 30 psf and the roof live load is equal to or less than 20 psf.

TABLE 502.5(2)

<p>| GIRDER SPANS a AND HEADER SPANS a FOR INTERIOR BEARING WALLS (Maximum spans for Douglas fir-larch, hem-fir, southern pine and spruce-pine-fir b and required number of jack studs) |
|---|---|---|---|---|---|
| BUILDING WIDTH c (feet) | Span | NJ d | Span | NJ d | Span | NJ d |
| 20 | 28 | 36 |
| One floor only | 2-2×4 | 3-1 | 1 | 2-8 | 1 | 2-5 | 1 |</p>
<table>
<thead>
<tr>
<th>2-2×6</th>
<th>4-6</th>
<th>1</th>
<th>3-11</th>
<th>1</th>
<th>3-6</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2×8</td>
<td>5-9</td>
<td>1</td>
<td>5-0</td>
<td>2</td>
<td>4-5</td>
<td>2</td>
</tr>
<tr>
<td>2-2×10</td>
<td>7-0</td>
<td>2</td>
<td>6-1</td>
<td>2</td>
<td>5-5</td>
<td>2</td>
</tr>
<tr>
<td>2-2×12</td>
<td>8-1</td>
<td>2</td>
<td>7-0</td>
<td>2</td>
<td>6-3</td>
<td>2</td>
</tr>
<tr>
<td>3-2×8</td>
<td>7-2</td>
<td>1</td>
<td>6-3</td>
<td>1</td>
<td>5-7</td>
<td>2</td>
</tr>
<tr>
<td>3-2×10</td>
<td>8-9</td>
<td>1</td>
<td>7-7</td>
<td>2</td>
<td>6-9</td>
<td>2</td>
</tr>
<tr>
<td>3-2×12</td>
<td>10-2</td>
<td>2</td>
<td>8-10</td>
<td>2</td>
<td>7-10</td>
<td>2</td>
</tr>
<tr>
<td>4-2×8</td>
<td>9-0</td>
<td>1</td>
<td>7-8</td>
<td>1</td>
<td>6-9</td>
<td>1</td>
</tr>
<tr>
<td>4-2×10</td>
<td>10-1</td>
<td>1</td>
<td>8-9</td>
<td>1</td>
<td>7-10</td>
<td>2</td>
</tr>
<tr>
<td>4-2×12</td>
<td>11-9</td>
<td>1</td>
<td>10-2</td>
<td>2</td>
<td>9-1</td>
<td>2</td>
</tr>
</tbody>
</table>

Two floors

<table>
<thead>
<tr>
<th>2-2×4</th>
<th>2-2</th>
<th>1</th>
<th>1-10</th>
<th>1</th>
<th>1-7</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-2×6</td>
<td>3-2</td>
<td>2</td>
<td>2-9</td>
<td>2</td>
<td>2-5</td>
<td>2</td>
</tr>
<tr>
<td>2-2×8</td>
<td>4-1</td>
<td>2</td>
<td>3-6</td>
<td>2</td>
<td>3-2</td>
<td>2</td>
</tr>
<tr>
<td>2-2×10</td>
<td>4-11</td>
<td>2</td>
<td>4-3</td>
<td>2</td>
<td>3-10</td>
<td>3</td>
</tr>
<tr>
<td>2-2×12</td>
<td>5-9</td>
<td>2</td>
<td>5-0</td>
<td>3</td>
<td>4-5</td>
<td>3</td>
</tr>
<tr>
<td>3-2×8</td>
<td>5-1</td>
<td>2</td>
<td>4-5</td>
<td>2</td>
<td>3-11</td>
<td>2</td>
</tr>
<tr>
<td>3-2×10</td>
<td>6-2</td>
<td>2</td>
<td>5-4</td>
<td>2</td>
<td>4-10</td>
<td>2</td>
</tr>
<tr>
<td>3-2×12</td>
<td>7-2</td>
<td>2</td>
<td>6-3</td>
<td>2</td>
<td>5-7</td>
<td>3</td>
</tr>
<tr>
<td>4-2×8</td>
<td>6-1</td>
<td>1</td>
<td>5-3</td>
<td>2</td>
<td>4-8</td>
<td>2</td>
</tr>
<tr>
<td>4-2×10</td>
<td>7-2</td>
<td>2</td>
<td>6-2</td>
<td>2</td>
<td>5-6</td>
<td>2</td>
</tr>
<tr>
<td>4-2×12</td>
<td>8-4</td>
<td>2</td>
<td>7-2</td>
<td>2</td>
<td>6-5</td>
<td>2</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.
a. Spans are given in feet and inches.
b. Tabulated values assume #2 grade lumber.
c. Building width is measured perpendicular to the ridge. For widths between those shown, spans are permitted to be interpolated.
d. NJ - Number of jack studs required to support each end. Where the number of required jack studs equals one, the header is permitted to be supported by an approved framing anchor attached to the full-height wall stud and to the header.
502.11 Wood trusses.

502.11.1 Design. Wood trusses shall be designed in accordance with approved engineering practice. The design and manufacture of metal plate connected wood trusses shall comply with ANSI/TP1 1. The truss design drawings shall be prepared by a registered professional in accordance with Section 106.2.

502.11.2 Bracing. Trusses shall be braced to prevent rotation and provide lateral stability in accordance with the requirements specified in the construction documents for the building and on the individual truss design drawings. In the absence of specific bracing requirements, trusses shall be braced in accordance with the Building Component Safety Information (BCSI
Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

502.11.3 Alterations to trusses. Truss members and components shall not be cut, notched, spliced or otherwise altered in any way without the approval of a registered design professional. Alterations resulting in the addition of load (e.g., HVAC equipment, water heater, etc.), that exceed the design load for the truss, shall not be permitted without verification that the truss is capable of supporting the additional loading.

502.11.4 Truss design drawings. Truss design drawings, prepared in compliance with Section 502.11.1, shall be submitted to the building official and approved prior to installation. Truss design drawings shall be provided with the shipment of trusses delivered to the job site. Truss design drawings shall include, at a minimum, the information specified below:

1. Slope or depth, span and spacing.
2. Location of all joints.
3. Required bearing widths.
4. Design loads as applicable:
 4.1 Top chord live load;
 4.2 Top chord dead load;
 4.3 Bottom chord live load;
 4.4 Bottom chord dead load;
 4.5 Concentrated loads and their points of application; and
 4.6 Controlling wind and earthquake loads.
5. Adjustments to lumber and joint connector design values for conditions of use.
6. Each reaction force and direction.
7. Joint connector type and description, e.g., size, thickness or gauge, and the dimensioned location of each joint connector except where symmetrically located relative to the joint interface.

8. Lumber size, species and grade for each member.

9. Connection requirements for:
 9.1 Truss-to-girder-truss;
 9.2 Truss ply-to-ply; and
 9.3 Field splices.

10. Calculated deflection ratio and/or maximum description for live and total load.

11. Maximum axial compression forces in the truss members to enable the building designer to design the size, connections and anchorage of the permanent continuous lateral bracing. Forces shall be shown on the truss drawing or on supplemental documents.

12. Required permanent truss member bracing location.

502.12 Draftstopping required. Draftstopping shall be provided in accordance with Section 302.12.

502.13 Fireblocking required. Fireblocking shall be provided in accordance with Section 302.11.

502.14 Fire Resistance of floors. Floor assemblies, not required elsewhere in this code to be fire resistance rated, shall be provided with a ½ inch gypsum board membrane or a 5/8 inch wood structural panel membrane or an equivalent material on the underside of the floor framing member which complies with section 302.14.

Exceptions:
 1. Floor assemblies located directly over a space protected by an automatic sprinkler system designed and installed in accordance with Sections 313.1.1 or 313.2.1.
2. Floor assemblies located directly over an underfloor space as referenced in section 408 which is not intended for storage or fuel-fired appliances.

3. Portions of floor assemblies can be unprotected when complying with the following:

3.1 The aggregate area of the unprotected portions shall not exceed 80 square feet per story.

3.2 Fire blocking in accordance with Section 302.11.1 shall be installed along the perimeter of the unprotected portion to separate the unprotected portion from the remainder of the floor assembly.

4. Wood floor assemblies using dimension lumber or structural composite lumber equal to or greater than 2-inch by 10-inch nominal dimension, or other approved floor assemblies demonstrating equivalent fire performance.

SECTION 503
FLOOR SHEATHING

503.1 Lumber sheathing. Maximum allowable spans for lumber used as floor sheathing shall conform to Tables 503.1, 503.2.1.1(1) and 503.2.1.1(2).

503.1.1 End joints. End joints in lumber used as subflooring shall occur over supports unless end-matched lumber is used, in which case each piece shall bear on at least two joists. Subflooring may be omitted when joist spacing does not exceed 16 inches (406 mm) and a 1-inch (25.4 mm) nominal tongue-and-groove wood strip flooring is applied perpendicular to the joists.

<table>
<thead>
<tr>
<th>JOIST OR BEAM SPACING (inches)</th>
<th>MINIMUM NET THICKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Perpendicular to joist</td>
</tr>
<tr>
<td>24</td>
<td>11/16</td>
</tr>
<tr>
<td>16</td>
<td>5/8</td>
</tr>
<tr>
<td>48*</td>
<td>1½ T & G</td>
</tr>
</tbody>
</table>

TABLE 503.1
MINIMUM THICKNESS OF LUMBER FLOOR SHEATHING
For SI: 1 inch = 25.4 mm, 1 pound per square inch = 6.895kPa.

a. For this support spacing, lumber sheathing shall have a minimum F_b of 675 and minimum E of 1,100,000 (see AF&PA/NDS).
b. For this support spacing, lumber sheathing shall have a minimum F_b of 765 and minimum E of 1,400,000 (see AF&PA/NDS).
c. For this support spacing, lumber sheathing shall have a minimum F_b of 855 and minimum E of 1,700,000 (see AF&PA/NDS).

503.2 Wood structural panel sheathing.

503.2.1 Identification and grade. Wood structural panel sheathing used for structural purposes shall conform to DOC PS 1, DOC PS 2 or, when manufactured in Canada, CSA O437 or CSA O325. All panels shall be identified by a grade mark of certificate or inspection issued by an approved agency.

503.2.1.1 Subfloor and combined subfloor underlayment. Where used as subflooring or combination subfloor underlayment, wood structural panels shall be of one of the grades specified in Table 503.2.1.1(1). When sanded plywood is used as combination subfloor underlayment, the grade shall be as specified in Table 503.2.1.1(2).

<table>
<thead>
<tr>
<th>TABLE 503.2.1.1(1)</th>
<th>ALLOWABLE SPANS AND LOADS FOR WOOD STRUCTURAL PANELS FOR ROOF AND SUBFLOOR SHEATHING AND COMBINATION SUBFLOOR UNDERLAYERMENTa, b, c</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN RATING</td>
<td>MINIMUM NOMINAL PANEL THICKNESS (inch)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheathinge</td>
<td>3/8</td>
</tr>
<tr>
<td>16/0</td>
<td>3/8</td>
</tr>
<tr>
<td>20/0</td>
<td>3/8</td>
</tr>
<tr>
<td>24/0</td>
<td>3/8</td>
</tr>
<tr>
<td>24/16</td>
<td>7/16</td>
</tr>
<tr>
<td>32/16</td>
<td>$^{15/32}$, $^{1/2}$</td>
</tr>
<tr>
<td>40/20</td>
<td>$^{19/32}$, $^{5/8}$</td>
</tr>
<tr>
<td>48/24</td>
<td>$^{23/32}$, $^{7/4}$</td>
</tr>
<tr>
<td>60/32</td>
<td>$^{7/8}$</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kPa.

a. The allowable total loads were determined using a dead load of 10 psf. If the dead load exceeds 10 psf, then the live load shall be reduced accordingly.

b. Panels continuous over two or more spans with long dimension (strength axis) perpendicular to supports. Spans shall be limited to values shown because of possible effect of concentrated loads.

c. Applies to panels 24 inches or wider.

d. Lumber blocking, panel edge clips (one midway between each support, except two equally spaced between supports when span is 48 inches), tongue-and-groove panel edges, or other approved type of edge support.

e. Includes Structural 1 panels in these grades.

f. Uniform load deflection limitation: \(\frac{1}{180} \) of span under live load plus dead load, \(\frac{1}{240} \) of span under live load only.

g. Maximum span 24 inches for \(\frac{15}{32} \)-and \(\frac{1}{2} \)-inch panels.

h. Maximum span 24 inches where \(\frac{3}{4} \)-inch wood finish flooring is installed at right angles to joists.

i. Maximum span 24 inches where 1.5 inches of lightweight concrete or approved cellular concrete is placed over the subfloor.

j. Unsupported edges shall have tongue-and-groove joints or shall be supported with blocking unless minimum nominal \(\frac{1}{4} \)-inch thick underlayment with end and edge joints offset at least 2 inches or 1.5 inches of lightweight concrete or approved cellular concrete is placed over the subfloor, or \(\frac{1}{4} \)-inch wood finish flooring is installed at right angles to the supports.

k. Unsupported edges shall have tongue-and-groove joints or shall be supported by blocking unless nominal \(\frac{1}{4} \)-inch thick underlayment with end and edge joints offset at least 2 inches or \(\frac{1}{4} \)-inch wood finish flooring is installed at right angles to the supports. Allowable uniform live load at maximum span, based on deflection of \(\frac{1}{360} \) of span, is 100 psf.

l. Allowed live load values at spans of 16" o.c. and 24" o.c taken from reference standard APA E30, APA Engineered Wood Construction Guide. Refer to reference standard for allowable spans not listed in the table.

TABLE 503.2.1.1(2)

<table>
<thead>
<tr>
<th>IDENTIFICATION</th>
<th>SPACING OF JOISTS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Species group</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>2, 3</td>
<td>(\frac{5}{8})</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{1}{4})</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kPa.
a. Plywood continuous over two or more spans and face grain perpendicular to supports. Unsupported edges shall be tongue-and-groove or blocked except where nominal ¼-inch-thick underlayment or ¾-inch wood finish floor is used. Allowable uniform live load at maximum span based on deflection of $\frac{1}{360}$ of span is 100 psf.

b. Applicable to all grades of sanded exterior-type plywood.

503.2.2 Allowable spans. The maximum allowable span for wood structural panels used as subfloor or combination subfloor underlayment shall be as set forth in Table 503.2.1.1(1), or APA E30. The maximum span for sanded plywood combination subfloor underlayment shall be as set forth in Table 503.2.1.1(2).

503.2.3 Installation. Wood structural panels used as subfloor or combination subfloor underlayment shall be attached to wood framing in accordance with Table 602.3(1) and shall be attached to cold-formed steel framing in accordance with Table 505.3.1(2).

503.3 Particleboard.

503.3.1 Identification and grade. Particleboard shall conform to ANSI A208.1 and shall be so identified by a grade mark or certificate of inspection issued by an approved agency.

503.3.2 Floor underlayment. Particleboard floor underlayment shall conform to Type PBU and shall not be less than ¼ inch (6.4 mm) in thickness.

503.3.3 Installation. Particleboard underlayment shall be installed in accordance with the recommendations of the manufacturer and attached to framing in accordance with Table 602.3(1).

SECTION 504

PRESSURE PRESERVATIVELY TREATED-WOOD FLOORS (ON GROUND)

504.1 General. Pressure preservatively treated-wood basement floors and floors on ground shall be designed to withstand axial forces and bending moments resulting from lateral soil pressures at the base of the exterior walls and floor live and dead loads. Floor framing shall be designed to meet joist deflection requirements in accordance with Section 301.
504.1.1 Unbalanced soil loads. Unless special provision is made to resist sliding caused by unbalanced lateral soil loads, wood basement floors shall be limited to applications where the differential depth of fill on opposite exterior foundation walls is 2 feet (610 mm) or less.

504.1.2 Construction. Joists in wood basement floors shall bear tightly against the narrow face of studs in the foundation wall or directly against a band joist that bears on the studs. Plywood subfloor shall be continuous over lapped joists or over butt joints between in-line joists. Sufficient blocking shall be provided between joists to transfer lateral forces at the base of the end walls into the floor system.

504.1.3 Uplift and buckling. Where required, resistance to uplift or restraint against buckling shall be provided by interior bearing walls or properly designed stub walls anchored in the supporting soil below.

504.2 Site preparation. The area within the foundation walls shall have all vegetation, topsoil and foreign material removed, and any fill material that is added shall be free of vegetation and foreign material. The fill shall be compacted to assure uniform support of the pressure preservatively treated-wood floor sleepers.

504.2.1 Base. A minimum 4-inch-thick (102 mm) granular base of gravel having a maximum size of ¾ inch (19.1 mm) or crushed stone having a maximum size of ½ inch (12.7 mm) shall be placed over the compacted earth.

504.2.2 Moisture barrier. Polyethylene sheeting of minimum 6-mil (0.15 mm) thickness shall be placed over the granular base. Joints shall be lapped 6 inches (152 mm) and left unsealed. The polyethylene membrane shall be placed over the pressure preservatively treated-wood sleepers and shall not extend beneath the footing plates of the exterior walls.

504.3 Materials. All framing materials, including sleepers, joists, blocking and plywood subflooring, shall be pressure-preservative treated and dried after treatment in accordance with AWPA U1 (Commodity Specification A, Use Category 4B and section 5.2), and shall bear the label of an approved agency.

SECTION 505
STEEL FLOOR FRAMING
505.1 Cold-formed steel floor framing. Elements shall be straight and free of any defects that would significantly affect structural performance. Cold-formed steel floor framing members shall comply with the requirements of this section.

505.1.1 Applicability limits. The provisions of this section shall control the construction of cold-formed steel floor framing for buildings not greater than 60 feet (18 288 mm) in length perpendicular to the joist span, not greater than 40 feet (12 192 mm) in width parallel to the joist span, and less than or equal to three stories above grade plane. Cold-formed steel floor framing constructed in accordance with the provisions of this section shall be limited to sites subjected to a maximum design wind speed of 110 miles per hour (49 m/s), Exposure B or C, and a maximum ground snow load of 70 pounds per square foot (3.35 kPa).

505.1.2 In-line framing. When supported by cold-formed steel framed walls in accordance with Section 603, cold-formed steel floor framing shall be constructed with floor joists located in-line with load-bearing studs located below the joists in accordance with Figure 505.1.2 and the tolerances specified as follows:

1. The maximum tolerance shall be ¾ inch (19.1 mm) between the centerline of the horizontal framing member and the centerline of the vertical framing member.

2. Where the centerline of the horizontal framing member and bearing stiffener are located to one side of the centerline of the vertical framing member, the maximum tolerance shall be 1/8 inch (3 mm) between the web of the horizontal framing member and the edge of the vertical framing member.

505.1.3 Floor trusses. Cold-formed steel trusses shall be designed, braced and installed in accordance with AISI S100, Section D4. Truss members shall not be notched, cut or altered in any manner without an approved design.

505.2 Structural framing. Load-bearing cold-formed steel floor framing members shall comply with Figure 505.2(1) and with the dimensional and minimum thickness requirements specified in Tables 505.2(1) and 505.2(2). Tracks shall comply with Figure 505.2(2) and shall have a minimum flange width of 1¼ inches (32 mm). The maximum inside bend radius for members shall be the greater of 3/32 inch (2.4 mm) minus half the base steel thickness or 1.5 times the base steel thickness.
505.2.1 **Material.** Load-bearing cold-formed steel framing members shall be cold-formed to shape from structural quality sheet steel complying with the requirements of one of the following:

1. ASTM A 653: Grades 33 and 50 (Class 1 and 3).
2. ASTM A 792: Grades 33 and 50A.
3. ASTM A 1003: Structural Grades 33 Type H and 50 Type H.

505.2.2 **Identification.** Load-bearing cold-formed steel framing members shall have a legible label, stencil, stamp or embossment with the following information as a minimum:

1. Manufacturer’s identification.
2. Minimum base steel thickness in inches (mm).
4. Minimum yield strength, in kips per square inch (ksi) (MPa).

505.2.3 **Corrosion protection.** Load-bearing cold-formed steel framing shall have a metallic coating complying with ASTM A 1003 and one of the following:

1. A minimum of G 60 in accordance with ASTM A 653.
2. A minimum of AZ 50 in accordance with ASTM A 792.
FIGURE 505.1.2
IN-LINE FRAMING

For SI: 1 inch = 25.4 mm.

FIGURE 505.2(1) C-SHAPED SECTION
TABLE 505.2(1)
COLD-FORMED STEEL JOIST SIZES

<table>
<thead>
<tr>
<th>MEMBER DESIGNATION^a</th>
<th>WEB DEPTH (inches)</th>
<th>MINIMUM FLANGE WIDTH (inches)</th>
<th>MAXIMUM FLANGE WIDTH (inches)</th>
<th>MINIMUM LIP SIZE (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>550S162-t</td>
<td>5.5</td>
<td>1.625</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>800S162-t</td>
<td>8</td>
<td>1.625</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>1000S162-t</td>
<td>10</td>
<td>1.625</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>1200S162-t</td>
<td>12</td>
<td>1.625</td>
<td>2</td>
<td>0.5</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 mil = 0.0254 mm.

^a The member designation is defined by the first number representing the member depth in 0.01 inch, the letter “S” representing a stud or joist member, the second number representing the flange width in 0.01 inch, and the letter “t” shall be a number representing the minimum base metal thickness in mils [See Table 505.2(2)].

TABLE 505.2(2)
MINIMUM THICKNESS OF COLD-FORMED STEEL MEMBERS

<table>
<thead>
<tr>
<th>DESIGNATION THICKNESS (mils)</th>
<th>MINIMUM BASE STEEL THICKNESS (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>0.0329</td>
</tr>
</tbody>
</table>
505.2.4 Fastening requirements. Screws for steel-to-steel connections shall be installed with a minimum edge distance and center-to-center spacing of ½ inch (12.7 mm), shall be self-drilling tapping, and shall conform to ASTM C 1513. Floor sheathing shall be attached to cold-formed steel joists with minimum No. 8 self-drilling tapping screws that conform to ASTM C 1513. Screws attaching floor-sheathing to cold-formed steel joists shall have a minimum head diameter of 0.292 inch (7.4 mm) with countersunk heads and shall be installed with a minimum edge distance of 3/8 inch (9.5 mm). Gypsum board ceilings shall be attached to cold-formed steel joists with minimum No. 6 screws conforming to ASTM C 954 or ASTM C 1513 with a bugle head style and shall be installed in accordance with Section 702. For all connections, screws shall extend through the steel a minimum of three exposed threads. All fasteners shall have rust inhibitive coating suitable for the installation in which they are being used, or be manufactured from material not susceptible to corrosion.

Where No. 8 screws are specified in a steel-to-steel connection, the required number of screws in the connection is permitted to be reduced in accordance with the reduction factors in Table 505.2.4 when larger screws are used or when one of the sheets of steel being connected is thicker than 33 mils (0.84 mm). When applying the reduction factor, the resulting number of screws shall be rounded up.

<table>
<thead>
<tr>
<th>SCREW SIZE</th>
<th>THINNEST CONNECTED STEEL SHEET (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33</td>
</tr>
<tr>
<td>#8</td>
<td>1.0</td>
</tr>
<tr>
<td>#10</td>
<td>0.93</td>
</tr>
<tr>
<td>#12</td>
<td>0.86</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 mil = 0.0254 mm.
505.2.5 Web holes, web hole reinforcing and web hole patching. Web holes, web hole reinforcing, and web hole patching shall be in accordance with this section.

24 IN. MIN. 10 IN. MIN.

For SI: 1 inch = 25.4 mm.

505.2.5.1 Web holes. Web holes in floor joists shall comply with all of the following conditions:

1. Holes shall conform to Figure 505.2.5.1;
2. Holes shall be permitted only along the centerline of the web of the framing member;
3. Holes shall have a center-to-center spacing of not less than 24 inches (610 mm);
4. Holes shall have a web hole width not greater than 0.5 times the member depth, or 2½ inches (64.5 mm);
5. Holes shall have a web hole length not exceeding 4½ inches (114 mm); and
6. Holes shall have a minimum distance between the edge of the bearing surface and the edge of the web hole of not less than 10 inches (254 mm).
Framing members with web holes not conforming to the above requirements shall be reinforced in accordance with Section 505.2.5.2, patched in accordance with Section 505.2.5.3 or designed in accordance with accepted engineering practices.

505.2.5.2 Web hole reinforcing. Reinforcement of web holes in floor joists not conforming to the requirements of Section 505.2.5.1 shall be permitted if the hole is located fully within the center 40 percent of the span and the depth and length of the hole does not exceed 65 percent of the flat width of the web. The reinforcing shall be a steel plate or C-shape section with a hole that does not exceed the web hole size limitations of Section 505.2.5.1 for the member being reinforced. The steel reinforcing shall be the same thickness as the receiving member and shall extend at least 1 inch (25.4 mm) beyond all edges of the hole. The steel reinforcing shall be fastened to the web of the receiving member with No. 8 screws spaced no more than 1 inch (25.4 mm) center-to-center along the edges of the patch with minimum edge distance of ½ inch (12.7 mm).

505.2.5.3 Hole patching. Patching of web holes in floor joists not conforming to the requirements in Section 505.2.5.1 shall be permitted in accordance with either of the following methods:

1. Framing members shall be replaced or designed in accordance with accepted engineering practices where web holes exceed the following size limits:

 1.1 The depth of the hole, measured across the web, exceeds 70 percent of the flat width of the web; or

 1.2 The length of the hole measured along the web, exceeds 10 inches (254 mm) or the depth of the web, whichever is greater.

2. Web holes not exceeding the dimensional requirements in Section 505.2.5.3, Item 1, shall be patched with a solid steel plate, stud section, or track section in accordance with Figure 505.2.5.3. The steel patch shall, as a minimum, be of the same thickness as the receiving member and shall extend at least 1 inch (25 mm) beyond all edges of the hole. The steel patch shall be fastened to the web of the receiving member with No. 8 screws spaced no more than 1
inch (25 mm) center-to-center along the edges of the patch with minimum edge distance of \(\frac{1}{2} \) inch (13 mm).

FIGURE 505.2.5.3
WEB HOLE PATCH

505.3 Floor construction. Cold-formed steel floors shall be constructed in accordance with this section.

505.3.1 Floor to foundation or load-bearing wall connections. Cold-formed steel framed floors shall be anchored to foundations, wood sills or load-bearing walls in accordance with Table 505.3.1(1) and Figure 505.3.1(1), 505.3.1(2), 505.3.1(3), 505.3.1(4), 505.3.1(5) or 505.3.1(6). Anchor bolts shall be located not more than 12 inches (305 mm) from corners or the termination of bottom tracks. Continuous cold-formed steel joists supported by interior load-bearing walls shall be constructed in accordance with Figure 505.3.1(7). Lapped cold-formed steel joists shall be constructed in accordance with Figure 505.3.1(8). End floor joists constructed on foundation walls parallel to the joist span shall be doubled unless a C-shaped bearing stiffener, sized in accordance with Section 505.3.4, is installed web-to-web with the floor joist beneath each supported wall stud, as shown in Figure 505.3.1(9). Fastening of cold-formed steel joists to other framing members shall be in accordance with Section 505.2.4 and Table 505.3.1(2).

505.3.2 Minimum floor joist sizes. Floor joist size and thickness shall be determined in accordance with the limits set forth in Table 505.3.2(1) for single spans, and Tables 505.3.2(2) and 505.3.2(3) for multiple spans. When continuous joist members are used, the interior bearing supports shall be
located within 2 feet (610 mm) of mid-span of the cold-formed steel joists, and the individual spans shall not exceed the spans in Table 505.3.2(2) or 505.3.2(3), as applicable. Floor joists shall have a bearing support length of not less than 1½ inches (38 mm) for exterior wall supports and 3½ inches (89 mm) for interior wall supports. Tracks shall be a minimum of 33 mils (0.84 mm) thick except when used as part of a floor header or trimmer in accordance with Section 505.3.8. Bearing stiffeners shall be installed in accordance with Section 505.3.4.

505.3.3 Joist bracing and blocking. Joist bracing and blocking shall be in accordance with this section.

505.3.3.1 Joist top flange bracing. The top flanges of cold-formed steel joists shall be laterally braced by the application of floor sheathing fastened to the joists in accordance with Section 505.2.4 and Table 505.3.1(2).

505.3.3.2 Joist bottom flange bracing/blocking. Floor joists with spans that exceed 12 feet (3658 mm) shall have the bottom flanges laterally braced in accordance with one of the following:

1. Gypsum board installed with minimum No. 6 screws in accordance with Section 702.

2. Continuous steel straps installed in accordance with Figure 505.3.3.2(1). Steel straps shall be spaced at a maximum of 12 feet (3658 mm) on center and shall be at least 1½ inches (38 mm) in width and 33 mils (0.84 mm) in thickness. Straps shall be fastened to the bottom flange of each joist with one No. 8 screw, fastened to blocking with two No. 8 screws, and fastened at each end (of strap) with two No. 8 screws. Blocking in accordance with Figure 505.3.3.2(1) or Figure 505.3.3.2(2) shall be installed between joists at each end of the continuous strapping and at a maximum spacing of 12 feet (3658 mm) measured along the continuous strapping (perpendicular to the joist run). Blocking shall also be located at the termination of all straps. As an alternative to blocking at the ends, anchoring the strap to a stable building component with two No. 8 screws shall be permitted.

TABLE 505.3.1(1)
FLOOR TO FOUNDATION OR BEARING WALL CONNECTION REQUIREMENTSa,b
FRAMING CONDITION

<table>
<thead>
<tr>
<th>Basic Wind Speed (mph) AND EXPOSURE</th>
<th>85 mph Exposure C or less than 110 mph Exposure B</th>
<th>Less than 110 mph Exposure C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor joist to wall track of exterior wall per Figure 505.3.1(1)</td>
<td>2-No. 8 screws</td>
<td>3-No. 8 screws</td>
</tr>
<tr>
<td>Rim track or end joist to load-bearing wall top track per Figure 505.3.1(1)</td>
<td>1-No. 8 screw at 24 inches o.c.</td>
<td>1-No. 8 screw at 24 inches o.c.</td>
</tr>
<tr>
<td>Rim track or end joist to wood sill per Figure 505.3.1(2)</td>
<td>Steel plate spaced at 4 feet o.c. with 4-No. 8 screws and 4-10d or 6-8d common nails</td>
<td>Steel plate spaced at 2 feet o.c. with 4-No. 8 screws and 4-10d or 6-8d common nails</td>
</tr>
<tr>
<td>Rim track or end joist to foundation per Figure 505.3.1(3)</td>
<td>½ inch minimum diameter anchor bolt and clip angle spaced at 6 feet o.c. with 8-No. 8 screws</td>
<td>½ inch minimum diameter anchor bolt and clip angle spaced at 4 feet o.c. with 8-No. 8 screws</td>
</tr>
<tr>
<td>Cantilevered joist to foundation per Figure 505.3.1(4)</td>
<td>½ inch minimum diameter anchor bolt and clip angle spaced at 6 feet o.c. with 8-No. 8 screws</td>
<td>½ inch minimum diameter anchor bolt and clip angle spaced at 4 feet o.c. with 8-No. 8 screws</td>
</tr>
<tr>
<td>Cantilevered joist to wood sill per Figure 505.3.1(5)</td>
<td>Steel plate spaced at 4 feet o.c. with 4-No. 8 screws and 4-10d or 6-8d common nails</td>
<td>Steel plate spaced at 2 feet o.c. with 4-No. 8 screws and 4-10d or 6-8d common nails</td>
</tr>
<tr>
<td>Cantilevered joist to exterior load-bearing wall track per Figure 505.3.1(6)</td>
<td>2-No. 8 screws</td>
<td>3-No. 8 screws</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kPa, 1 mile per hour = 0.447 m/s, 1 foot = 304.8 mm.

a. Anchor bolts are to be located not more than 12 inches from corners or the termination of bottom tracks (e.g., at door openings or corners). Bolts extend a minimum of 15 inches into masonry or 7 inches into concrete. Anchor bolts connecting cold-formed steel framing to the foundation structure are to be installed so that the distance from the center of the bolt hole to the edge of the connected member is not less than one and one-half bolt diameters.

b. All screw sizes shown are minimum.

For SI: 1 mil = 0.0254 mm, 1 inch = 25.4 mm.

FIGURE 505.3.1(1)
FLOOR TO EXTERIOR LOAD-BEARING WALL STUD CONNECTION

For SI: 1 mil = 0.0254 mm, 1 inch = 25.4 mm.

FIGURE 505.3.1(2)
FLOOR TO WOOD SILL CONNECTION
TABLE 505.3.1(2)
FLOOR FASTENING SCHEDULE\(^a\)

<table>
<thead>
<tr>
<th>DESCRIPTION OF BUILDING ELEMENTS</th>
<th>NUMBER AND SIZE OF FASTENERS</th>
<th>SPACING OF FASTENERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor joist to track of an interior load-bearing wall per Figures 505.3.1(7) and 505.3.1(8)</td>
<td>2 No. 8 screws</td>
<td>Each joist</td>
</tr>
<tr>
<td>Floor joist to track at end of joist</td>
<td>2 No. 8 screws</td>
<td>One per flange or two per bearing stiffener</td>
</tr>
<tr>
<td>Subfloor to floor joists</td>
<td>No. 8 screws</td>
<td>6 in. o.c. on edges and 12 in. o.c. at intermediate supports</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
\(^a\) All screw sizes shown are minimum.
FIGURE 505.3.1(3)
FLOOR TO FOUNDATION CONNECTION

For SI: 1 mil = 0.0254 mm, 1 inch = 25.4 mm.
For SI: 1 mil = 0.0254 mm, 1 inch = 25.4 mm.

FIGURE 505.3.1(4)
CANTILEVERED FLOOR TO FOUNDATION CONNECTION
For SI: 1 mil = 0.0254 mm, 1 inch = 25.4 mm.

FIGURE 505.3.1(5)
CANTILEVERED FLOOR TO WOOD SILL CONNECTION
FIGURE 505.3.1(6)
CANTILEVERED FLOOR TO EXTERIOR LOAD-BEARING CONNECTION

For SI: 1 mil = 0.0254 mm, 1 inch = 25.4 mm.
CONTINUOUS SPAN JOIST SUPPORTED ON INTERIOR LOAD-BEARING WALL

FIGURE 505.3.1(7)

For SI: 1 mil = 0.0254 mm
For SI: 1 inch = 25.4 mm.

FIGURE 505.3.1(8)
LAPPED JOISTS SUPPORTED ON INTERIOR LOAD-BEARING WALL
FIGURE 505.3.1(9)
BEARING STIFFENERS FOR END JOISTS

TABLE 505.3.2(1)
ALLOWABLE SPANS FOR COLD-FORMED STEEL JOISTS—SINGLE SPANS\(^a, b, c, d\) 33 ksi STEEL

<table>
<thead>
<tr>
<th>JOIST DESIGNATION</th>
<th>30 PSF LIVE LOAD</th>
<th>40 PSF LIVE LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spacing (inches)</td>
<td>Spacing (inches)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>550S162-33</td>
<td>11'-7"</td>
<td>10'-7"</td>
</tr>
<tr>
<td>550S162-43</td>
<td>12'-8"</td>
<td>11'-6"</td>
</tr>
<tr>
<td>550S162-54</td>
<td>13'-7"</td>
<td>12'-4"</td>
</tr>
<tr>
<td>550S162-68</td>
<td>14'-7"</td>
<td>13'-3"</td>
</tr>
<tr>
<td>550S162-97</td>
<td>16'-2"</td>
<td>14'-9"</td>
</tr>
<tr>
<td>Joist Size</td>
<td>Clear Span (ft in)</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>800S162-33</td>
<td>15'-8" 13'-11" 12'-9" 11'-5" 14'-3" 12'-5" 11'-3" 9'-0"</td>
<td></td>
</tr>
<tr>
<td>800S162-43</td>
<td>17'-1" 15'-6" 14'-7" 13'-7" 15'-6" 14'-1" 13'-3" 12'-4"</td>
<td></td>
</tr>
<tr>
<td>800S162-54</td>
<td>18'-4" 16'-8" 15'-8" 14'-7" 16'-8" 15'-2" 14'-3" 13'-3"</td>
<td></td>
</tr>
<tr>
<td>800S162-68</td>
<td>19'-9" 17'-11" 16'-10" 15'-8" 17'-11" 16'-3" 15'-4" 14'-2"</td>
<td></td>
</tr>
<tr>
<td>800S162-97</td>
<td>22'-0" 20'-0" 16'-10" 17'-5" 20'-0" 18'-2" 17'-1" 15'-10"</td>
<td></td>
</tr>
<tr>
<td>1000S162-43</td>
<td>20'-6" 18'-8" 17'-6" 15'-8" 18'-8" 16'-11" 15'-6" 13'-11"</td>
<td></td>
</tr>
<tr>
<td>1000S162-54</td>
<td>22'-1" 20'-0" 18'-10" 17'-6" 20'-0" 18'-2" 17'-2" 15'-11"</td>
<td></td>
</tr>
<tr>
<td>1000S162-68</td>
<td>23'-9" 21'-7" 20'-3" 18'-10" 21'-7" 19'-7" 18'-5" 17'-1"</td>
<td></td>
</tr>
<tr>
<td>1000S162-97</td>
<td>26'-6" 24'-1" 22'-8" 21'-0" 24'-1" 21'-10" 20'-7" 19'-1"</td>
<td></td>
</tr>
<tr>
<td>1200S162-43</td>
<td>23'-9" 20'-10" 19'-0" 16'-8" 21'-5" 18'-6" 16'-6" 13'-2"</td>
<td></td>
</tr>
<tr>
<td>1200S162-54</td>
<td>25'-9" 23'-4" 22'-0" 20'-1" 23'-4" 21'-3" 20'-0" 17'-10"</td>
<td></td>
</tr>
<tr>
<td>1200S162-68</td>
<td>27'-8" 25'-1" 23'-8" 21'-11" 25'-1" 22'-10" 21'-6" 21'-1"</td>
<td></td>
</tr>
<tr>
<td>1200S162-97</td>
<td>30'-11" 28'-1" 26'-5" 24'-6" 28'-1" 25'-6" 24'-0" 22'-3"</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479 kPa.

a. Deflection criteria: $L/480$ for live loads, $L/240$ for total loads.
b. Floor dead load = 10 psf.
c. Table provides the maximum clear span in feet and inches.
d. Bearing stiffeners are to be installed at all support points and concentrated loads.

For SI: 1 mil = 0.0254 mm, 1 inch = 25.4 mm.

FIGURE 505.3.3.2(1)

JOIST BLOCKING (SOLID)
TABLE 505.3.2(2)

ALLOWABLE SPANS FOR COLD-FORMED STEEL JOISTS—MULTIPLE SPANS

<table>
<thead>
<tr>
<th>JOIST DESIGNATION</th>
<th>30 PSF LIVE LOAD</th>
<th>40 PSF LIVE LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>Spacing (inches)</td>
<td>Spacing (inches)</td>
<td>Spacing (inches)</td>
</tr>
<tr>
<td>550S162-33</td>
<td>12'-1"</td>
<td>10'-5"</td>
</tr>
<tr>
<td>550S162-43</td>
<td>14'-5"</td>
<td>12'-5"</td>
</tr>
<tr>
<td>550S162-54</td>
<td>16'-3"</td>
<td>14'-1"</td>
</tr>
<tr>
<td>550S162-68</td>
<td>19'-7"</td>
<td>17'-9"</td>
</tr>
<tr>
<td>550S162-97</td>
<td>21'-9"</td>
<td>19'-9"</td>
</tr>
<tr>
<td>800S162-33</td>
<td>14'-8"</td>
<td>11'-10"</td>
</tr>
<tr>
<td>800S162-43</td>
<td>20'-0"</td>
<td>17'-4"</td>
</tr>
<tr>
<td>800S162-54</td>
<td>23'-7"</td>
<td>20'-5"</td>
</tr>
<tr>
<td>800S162-68</td>
<td>26'-5"</td>
<td>23'-1"</td>
</tr>
<tr>
<td>800S162-97</td>
<td>29'-6"</td>
<td>26'-10"</td>
</tr>
<tr>
<td>1000S162-43</td>
<td>22'-2"</td>
<td>18'-3"</td>
</tr>
<tr>
<td>1000S162-54</td>
<td>26'-2"</td>
<td>22'-8"</td>
</tr>
<tr>
<td>1000S162-68</td>
<td>31'-5"</td>
<td>27'-2"</td>
</tr>
<tr>
<td>1000S162-97</td>
<td>35'-6"</td>
<td>32'-3"</td>
</tr>
<tr>
<td>1200S162-43</td>
<td>21'-8"</td>
<td>17'-6"</td>
</tr>
<tr>
<td>1200S162-54</td>
<td>28'-5"</td>
<td>24'-8"</td>
</tr>
<tr>
<td>1200S162-68</td>
<td>33'-7"</td>
<td>29'-1"</td>
</tr>
<tr>
<td>1200S162-97</td>
<td>41'-5"</td>
<td>37'-8"</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479kPa.

a. Deflection criteria: L/480 for live loads, L/240 for total loads.
b. Floor dead load = 10 psf.
c. Table provides the maximum clear span in feet and inches to either side of the interior support.
d. Interior bearing supports for multiple span joists consist of structural (bearing) walls or beams.
e. Bearing stiffeners are to be installed at all support points and concentrated loads.
f. Interior supports shall be located within 2 feet of mid-span provided that each of the resulting spans does not exceed the appropriate maximum span shown in the table above.
For SI: 1 mil = 0.0254 = 25.4 mm.

FIGURE 505.3.3.2(2)
JOIST BLOCKING (STRAP)

TABLE 505.3.2(3)
ALLOWABLE SPANS FOR COLD-FORMED STEEL JOISTS—MULTIPLE SPANS

<table>
<thead>
<tr>
<th>JOIST DESIGNATION</th>
<th>30 PSF LIVE LOAD</th>
<th>40 PSF LIVE LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spacing (inches)</td>
<td>Spacing (inches)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>550S162-33</td>
<td>13'11"</td>
<td>12'0"</td>
</tr>
<tr>
<td>550S162-43</td>
<td>16'-3"</td>
<td>14'-1"</td>
</tr>
<tr>
<td>550S162-54</td>
<td>18'-2"</td>
<td>16'-6"</td>
</tr>
<tr>
<td>550S162-68</td>
<td>19'-6"</td>
<td>17'-9"</td>
</tr>
<tr>
<td>550S162-97</td>
<td>21'-9"</td>
<td>19'-9"</td>
</tr>
<tr>
<td>800S162-33</td>
<td>15'-6"</td>
<td>12'-6"</td>
</tr>
<tr>
<td>800S162-43</td>
<td>22'-0"</td>
<td>19'-1"</td>
</tr>
<tr>
<td>800S162-54</td>
<td>24'-6"</td>
<td>22'-4"</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square foot = 0.0479kPa.

a. Deflection criteria: $L/480$ for live loads, $L/240$ for total loads.
b. Floor dead load = 10 psf.
c. Table provides the maximum clear span in feet and inches to either side of the interior support.
d. Interior bearing supports for multiple span joists consist of structural (bearing) walls or beams.
e. Bearing stiffeners are to be installed at all support points and concentrated loads.
f. Interior supports shall be located within 2 feet of mid-span provided that each of the resulting spans does not exceed the appropriate maximum span shown in the table above.

Table 800S162-97 Interior Span Table

800S162-68	26'-6"	24'-1"	22'-8"	21'-0"	24'-1"	21'-10"	20'-7"	19'-2"
800S162-97	29'-9"	26'-8"	25'-2"	23'-5"	26'-8"	24'-3"	22'-11"	21'-4"
1000S162-43	23'-6"	19'-2"	16'-9"	14'-2"	19'-11"	16'-2"	14'-0"	11'-9"
1000S162-54	28'-2"	23'-10"	21'-7"	18'-11"	24'-8"	20'-11"	18'-9"	18'-4"
1000S162-68	31'-10"	28'-11"	27'-2"	25'-3"	28'-11"	26'-3"	24'-9"	22'-9"
1000S162-97	35'-4"	32'-1"	30'-3"	28'-1"	32'-1"	29'-2"	27'-6"	25'-6"
1200S162-43	22'-11"	18'-5"	16'-0"	13'-4"	19'-2"	15'-4"	13'-2"	10'-6"
1200S162-54	32'-8"	28'-1"	24'-9"	21'-2"	29'-0"	23'-10"	20'-11"	17'-9"
1200S162-68	37'-1"	32'-5"	29'-4"	25'-10"	33'-4"	28'-6"	25'-9"	22'-7"
1200S162-97	41'-2"	37'-6"	35'-3"	32'-9"	37'-6"	34'-1"	32'-1"	29'-9"

505.3.3.3 Blocking at interior bearing supports

Blocking is not required for continuous back-to-back floor joists at bearing supports. Blocking shall be installed between every other joist for single continuous floor joists across bearing supports in accordance with Figure 505.3.1(7). Blocking shall consist of C-shape or track section with a minimum thickness of 33 mils (0.84 mm). Blocking shall be fastened to each adjacent joist through a 33-mil (0.84 mm) clip angle, bent web of blocking or flanges of web stiffeners with two No. 8 screws on each side. The minimum depth of the blocking shall be equal to the depth of the joist minus 2 inches (51 mm). The minimum length of the angle shall be equal to the depth of the joist minus 2 inches (51 mm).

505.3.3.4 Blocking at cantilevers

Blocking shall be installed between every other joist over cantilever bearing supports in accordance with Figure 505.3.1(4), 505.3.1(5) or 505.3.1(6). Blocking shall consist of C-shape or track section with minimum thickness of 33 mils (0.84 mm). Blocking shall be fastened to each adjacent joist through bent web of blocking, 33 mil clip angle or flange of web stiffener with two No.8 screws at each end. The depth of the blocking shall be equal to the depth of the joist. The minimum length of the angle shall be equal to the depth of the joist minus 2 inches (51 mm). Blocking shall be fastened through the floor sheathing and to the support with three No.8 screws (top and bottom).
505.3.4 Bearing stiffeners. Bearing stiffeners shall be installed at each joist bearing location in accordance with this section, except for joists lapped over an interior support not carrying a load-bearing wall above. Floor joists supporting jamb studs with multiple members shall have two bearing stiffeners in accordance with Figure 505.3.4(1). Bearing stiffeners shall be fabricated from a C-shaped, track or clip angle member in accordance with the one of following:

1. C-shaped bearing stiffeners:

 1.1 Where the joist is not carrying a load-bearing wall above, the bearing stiffener shall be a minimum 33 mil (0.84 mm) thickness.

 1.2 Where the joist is carrying a load-bearing wall above, the bearing stiffener shall be at least the same designation thickness as the wall stud above.

2. Track bearing stiffeners:

 2.1 Where the joist is not carrying a load-bearing wall above, the bearing stiffener shall be a minimum 43 mil (1.09 mm) thickness.

 2.2 Where the joist is carrying a load-bearing wall above, the bearing stiffener shall be at least one designation thickness greater than the wall stud above.

3. Clip angle bearing stiffeners: Where the clip angle bearing stiffener is fastened to both the web of the member it is stiffening and an adjacent rim track using the fastener pattern shown in Figure 505.3.4(2), the bearing stiffener shall be a minimum 2-inch by 2-inch (51 mm by 51 mm) angle sized in accordance with Tables 505.3.4(1), 505.3.4(2), 505.3.4(3), and 505.3.4(4).

The minimum length of a bearing stiffener shall be the depth of member being stiffened minus \(\frac{3}{8} \) inch (9.5 mm). Each bearing stiffener shall be fastened to the web of the member it is stiffening as shown in Figure 505.3.4(2). Each clip angle bearing stiffener shall also be fastened to the web of the adjacent rim track using the fastener pattern shown in Figure 505.3.4(2). No. 8 screws shall be used for C-shaped and track members of any thickness and for clip angle members with a designation thickness less than or equal to 54. No. 10
screws shall be used for clip angle members with a designation thickness greater than 54.

FIGURE 505.3.4(1)
BEARING STIFFENERS UNDER JAMB STUDS

TABLE 505.3.4(1)
CLIP ANGLE BEARING STIFFENERS
(20 psf equivalent snow load)

<table>
<thead>
<tr>
<th>JOIST DESIGNATION</th>
<th>MINIMUM THICKNESS (mils) OF 2-INCH 2-INCH (51 mm 51 mm) CLIP ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top floor</td>
</tr>
<tr>
<td></td>
<td>Joist spacing (inches)</td>
</tr>
<tr>
<td>800S162-33</td>
<td>43</td>
</tr>
<tr>
<td>800S162-43</td>
<td>43</td>
</tr>
<tr>
<td>800S162-54</td>
<td>43</td>
</tr>
<tr>
<td>800S162-68</td>
<td>43</td>
</tr>
<tr>
<td>800S162-97</td>
<td>43</td>
</tr>
<tr>
<td>1000S162-43</td>
<td>43</td>
</tr>
<tr>
<td>1000S162-54</td>
<td>43</td>
</tr>
<tr>
<td>1000S162-68</td>
<td>43</td>
</tr>
<tr>
<td>JOIST DESIGNATION</td>
<td>MINIMUM THICKNESS (mils) OF 2-INCH 2 INCH (51 mm 51 mm) CLIP ANGLE</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Top floor</td>
</tr>
<tr>
<td></td>
<td>Joist spacing (inches)</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td>800S162-33</td>
<td>43</td>
</tr>
<tr>
<td>800S162-43</td>
<td>43</td>
</tr>
<tr>
<td>800S162-54</td>
<td>43</td>
</tr>
<tr>
<td>800S162-68</td>
<td>43</td>
</tr>
<tr>
<td>800S162-97</td>
<td>43</td>
</tr>
<tr>
<td>1000S162-43</td>
<td>54</td>
</tr>
<tr>
<td>1000S162-54</td>
<td>54</td>
</tr>
<tr>
<td>1000S162-68</td>
<td>54</td>
</tr>
<tr>
<td>1000S162-97</td>
<td>43</td>
</tr>
<tr>
<td>1200S162-43</td>
<td>54</td>
</tr>
<tr>
<td>1200S162-54</td>
<td>68</td>
</tr>
<tr>
<td>1200S162-68</td>
<td>68</td>
</tr>
<tr>
<td>1200S162-97</td>
<td>43</td>
</tr>
</tbody>
</table>

For SI: 1 mil = 0.0254 mm, 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kPa.
For SI: 1 inch = 25.4 mm.

FIGURE 505.3.4(2)
BEARING STIFFENER

TABLE 505.3.4(3)
CLIP ANGLE BEARING STIFFENERS
(50 psf equivalent snow load)

<table>
<thead>
<tr>
<th>JOIST DESIGNATION</th>
<th>MINIMUM THICKNESS (mils) OF 2-INCH 2-INCH (51 mm 51 mm) CLIP ANGLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top floor</td>
</tr>
<tr>
<td></td>
<td>Joist spacing (inches)</td>
</tr>
<tr>
<td>800S162-33</td>
<td>54 54</td>
</tr>
<tr>
<td>800S162-43</td>
<td>68 68</td>
</tr>
<tr>
<td>800S162-54</td>
<td>54 54</td>
</tr>
<tr>
<td>800S162-68</td>
<td>54 54</td>
</tr>
<tr>
<td>800S162-97</td>
<td>43 43</td>
</tr>
<tr>
<td>1000S162-43</td>
<td>97 97</td>
</tr>
<tr>
<td>1000S162-54</td>
<td>97 97</td>
</tr>
<tr>
<td>1000S162-68</td>
<td>97 97</td>
</tr>
<tr>
<td>1000S162-97</td>
<td>43 43</td>
</tr>
<tr>
<td>JOIST DESIGNATION</td>
<td>12</td>
</tr>
<tr>
<td>-------------------</td>
<td>----</td>
</tr>
<tr>
<td>800S162-33</td>
<td>68</td>
</tr>
<tr>
<td>800S162-43</td>
<td>97</td>
</tr>
<tr>
<td>800S162-54</td>
<td>97</td>
</tr>
<tr>
<td>800S162-68</td>
<td>68</td>
</tr>
<tr>
<td>800S162-97</td>
<td>43</td>
</tr>
<tr>
<td>1000S162-43</td>
<td>97</td>
</tr>
<tr>
<td>1000S162-54</td>
<td></td>
</tr>
<tr>
<td>1000S162-68</td>
<td>97</td>
</tr>
<tr>
<td>1000S162-97</td>
<td>68</td>
</tr>
<tr>
<td>1200S162-43</td>
<td>97</td>
</tr>
<tr>
<td>1200S162-54</td>
<td></td>
</tr>
<tr>
<td>1200S162-68</td>
<td></td>
</tr>
<tr>
<td>1200S162-97</td>
<td>97</td>
</tr>
</tbody>
</table>

For SI: 1 mil = 0.0254 mm, 1 inch = 25.4 mm, 1 pound per square foot = 0.0479 kPa.

505.3.4 Cutting and notching
Flanges and lips of load-bearing cold-formed steel floor framing members shall not be cut or notched.

505.3.6 Floor cantilevers
Floor cantilevers for the top floor of a two- or three-story building or the first floor of a one-story building shall not exceed 24 inches (610 mm). Cantilevers, not exceeding 24 inches (610 mm) and supporting two stories and roof (i.e., first floor of a two-story building), shall also be permitted provided that all cantilevered joists are doubled (nested or back-to-back). The doubled cantilevered joists shall extend a minimum of 6 feet (1829 mm) toward the inside and shall be fastened with a minimum of
two No.8 screws spaced at 24 inches (610 mm) on center through the webs (for back-to-back) or flanges (for nested joists).

505.3.7 Splicing. Joists and other structural members shall not be spliced. Splicing of tracks shall conform to Figure 505.3.7.

505.3.8 Framing of floor openings. Openings in floors shall be framed with header and trimmer joists. Header joist spans shall not exceed 6 feet (1829 mm) or 8 feet (2438 mm) in length in accordance with Figure 505.3.8(1) or 505.3.8(2), respectively. Header and trimmer joists shall be fabricated from joist and track members, having a minimum size and thickness at least equivalent to the adjacent floor joists and shall be installed in accordance with Figures 505.3.8(1), 505.3.8(2), 505.3.8(3), and 505.3.8(4). Each header joist shall be connected to trimmer joists with four 2-inch-by-2-inch (51mm by 51 mm) clip angles. Each clip angle shall be fastened to both the header and trimmer joists with four No. 8 screws, evenly spaced, through each leg of the clip angle. The clip angles shall have a thickness not less than that of the floor joist. Each track section for a built-up header or trimmer joist shall extend the full length of the joist (continuous).

For SI: 1 inch = 25.4 mm.

FIGURE 505.3.7
TRACK SPLICE
FIGURE 505.3.8(1)
COLD-FORMED STEEL FLOOR CONSTRUCTION: 6-FOOT FLOOR OPENING

For SI: 1 foot = 304.8 mm.
For SI: 1 foot = 304.8 mm.

FIGURE 505.3.8(2)
COLD-FORMED STEEL FLOOR CONSTRUCTION: 8-FOOT FLOOR OPENING
FIGURE 505.3.8(3)
COLD-FORMED STEEL FLOOR CONSTRUCTION:
FLOOR HEADER TO TRIMMER CONNECTION—6-FOOT OPENING

For SI: 1 inch = 25.4 mm.
506.1 General. Concrete slab-on-ground floors shall be a minimum 3.5 inches (89 mm) thick (for expansive soils, see Section 403.1.8). The specified compressive strength of concrete shall be as set forth in Section 402.2.

506.2 Site preparation. The area within the foundation walls shall have all vegetation, top soil and foreign material removed.

506.2.1 Fill. Fill material shall be free of vegetation and foreign material. The fill shall be compacted to assure uniform support of the slab, and except where
approved, the fill depths shall not exceed 24 inches (610 mm) for clean sand or gravel and 8 inches (203 mm) for earth.

Exception: Fills constructed of controlled low-strength material (CLSM) need not be compacted.

506.2.2 Base.

A 4-inch-thick (102 mm) base course consisting of clean graded sand, gravel, crushed stone or crushed blast-furnace slag passing a 2-inch (51 mm) sieve shall be placed on the prepared subgrade when the slab is below grade.

Exception: A base course is not required when the concrete slab is installed on well-drained or sand-gravel mixture soils classified as Group I according to the United Soil Classification System in accordance with Table 405.1.

506.2.3 Vapor retarder.

A 6 mil (0.006 inch; 152 μm) polyethylene or approved vapor retarder with joints lapped not less than 6 inches (152 mm) shall be placed between the concrete floor slab and the base course or the prepared subgrade where no base course exists.

Exception: The vapor retarder may be omitted:

1. From detached garages, utility buildings and other unheated accessory structures.
2. For unheated storage rooms having an area of less than 70 square feet (6.5 m²) and carports.
3. From driveways, walks, patios and other flatwork not likely to be enclosed and heated at a later date.
4. Where approved by the building official, based on local site conditions.

506.2.4 Reinforcement support.

Where provided in slabs on ground, reinforcement shall be supported to remain in place from the center to upper one third of the slab for the duration of the concrete placement.
Effective: 01/01/2016

Five Year Review (FYR) Dates: 01/01/2018

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.01, 3781.06, 3781.10, 3781.11, 3791.04, 4740.14
Prior Effective Dates: 5/27/06, 1/1/13
4101:8-19-01 Special fuel-burning equipment.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:8-44-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:8-1-01 of the Administrative Code.]

SECTION 1901
RANGES AND OVENS

1901.1 Clearances. Freestanding or built-in ranges shall have a vertical clearance above the cooking top of not less than 30 inches (762 mm) to unprotected combustible material. Reduced clearances are permitted in accordance with the listing and labeling of the range hoods or appliances.

1901.2 Cooking appliances. Household cooking appliances shall be listed and labeled and shall be installed in accordance with the manufacturer’s installation instructions. The installation shall not interfere with combustion air or access for operation and servicing.

SECTION 1902
SAUNA HEATERS

1902.1 Locations and protection. Sauna heaters shall be protected from accidental contact by persons with a guard of material having a low thermal conductivity, such as wood. The guard shall have no substantial effect on the transfer of heat from the heater to the room.

1902.2 Installation. Sauna heaters shall be installed in accordance with the manufacturer’s installation instructions.

1902.3 Combustion air. Combustion air and venting for a nondirect vent-type heater shall be provided in accordance with Chapters 17 and 18, respectively.

1902.4 Controls. Sauna heaters shall be equipped with a thermostat that will limit room temperature to not greater than 194°F (90°C). Where the thermostat is not an integral part of the heater, the heat-sensing element shall be located within 6 inches (152 mm) of the ceiling.
SECTION 1903
STATIONARY FUEL CELL POWER PLANTS

1903.1 General. Stationary fuel cell power plants having a power output not exceeding 1,000 kW, shall be tested in accordance with ANSI Z21.83 and shall be installed in accordance with the manufacturer’s installation instructions and NFPA 853.

SECTION 1904
GASEOUS HYDROGEN SYSTEMS

1904.1 Installation. Gaseous hydrogen systems shall be installed in accordance with the applicable requirements of Sections 1307.4 and 1903.1 and the “International Fuel Gas Code”, the fire code, and the “Ohio Building Code”.

SECTION 1905
ENGINE AND GAS-TURBINE POWERED EQUIPMENT AND APPLIANCES

1905.1 General. The installation of stationary internal combustion engines and gas turbines, including exhaust, fuel storage and piping, shall meet the requirements of this section.

1905.2 Engine-driven equipment and appliances. Permanently installed equipment and appliances powered by internal combustion engines and turbines shall be installed in accordance with the manufacturer’s installation instructions and NFPA 37.

1905.2.1 Fuel tanks connected to engine-driven building services equipment. Fuel tanks piped to and supplying fuel for engine-driven building service equipment may be engine-mounted, located inside of a building, outside of a building, or on a roof in accordance with NFPA 37 or NFPA 30.

1905.2.1.1 Engine-mounted tanks. Engine-mounted tanks located outdoors may be located in accordance with Section 4.1.4 of NFPA 37 and shall be vented in accordance with NFPA 30. Engine-mounted tanks shall be provided with adequate clearance to enable filling, maintenance, and testing, shall be
safeguarded against public access, and shall be protected from impact.

1905.2.1.2 Other fuel tanks. Fuel tanks, other than engine-mounted tanks, piped to and supplying the engine shall be located, installed, and vented in accordance with the applicable sections of NFPA 37 or located, installed, and vented in accordance with NFPA 30.

1905.2.2 Gaseous fuel supply. Where an internal combustion engine supplied with gaseous fuel powers building service equipment, the fuel gas storage and piping system shall comply with NFPA 37 and Chapter 24.

1905.3 Engine-driven Stationary generators. Stationary emergency and standby power generator assemblies shall be listed in accordance with UL 2200 and shall comply with Section 3402.1.
Effective: 01/01/2016
Five Year Review (FYR) Dates: 01/01/2018

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.01, 3781.06, 3781.10, 3781.11, 3791.04, 4740.14
Prior Effective Dates: 1/1/13
4101:8-22-01 Special piping and storage systems.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:8-44-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:8-1-01 of the Administrative Code.]

2200.1 Scope. This chapter shall govern the design, installation, construction and repair of fuel oil and diesel oil storage and piping systems supplying and piped to building service equipment. The storage of fuel oil and flammable and combustible liquids not associated with building services equipment shall be in accordance with Chapters 6 and 34 of the fire code and enforced by the fire official.

SECTION 2201
OIL TANKS

2201.1 Materials. Supply tanks shall be listed and labeled and shall conform to UL 58 for underground tanks and UL 80 for indoor tanks.

2201.2 Above-ground tanks. The maximum amount of fuel oil or diesel oil stored above ground or inside of a building shall be 660 gallons (2498 L). The supply tank shall be supported on rigid noncombustible supports to prevent settling or shifting.

Exception Exceptions:

1. The storage of fuel oil, used for space or water heating, above ground or inside buildings in quantities exceeding 660 gallons shall comply with NFPA 31.
2. The storage of diesel oil supplying and piped to engine-driven building services equipment, including emergency and standby generators, above ground or inside buildings in quantities exceeding 660 gallons shall comply with NFPA 37.

2201.2.1 Tanks within buildings. Supply tanks for use inside of buildings shall be of such size and shape to permit installation and removal from dwellings as whole units. Supply tanks larger than 10 gallons (38 L) shall be placed not less than 5 feet (1524 mm) from any fire or flame either within or external to any fuel-burning appliance.
2201.2.2 Outside above-ground tanks. Tanks installed outside above ground shall be a minimum of 5 feet (1524 mm) from an adjoining property line. Such tanks shall be suitably protected from the weather and from physical damage.

2201.3 Underground tanks. Excavations for underground tanks shall not undermine the foundations of existing structures. The clearance from the tank to the nearest wall of a basement, pit or property line shall not be less than 1 foot (305 mm). Tanks shall be set on and surrounded with noncorrosive inert materials such as clean earth, sand or gravel well tamped in place. Tanks shall be covered with not less than 1 foot (305 mm) of earth. Corrosion protection shall be provided in accordance with Section 2203.7.

2201.3.1 Regulated underground storage of fuel oil. The design, installation, registration, and inspection of regulated underground storage tanks shall be in accordance with the fire code and rules adopted by the state fire marshal and enforced by the fire official, in accordance with sections 3737.87 to 3737.89 of the Revised Code. Underground storage tanks not regulated by the state fire marshal’s Bureau of Underground Storage tanks shall comply with the applicable requirements of Chapter 23 of NFPA 30.

2201.4 Multiple tanks. Cross connection of two supply tanks shall be permitted in accordance with Section 2203.6.

2201.5 Oil gauges. Inside tanks shall be provided with a device to indicate when the oil in the tank has reached a predetermined safe level. Glass gauges or a gauge subject to breakage that could result in the escape of oil from the tank shall not be used.

2201.6 Flood-resistant installation. In areas prone to flooding as established by Table 301.2(1), tanks shall be installed at or above the elevation required in Section 322.2.1 or 322.3.2 or shall be anchored to prevent flotation, collapse and lateral movement under conditions of the design flood.

2201.7 Tanks abandoned or removed. Exterior above-grade fill piping shall be removed when tanks are abandoned or removed. Tank abandonment and removal shall be in accordance with the fire code.
SECTION 2202
OIL PIPING, FITTING AND CONNECTIONS

2202.1 Materials. Piping shall consist of steel pipe, copper tubing or steel tubing conforming to ASTM A 539. Aluminum tubing shall not be used between the fuel-oil tank and the burner units.

2202.2 Joints and fittings. Piping shall be connected with standard fittings compatible with the piping material. Cast iron fittings shall not be used for oil piping. Unions requiring gaskets or packings, right or left couplings, and sweat fittings employing solder having a melting point less than 1,000°F (538°C) shall not be used for oil piping. Threaded joints and connections shall be made tight with a lubricant or pipe thread compound.

2202.3 Flexible connectors. Flexible metallic hoses shall be listed and labeled in accordance with UL 536 and shall be installed in accordance with their listing and labeling and the manufacturer’s installation instructions. Connectors made from combustible materials shall not be used inside of buildings or above ground outside of buildings.

SECTION 2203
INSTALLATION

2203.1 General. Piping shall be installed in a manner to avoid placing stresses on the piping, and to accommodate expansion and contraction of the piping system.

2203.2 Supply piping. Supply piping used in the installation of oil burners and appliances shall be not smaller than $\frac{3}{8}$-inch (9 mm) pipe or $\frac{3}{8}$-inch (9 mm) outside diameter tubing. Copper tubing and fittings shall be a minimum of Type L.

2203.3 Fill piping. Fill piping shall terminate outside of buildings at a point at least 2 feet (610 mm) from any building opening at the same or lower level. Fill openings shall be equipped with a tight metal cover.

2203.4 Vent piping. Vent piping shall be not smaller than 1½-inch (32 mm) pipe. Vent piping shall be laid to drain toward the tank without sags or traps in which the liquid can collect. Vent pipes shall not be cross connected with fill pipes, lines from burners or overflow lines from auxiliary tanks. The lower end of a vent pipe shall enter the tank through the top and shall extend into the tank not more than 1 inch (25 mm).
2203.5 Vent termination. Vent piping shall terminate outside of buildings at a point not less than 2 feet (610 mm), measured vertically or horizontally, from any building opening. Outer ends of vent piping shall terminate in a weather-proof cap or fitting having an unobstructed area at least equal to the cross-sectional area of the vent pipe, and shall be located sufficiently above the ground to avoid being obstructed by snow and ice.

2203.6 Cross connection of tanks. Cross connection of two supply tanks, not exceeding 660 gallons (2498 L) aggregate capacity, with gravity flow from one tank to another, shall be acceptable providing that the two tanks are on the same horizontal plane.

2203.7 Corrosion protection. Underground tanks and buried piping shall be protected by corrosion-resistant coatings or special alloys or fiberglass-reinforced plastic.

SECTION 2204
OIL PUMPS AND VALVES

2204.1 Pumps. Oil pumps shall be positive displacement types that automatically shut off the oil supply when stopped. Automatic pumps shall be listed and labeled in accordance with UL 343 and shall be installed in accordance with their listing.

2204.2 Shutoff valves. A readily accessible manual shutoff valve shall be installed between the oil supply tank and the burner. Where the shutoff valve is installed in the discharge line of an oil pump, a pressure-relief valve shall be incorporated to bypass or return surplus oil.

2204.3 Maximum pressure. Pressure at the oil supply inlet to an appliance shall be not greater than 3 pounds per square inch (20.7 kPa).

2204.4 Relief valves. Fuel-oil lines incorporating heaters shall be provided with relief valves that will discharge to a return line when excess pressure exists.
Effective: 01/01/2016

Five Year Review (FYR) Dates: 01/01/2018

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A), 4104.43(A)(1)
Rule Amplifies: 3781.01, 3781.06, 3781.10, 3781.11, 3791.04, 4740.14
Prior Effective Dates: 1/1/13
4101:8-24-01 Fuel gas.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:8-44-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:8-1-01 of the Administrative Code.]

SECTION 2401
GENERAL

2401.1 Application. This chapter covers those fuel gas piping systems, fuel-gas appliances and related accessories, venting systems and combustion air configurations most commonly encountered in the construction of one-, two-, and three-family dwellings and structures regulated by this code.

Coverage of piping systems shall extend from the point of delivery to the outlet of the appliance shutoff valves (see definition of “Point of delivery”). Piping systems requirements shall include design, materials, components, fabrication, assembly, installation, testing, inspection, operation and maintenance. Requirements for gas appliances and related accessories shall include installation, combustion and ventilation air and venting and connections to piping systems.

The omission from this chapter of any material or method of installation provided for in the “International Fuel Gas Code” shall not be construed as prohibiting the use of such material or method of installation. Fuel-gas piping systems, fuel-gas appliances and related accessories, venting systems and combustion air configurations not specifically covered in these chapters shall comply with the applicable provisions of the “International Fuel Gas Code”.

Gaseous hydrogen systems shall be regulated by Chapter 7 of the “International Fuel Gas Code”.

This chapter shall not apply to the following:

1. Liquified natural gas (LNG) installations.

2. Temporary LP-gas piping for buildings under construction or renovation that is not to become part of the permanent piping system.
3. Except as provided in Section G2412.1.1, gas piping, meters, gas pressure regulators, and other appurtenances used by the serving gas supplier in the distribution of gas, other than undiluted LP-gas.

4. Portable LP-gas appliances and equipment of all types that is not connected to a fixed fuel piping system.

5. Portable fuel cell appliances that are neither connected to a fixed piping system nor interconnectected to a power grid.

7. Existing fuel-gas piping systems, fuel-gas appliances and related accessories provided no serious hazard exists.

SECTION 2402
GENERAL

2402.1 Scope. Unless otherwise expressly stated, the following words and terms shall, for the purposes of this chapter, have the meanings indicated in this chapter.

2402.2 Interchangeability. Words used in the present tense include the future; words in the masculine gender include the feminine and neuter; the singular number includes the plural and the plural, the singular.

2402.3 Terms defined in other codes. Where terms are not defined in this code and are defined in the “Ohio Building Code”, fire code, mechanical code or plumbing code, such terms shall have meanings ascribed to them as in those codes.

SECTION 2403
GENERAL DEFINITIONS

AIR CONDITIONING, GAS FIRED. A gas-burning, automatically operated appliance for supplying cooled and/or dehumidified air or chilled liquid.

AIR, EXHAUST. Air being removed from any space or piece of equipment or appliance and conveyed directly to the atmosphere by means of openings or ducts.
AIR-HANDLING UNIT. A blower or fan used for the purpose of distributing supply air to a room, space or area.

AIR, MAKEUP. Air that is provided to replace air being exhausted.

ALTERATION. The construction or renovation to an existing structure other than repair or addition

ALTERATION. A change in a system that involves an extension, addition or change to the arrangement, type or purpose of the existing installation.

ANODELESS RISER. A transition assembly in which plastic piping is installed and terminated above ground outside of a building.

APPLIANCE. Any apparatus or device that uses gas as a fuel or raw material to produce light, heat, power, refrigeration or air conditioning.

APPLIANCE, AUTOMATICALLY CONTROLLED. Appliances equipped with an automatic burner ignition and safety shut-off device and other automatic devices, which accomplish complete turn-on and shut-off of the gas to the main burner or burners, and graduate the gas supply to the burner or burners, but do not affect complete shut-off of the gas.

APPLIANCE, FAN-ASSISTED COMBUSTION. An appliance equipped with an integral mechanical means to either draw or force products of combustion through the combustion chamber or heat exchanger.

APPLIANCE, UNVENTED. An appliance designed or installed in such a manner that the products of combustion are not conveyed by a vent or chimney directly to the outside atmosphere.

APPLIANCE, VENTED. An appliance designed and installed in such a manner that all of the products of combustion are conveyed directly from the appliance to the outside atmosphere through an approved chimney or vent system.

APPROVED. Refers to approval by the building official as the result of review, investigation, inspection and testing in accordance with the provisions of this code.
ATMOSPHERIC PRESSURE. The pressure of the weight of air and water vapor on the surface of the earth, approximately 14.7 pounds per square inch (psia) (101 kPa absolute) at sea level.

AUTOMATIC IGNITION. Ignition of gas at the burner(s) when the gas controlling device is turned on, including reignition if the flames on the burner(s) have been extinguished by means other than by the closing of the gas controlling device.

BAROMETRIC DRAFT REGULATOR. A balanced damper device attached to a chimney, vent connector, breeching or flue gas manifold to protect combustion appliances by controlling chimney draft. A double-acting barometric draft regulator is one whose balancing damper is free to move in either direction to protect combustion appliances from both excessive draft and backdraft.

BOILER, LOW-PRESSURE. A steam boiler operating at pressures not exceeding fifteen psig, or a hot water heating boiler operating at pressures not exceeding one hundred sixty psig or temperatures not exceeding two hundred fifty degrees.

 - **Hot water heating boiler.** A boiler in which no steam is generated, from which hot water is circulated for heating purposes and then returned to the boiler, and that operates at water pressures not exceeding 160 psig (1100 kPa gauge) and at water temperatures not exceeding 250°F (121°C) at or near the boiler outlet.

 - **Hot water supply boiler.** A boiler, completely filled with water, which furnishes hot water to be used externally to itself, and that operates at water pressures not exceeding 160 psig (1100 kPa gauge) and at water temperatures not exceeding 250°F (121°C) at or near the boiler outlet.

 - **Steam heating boiler.** A boiler in which steam is generated and that operates at a steam pressure not exceeding 15 psig (100 kPa gauge).

BONDING JUMPER. A conductor installed to electrically connect metallic gas piping to the grounding electrode system.

BRAZING. A metal joining process wherein coalescence is produced by the use of a nonferrous filler metal having a melting point above 1,000°F (538°C), but lower than that of the base metal being joined. The filler material is distributed between the closely fitted surfaces of the joint by capillary action.
BTU. Abbreviation for British thermal unit, which is the quantity of heat required to raise the temperature of 1 pound (454 g) of water 1°F (0.56°C) (1 Btu = 1055 J).

BUILDING OFFICIAL. An individual who has received and maintains a certification of “Residential Building Official” in accordance with rules of the board of building standards.

BURNER. A device for the final conveyance of the gas, or a mixture of gas and air, to the combustion zone.

- **Induced-draft.** A burner that depends on draft induced by a fan that is an integral part of the appliance and is located downstream from the burner.

- **Power.** A burner in which gas, air or both are supplied at pressures exceeding, for gas, the line pressure, and for air, atmospheric pressure, with this added pressure being applied at the burner.

CHIMNEY. A primarily vertical structure containing one or more flues, for the purpose of carrying gaseous products of combustion and air from an appliance to the outside atmosphere.

- **Factory-built chimney.** A listed and labeled chimney composed of factory-made components, assembled in the field in accordance with manufacturer’s instructions and the conditions of the listing.

- **Masonry chimney.** A field-constructed chimney composed of solid masonry units, bricks, stones or concrete.

CLEARANCE. The minimum distance through air measured between the heat-producing surface of the mechanical appliance, device or equipment and the surface of the combustible material or assembly.

CLOTHES DRYER. An appliance used to dry wet laundry by means of heated air.

- **Type 1.** Factory-built package, multiple production. Primarily used in the family living environment. Usually the smallest unit physically and in function output.
CODE. *The Residential Code of Ohio.*

COMBUSTION. In the context of this code, refers to the rapid oxidation of fuel accompanied by the production of heat or heat and light.

COMBUSTION AIR. Air necessary for complete combustion of a fuel, including theoretical air and excess air.

COMBUSTION CHAMBER. The portion of an appliance within which combustion occurs.

COMBUSTION PRODUCTS. Constituents resulting from the combustion of a fuel with the oxygen of the air, including the inert gases, but excluding excess air.

CONCEALED LOCATION. A location that cannot be accessed without damaging permanent parts of the building structure or finish surface. Spaces above, below or behind readily removable panels or doors shall not be considered as concealed.

CONCEALED PIPING. Piping that is located in a concealed location (see “Concealed location”).

CONDENSATE. The liquid that condenses from a gas (including flue gas) caused by a reduction in temperature or increase in pressure.

CONNECTOR, APPLIANCE (Fuel). Rigid metallic pipe and fittings, semirigid metallic tubing and fittings or a listed and labeled device that connects an appliance to the gas piping system.

CONNECTOR, CHIMNEY OR VENT. The pipe that connects an appliance to a chimney or vent.

CONTROL. A manual or automatic device designed to regulate the gas, air, water or electrical supply to, or operation of, a mechanical system.

CONVERSION BURNER. A unit consisting of a burner and its controls for installation in an appliance originally utilizing another fuel.

CUBIC FOOT. The amount of gas that occupies 1 cubic foot (0.02832 m³) when at a temperature of 60°F (16°C), saturated with water vapor and under a pressure equivalent to that of 30 inches of mercury (101 kPa).
DAMPER. A manually or automatically controlled device to regulate draft or the rate of flow of air or combustion gases.

DECORATIVE GAS APPLIANCE, VENTED. A vented appliance wherein the primary function lies in the aesthetic effect of the flames.

DECORATIVE GAS APPLIANCES FOR INSTALLATION IN VENTED FIREPLACES. A vented appliance designed for installation within the fire chamber of a vented fireplace, wherein the primary function lies in the aesthetic effect of the flames.

DEMAND. The maximum amount of gas input required per unit of time, usually expressed in cubic feet per hour, or Btu/h (1 Btu/h = 0.2931 W).

DESIGN FLOOD ELEVATION. The elevation of the “design flood,” including wave height, relative to the datum specified on the community’s legally designated flood hazard map.

DILUTION AIR. Air that is introduced into a draft hood and is mixed with the flue gases.

DIRECT-VENT APPLIANCES. Fuel-burning appliance with a sealed combustion system that draws all air for combustion from the outside atmosphere and discharges all flue gases to the outside atmosphere.

DRAFT. The pressure difference existing between the appliance or any component part and the atmosphere, that causes a continuous flow of air and products of combustion through the gas passages of the appliance to the atmosphere.

Mechanical or induced draft. The pressure difference created by the action of a fan, blower or ejector that is located between the appliance and the chimney or vent termination.

Natural draft. The pressure difference created by a vent or chimney because of its height, and the temperature difference between the flue gases and the atmosphere.

DRAFT HOOD. A nonadjustable device built into an appliance, or made as part of the vent connector from an appliance, that is designed to (1) provide for ready
escape of the flue gases from the appliance in the event of no draft, backdraft, or stoppage beyond the draft hood, (2) prevent a backdraft from entering the appliance, and (3) neutralize the effect of stack action of the chimney or gas vent upon operation of the appliance.

DRAFT REGULATOR. A device that functions to maintain a desired draft in the appliance by automatically reducing the draft to the desired value.

DRIP. The container placed at a low point in a system of piping to collect condensate and from which the condensate is removable.

DUCT FURNACE. A warm-air furnace normally installed in an air-distribution duct to supply warm air for heating. This definition shall apply only to a warm-air heating appliance that depends for air circulation on a blower not furnished as part of the furnace.

DWELLING UNIT. A single unit providing complete, independent living facilities for one or more persons, including permanent provisions for living, sleeping, eating, cooking and sanitation. *The unit may include any accessory space intended for the exclusive use of the occupants of an individual dwelling unit such as a private garage, greenhouse, etc.*

EQUIPMENT (OR FIXTURE). Any plumbing, heating, electrical, ventilating, air conditioning, refrigerating and fire protection devices and components of systems other than appliances, and elevators, dumb waiters, and other mechanical facilities or installations that are related to building services.

EXTERIOR MASONRY CHIMNEYS. Masonry chimneys exposed to the outdoors on one or more sides below the roof line.

FIREPLACE. A fire chamber and hearth constructed of noncombustible material for use with solid fuels and provided with a chimney.

* **Masonry fireplace.** A field-constructed fireplace composed of solid masonry units, bricks, stones or concrete.

* **Factory-built fireplace.** A fireplace composed of listed factory-built components assembled in accordance with the terms of listing to form the completed fireplace.
FLAME SAFEGUARD. A device that will automatically shut off the fuel supply to a main burner or group of burners when the means of ignition of such burners becomes inoperative, and when flame failure occurs on the burner or group of burners.

FLOOD HAZARD AREA. The greater of the following two areas:

1. The area within a floodplain subject to a 1 percent or greater chance of flooding in any given year.

2. This area designated as a flood hazard area on a community’s flood hazard map, or otherwise legally designated.

FLOOR FURNACE. A completely self-contained furnace suspended from the floor of the space being heated, taking air for combustion from outside such space and with means for observing flames and lighting the appliance from such space.

FLUE, APPLIANCE. The passage(s) within an appliance through which combustion products pass from the combustion chamber of the appliance to the draft hood inlet opening on an appliance equipped with a draft hood or to the outlet of the appliance on an appliance not equipped with a draft hood.

FLUE COLLAR. That portion of an appliance designed for the attachment of a draft hood, vent connector or venting system.

FLUE GASES. Products of combustion plus excess air in appliance flues or heat exchangers.

FLUE LINER (LINING). A system or material used to form the inside surface of a flue in a chimney or vent, for the purpose of protecting the surrounding structure from the effects of combustion products and for conveying combustion products without leakage to the atmosphere.

FUEL GAS. A natural gas, manufactured gas, liquefied petroleum gas or mixtures of these gases.

FUEL GAS UTILIZATION EQUIPMENT. See “Appliance.”

FURNACE. A completely self-contained heating unit that is designed to supply heated air to spaces remote from or adjacent to the appliance location.
FURNACE, CENTRAL. A self-contained appliance for heating air by transfer of heat of combustion through metal to the air, and designed to supply heated air through ducts to spaces remote from or adjacent to the appliance location.

FURNACE PLENUM. An air compartment or chamber to which one or more ducts are connected and which forms part of an air distribution system.

GAS CONVENIENCE OUTLET. A permanently mounted, manually operated device that provides the means for connecting an appliance to, and disconnecting an appliance from, the gas supply piping. The device includes an integral, manually operated valve with a nondisplaceable valve member and is designed so that disconnection of an appliance only occurs when the manually operated valve is in the closed position.

GAS PIPING. An installation of pipe, valves or fittings installed on a premises or in a building and utilized to convey fuel gas.

HAZARDOUS LOCATION. Any location considered to be a fire hazard for flammable vapors, dust, combustible fibers or other highly combustible substances.

HOUSE PIPING. See “Piping system.”

IGNITION PILOT. A pilot that operates during the lighting cycle and discontinues during main burner operation.

IGNITION SOURCE. A flame spark or hot surface capable of igniting flammable vapors or fumes. Such sources include appliance burners, burner ignitors and electrical switching devices.

INFRARED RADIANT HEATER. A heater which directs a substantial amount of its energy output in the form of infrared radiant energy into the area to be heated. Such heaters are of either the vented or unvented type.

JOINT, FLARED. A metal-to-metal compression joint in which a conical spread is made on the end of a tube that is compressed by a flare nut against a mating flare.

JOINT, MECHANICAL. A general form of gas-tight joints obtained by the joining of metal parts through a positive-holding mechanical construction, such as flanged joint, threaded joint, flared joint or compression joint.
JOINT, PLASTIC ADHESIVE. A joint made in thermoset plastic piping by the use of an adhesive substance which forms a continuous bond between the mating surfaces without dissolving either one of them.

LEAK CHECK. An operation performed on a gas piping system to verify that the system does not leak.

LIQUEFIED PETROLEUM GAS or LPG (LP-GAS). Liquefied petroleum gas composed predominately of propane, propylene, butanes or butylenes, or mixtures thereof that is gaseous under normal atmospheric conditions, but is capable of being liquefied under moderate pressure at normal temperatures.

LIVING SPACE. Space within a dwelling unit utilized for living, sleeping, eating, cooking, bathing, washing and sanitation purposes.

LOG LIGHTER, GAS-FIRED. A manually operated solid-fuel ignition appliance for installation in a vented solid-fuel-burning fireplace.

MAIN BURNER. A device or group of devices essentially forming an integral unit for the final conveyance of gas or a mixture of gas and air to the combustion zone, and on which combustion takes place to accomplish the function for which the appliance is designed.

METER. The instrument installed to measure the volume of gas delivered through it.

MODULATING. Modulating or throttling is the action of a control from its maximum to minimum position in either predetermined steps or increments of movement as caused by its actuating medium.

OFFSET (VENT). A combination of approved bends that make two changes in direction bringing one section of the vent out of line, but into a line parallel with the other section.

OUTLET. The point at which a gas-fired appliance connects to the gas piping system.

OXYGEN DEPLETION SAFETY SHUTOFF SYSTEM (ODS). A system designed to act to shut off the gas supply to the main and pilot burners if the oxygen in the surrounding atmosphere is reduced below a predetermined level.
PILOT. A small flame that is utilized to ignite the gas at the main burner or burners.

PIPING. Where used in this code, “piping” refers to either pipe or tubing, or both.

Pipe. A rigid conduit of iron, steel, copper, brass or plastic.

Tubing. Semirigid conduit of copper, aluminum, plastic or steel.

PIPING SYSTEM. All fuel piping, valves and fittings from the outlet of the point of delivery to the outlets of the appliance shutoff valves.

PLASTIC, THERMOPLASTIC. A plastic that is capable of being repeatedly softened by increase of temperature and hardened by decrease of temperature.

POINT OF DELIVERY. For natural gas systems, the point of delivery is the outlet of the service meter assembly or the outlet of the service regulator or service shutoff valve where a meter is not provided. Where a valve is provided at the outlet of the service meter assembly, such valve shall be considered to be downstream of the point of delivery. For undiluted liquefied petroleum gas systems, the point of delivery shall be considered to be the outlet of the first regulator that reduces pressure to 2 psig (13.8 kPa) or less.

PRESSURE DROP. The loss in pressure due to friction or obstruction in pipes, valves, fittings, regulators and burners.

PRESSURE TEST. An operation performed to verify the gas-tight integrity of gas piping following its installation or modification.

READY ACCESS (TO). That which enables a device, appliance or equipment to be directly reached, without requiring the removal or movement of any panel, door or similar obstruction. (See “Access.”)

REGULATOR. A device for controlling and maintaining a uniform gas supply pressure, either pounds-to-inches water column (MP regulator) or inches-to-inches water column (appliance regulator).

REGULATOR, GAS APPLIANCE. A pressure regulator for controlling pressure to the manifold of the gas appliance.
REGULATOR, LINE GAS PRESSURE. A device placed in a gas line between the service pressure regulator and the appliance for controlling, maintaining or reducing the pressure in that portion of the piping system downstream of the device.

REGULATOR, MEDIUM-PRESSURE (MP Regulator). A line pressure regulator that reduces gas pressure from the range of greater than 0.5 psig (3.4 kPa) and less than or equal to 5 psig (34.5 kPa) to a lower pressure.

REGULATOR, PRESSURE. A device placed in a gas line for reducing, controlling and maintaining the pressure in that portion of the piping system downstream of the device.

REGULATOR, SERVICE PRESSURE. A device installed by the serving gas supplier to reduce and limit the service line gas pressure to delivery pressure.

RELIEF OPENING. The opening provided in a draft hood to permit the ready escape to the atmosphere of the flue products from the draft hood in the event of no draft, backdraft or stoppage beyond the draft hood, and to permit air into the draft hood in the event of a strong chimney updraft.

RELIEF VALVE (DEVICE). A safety valve designed to forestall the development of a dangerous condition by relieving either pressure, temperature or vacuum in the hot water supply system.

RELIEF VALVE, PRESSURE. An automatic valve which opens and closes a relief vent, depending on whether the pressure is above or below a predetermined value.

RELIEF VALVE, TEMPERATURE.

Manual reset type. A valve which automatically opens a relief vent at a predetermined temperature and which must be manually returned to the closed position.

Reseating or self-closing type. An automatic valve which opens and closes a relief vent, depending on whether the temperature is above or below a predetermined value.
RELIEF VALVE, VACUUM. A valve that automatically opens and closes a vent for relieving a vacuum within the hot water supply system, depending on whether the vacuum is above or below a predetermined value.

RISER, GAS. A vertical pipe supplying fuel gas.

ROOM HEATER, UNVENTED. See “Unvented room heater.”

ROOM HEATER, VENTED. A free-standing gas-fired heating unit used for direct heating of the space in and adjacent to that in which the unit is located. (See also “Vented room heater.”)

SAFETY SHUTOFF DEVICE. See “Flame safeguard.”

SHAFT. An enclosed space extending through one or more stories of a building, connecting vertical openings in successive floors, or floors and the roof.

SPECIFIC GRAVITY. As applied to gas, specific gravity is the ratio of the weight of a given volume to that of the same volume of air, both measured under the same condition.

THERMOSTAT.

Electric switch type. A device that senses changes in temperature and controls electrically, by means of separate components, the flow of gas to the burner(s) to maintain selected temperatures.

Integral gas valve type. An automatic device, actuated by temperature changes, designed to control the gas supply to the burner(s) in order to maintain temperatures between predetermined limits, and in which the thermal actuating element is an integral part of the device.

1. Graduating thermostat. A thermostat in which the motion of the valve is approximately in direct proportion to the effective motion of the thermal element induced by temperature change.

2. Snap-acting thermostat. A thermostat in which the thermostatic valve travels instantly from the closed to the open position, and vice versa.
TRANSITION FITTINGS, PLASTIC TO STEEL. An adapter for joining plastic pipe to steel pipe. The purpose of this fitting is to provide a permanent, pressure-tight connection between two materials that cannot be joined directly one to another.

UNIT HEATER.

High-static pressure type. A self-contained, automatically controlled, vented appliance having integral means for circulation of air against 0.2 inch w.c. (50 Pa) or greater static pressure. Such appliance is equipped with provisions for attaching an outlet air duct and, where the appliance is for indoor installation remote from the space to be heated, is also equipped with provisions for attaching an inlet air duct.

Low-static pressure type. A self-contained, automatically controlled, vented appliance, intended for installation in the space to be heated without the use of ducts, having integral means for circulation of air. Such units are allowed to be equipped with louvers or face extensions made in accordance with the manufacturer’s specifications.

UNVENTED ROOM HEATER. An unvented heating appliance designed for stationary installation and utilized to provide comfort heating. Such appliances provide radiant heat or convection heat by gravity or fan circulation directly from the heater and do not utilize ducts.

VALVE. A device used in piping to control the gas supply to any section of a system of piping or to an appliance.

Appliance shutoff. A valve located in the piping system, used to isolate individual appliances for purposes such as service or replacement.

Automatic. An automatic or semiautomatic device consisting essentially of a valve and an operator that control the gas supply to the burner(s) during operation of an appliance. The operator shall be actuated by application of gas pressure on a flexible diaphragm, by electrical means, by mechanical means or by other approved means.

Automatic gas shutoff. A valve used in conjunction with an automatic gas shutoff device to shut off the gas supply to a water heating system. It shall be constructed integrally with the gas shutoff device or shall be a separate assembly.
Individual main burner. A valve that controls the gas supply to an individual main burner.

Main burner control. A valve that controls the gas supply to the main burner manifold.

Manual main gas-control. A manually operated valve in the gas line for the purpose of completely turning on or shutting off the gas supply to the appliance, except to a pilot or pilots that have independent shutoff.

Manual reset. An automatic shutoff valve installed in the gas supply piping and set to shut off when unsafe conditions occur. The device remains closed until manually reopened.

Service shutoff. A valve, installed by the serving gas supplier between the service meter or source of supply and the customer piping system, to shut off the entire piping system.

VENT. A pipe or other conduit composed of factory-made components, containing a passageway for conveying combustion products and air to the atmosphere, listed and labeled for use with a specific type or class of appliance.

Special gas vent. A vent listed and labeled for use with listed Category II, III and IV gas appliances.

Type B vent. A vent listed and labeled for use with appliances with draft hoods and other Category I appliances that are listed for use with Type B vents.

Type BW vent. A vent listed and labeled for use with wall furnaces.

Type L vent. A vent listed and labeled for use with appliances that are listed for use with Type L or Type B vents.

VENT CONNECTOR. See “Connector.”

VENT PIPING.

Breather. Piping run from a pressure-regulating device to the outdoors, designed to provide a reference to atmospheric pressure. If the device
incorporates an integral pressure relief mechanism, a breather vent can also serve as a relief vent.

Relief. Piping run from a pressure-regulating or pressure-limiting device to the outdoors, designed to provide for the safe venting of gas in the event of excessive pressure in the gas piping system.

VENTED GAS APPLIANCE CATEGORIES. Appliances that are categorized for the purpose of vent selection are classified into the following four categories:

Category I. An appliance that operates with a nonpositive vent static pressure and with a vent gas temperature that avoids excessive condensate production in the vent.

Category II. An appliance that operates with a nonpositive vent static pressure and with a vent gas temperature that is capable of causing excessive condensate production in the vent.

Category III. An appliance that operates with a positive vent static pressure and with a vent gas temperature that avoids excessive condensate production in the vent.

Category IV. An appliance that operates with a positive vent static pressure and with a vent gas temperature that is capable of causing excessive condensate production in the vent.

VENTED ROOM HEATER. A vented self-contained, free-standing, nonrecessed appliance for furnishing warm air to the space in which it is installed, directly from the heater without duct connections.

VENTED WALL FURNACE. A self-contained vented appliance complete with grilles or equivalent, designed for incorporation in or permanent attachment to the structure of a building, mobile home or travel trailer, and furnishing heated air circulated by gravity or by a fan directly into the space to be heated through openings in the casing. This definition shall exclude floor furnaces, unit heaters and central furnaces as herein defined.

VENTING SYSTEM. A continuous open passageway from the flue collar or draft hood of an appliance to the outside atmosphere for the purpose of removing flue or vent gases. A venting system is usually composed of a vent or a chimney and vent connector, if used, assembled to form the open passageway.
WALL HEATER, UNVENTED TYPE. A room heater of the type designed for insertion in or attachment to a wall or partition. Such heater does not incorporate concealed venting arrangements in its construction and discharges all products of combustion through the front into the room being heated.

WATER HEATER. Any heating appliance or equipment that heats potable water and supplies such water to the potable hot water distribution system.

SECTION 2404
GENERAL

2404.1 Scope. This section shall govern the approval and installation of all equipment and appliances that comprise parts of the installations regulated by this code in accordance with Section 2401.

2404.2 Other fuels. The requirements for combustion and dilution air for gas-fired appliances shall be governed by Section 2407. The requirements for combustion and dilution air for appliances operating with fuels other than fuel gas shall be regulated by Chapter 17.

2404.3 Listed and labeled. Appliances regulated by this code shall be listed and labeled for the application in which they are used unless otherwise approved in accordance with Section 106.4 and 106.5. The approval of unlisted appliances in accordance with Section 106.4 and 106.5 shall be based upon approved engineering evaluation.

2404.4 Vibration isolation. Where means for isolation of vibration of an appliance is installed, an approved means for support and restraint of that appliance shall be provided.

2404.5 Repair. Defective material or parts shall be replaced or repaired in such a manner so as to preserve the original approval or listing.

2404.6 Wind resistance. Appliances and supports that are exposed to wind shall be designed and installed to resist the wind pressures determined in accordance with this code.

2404.7 Flood hazard. For structures located in flood hazard areas, the appliance, equipment and system installations regulated by this code shall be located at or
above the design flood elevation and shall comply with the flood-resistant construction requirements of Section 322.

Exception: The appliance, equipment and system installations regulated by this code are permitted to be located below the design flood elevation provided that they are designed and installed to prevent water from entering or accumulating within the components and to resist hydrostatic and hydrodynamic loads and stresses, including the effects of buoyancy, during the occurrence of flooding to the design flood elevation and shall comply with the flood-resistant construction requirements of Section R322.

2404.8 Seismic resistance. When earthquake loads are applicable in accordance with this code, the supports shall be designed and installed for the seismic forces in accordance with this code.

2404.9 Rodentproofing. Buildings or structures and the walls enclosing habitable or occupiable rooms and spaces in which persons live, sleep or work, or in which feed, food or foodstuffs are stored, prepared, processed, served or sold, shall be constructed to protect against the entry of rodents.

2404.10 Auxiliary drain pan. Category IV condensing appliances shall be provided with an auxiliary drain pan where damage to any building component will occur as a result of stoppage in the condensate drainage system. Such pan shall be installed in accordance with the applicable provisions of Section M1411.

Exception: An auxiliary drain pan shall not be required for appliances that automatically shut down operation in the event of a stoppage in the condensate drainage system.

SECTION 2405

STRUCTURAL SAFETY

2405.1 Structural safety. The building shall not be weakened by the installation of any gas piping. In the process of installing or repairing any gas piping, the finished floors, walls, ceilings, tile work or any other part of the building or premises which are required to be changed or replaced shall be left in a safe structural condition in accordance with the requirements of this code.

2405.2 Alterations to trusses. Truss members and components shall not be cut, drilled, notched, spliced or otherwise altered in any way without the written concurrence and approval of a registered design professional. Alterations resulting
in the addition of loads to any member (e.g., HVAC equipment, water heaters) shall not be permitted without verification that the truss is capable of supporting such additional loading.

2405.3 Engineered wood products. Cuts, notches and holes bored in trusses, structural composite lumber, structural glued-laminated members and I-joists are prohibited except where permitted by the manufacturer’s recommendations or where the effects of such alterations are specifically considered in the design of the member by a registered design professional.

SECTION 2406
APPLIANCE LOCATION

2406.1 General. Appliances shall be located as required by this section, specific requirements elsewhere in this code and the conditions of the equipment and appliance listing.

2406.2 Prohibited locations. Appliances shall not be located in sleeping rooms, bathrooms, toilet rooms, storage closets or surgical rooms, or in a space that opens only into such rooms or spaces, except where the installation complies with one of the following:

1. The appliance is a direct-vent appliance installed in accordance with the conditions of the listing and the manufacturer’s instructions.

2. Vented room heaters, wall furnaces, vented decorative appliances, vented gas fireplaces, vented gas fireplace heaters and decorative appliances for installation in vented solid fuel-burning fireplaces are installed in rooms that meet the required volume criteria of Section 2407.5.

3. A single wall-mounted unvented room heater is installed in a bathroom and such unvented room heater is equipped as specified in Section 2445.6 and has an input rating not greater than 6,000 Btu/h (1.76 kW). The bathroom shall meet the required volume criteria of Section 2407.5.

4. A single wall-mounted unvented room heater is installed in a bedroom and such unvented room heater is equipped as specified in Section 2445.6 and has an input rating not greater than 10,000 Btu/h (2.93 kW). The bedroom shall meet the required volume criteria of Section 2407.5.
5. The appliance is installed in a room or space that opens only into a bedroom or bathroom, and such room or space is used for no other purpose and is provided with a solid weather-stripped door equipped with an approved self-closing device. All combustion air shall be taken directly from the outdoors in accordance with Section 2407.6.

2406.3 Outdoor locations. Appliances installed in outdoor locations shall be either listed for outdoor installation or provided with protection from outdoor environmental factors that influence the operability, durability and safety of the appliance.

SECTION 2407

COMBUSTION, VENTILATION AND DILUTION AIR

2407.1 General. Air for combustion, ventilation and dilution of flue gases for appliances installed in buildings shall be provided by application of one of the methods prescribed in Sections 2407.5 through 2407.9. Where the requirements of Section 2407.5 are not met, outdoor air shall be introduced in accordance with one of the methods prescribed in Sections 2407.6 through 2407.9. Direct-vent appliances, gas appliances of other than natural draft design and vented gas appliances other than Category I shall be provided with combustion, ventilation and dilution air in accordance with the appliance manufacturer’s instructions.

Exception: Type 1 clothes dryers that are provided with makeup air in accordance with Section 2439.4.

2407.2 Appliance location. Appliances shall be located so as not to interfere with proper circulation of combustion, ventilation and dilution air.

2407.3 Draft hood/regulator location. Where used, a draft hood or a barometric draft regulator shall be installed in the same room or enclosure as the appliance served so as to prevent any difference in pressure between the hood or regulator and the combustion air supply.

2407.4 Makeup air provisions. Where exhaust fans, clothes dryers and kitchen ventilation systems interfere with the operation of appliances, makeup air shall be provided.

2407.5 Indoor combustion air. The required volume of indoor air shall be determined in accordance with Section 2407.5.1 or 2407.5.2, except that where the air infiltration rate is known to be less than 0.40 air changes per hour (ACH),
Section 2407.5.2 shall be used. The total required volume shall be the sum of the required volume calculated for all appliances located within the space. Rooms communicating directly with the space in which the appliances are installed through openings not furnished with doors, and through combustion air openings sized and located in accordance with Section 2407.5.3, are considered to be part of the required volume.

2407.5.1 Standard method. The minimum required volume shall be 50 cubic feet per 1,000 Btu/h (4.8 m³/kW).

2407.5.2 Known air-infiltration-rate method. Where the air infiltration rate of a structure is known, the minimum required volume shall be determined as follows:

For appliances other than fan assisted, calculate volume using Equation 24-1.

$$\text{Required Volume}_{\text{other}} \geq \frac{21 \, \text{ft}^3}{\text{ACH}} \left(\frac{I_{\text{other}}}{1000 \, \text{Btu} / \text{hr}} \right)$$ \hspace{1cm} \text{(Equation 24-1)}$$

For fan-assisted appliances, calculate volume using Equation 24-2.

$$\text{Required Volume}_{\text{fan}} \geq \frac{15 \, \text{ft}^3}{\text{ACH}} \left(\frac{I_{\text{other}}}{1000 \, \text{Btu} / \text{hr}} \right)$$ \hspace{1cm} \text{(Equation 24-2)}$$

where:

$$I_{\text{other}} = \text{All appliances other than fan assisted (input in Btu/h).}$$

$$I_{\text{fan}} = \text{Fan-assisted appliance (input in Btu/h).}$$

$$\text{ACH} = \text{Air change per hour (percent of volume of space exchanged per hour, expressed as a decimal).}$$

For purposes of this calculation, an infiltration rate greater than 0.60 ACH shall not be used in Equations 24-1 and 24-2.

2407.5.3 Indoor opening size and location. Openings used to connect indoor spaces shall be sized and located in accordance with Sections 2407.5.3.1 and 2407.5.3.2 (see Figure 2407.5.3).
2407.5.3.1 Combining spaces on the same story. Each opening shall have a minimum free area of 1 square inch per 1,000 Btu/h (2,200 mm\(^2\)/kW) of the total input rating of all appliances in the space, but not less than 100 square inches (0.06 m\(^2\)). One opening shall commence within 12 inches (305 mm) of the top and one opening shall commence within 12 inches (305 mm) of the bottom of the enclosure. The minimum dimension of air openings shall be not less than 3 inches (76 mm).

2407.5.3.2 Combining spaces in different stories. The volumes of spaces in different stories shall be considered as communicating spaces where such spaces are connected by one or more openings in doors or floors having a total minimum free area of 2 square inches per 1,000 Btu/h (4402 mm\(^2\)/kW) of total input rating of all appliances.

2407.6 Outdoor combustion air. Outdoor combustion air shall be provided through opening(s) to the outdoors in accordance with Section 2407.6.1 or 2407.6.2. The minimum dimension of air openings shall be not less than 3 inches (76 mm).

2407.6.1 Two-permanent-openings method. Two permanent openings, one commencing within 12 inches (305 mm) of the top and one commencing within 12 inches (305 mm) of the bottom of the enclosure, shall be provided. The openings shall communicate directly, or by ducts, with the outdoors or spaces that freely communicate with the outdoors.

Where directly communicating with the outdoors, or where communicating with the outdoors through vertical ducts, each opening shall have a minimum free area of 1 square inch per 4,000 Btu/h (550 mm\(^2\)/kW) of total input rating of all appliances in the enclosure [see Figures 2407.6.1(1) and 2407.6.1(2)].
Where communicating with the outdoors through horizontal ducts, each opening shall have a minimum free area of not less than 1 square inch per 2,000 Btu/h (1,100 mm²/kW) of total input rating of all appliances in the enclosure [see Figure 2407.6.1(3)].

FIGURE 2407.5.3
ALL AIR FROM INSIDE THE BUILDING
(see Section 2407.5.3)

FIGURE 2407.6.2
SINGLE COMBUSTION AIR OPENING, ALL AIR FROM OUTDOORS
(see Section 2407.6.2)

2407.6.2 One-permanent-opening method. One permanent opening, commencing within 12 inches (305 mm) of the top of the enclosure, shall be provided. The appliance shall have clearances of at least 1 inch (25 mm) from the sides and back and 6 inches (152 mm) from the front of the appliance. The opening shall directly communicate with the outdoors or through a vertical or horizontal duct to the outdoors, or spaces that freely communicate with the outdoors (see Figure 2407.6.2) and shall have a minimum free area of 1 square inch per 3,000 Btu/h (734 mm²/kW) of the total input rating of all appliances located in the enclosure and not less than the sum of the areas of all vent connectors in the space.
2407.7 Combination indoor and outdoor combustion air. The use of a combination of indoor and outdoor combustion air shall be in accordance with Sections 2407.7.1 through 2407.7.3.

2407.7.1 Indoor openings. Where used, openings connecting the interior spaces shall comply with Section 2407.5.3.

2407.7.2 Outdoor opening location. Outdoor opening(s) shall be located in accordance with Section 2407.6.

2407.7.3 Outdoor opening(s) size. The outdoor opening(s) size shall be calculated in accordance with the following:

1. The ratio of interior spaces shall be the available volume of all communicating spaces divided by the required volume.

2. The outdoor size reduction factor shall be one minus the ratio of interior spaces.

3. The minimum size of outdoor opening(s) shall be the full size of outdoor opening(s) calculated in accordance with Section 2407.6, multiplied by the reduction factor. The minimum dimension of air openings shall be not less than 3 inches (76 mm).

2407.8 Engineered installations. Engineered combustion air installations shall provide an adequate supply of combustion, ventilation and dilution air and shall be approved.

2407.9 Mechanical combustion air supply. Where all combustion air is provided by a mechanical air supply system, the combustion air shall be supplied from the outdoors at a rate not less than 0.35 cubic feet per minute per 1,000 Btu/h (0.034 m³/min per kW) of total input rating of all appliances located within the space.

2407.9.1 Makeup air. Where exhaust fans are installed, makeup air shall be provided to replace the exhausted air.

2407.9.2 Appliance interlock. Each of the appliances served shall be interlocked with the mechanical air supply system to prevent main burner operation when the mechanical air supply system is not in operation.
ALL AIR FROM OUTDOOR-INLET AIR FROM VENTILATED CRAWL SPACE AND OUTLET AIR TO VENTILATED ATTIC (see Section 2407.6.1)

For SI: 1 foot = 304.8 mm.

ALL AIR FROM OUTDOORS THROUGH VENTILATED ATTIC (see Section 2407.6.1)
2407.9.3 Combined combustion air and ventilation air system. Where combustion air is provided by the building’s mechanical ventilation system, the system shall provide the specified combustion air rate in addition to the required ventilation air.

2407.10 Louvers and grilles. The required size of openings for combustion, ventilation and dilution air shall be based on the net free area of each opening. Where the free area through a design of louver, grille or screen is known, it shall be used in calculating the size opening required to provide the free area specified. Where the design and free area of louvers and grilles are not known, it shall be assumed that wood louvers will have 25-percent free area and metal louvers and grilles will have 75-percent free area. Screens shall have a mesh size not smaller than ¼ inch (6.4 mm). Nonmotorized louvers and grilles shall be fixed in the open position. Motorized louvers shall be interlocked with the appliance so that they are proven to be in the full open position prior to main burner ignition and during
main burner operation. Means shall be provided to prevent the main burner from igniting if the louvers fail to open during burner start-up and to shut down the main burner if the louvers close during operation.

2407.11 Combustion air ducts. Combustion air ducts shall comply with all of the following:

1. Ducts shall be constructed of galvanized steel complying with Chapter 16 or of a material having equivalent corrosion resistance, strength and rigidity.

 Exception: Within dwellings units, unobstructed stud and joist spaces shall not be prohibited from conveying combustion air, provided that not more than one required fireblock is removed.

2. Ducts shall terminate in an unobstructed space allowing free movement of combustion air to the appliances.

3. Ducts shall serve a single enclosure.

4. Ducts shall not serve both upper and lower combustion air openings where both such openings are used. The separation between ducts serving upper and lower combustion air openings shall be maintained to the source of combustion air.

5. Ducts shall not be screened where terminating in an attic space.

6. Horizontal upper combustion air ducts shall not slope downward toward the source of combustion air.

7. The remaining space surrounding a chimney liner, gas vent, special gas vent or plastic piping installed within a masonry, metal or factory-built chimney shall not be used to supply combustion air.

 Exception: Direct-vent gas-fired appliances designed for installation in a solid fuel-burning fireplace where installed in accordance with the manufacturer’s instructions.

8. Combustion air intake openings located on the exterior of a building shall have the lowest side of such openings located not less than 12 inches (305 mm) vertically from the adjoining finished ground level.
2407.12 Protection from fumes and gases. Where corrosive or flammable process fumes or gases, other than products of combustion, are present, means for the disposal of such fumes or gases shall be provided. Such fumes or gases include carbon monoxide, hydrogen sulfide, ammonia, chlorine and halogenated hydrocarbons.

In barbershops, beauty shops and other facilities where chemicals that generate corrosive or flammable products, such as aerosol sprays, are routinely used, nondirect vent-type appliances shall be located in a mechanical room separated or partitioned off from other areas with provisions for combustion air and dilution air from the outdoors. Direct-vent appliances shall be installed in accordance with the appliance manufacturer’s installation instructions.

SECTION 2408
INSTALLATION

2408.1 General. Equipment and appliances shall be installed as required by the terms of their approval, in accordance with the conditions of listing, the manufacturer’s instructions and this code. Manufacturers’ installation instructions shall be available on the job site at the time of inspection. Where a code provision is less restrictive than the conditions of the listing of the equipment or appliance or the manufacturer’s installation instructions, the conditions of the listing and the manufacturer’s installation instructions shall apply.

Unlisted appliances approved in accordance with Section 2404.3 shall be limited to uses recommended by the manufacturer and shall be installed in accordance with the manufacturer’s instructions, the provisions of this code and the requirements determined by the building official.

2408.2 Elevation of ignition source. Equipment and appliances having an ignition source shall be elevated such that the source of ignition is not less than 18 inches (457 mm) above the floor in hazardous locations and public garages, private garages, repair garages, motor fuel-dispensing facilities and parking garages. For the purpose of this section, rooms or spaces that are not part of the living space of a dwelling unit and that communicate directly with a private garage through openings shall be considered to be part of the private garage.

Exception: Elevation of the ignition source is not required for appliances that are listed as flammable vapor ignition resistant.
2408.2.1 Installation in residential garages. In residential garages where appliances are installed in a separate, enclosed space having access only from outside of the garage, such appliances shall be permitted to be installed at floor level, provided that the required combustion air is taken from the exterior of the garage.

2408.3 Private garages. Appliances located in private garages shall be installed with a minimum clearance of 6 feet (1829 mm) above the floor.

Exception: The requirements of this section shall not apply where the appliances are protected from motor vehicle impact and installed in accordance with Section 2408.2.

2408.4 Clearances from grade. Equipment and appliances installed at grade level shall be supported on a level concrete slab or other approved material extending not less than 3 inches (76 mm) above adjoining grade or shall be suspended not less than 6 inches (152 mm) above adjoining grade. Such supports shall be installed in accordance with the manufacturer's installation instructions.

2408.5 Clearances to combustible construction. Heat-producing equipment and appliances shall be installed to maintain the required clearances to combustible construction as specified in the listing and manufacturer’s instructions. Such clearances shall be reduced only in accordance with Section 2409. Clearances to combustibles shall include such considerations as door swing, drawer pull, overhead projections or shelving and window swing. Devices, such as door stops or limits and closers, shall not be used to provide the required clearances.

2408.6 Avoid strain on gas piping. Appliances shall be supported and connected to the piping so as not to exert undue strain on the connections.

SECTION 2409
CLEARANCE REDUCTION

2409.1 Scope. This section shall govern the reduction in required clearances to combustible materials and combustible assemblies for chimneys, vents, appliances, devices and equipment.

2409.2 Reduction table. The allowable clearance reduction shall be based on one of the methods specified in Table 2409.2 or shall utilize an assembly listed for such application. Where required clearances are not listed in Table 2409.2, the
reduced clearances shall be determined by linear interpolation between the distances listed in the table. Reduced clearances shall not be derived by extrapolation below the range of the table. The reduction of the required clearances to combustibles for listed and labeled appliances and equipment shall be in accordance with the requirements of this section except that such clearances shall not be reduced where reduction is specifically prohibited by the terms of the appliance or equipment listing [see Figures 2409.2(1), 2409.2(2) and 2409.2(3)].

2409.3 Clearances for indoor air-conditioning appliances. Clearance requirements for indoor air-conditioning appliances shall comply with Sections 2409.3.1 through 2409.3.5.

2409.3.1 Appliances installed in rooms that are large in comparison with the size of the appliances. Air-conditioning appliances installed in rooms that are large in comparison with the size of the appliance shall be installed with clearances in accordance with the manufacturer’s instructions.

NOTES:
“A” equals the clearance with no protection.
“B” equals the reduced clearance permitted in accordance with Table 2409.2. The protection applied to the construction using combustible material shall extend far enough in each direction to make “C” equal to “A.”

For SI: 1 inch = 25.4 mm.

FIGURE 2409.2(1)
EXTENT OF PROTECTION NECESSARY TO REDUCE CLEARANCES FROM GAS EQUIPMENT OR VENT CONNECTORS
FIGURE 2409.2(2)
WALL PROTECTOR CLEARANCE REDUCTION SYSTEM FUEL GAS

For SI: 1 inch = 25.4 mm.

FIGURE 2409.2(3)
MASONRY CLEARANCE REDUCTION SYSTEM
2409.3.2 Appliances installed in rooms that are not large in comparison with the size of the appliances. Air-conditioning appliances installed in rooms that are not large in comparison with the size of the appliance, such as alcoves and closets, shall be listed for such installations and installed in accordance with the manufacturer’s instructions. Listed clearances shall not be reduced by the protection methods described in Table 2409.2, regardless of whether the enclosure is of combustible or noncombustible material.

2409.3.3 Clearance reduction. Air-conditioning appliances installed in rooms that are large in comparison with the size of the appliance shall be permitted to be installed with reduced clearances to combustible material, provided that the combustible material or appliance is protected as described in Table 2409.2.

2409.3.4 Plenum clearances. Where the furnace plenum is adjacent to plaster on metal lath or noncombustible material attached to combustible material, the clearance shall be measured to the surface of the plaster or other noncombustible finish where the clearance specified is 2 inches (51 mm) or less.

2409.3.5 Clearance from supply ducts. Air-conditioning appliances shall have the clearance from supply ducts within 3 feet (914 mm) of the furnace plenum be not less than that specified from the furnace plenum. Clearance is not necessary beyond this distance.

2409.4 Central heating boilers and furnaces. Clearance requirements for central-heating boilers and furnaces shall comply with Sections 2409.4.1 through 2409.4.6. The clearance to these appliances shall not interfere with combustion air; draft hood clearance and relief; and accessibility for servicing.

2409.4.1 Appliances installed in rooms that are large in comparison with the size of the appliances. Central-heating furnaces and low-pressure boilers installed in rooms large in comparison with the size of the appliance shall be installed with clearances in accordance with the manufacturer’s instructions.

2409.4.2 Appliances installed in rooms that are not large in comparison with the size of the appliances. Central-heating furnaces and low-pressure boilers installed in rooms that are not large in comparison with the size of the appliance, such as alcoves and closets, shall be listed for such installations. Listed clearances shall not be reduced by the protection methods described in
Table 2409.2 and illustrated in Figures 2409.2(1) through 2409.2(3), regardless of whether the enclosure is of combustible or noncombustible material.

2409.4.3 Clearance reduction. Central heating furnaces and low-pressure boilers installed in rooms that are large in comparison with the size of the appliance shall be permitted to be installed with reduced clearances to combustible material provided the combustible material or equipment is protected as described in Table 2409.2.

2409.4.4 Plenum clearances. Where the furnace plenum is adjacent to plaster on metal lath or noncombustible material attached to combustible material, the clearance shall be measured to the surface of the plaster or other noncombustible finish where the clearance specified is 2 inches (51 mm) or less.

2409.4.5 Clearance from supply ducts. Central-heating furnaces shall have the clearance from supply ducts within 3 feet (914 mm) of the furnace plenum be not less than that specified from the furnace plenum. No clearance is necessary beyond this distance.

2409.4.6 Clearance for servicing appliances. Front clearance shall be sufficient for servicing the burner and the furnace or boiler.

SECTION 2410
ELECTRICAL

2410.1 Grounding. Gas piping shall not be used as a grounding electrode.

2410.2 Connections. Electrical connections between appliances and the building wiring, including the grounding of the appliances, shall conform to NFPA 70.

SECTION 2411
ELECTRICAL BONDING

2411.1 Pipe and tubing other than CSST. Each above-ground portion of a gas piping system other than corrugated stainless steel tubing (CSST), that is likely to become energized shall be electrically continuous and bonded to an effective ground-fault current path. Gas piping, other than CSST, shall be considered to be bonded where it is connected to appliances that are connected to the equipment grounding conductor of the circuit supplying that appliance.
2411.1 CSST. Corrugated stainless steel tubing (CSST) gas piping systems and piping systems containing one or more segments of CSST shall be bonded to the electrical service grounding electrode system at the point where the gas service enters the building. The bonding jumper shall be not smaller than 6 AWG copper wire or equivalent or, where provided, the lightning protection electrode system.

2411.1.1 Point of Connection. The bonding jumper shall connect to a metallic pipe, pipe fitting or CSST fitting.

2411.1.2 Size and Material of jumper. The bonding jumper shall be not smaller than 6 AWG copper wire or equivalent.

2411.1.3 Bonding jumper length. The length of the bonding jumper between the connection to a gas piping system and the connection to a grounding electrode system shall not exceed 75 feet (22 860 mm). Any additional grounding electrode used shall be bonded to the electrical service grounding electrode system or, where provided, the lightning protection grounding electrode system.

2411.1.4 Bonding connections. Bonding connections shall be in accordance with NFPA 70.

2411.1.5 Connection devices. Devices used for making the bonding connections shall be listed for the application in accordance with UL 467.

TABLE 2409.2 Reduction of clearances with specified forms of protection

<table>
<thead>
<tr>
<th>TYPE OF PROTECTION APPLIED TO AND COVERING ALL SURFACES OF COMBUSTIBLE MATERIAL WITHIN THE DISTANCE SPECIFIED AS THE REQUIRED CLEARANCE WITH NO PROTECTION [see Figures 2409.2(1), 2409.2(2), and 2409.2(3)]</th>
<th>WHERE THE REQUIRED CLEARANCE WITH NO PROTECTION FROM APPLIANCE, VENT CONNECTOR, OR SINGLE-WALL METAL PIPE IS: (inches)</th>
<th>Allowable clearances with specified protection (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36</td>
<td>18</td>
</tr>
<tr>
<td>Use Column 1 for clearances above appliance or horizontal connector. Use Column 2 for clearances from appliance, vertical connector and single-wall metal pipe.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above Col. 1</td>
<td>Sides and rear Col. 2</td>
<td>Above Col. 1</td>
</tr>
<tr>
<td>1. 3½-inch-thick masonry wall without ventilated airspace</td>
<td>—</td>
<td>24</td>
</tr>
<tr>
<td>2. ½-inch insulation board over 1-inch glass fiber or mineral wool batts</td>
<td>24</td>
<td>18</td>
</tr>
</tbody>
</table>
3. 0.024-inch (nominal 24 gage) sheet metal over 1-inch glass fiber or mineral wool batts reinforced with wire on rear face with ventilated airspace

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

4. 3½-inch-thick masonry wall with ventilated airspace

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

5. 0.024-inch (nominal 24 gage) sheet metal with ventilated airspace

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

6. ½-inch-thick insulation board with ventilated airspace

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

7. 0.024-inch (nominal 24 gage) sheet metal with ventilated airspace over 0.024-inch (nominal 24 gage) sheet metal with ventilated airspace

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

8. 1-inch glass fiber or mineral wool batts sandwiched between two sheets 0.024-inch (nominal 24 gage) sheet metal with ventilated airspace

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, °C = [(°F - 32)/1.8], 1 pound per cubic foot = 16.02 kg/m³, 1 Btu per inch per square foot per hour per °F = 0.144 W/m² °K.

a. Reduction of clearances from combustible materials shall not interfere with combustion air, draft hood clearance and relief, and accessibility of servicing.
b. All clearances shall be measured from the outer surface of the combustible material to the nearest point on the surface of the appliance, disregarding any intervening protection applied to the combustible material.
c. Spacers and ties shall be of noncombustible material. No spacer or tie shall be used directly opposite an appliance or connector.
d. For all clearance reduction systems using a ventilated airspace, adequate provision for air circulation shall be provided as described [see Figures 2409.2(2) and 2409.2(3)].
e. There shall be at least 1 inch between clearance reduction systems and combustible walls and ceilings for reduction systems using ventilated airspace.
f. Where a wall protector is mounted on a single flat wall away from corners, it shall have a minimum 1-inch air gap. To provide air circulation, the bottom and top edges, or only the side and top edges, or all edges shall be left open.
g. Mineral wool batts (blanket or board) shall have a minimum density of 8 pounds per cubic foot and a minimum melting point of 1500°F.
h. Insulation material used as part of a clearance reduction system shall have a thermal conductivity of 1.0 Btu per inch per square foot per hour per °F or less.
i. There shall be at least 1 inch between the appliance and the protector. In no case shall the clearance between the appliance and the combustible surface be reduced below that allowed in this table.
j. All clearances and thicknesses are minimum; larger clearances and thicknesses are acceptable.
k. Listed single-wall connectors shall be installed in accordance with the manufacturer’s installation instructions.

SECTION 2412
GENERAL

2412.1 Scope. This section shall govern the design, installation, modification and maintenance of piping systems. The applicability of this code to piping systems extends from the point of delivery to the connections with the appliances and
includes the design, materials, components, fabrication, assembly, installation, testing, inspection, operation and maintenance of such piping systems.

2412.1 Utility piping systems located within buildings. Utility service piping located within buildings shall be installed in accordance with the structural safety and fire protection provisions of this code.

2412.2 Liquefied petroleum gas storage. The storage system for liquefied petroleum gas shall be designed and installed in accordance with the fire code and NFPA 58.

2412.3 Modifications to existing systems. In modifying or adding to existing piping systems, sizes shall be maintained in accordance with this chapter.

2412.4 Additional appliances. Where an additional appliance is to be served, the existing piping shall be checked to determine if it has adequate capacity for all appliances served. If inadequate, the existing system shall be enlarged as required or separate piping of adequate capacity shall be provided.

2412.5 Identification. For other than steel pipe, exposed piping shall be identified by a yellow label marked “Gas” in black letters. The marking shall be spaced at intervals not exceeding 5 feet (1524 mm). The marking shall not be required on pipe located in the same room as the appliance served.

2412.6 Interconnections. Where two or more meters are installed on the same premises, but supply separate consumers, the piping systems shall not be interconnected on the outlet side of the meters.

2412.7 Piping meter identification. Piping from multiple meter installations shall be marked with an approved permanent identification by the installer so that the piping system supplied by each meter is readily identifiable.

2412.8 Minimum sizes. All pipe utilized for the installation, extension and alteration of any piping system shall be sized to supply the full number of outlets for the intended purpose and shall be sized in accordance with Section 2413.

SECTION 2413
PIPE SIZING

2413.1 General considerations. Piping systems shall be of such size and so installed as to provide a supply of gas sufficient to meet the maximum demand
and supply gas to each appliance inlet at not less than the minimum supply pressure required by the appliance.

2413.2 **Maximum gas demand.** The volume of gas to be provided, in cubic feet per hour, shall be determined directly from the manufacturer’s input ratings of the appliances served. Where an input rating is not indicated, the gas supplier, appliance manufacturer or a qualified agency shall be contacted, or the rating from Table 2413.2 shall be used for estimating the volume of gas to be supplied.

The total connected hourly load shall be used as the basis for pipe sizing, assuming that all appliances could be operating at full capacity simultaneously. Where a diversity of load can be established, pipe sizing shall be permitted to be based on such loads.

TABLE 2413.2
APPROXIMATE GAS INPUT FOR TYPICAL APPLIANCES

<table>
<thead>
<tr>
<th>APPLIANCE</th>
<th>INPUT BTU/H (Approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Heating Units</td>
<td></td>
</tr>
<tr>
<td>Hydronic boiler</td>
<td></td>
</tr>
<tr>
<td>Single family</td>
<td>100,000</td>
</tr>
<tr>
<td>Multifamily, per unit</td>
<td>60,000</td>
</tr>
<tr>
<td>Warm-air furnace</td>
<td></td>
</tr>
<tr>
<td>Single family</td>
<td>100,000</td>
</tr>
<tr>
<td>Multifamily, per unit</td>
<td>60,000</td>
</tr>
<tr>
<td>Space and Water Heating Units</td>
<td></td>
</tr>
<tr>
<td>Hydronic boiler</td>
<td></td>
</tr>
<tr>
<td>Single family</td>
<td>120,000</td>
</tr>
<tr>
<td>Multifamily, per unit</td>
<td>75,000</td>
</tr>
<tr>
<td>Water Heating Appliances</td>
<td></td>
</tr>
<tr>
<td>Water heater, automatic instantaneous</td>
<td></td>
</tr>
<tr>
<td>Capacity at 2 gal./minute</td>
<td>142,800</td>
</tr>
<tr>
<td>Capacity at 4 gal./minute</td>
<td>285,000</td>
</tr>
<tr>
<td>Capacity at 6 gal./minute</td>
<td>428,400</td>
</tr>
<tr>
<td>Water heater, automatic storage, 30- to 40-gal. tank</td>
<td>35,000</td>
</tr>
<tr>
<td>Water heater, automatic storage, 50-gal. tank</td>
<td>50,000</td>
</tr>
<tr>
<td>Water heater, domestic, circulating or side-arm</td>
<td>35,000</td>
</tr>
<tr>
<td>Cooking Appliances</td>
<td></td>
</tr>
<tr>
<td>Built-in oven or broiler unit, domestic</td>
<td>25,000</td>
</tr>
<tr>
<td>Built-in top unit, domestic</td>
<td>40,000</td>
</tr>
<tr>
<td>Range, free-standing, domestic</td>
<td>65,000</td>
</tr>
<tr>
<td>Other Appliances</td>
<td></td>
</tr>
<tr>
<td>Barbecue</td>
<td>40,000</td>
</tr>
<tr>
<td>Clothes dryer, Type 1 (domestic)</td>
<td>35,000</td>
</tr>
<tr>
<td>Gas fireplace, direct-vent</td>
<td>40,000</td>
</tr>
<tr>
<td>Gas light</td>
<td>2,500</td>
</tr>
<tr>
<td>Gas log</td>
<td>80,000</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>3,000</td>
</tr>
</tbody>
</table>

For SI: 1 British thermal unit per hour = 0.293 W, 1 gallon = 3.785 L, 1 gallon per minute = 3.785 L/m.
2413.3 Sizing. Gas piping shall be sized in accordance with one of the following:

1. Pipe sizing tables or sizing equations in accordance with Section 2413.4.

2. The sizing tables included in a listed piping system’s manufacturer’s installation instructions.

3. Other approved engineering methods.

2413.4 Sizing tables and equations. Where Tables 2413.4(1) through 2413.4(21) are used to size piping or tubing, the pipe length shall be determined in accordance with Section 2413.4.1, 2413.4.2 or 2413.4.3.

Where Equations 24-3 and 24-4 are used to size piping or tubing, the pipe or tubing shall have smooth inside walls and the pipe length shall be determined in accordance with Section 2413.4.1, 2413.4.2 or 2413.4.3.

1. Low-pressure gas equation [Less than 1.5 pounds per square inch (psi) (10.3 kPa)]:

 \[
 D = \frac{Q^{0.381}}{19.17 \left(\frac{\Delta H}{C, xL} \right)^{0.206}} \tag{Equation 24-3}
 \]

2. High-pressure gas equation [1.5 psi (10.3 kPa) and above]:

 \[
 D = \frac{Q^{0.381}}{18.93 \left(\frac{P_1^2 - P_2^2}{C, xL} \right)^{0.206}} \tag{Equation 24-4}
 \]

where:

- **D** = Inside diameter of pipe, inches (mm).
- **Q** = Input rate appliance(s), cubic feet per hour at 60°F (16°C) and 30-inch mercury column.
- **P_1** = Upstream pressure, psia (P1 + 14.7).
- **P_2** = Downstream pressure, psia (P2 + 14.7).
- **L** = Equivalent length of pipe, feet.
\[\Delta H = \text{Pressure drop, inch water column (27.7 inch water column} = 1 \text{ psi).} \]

TABLE 2413.4

<table>
<thead>
<tr>
<th>GAS</th>
<th>EQUATION FACTORS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas</td>
<td>0.6094</td>
<td>0.9992</td>
<td></td>
</tr>
<tr>
<td>Undiluted propane</td>
<td>1.2462</td>
<td>0.9910</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 cubic foot = 0.028 m³, 1 foot = 305 mm, 1 inch water column = 0.249 kPa, 1 pound per square inch = 6.895 kPa, 1 British thermal unit per hour = 0.293 W.

2413.4.1 Longest length method. The pipe size of each section of gas piping shall be determined using the longest length of piping from the point of delivery to the most remote outlet and the load of the section.

2413.4.2 Branch length method. Pipe shall be sized as follows:

1. Pipe size of each section of the longest pipe run from the point of delivery to the most remote outlet shall be determined using the longest run of piping and the load of the section.

2. The pipe size of each section of branch piping not previously sized shall be determined using the length of piping from the point of delivery to the most remote outlet in each branch and the load of the section.

2413.4.3 Hybrid pressure. The pipe size for each section of higher pressure gas piping shall be determined using the longest length of piping from the point of delivery to the most remote line pressure regulator. The pipe size from the line pressure regulator to each outlet shall be determined using the length of piping from the regulator to the most remote outlet served by the regulator.

2413.5 Allowable pressure drop. The design pressure loss in any piping system under maximum probable flow conditions, from the point of delivery to the inlet connection of the appliance, shall be such that the supply pressure at the appliance is greater than or equal to the minimum pressure required by the appliance.
2413.6 Maximum design operating pressure. The maximum design operating pressure for piping systems located inside buildings shall not exceed 5 pounds per square inch gauge (psig) (34 kPa gauge) except where one or more of the following conditions are met:

1. The piping system is welded.

2. The piping is located in a ventilated chase or otherwise enclosed for protection against accidental gas accumulation.

3. The piping is a temporary installation for buildings under construction.

2413.6.1 Liquefied petroleum gas systems. LP-gas systems designed to operate below -5°F (-21°C) or with butane or a propane-butane mix shall be designed to either accommodate liquid LP-gas or prevent LP-gas vapor from condensing into a liquid.

<table>
<thead>
<tr>
<th>Nominal</th>
<th>Actual ID</th>
<th>Capacity in Cubic Feet of Gas per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (ft)</td>
<td>Nominal ½</td>
<td>⅝</td>
</tr>
<tr>
<td>10</td>
<td>172</td>
<td>360</td>
</tr>
<tr>
<td>20</td>
<td>118</td>
<td>247</td>
</tr>
<tr>
<td>30</td>
<td>95</td>
<td>199</td>
</tr>
<tr>
<td>40</td>
<td>81</td>
<td>170</td>
</tr>
<tr>
<td>50</td>
<td>72</td>
<td>151</td>
</tr>
<tr>
<td>60</td>
<td>65</td>
<td>137</td>
</tr>
<tr>
<td>70</td>
<td>60</td>
<td>126</td>
</tr>
<tr>
<td>80</td>
<td>56</td>
<td>117</td>
</tr>
<tr>
<td>90</td>
<td>52</td>
<td>109</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>104</td>
</tr>
<tr>
<td>125</td>
<td>44</td>
<td>92</td>
</tr>
<tr>
<td>PIPE SIZE (inch)</td>
<td>Natural</td>
<td>Gas</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>Nominal</td>
<td>½</td>
<td>¾</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Notes:
1. NA means a flow of less than 10 cfh.
2. All table entries have been rounded to three significant digits.

TABLE 2413.4(2)

<table>
<thead>
<tr>
<th>SCHEDULE 40 METALLIC PIPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
</tr>
<tr>
<td>Inlet Pressure</td>
</tr>
<tr>
<td>Pressure Drop</td>
</tr>
<tr>
<td>Specific Gravity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PIPE SIZE (inch)</th>
<th>Natural</th>
<th>Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>½</td>
<td>¾</td>
</tr>
<tr>
<td>Actual ID</td>
<td>0.622</td>
<td>0.824</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Length (ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1,510</td>
<td>3,040</td>
</tr>
<tr>
<td>20</td>
<td>1,070</td>
<td>2,150</td>
</tr>
<tr>
<td>30</td>
<td>869</td>
<td>1,760</td>
</tr>
<tr>
<td>40</td>
<td>753</td>
<td>1,520</td>
</tr>
<tr>
<td>50</td>
<td>673</td>
<td>1,360</td>
</tr>
<tr>
<td>60</td>
<td>615</td>
<td>1,240</td>
</tr>
<tr>
<td>70</td>
<td>569</td>
<td>1,150</td>
</tr>
<tr>
<td>80</td>
<td>532</td>
<td>1,080</td>
</tr>
<tr>
<td>90</td>
<td>502</td>
<td>1,010</td>
</tr>
<tr>
<td>100</td>
<td>462</td>
<td>934</td>
</tr>
<tr>
<td>125</td>
<td>414</td>
<td>836</td>
</tr>
<tr>
<td>150</td>
<td>372</td>
<td>751</td>
</tr>
<tr>
<td>175</td>
<td>344</td>
<td>695</td>
</tr>
<tr>
<td>200</td>
<td>318</td>
<td>642</td>
</tr>
<tr>
<td>250</td>
<td>279</td>
<td>583</td>
</tr>
<tr>
<td>300</td>
<td>253</td>
<td>528</td>
</tr>
<tr>
<td>350</td>
<td>232</td>
<td>486</td>
</tr>
<tr>
<td>400</td>
<td>216</td>
<td>452</td>
</tr>
<tr>
<td>450</td>
<td>203</td>
<td>424</td>
</tr>
<tr>
<td>500</td>
<td>192</td>
<td>401</td>
</tr>
<tr>
<td>550</td>
<td>182</td>
<td>381</td>
</tr>
<tr>
<td>600</td>
<td>174</td>
<td>363</td>
</tr>
<tr>
<td>650</td>
<td>166</td>
<td>348</td>
</tr>
<tr>
<td>700</td>
<td>160</td>
<td>334</td>
</tr>
<tr>
<td>750</td>
<td>154</td>
<td>322</td>
</tr>
<tr>
<td>800</td>
<td>149</td>
<td>311</td>
</tr>
<tr>
<td>850</td>
<td>144</td>
<td>301</td>
</tr>
<tr>
<td>900</td>
<td>139</td>
<td>292</td>
</tr>
<tr>
<td>950</td>
<td>135</td>
<td>283</td>
</tr>
<tr>
<td>1,000</td>
<td>132</td>
<td>275</td>
</tr>
<tr>
<td>1,100</td>
<td>125</td>
<td>262</td>
</tr>
<tr>
<td>1,200</td>
<td>119</td>
<td>250</td>
</tr>
<tr>
<td>1,300</td>
<td>114</td>
<td>239</td>
</tr>
<tr>
<td>1,400</td>
<td>110</td>
<td>230</td>
</tr>
<tr>
<td>1,500</td>
<td>106</td>
<td>221</td>
</tr>
<tr>
<td>1,600</td>
<td>102</td>
<td>214</td>
</tr>
<tr>
<td>1,700</td>
<td>99</td>
<td>207</td>
</tr>
<tr>
<td>1,800</td>
<td>96</td>
<td>200</td>
</tr>
<tr>
<td>1,900</td>
<td>93</td>
<td>195</td>
</tr>
<tr>
<td>2,000</td>
<td>91</td>
<td>189</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1 inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m3/h, 1 degree = 0.01745 rad.

Note: All table entries have been rounded to three significant digits.

TABLE 2413.4(3)
SEMIRIGID COPPER TUBING

<table>
<thead>
<tr>
<th>Gas</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure</td>
<td>Less than 2 psi</td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>0.5 in. w.c.</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>0.60</td>
</tr>
</tbody>
</table>

TUBE SIZE (inch)

<table>
<thead>
<tr>
<th>Nominal</th>
<th>K & L</th>
<th>¼</th>
<th>⅜</th>
<th>½</th>
<th>⅞</th>
<th>⅝</th>
<th>Ⅲ</th>
<th>Ⅰ⁄₂</th>
<th>Ⅲ⁄₄</th>
<th>Ⅲ⁄₈</th>
<th>—</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>⅜</td>
<td>½</td>
<td>⅞</td>
<td>⅝</td>
<td>Ⅲ</td>
<td>Ⅲ⁄₄</td>
<td>Ⅲ⁄₈</td>
<td>1</td>
<td>1⅔</td>
<td>1⅓</td>
<td>2</td>
<td>1½</td>
</tr>
<tr>
<td>Outside</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
<td>0.750</td>
<td>0.875</td>
<td>1.125</td>
<td>1.375</td>
<td>1.625</td>
<td>2.125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>0.305</td>
<td>0.402</td>
<td>0.527</td>
<td>0.652</td>
<td>0.745</td>
<td>0.995</td>
<td>1.245</td>
<td>1.481</td>
<td>1.959</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length (ft)</th>
<th>Capacity in Cubic Feet of Gas per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>40</td>
<td>13</td>
</tr>
<tr>
<td>50</td>
<td>11</td>
</tr>
<tr>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>70</td>
<td>NA</td>
</tr>
<tr>
<td>80</td>
<td>NA</td>
</tr>
<tr>
<td>90</td>
<td>NA</td>
</tr>
<tr>
<td>100</td>
<td>NA</td>
</tr>
<tr>
<td>125</td>
<td>NA</td>
</tr>
<tr>
<td>150</td>
<td>NA</td>
</tr>
<tr>
<td>175</td>
<td>NA</td>
</tr>
<tr>
<td>200</td>
<td>NA</td>
</tr>
<tr>
<td>250</td>
<td>NA</td>
</tr>
<tr>
<td>300</td>
<td>NA</td>
</tr>
<tr>
<td>350</td>
<td>NA</td>
</tr>
<tr>
<td>400</td>
<td>NA</td>
</tr>
<tr>
<td>450</td>
<td>NA</td>
</tr>
<tr>
<td>500</td>
<td>NA</td>
</tr>
<tr>
<td>550</td>
<td>NA</td>
</tr>
<tr>
<td>600</td>
<td>NA</td>
</tr>
<tr>
<td>650</td>
<td>NA</td>
</tr>
<tr>
<td>700</td>
<td>NA</td>
</tr>
<tr>
<td>750</td>
<td>NA</td>
</tr>
<tr>
<td>800</td>
<td>NA</td>
</tr>
<tr>
<td>850</td>
<td>NA</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m3/h, 1 degree = 0.01745 rad.

Notes:
1. Table capacities are based on Type K copper tubing inside diameter (shown), which has the smallest inside diameter of the copper tubing products.
2. NA means a flow of less than 10 cfh.
3. All table entries have been rounded to three significant digits.

TABLE 2413.4(4)
SEMIRIGID COPPER TUBING

<table>
<thead>
<tr>
<th>Inlet Pressure</th>
<th>Pressure Drop</th>
<th>Specific Gravity</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 psi</td>
<td>1.0 psi</td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TUBE SIZE (inch)</th>
<th>K & L</th>
<th>ACR</th>
<th>$\frac{3}{8}$</th>
<th>$\frac{5}{8}$</th>
<th>$\frac{7}{8}$</th>
<th>1</th>
<th>$\frac{1}{4}$</th>
<th>$\frac{1}{2}$</th>
<th>1½</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside</td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
<td>0.750</td>
<td>0.875</td>
<td>1.125</td>
<td>1.375</td>
<td>1.625</td>
<td>2.125</td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td>0.305</td>
<td>0.402</td>
<td>0.527</td>
<td>0.652</td>
<td>0.745</td>
<td>0.995</td>
<td>1.245</td>
<td>1.481</td>
<td>1.959</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length (ft)</th>
<th>Capacity in Cubic Feet of Gas per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>245 506 1,030 1,800 2,550 5,450 9,820 15,500 32,200</td>
</tr>
<tr>
<td>20</td>
<td>169 348 708 1,240 1,760 3,750 6,750 10,600 22,200</td>
</tr>
<tr>
<td>30</td>
<td>135 279 568 993 1,410 3,010 5,420 8,550 17,800</td>
</tr>
<tr>
<td>40</td>
<td>116 239 486 850 1,210 2,580 4,640 7,310 15,200</td>
</tr>
<tr>
<td>50</td>
<td>103 212 431 754 1,070 2,280 4,110 6,480 13,500</td>
</tr>
<tr>
<td>60</td>
<td>93 192 391 683 969 2,070 3,730 5,870 12,200</td>
</tr>
<tr>
<td>70</td>
<td>86 177 359 628 891 1,900 3,430 5,400 11,300</td>
</tr>
<tr>
<td>80</td>
<td>80 164 334 584 829 1,770 3,190 5,030 10,500</td>
</tr>
<tr>
<td>90</td>
<td>75 154 314 548 778 1,660 2,990 4,720 9,820</td>
</tr>
<tr>
<td>100</td>
<td>71 146 296 518 735 1,570 2,830 4,450 9,280</td>
</tr>
<tr>
<td>Tube Size (EHD)</td>
<td>125</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>651</td>
</tr>
<tr>
<td></td>
<td>1,390</td>
</tr>
<tr>
<td></td>
<td>2,500</td>
</tr>
<tr>
<td></td>
<td>3,950</td>
</tr>
<tr>
<td></td>
<td>8,220</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Notes:
1. Table capacities are based on Type K copper tubing inside diameter (shown), which has the smallest inside diameter of the copper tubing products.
2. All table entries have been rounded to three significant digits.

TABLE 2413.4(5)

CORRUGATED STAINLESS STEEL TUBING (CSST)

<table>
<thead>
<tr>
<th></th>
<th>Gas</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inlet Pressure</td>
<td>Less than 2 psi</td>
</tr>
<tr>
<td></td>
<td>Pressure Drop</td>
<td>0.5 in. w.c.</td>
</tr>
<tr>
<td></td>
<td>Specific Gravity</td>
<td>0.60</td>
</tr>
<tr>
<td>Flow Designation</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>------------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Length (ft)</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Capacity in Cubic Feet of Gas Per Hour</td>
<td>46</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>44</td>
</tr>
<tr>
<td>15</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>31</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>30</td>
<td>18</td>
<td>25</td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>50</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>60</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>70</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>80</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>100</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>150</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>200</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>250</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>300</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Notes:
1. Table includes losses for four 90-degree bends and two end fittings. Tubing runs with larger numbers of bends and/or fittings shall be increased by an equivalent length of tubing to the following equation: L = 1.3n, where L is additional length (feet) of tubing and n is the number of additional fittings and/or bends.
2. EHD—Equivalent Hydraulic Diameter, which is a measure of the relative hydraulic efficiency between different tubing sizes. The greater the value of EHD, the greater the gas capacity of the tubing.
3. All table entries have been rounded to three significant digits.

TABLE 2413.4(6)

CORRUGATED STAINLESS STEEL TUBING (CSST)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Natural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure</td>
<td>2.0 psi</td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>1.0 psi</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>0.60</td>
</tr>
</tbody>
</table>

TUBE SIZE (EHD)

<table>
<thead>
<tr>
<th>Flow Designation</th>
<th>13</th>
<th>15</th>
<th>18</th>
<th>19</th>
<th>23</th>
<th>25</th>
<th>30</th>
<th>31</th>
<th>37</th>
<th>39</th>
<th>46</th>
<th>48</th>
<th>60</th>
<th>62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (ft)</td>
<td>10</td>
<td>270</td>
<td>353</td>
<td>587</td>
<td>700</td>
<td>1,100</td>
<td>1,370</td>
<td>2,590</td>
<td>2,990</td>
<td>4,510</td>
<td>5,037</td>
<td>9,600</td>
<td>10,700</td>
<td>18,600</td>
</tr>
<tr>
<td>PIPE SIZE (in.)</td>
<td>Capacity in Cubic Feet of Gas per Hour</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Nominal OD</td>
<td></td>
</tr>
<tr>
<td>Designation</td>
<td></td>
</tr>
<tr>
<td>Actual ID</td>
<td></td>
</tr>
<tr>
<td>Length (ft)</td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1 inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Notes:
1. Table does not include effect of pressure drop across the line regulator. Where regulator loss exceeds ¾ psi, DO NOT USE THIS TABLE.
2. Consult with the regulator manufacturer for pressure drops and capacity factors. Pressure drops across a regulator can vary with flow rate.
3. CAUTION: Capacities shown in the table might exceed maximum capacity for a selected regulator. Consult with the regulator or tubing manufacturer for guidance.
4. Table includes losses for four 90-degree bends and two end fittings. Tubing runs with larger numbers of bends and/or fittings shall be increased by an equivalent length of tubing to the following equation: L = 1.3n where L is additional length (feet) of tubing and n is the number of additional fittings and/or bends.
5. EHD—Equivalent Hydraulic Diameter, which is a measure of the relative hydraulic efficiency between different tubing sizes. The greater the value of EHD, the greater the gas capacity of the tubing.
6. All table entries have been rounded to three significant digits.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m3/h, 1 degree = 0.01745 rad.

Note: All table entries have been rounded to three significant digits.

TABLE 2413.4(8)
POLYETHYLENE PLASTIC PIPE

<table>
<thead>
<tr>
<th>Pipe Size (in.)</th>
<th>Nominal OD</th>
<th>Actual ID (in.)</th>
<th>Length (ft)</th>
<th>Capacity in Cubic Feet of Gas per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SDR 9.33</td>
<td>SDR 10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.660</td>
<td>1.077</td>
<td>1</td>
<td>6,710</td>
</tr>
<tr>
<td>20</td>
<td>1.280</td>
<td>2.560</td>
<td>2</td>
<td>4,610</td>
</tr>
<tr>
<td>30</td>
<td>1.630</td>
<td>3.710</td>
<td>3</td>
<td>7,990</td>
</tr>
<tr>
<td>40</td>
<td>1.630</td>
<td>3.610</td>
<td>4</td>
<td>5,490</td>
</tr>
<tr>
<td>50</td>
<td>1.630</td>
<td>3.510</td>
<td>5</td>
<td>4,870</td>
</tr>
<tr>
<td>60</td>
<td>1.630</td>
<td>3.310</td>
<td>6</td>
<td>4,110</td>
</tr>
<tr>
<td>70</td>
<td>1.630</td>
<td>3.010</td>
<td>7</td>
<td>3,440</td>
</tr>
<tr>
<td>80</td>
<td>1.630</td>
<td>2.710</td>
<td>8</td>
<td>2,770</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pipe Size (in.)</th>
<th>Nominal OD</th>
<th>Actual ID (in.)</th>
<th>Length (ft)</th>
<th>Capacity in Cubic Feet of Gas per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SDR 11.0</td>
<td>SDR 11.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.860</td>
<td>1.328</td>
<td>1</td>
<td>11,600</td>
</tr>
<tr>
<td>20</td>
<td>1.280</td>
<td>2.660</td>
<td>2</td>
<td>17,600</td>
</tr>
<tr>
<td>30</td>
<td>1.380</td>
<td>3.710</td>
<td>3</td>
<td>9,690</td>
</tr>
<tr>
<td>40</td>
<td>1.380</td>
<td>3.610</td>
<td>4</td>
<td>8,300</td>
</tr>
<tr>
<td>50</td>
<td>1.380</td>
<td>3.510</td>
<td>5</td>
<td>7,350</td>
</tr>
<tr>
<td>60</td>
<td>1.380</td>
<td>3.310</td>
<td>6</td>
<td>6,660</td>
</tr>
<tr>
<td>70</td>
<td>1.380</td>
<td>3.010</td>
<td>7</td>
<td>6,130</td>
</tr>
<tr>
<td>80</td>
<td>1.380</td>
<td>2.710</td>
<td>8</td>
<td>5,700</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pipe Size (in.)</th>
<th>Nominal OD</th>
<th>Actual ID (in.)</th>
<th>Length (ft)</th>
<th>Capacity in Cubic Feet of Gas per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SDR 11.00</td>
<td>SDR 11.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.860</td>
<td>1.554</td>
<td>1</td>
<td>17,600</td>
</tr>
<tr>
<td>20</td>
<td>1.280</td>
<td>2.860</td>
<td>2</td>
<td>21,700</td>
</tr>
<tr>
<td>30</td>
<td>1.380</td>
<td>3.710</td>
<td>3</td>
<td>17,400</td>
</tr>
<tr>
<td>40</td>
<td>1.380</td>
<td>3.610</td>
<td>4</td>
<td>14,900</td>
</tr>
<tr>
<td>50</td>
<td>1.380</td>
<td>3.510</td>
<td>5</td>
<td>13,200</td>
</tr>
<tr>
<td>60</td>
<td>1.380</td>
<td>3.310</td>
<td>6</td>
<td>12,000</td>
</tr>
<tr>
<td>70</td>
<td>1.380</td>
<td>3.010</td>
<td>7</td>
<td>11,000</td>
</tr>
<tr>
<td>80</td>
<td>1.380</td>
<td>2.710</td>
<td>8</td>
<td>10,200</td>
</tr>
<tr>
<td>Gas</td>
<td>Undiluted Propane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inlet Pressure</td>
<td>10.0 psi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>1.0 psi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.
INTENDED USE
Pipe sizing between first stage (high-pressure regulator) and second stage (low-pressure regulator).

<table>
<thead>
<tr>
<th>Nominal</th>
<th>½</th>
<th>¾</th>
<th>1</th>
<th>1¼</th>
<th>1½</th>
<th>2</th>
<th>2½</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual ID</td>
<td>0.622</td>
<td>0.824</td>
<td>1.049</td>
<td>1.380</td>
<td>1.610</td>
<td>2.067</td>
<td>2.469</td>
<td>3.068</td>
<td>4.026</td>
</tr>
</tbody>
</table>

PIPE SIZE (in.)

<table>
<thead>
<tr>
<th>Length (ft)</th>
<th>Capacity in Thousands of Btu per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3,320, 6,950, 13,100, 26,900, 40,300, 77,600, 124,000, 219,000, 446,000</td>
</tr>
<tr>
<td>20</td>
<td>2,280, 4,780, 9,000, 18,500, 27,700, 53,300, 85,000, 150,000, 306,000</td>
</tr>
<tr>
<td>30</td>
<td>1,830, 3,840, 7,220, 14,800, 22,200, 42,800, 68,200, 121,000, 246,000</td>
</tr>
<tr>
<td>40</td>
<td>1,570, 3,280, 6,180, 12,700, 19,000, 36,600, 58,400, 103,000, 211,000</td>
</tr>
<tr>
<td>50</td>
<td>1,390, 2,910, 5,480, 11,300, 16,900, 32,500, 51,700, 91,500, 187,000</td>
</tr>
<tr>
<td>60</td>
<td>1,260, 2,640, 4,970, 10,200, 15,300, 29,400, 46,900, 82,900, 169,000</td>
</tr>
<tr>
<td>70</td>
<td>1,160, 2,430, 4,570, 9,380, 14,100, 27,100, 43,100, 76,300, 156,000</td>
</tr>
<tr>
<td>80</td>
<td>1,080, 2,260, 4,250, 8,730, 13,100, 25,200, 40,100, 70,900, 145,000</td>
</tr>
<tr>
<td>90</td>
<td>1,010, 2,120, 3,990, 8,190, 12,300, 23,600, 37,700, 66,600, 136,000</td>
</tr>
<tr>
<td>100</td>
<td>956, 2,000, 3,770, 7,730, 11,600, 22,300, 35,600, 62,900, 128,000</td>
</tr>
<tr>
<td>125</td>
<td>848, 1,770, 3,340, 6,850, 10,300, 19,800, 31,500, 55,700, 114,000</td>
</tr>
<tr>
<td>150</td>
<td>768, 1,610, 3,020, 6,210, 9,300, 17,900, 28,600, 50,500, 103,000</td>
</tr>
<tr>
<td>175</td>
<td>706, 1,480, 2,780, 5,710, 8,560, 16,500, 26,300, 46,500, 94,700</td>
</tr>
<tr>
<td>200</td>
<td>657, 1,370, 2,590, 5,320, 7,960, 15,300, 24,400, 43,200, 88,100</td>
</tr>
<tr>
<td>250</td>
<td>582, 1,220, 2,290, 4,710, 7,060, 13,600, 21,700, 38,300, 78,100</td>
</tr>
<tr>
<td>300</td>
<td>528, 1,100, 2,080, 4,270, 6,400, 12,300, 19,600, 34,700, 70,800</td>
</tr>
<tr>
<td>350</td>
<td>486, 1,020, 1,910, 3,930, 5,880, 11,300, 18,100, 31,900, 65,100</td>
</tr>
<tr>
<td>400</td>
<td>452, 945, 1,780, 3,650, 5,470, 10,500, 16,800, 29,700, 60,600</td>
</tr>
<tr>
<td>450</td>
<td>424, 886, 1,670, 3,430, 5,140, 9,890, 15,800, 27,900, 56,800</td>
</tr>
<tr>
<td>500</td>
<td>400, 837, 1,580, 3,240, 4,850, 9,340, 14,900, 26,300, 53,700</td>
</tr>
<tr>
<td>550</td>
<td>380, 795, 1,500, 3,070, 4,610, 8,870, 14,100, 25,000, 51,000</td>
</tr>
<tr>
<td>600</td>
<td>363, 759, 1,430, 2,930, 4,400, 8,460, 13,500, 23,900, 48,600</td>
</tr>
<tr>
<td>650</td>
<td>347, 726, 1,370, 2,810, 4,210, 8,110, 12,900, 22,800, 46,600</td>
</tr>
<tr>
<td>700</td>
<td>334, 698, 1,310, 2,700, 4,040, 7,790, 12,400, 21,900, 44,800</td>
</tr>
<tr>
<td>750</td>
<td>321, 672, 1,270, 2,600, 3,900, 7,500, 12,000, 21,100, 43,100</td>
</tr>
<tr>
<td>800</td>
<td>310, 649, 1,220, 2,510, 3,760, 7,240, 11,500, 20,400, 41,600</td>
</tr>
<tr>
<td>850</td>
<td>300, 628, 1,180, 2,430, 3,640, 7,010, 11,200, 19,800, 40,300</td>
</tr>
<tr>
<td>900</td>
<td>291, 609, 1,150, 2,360, 3,530, 6,800, 10,800, 19,200, 39,100</td>
</tr>
<tr>
<td>950</td>
<td>283, 592, 1,110, 2,290, 3,430, 6,600, 10,500, 18,600, 37,900</td>
</tr>
<tr>
<td>1,000</td>
<td>275, 575, 1,080, 2,230, 3,330, 6,420, 10,200, 18,100, 36,900</td>
</tr>
<tr>
<td>1,100</td>
<td>261, 546, 1,030, 2,110, 3,170, 6,100, 9,720, 17,200, 35,000</td>
</tr>
<tr>
<td>1,200</td>
<td>249, 521, 982, 2,020, 3,020, 5,820, 9,270, 16,400, 33,400</td>
</tr>
<tr>
<td>1,300</td>
<td>239, 499, 940, 1,930, 2,890, 5,570, 8,880, 15,700, 32,000</td>
</tr>
<tr>
<td>1,400</td>
<td>229, 480, 903, 1,850, 2,780, 5,350, 8,530, 15,100, 30,800</td>
</tr>
<tr>
<td>1,500</td>
<td>221, 462, 870, 1,790, 2,680, 5,160, 8,220, 14,500, 29,600</td>
</tr>
<tr>
<td>1,600</td>
<td>213, 446, 840, 1,730, 2,590, 4,980, 7,940, 14,000, 28,600</td>
</tr>
<tr>
<td>1,700</td>
<td>206, 432, 813, 1,670, 2,500, 4,820, 7,680, 13,600, 27,700</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m3/h, 1 degree = 0.01745 rad.

Note: All table entries have been rounded to three significant digits.

<table>
<thead>
<tr>
<th>Inlet Pressure</th>
<th>Pressure Drop</th>
<th>Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0 psi</td>
<td>3.0 psi</td>
<td>1.50</td>
</tr>
</tbody>
</table>

TABLE 2413.4(10)
SCHEDULE 40 METALLIC PIPE

<table>
<thead>
<tr>
<th>Gas</th>
<th>Undiluted Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure</td>
<td>10.0 psi</td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>3.0 psi</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTENDED USE</th>
<th>Pipe sizing between first stage (high-pressure regulator) and second stage (low-pressure regulator).</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPE SIZE (in)</td>
<td>Nominal</td>
</tr>
<tr>
<td></td>
<td>½</td>
</tr>
<tr>
<td>10</td>
<td>5,890</td>
</tr>
<tr>
<td>20</td>
<td>4,050</td>
</tr>
<tr>
<td>30</td>
<td>3,250</td>
</tr>
<tr>
<td>40</td>
<td>2,780</td>
</tr>
<tr>
<td>50</td>
<td>2,460</td>
</tr>
<tr>
<td>60</td>
<td>2,230</td>
</tr>
<tr>
<td>70</td>
<td>2,050</td>
</tr>
<tr>
<td>80</td>
<td>1,910</td>
</tr>
<tr>
<td>90</td>
<td>1,790</td>
</tr>
<tr>
<td>100</td>
<td>1,690</td>
</tr>
<tr>
<td>125</td>
<td>1,500</td>
</tr>
<tr>
<td>150</td>
<td>1,360</td>
</tr>
<tr>
<td>175</td>
<td>1,250</td>
</tr>
<tr>
<td>200</td>
<td>1,160</td>
</tr>
<tr>
<td>250</td>
<td>1,030</td>
</tr>
<tr>
<td>300</td>
<td>935</td>
</tr>
<tr>
<td>350</td>
<td>860</td>
</tr>
<tr>
<td>400</td>
<td>800</td>
</tr>
<tr>
<td>450</td>
<td>751</td>
</tr>
<tr>
<td>500</td>
<td>709</td>
</tr>
<tr>
<td>550</td>
<td>673</td>
</tr>
<tr>
<td>600</td>
<td>642</td>
</tr>
<tr>
<td>650</td>
<td>615</td>
</tr>
<tr>
<td>700</td>
<td>591</td>
</tr>
<tr>
<td>750</td>
<td>569</td>
</tr>
<tr>
<td>Gas</td>
<td>Undiluted Propane</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Inlet Pressure</td>
<td>2.0 psi</td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>1.0 psi</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.50</td>
</tr>
</tbody>
</table>

TABLE 2413.4(11) SCHEDULE 40 METALLIC PIPE

INTENDED USE: Pipe sizing between 2 psig service and line pressure regulator.

<table>
<thead>
<tr>
<th>PIPE SIZE (in.)</th>
<th>Nominal</th>
<th>Actual ID</th>
<th>Length (ft)</th>
<th>Capacity in Thousands of Btu per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>½</td>
<td>¾</td>
<td>1</td>
<td>1¼</td>
</tr>
<tr>
<td></td>
<td>0.622</td>
<td>0.824</td>
<td>1.049</td>
<td>1.380</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Note: All table entries have been rounded to three significant digits.
Pipe Size (in.)	125	150	175	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1,000	1,100	1,200	1,300	1,400	1,500	1,600	1,700	1,800	1,900	2,000	
	682	618	569	529	469	425	391	364	341	322	306	292	280	269	259	250	242	235	228	222	210	201	192	185	178	172	166	161	157	152	
	1,430	1,290	1,190	1,110	981	889	817	760	714	674	640	611	585	562	541	523	506	490	476	463	440	420	402	386	372	359	348	337	327	318	
	2,690	2,440	2,240	2,080	1,850	1,670	1,540	1,430	1,340	1,270	1,210	1,150	1,100	1,060	1,020	985	953	924	918	873	829	791	757	701	655	635	617	600			
	5,520	5,000	4,600	4,280	3,790	3,440	3,160	2,940	2,760	2,610	2,480	2,360	2,260	2,170	2,090	2,020	1,960	1,900	1,840	1,790	1,700	1,620	1,550	1,490	1,440	1,340	1,300	1,270	1,230		
	8,270	7,490	6,890	6,410	5,680	5,150	4,740	4,410	4,130	3,910	3,710	3,540	3,390	3,260	3,140	3,030	2,930	2,840	2,760	2,680	2,550	2,430	2,330	2,240	2,160	2,010	1,950	1,800	1,700	1,600	
	15,900	14,400	13,300	12,300	10,900	9,220	8,920	8,490	7,960	7,520	7,140	6,820	6,530	6,270	6,040	5,830	5,640	5,470	5,310	5,170	4,910	4,760	4,590	4,300	4,150	3,880	3,650	3,550	3,480	3,390	3,300
	25,400	23,000	21,200	19,700	17,400	15,800	14,500	13,500	12,700	12,000	11,400	10,900	10,400	9,990	9,630	9,300	9,000	8,720	8,470	8,240	7,830	7,470	7,150	6,820	6,530	6,270	6,040	5,830	5,640	5,310	
	44,900	40,700	37,400	34,800	30,800	27,900	25,700	23,000	21,200	19,700	17,700	16,400	15,800	15,000	14,500	14,000	13,500	12,700	11,400	10,200	9,830	9,300	8,720	8,240	8,150	7,830	7,370	7,000	6,540	6,140	
	91,500	82,900	76,300	71,000	62,900	57,000	52,400	48,800	45,800	43,200	41,100	39,200	37,500	36,000	34,700	33,500	32,400	31,500	30,500	29,700	28,200	27,200	25,800	24,800	23,900	23,000	22,300	21,600	20,400		

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Note: All table entries have been rounded to three significant digits.

TABLE 2413.4(12)
SCHEDULE 40 METALLIC PIPE

<table>
<thead>
<tr>
<th>Gas</th>
<th>Undiluted Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure</td>
<td>11.0 in. w.c.</td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>0.5 in. w.c.</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.50</td>
</tr>
</tbody>
</table>

INTENDED USE: Pipe sizing between single- or second-stage (low pressure) regulator and appliance.

PIPE SIZE (in.)
<table>
<thead>
<tr>
<th>Nominal</th>
<th>½</th>
<th>¾</th>
<th>1</th>
<th>1¼</th>
<th>1½</th>
<th>2</th>
<th>2½</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual ID</td>
<td>0.622</td>
<td>0.824</td>
<td>1.049</td>
<td>1.380</td>
<td>1.610</td>
<td>2.067</td>
<td>2.469</td>
<td>3.068</td>
<td>4.026</td>
</tr>
<tr>
<td>Length (ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity in Thousands of Btu per Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>291</td>
<td>608</td>
<td>1,150</td>
<td>2,350</td>
<td>3,520</td>
<td>6,790</td>
<td>10,800</td>
<td>19,100</td>
<td>39,000</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
<td>418</td>
<td>787</td>
<td>1,620</td>
<td>2,420</td>
<td>4,660</td>
<td>7,430</td>
<td>13,100</td>
<td>26,800</td>
</tr>
<tr>
<td>30</td>
<td>160</td>
<td>336</td>
<td>632</td>
<td>1,300</td>
<td>1,940</td>
<td>3,750</td>
<td>5,970</td>
<td>10,600</td>
<td>21,500</td>
</tr>
<tr>
<td>40</td>
<td>137</td>
<td>287</td>
<td>541</td>
<td>1,110</td>
<td>1,660</td>
<td>3,210</td>
<td>5,110</td>
<td>9,030</td>
<td>18,400</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
<td>255</td>
<td>480</td>
<td>985</td>
<td>1,480</td>
<td>2,840</td>
<td>4,530</td>
<td>8,000</td>
<td>16,300</td>
</tr>
<tr>
<td>60</td>
<td>110</td>
<td>231</td>
<td>434</td>
<td>892</td>
<td>1,340</td>
<td>2,570</td>
<td>4,100</td>
<td>7,250</td>
<td>14,800</td>
</tr>
<tr>
<td>80</td>
<td>101</td>
<td>212</td>
<td>400</td>
<td>821</td>
<td>1,230</td>
<td>2,370</td>
<td>3,770</td>
<td>6,670</td>
<td>13,600</td>
</tr>
<tr>
<td>100</td>
<td>94</td>
<td>197</td>
<td>372</td>
<td>763</td>
<td>1,140</td>
<td>2,200</td>
<td>3,510</td>
<td>6,210</td>
<td>12,700</td>
</tr>
<tr>
<td>125</td>
<td>89</td>
<td>185</td>
<td>349</td>
<td>716</td>
<td>1,070</td>
<td>2,070</td>
<td>3,290</td>
<td>5,820</td>
<td>11,900</td>
</tr>
<tr>
<td>150</td>
<td>84</td>
<td>175</td>
<td>330</td>
<td>677</td>
<td>1,010</td>
<td>1,950</td>
<td>3,110</td>
<td>5,500</td>
<td>11,200</td>
</tr>
<tr>
<td>175</td>
<td>74</td>
<td>155</td>
<td>292</td>
<td>600</td>
<td>899</td>
<td>1,730</td>
<td>2,760</td>
<td>4,880</td>
<td>9,950</td>
</tr>
<tr>
<td>200</td>
<td>67</td>
<td>140</td>
<td>265</td>
<td>543</td>
<td>814</td>
<td>1,570</td>
<td>2,500</td>
<td>4,420</td>
<td>9,010</td>
</tr>
<tr>
<td>250</td>
<td>62</td>
<td>129</td>
<td>243</td>
<td>500</td>
<td>749</td>
<td>1,440</td>
<td>2,300</td>
<td>4,060</td>
<td>8,290</td>
</tr>
<tr>
<td>300</td>
<td>58</td>
<td>120</td>
<td>227</td>
<td>465</td>
<td>697</td>
<td>1,340</td>
<td>2,140</td>
<td>3,780</td>
<td>7,710</td>
</tr>
<tr>
<td>350</td>
<td>51</td>
<td>107</td>
<td>201</td>
<td>412</td>
<td>618</td>
<td>1,190</td>
<td>1,900</td>
<td>3,350</td>
<td>6,840</td>
</tr>
<tr>
<td>400</td>
<td>46</td>
<td>97</td>
<td>182</td>
<td>373</td>
<td>560</td>
<td>1,080</td>
<td>1,720</td>
<td>3,040</td>
<td>6,190</td>
</tr>
<tr>
<td>450</td>
<td>42</td>
<td>89</td>
<td>167</td>
<td>344</td>
<td>515</td>
<td>991</td>
<td>1,580</td>
<td>2,790</td>
<td>5,700</td>
</tr>
<tr>
<td>500</td>
<td>40</td>
<td>83</td>
<td>156</td>
<td>320</td>
<td>479</td>
<td>922</td>
<td>1,470</td>
<td>2,600</td>
<td>5,300</td>
</tr>
<tr>
<td>550</td>
<td>37</td>
<td>78</td>
<td>146</td>
<td>300</td>
<td>449</td>
<td>865</td>
<td>1,380</td>
<td>2,440</td>
<td>4,970</td>
</tr>
<tr>
<td>600</td>
<td>35</td>
<td>73</td>
<td>138</td>
<td>283</td>
<td>424</td>
<td>817</td>
<td>1,300</td>
<td>2,300</td>
<td>4,700</td>
</tr>
<tr>
<td>650</td>
<td>33</td>
<td>70</td>
<td>131</td>
<td>269</td>
<td>403</td>
<td>776</td>
<td>1,240</td>
<td>2,190</td>
<td>4,460</td>
</tr>
<tr>
<td>700</td>
<td>32</td>
<td>66</td>
<td>125</td>
<td>257</td>
<td>385</td>
<td>741</td>
<td>1,180</td>
<td>2,090</td>
<td>4,260</td>
</tr>
<tr>
<td>750</td>
<td>30</td>
<td>64</td>
<td>120</td>
<td>246</td>
<td>368</td>
<td>709</td>
<td>1,130</td>
<td>2,000</td>
<td>4,080</td>
</tr>
<tr>
<td>800</td>
<td>29</td>
<td>61</td>
<td>115</td>
<td>236</td>
<td>354</td>
<td>681</td>
<td>1,090</td>
<td>1,920</td>
<td>3,920</td>
</tr>
<tr>
<td>850</td>
<td>28</td>
<td>59</td>
<td>111</td>
<td>227</td>
<td>341</td>
<td>656</td>
<td>1,050</td>
<td>1,850</td>
<td>3,770</td>
</tr>
<tr>
<td>900</td>
<td>27</td>
<td>57</td>
<td>107</td>
<td>220</td>
<td>329</td>
<td>634</td>
<td>1,010</td>
<td>1,790</td>
<td>3,640</td>
</tr>
<tr>
<td>950</td>
<td>26</td>
<td>55</td>
<td>104</td>
<td>213</td>
<td>319</td>
<td>613</td>
<td>978</td>
<td>1,730</td>
<td>3,530</td>
</tr>
<tr>
<td>1,000</td>
<td>25</td>
<td>53</td>
<td>100</td>
<td>206</td>
<td>309</td>
<td>595</td>
<td>948</td>
<td>1,680</td>
<td>3,420</td>
</tr>
<tr>
<td>1,100</td>
<td>25</td>
<td>52</td>
<td>97</td>
<td>200</td>
<td>300</td>
<td>578</td>
<td>921</td>
<td>1,630</td>
<td>3,320</td>
</tr>
<tr>
<td>1,200</td>
<td>24</td>
<td>50</td>
<td>95</td>
<td>195</td>
<td>292</td>
<td>562</td>
<td>895</td>
<td>1,580</td>
<td>3,230</td>
</tr>
<tr>
<td>1,300</td>
<td>23</td>
<td>48</td>
<td>90</td>
<td>185</td>
<td>277</td>
<td>534</td>
<td>850</td>
<td>1,500</td>
<td>3,070</td>
</tr>
<tr>
<td>1,400</td>
<td>22</td>
<td>46</td>
<td>86</td>
<td>176</td>
<td>264</td>
<td>509</td>
<td>811</td>
<td>1,430</td>
<td>2,930</td>
</tr>
<tr>
<td>1,500</td>
<td>21</td>
<td>44</td>
<td>82</td>
<td>169</td>
<td>253</td>
<td>487</td>
<td>777</td>
<td>1,370</td>
<td>2,800</td>
</tr>
<tr>
<td>1,600</td>
<td>20</td>
<td>42</td>
<td>79</td>
<td>162</td>
<td>243</td>
<td>468</td>
<td>746</td>
<td>1,320</td>
<td>2,690</td>
</tr>
<tr>
<td>1,700</td>
<td>19</td>
<td>40</td>
<td>76</td>
<td>156</td>
<td>234</td>
<td>451</td>
<td>719</td>
<td>1,270</td>
<td>2,590</td>
</tr>
<tr>
<td>1,800</td>
<td>19</td>
<td>39</td>
<td>74</td>
<td>151</td>
<td>226</td>
<td>436</td>
<td>694</td>
<td>1,230</td>
<td>2,500</td>
</tr>
<tr>
<td>1,900</td>
<td>18</td>
<td>38</td>
<td>71</td>
<td>146</td>
<td>219</td>
<td>422</td>
<td>672</td>
<td>1,190</td>
<td>2,420</td>
</tr>
<tr>
<td>2,000</td>
<td>18</td>
<td>37</td>
<td>69</td>
<td>142</td>
<td>212</td>
<td>409</td>
<td>652</td>
<td>1,150</td>
<td>2,350</td>
</tr>
</tbody>
</table>
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m3/h, 1 degree = 0.01745 rad.

TABLE 2413.4(13)

SEMRIGID COPPER TUBING

<table>
<thead>
<tr>
<th>Gas</th>
<th>Undiluted Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure</td>
<td>10.0 psi</td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>1.0 psi</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.50</td>
</tr>
</tbody>
</table>

INTENDED USE

Sizing between first stage (high-pressure regulator) and second stage (low-pressure regulator).

<table>
<thead>
<tr>
<th>Nominal</th>
<th>K & L ACR</th>
<th>$\frac{1}{8}$</th>
<th>$\frac{3}{8}$</th>
<th>$\frac{1}{2}$</th>
<th>$\frac{5}{8}$</th>
<th>$\frac{3}{4}$</th>
<th>$\frac{7}{8}$</th>
<th>1</th>
<th>$\frac{1}{4}$</th>
<th>$\frac{3}{4}$</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside</td>
<td></td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
<td>0.750</td>
<td>0.875</td>
<td>1.125</td>
<td>1.375</td>
<td>1.625</td>
<td>2.125</td>
<td></td>
</tr>
<tr>
<td>Inside</td>
<td></td>
<td>0.305</td>
<td>0.402</td>
<td>0.527</td>
<td>0.652</td>
<td>0.745</td>
<td>0.995</td>
<td>1.245</td>
<td>1.481</td>
<td>1.959</td>
<td></td>
</tr>
<tr>
<td>Capacity in Thousands of Btu per Hour</td>
<td></td>
</tr>
<tr>
<td>Length (ft)</td>
<td></td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Inlet Pressure</td>
<td>Pressure Drop</td>
<td>Specific Gravity</td>
<td>INTENDED USE</td>
<td>TUBE SIZE (in.)</td>
<td>Length (ft)</td>
<td>Capacity in Thousands of Btu per Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.0 in. w.c.</td>
<td>0.5 in. w.c.</td>
<td>1.50</td>
<td>Sizing between single- or second-stage (low-pressure regulator) and appliance.</td>
<td>K & L</td>
<td>ACR</td>
<td>¼</td>
<td>⅜</td>
<td>⅜</td>
<td>⅜</td>
<td>⅜</td>
<td>⅜</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nominal</td>
<td>Outside</td>
<td>Inside</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.375</td>
<td>0.500</td>
<td>0.625</td>
<td>0.750</td>
<td>0.875</td>
<td>1.125</td>
<td>1.375</td>
<td>1.625</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.305</td>
<td>0.402</td>
<td>0.527</td>
<td>0.652</td>
<td>0.745</td>
<td>0.995</td>
<td>1.245</td>
<td>1.481</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>45</td>
<td>93</td>
<td>188</td>
<td>329</td>
<td>467</td>
<td>997</td>
<td>1,800</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>31</td>
<td>64</td>
<td>129</td>
<td>226</td>
<td>321</td>
<td>685</td>
<td>1,230</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>25</td>
<td>51</td>
<td>104</td>
<td>182</td>
<td>258</td>
<td>550</td>
<td>991</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>21</td>
<td>44</td>
<td>89</td>
<td>155</td>
<td>220</td>
<td>471</td>
<td>848</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>19</td>
<td>39</td>
<td>79</td>
<td>138</td>
<td>195</td>
<td>417</td>
<td>752</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>17</td>
<td>35</td>
<td>71</td>
<td>125</td>
<td>177</td>
<td>378</td>
<td>681</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>16</td>
<td>32</td>
<td>66</td>
<td>115</td>
<td>163</td>
<td>348</td>
<td>626</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>15</td>
<td>30</td>
<td>61</td>
<td>107</td>
<td>152</td>
<td>324</td>
<td>583</td>
</tr>
</tbody>
</table>

Notes:
1 Table capacities are based on Type K copper tubing inside diameter (shown), which has the smallest inside diameter of the copper tubing products.
2 All table entries have been rounded to three significant digits.
<table>
<thead>
<tr>
<th>Inlet Pressure</th>
<th>Gas</th>
<th>Undiluted Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 psi</td>
<td>Pressure Drop</td>
<td>2.0 psi</td>
</tr>
</tbody>
</table>

TABLE 2413.4(15)

SEMRIGID COPPER TUBING

<table>
<thead>
<tr>
<th>Inlet Pressure</th>
<th>Pressure Drop</th>
<th>Specific Gravity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 psi</td>
<td>1.0 psi</td>
<td>1.50</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Notes:
1. Table capacities are based on Type K copper tubing inside diameter (shown), which has the smallest inside diameter of the copper tubing products.
2. NA means a flow of less than 10,000 Btu/hr.
3. All table entries have been rounded to three significant digits.
<table>
<thead>
<tr>
<th>Nominal</th>
<th>K & L ACR</th>
<th>Tube sizing between 2 psig service and line pressure regulator.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outside</td>
<td>Capacity in Thousands of Btu per Hour</td>
</tr>
<tr>
<td></td>
<td>Inside</td>
<td></td>
</tr>
<tr>
<td>Length (ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>413</td>
<td>852 1,730 3,030 4,300 9,170 16,500 26,000 54,200</td>
</tr>
<tr>
<td>20</td>
<td>284</td>
<td>585 1,190 2,080 2,950 6,310 11,400 17,900 37,300</td>
</tr>
<tr>
<td>30</td>
<td>228</td>
<td>470 956 1,670 2,370 5,060 9,120 14,400 29,900</td>
</tr>
<tr>
<td>40</td>
<td>195</td>
<td>402 818 1,430 2,030 4,330 7,800 12,300 25,600</td>
</tr>
<tr>
<td>50</td>
<td>173</td>
<td>356 725 1,270 1,800 3,840 6,920 10,900 22,700</td>
</tr>
<tr>
<td>60</td>
<td>157</td>
<td>323 657 1,150 1,630 3,480 6,270 9,880 20,600</td>
</tr>
<tr>
<td>70</td>
<td>144</td>
<td>297 605 1,060 1,500 3,200 5,760 9,090 18,900</td>
</tr>
<tr>
<td>80</td>
<td>134</td>
<td>276 562 983 1,390 2,980 5,360 8,450 17,600</td>
</tr>
<tr>
<td>90</td>
<td>126</td>
<td>259 528 922 1,310 2,790 5,030 7,930 16,500</td>
</tr>
<tr>
<td>100</td>
<td>119</td>
<td>245 498 871 1,240 2,640 4,750 7,490 15,600</td>
</tr>
<tr>
<td>125</td>
<td>105</td>
<td>217 442 772 1,100 2,340 4,210 6,640 13,800</td>
</tr>
<tr>
<td>150</td>
<td>95</td>
<td>197 400 700 992 2,120 3,820 6,020 12,500</td>
</tr>
<tr>
<td>175</td>
<td>88</td>
<td>181 368 644 913 1,950 3,510 5,540 11,500</td>
</tr>
<tr>
<td>200</td>
<td>82</td>
<td>168 343 599 849 1,810 3,270 5,150 10,700</td>
</tr>
<tr>
<td>250</td>
<td>72</td>
<td>149 304 531 753 1,610 2,900 4,560 9,510</td>
</tr>
<tr>
<td>300</td>
<td>66</td>
<td>135 275 481 682 1,460 2,620 4,140 8,610</td>
</tr>
<tr>
<td>350</td>
<td>60</td>
<td>124 253 442 628 1,340 2,410 3,800 7,920</td>
</tr>
<tr>
<td>400</td>
<td>56</td>
<td>116 235 411 584 1,250 2,250 3,540 7,370</td>
</tr>
<tr>
<td>450</td>
<td>53</td>
<td>109 221 386 548 1,170 2,110 3,320 6,920</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
<td>103 209 365 517 1,110 1,990 3,140 6,530</td>
</tr>
<tr>
<td>550</td>
<td>47</td>
<td>97 198 346 491 1,050 1,890 2,980 6,210</td>
</tr>
<tr>
<td>600</td>
<td>45</td>
<td>93 189 330 469 1,000 1,800 2,840 5,920</td>
</tr>
<tr>
<td>650</td>
<td>43</td>
<td>89 181 316 449 959 1,730 2,720 5,670</td>
</tr>
<tr>
<td>700</td>
<td>41</td>
<td>86 174 304 431 921 1,660 2,620 5,450</td>
</tr>
<tr>
<td>750</td>
<td>40</td>
<td>82 168 293 415 888 1,600 2,520 5,250</td>
</tr>
<tr>
<td>800</td>
<td>39</td>
<td>80 162 283 401 857 1,540 2,430 5,070</td>
</tr>
<tr>
<td>850</td>
<td>37</td>
<td>77 157 274 388 829 1,490 2,350 4,900</td>
</tr>
<tr>
<td>900</td>
<td>36</td>
<td>75 152 265 376 804 1,450 2,280 4,750</td>
</tr>
<tr>
<td>950</td>
<td>35</td>
<td>72 147 258 366 781 1,410 2,220 4,620</td>
</tr>
<tr>
<td>1,000</td>
<td>34</td>
<td>71 143 251 356 760 1,370 2,160 4,490</td>
</tr>
<tr>
<td>1,050</td>
<td>32</td>
<td>67 136 238 338 721 1,300 2,050 4,270</td>
</tr>
<tr>
<td>1,100</td>
<td>31</td>
<td>64 130 227 322 688 1,240 1,950 4,070</td>
</tr>
<tr>
<td>1,150</td>
<td>30</td>
<td>61 124 217 309 659 1,190 1,870 3,900</td>
</tr>
<tr>
<td>1,200</td>
<td>28</td>
<td>59 120 209 296 633 1,140 1,800 3,740</td>
</tr>
<tr>
<td>1,250</td>
<td>27</td>
<td>57 115 201 286 610 1,100 1,730 3,610</td>
</tr>
<tr>
<td>1,300</td>
<td>26</td>
<td>55 111 194 276 589 1,060 1,670 3,480</td>
</tr>
<tr>
<td>1,350</td>
<td>25</td>
<td>53 108 188 267 570 1,030 1,620 3,370</td>
</tr>
<tr>
<td>1,400</td>
<td>24</td>
<td>50 101 177 251 537 966 1,520 3,170</td>
</tr>
<tr>
<td>Flow Designation</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>------------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Length (ft)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>72</td>
<td>99</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>69</td>
</tr>
<tr>
<td>15</td>
<td>39</td>
<td>55</td>
</tr>
<tr>
<td>20</td>
<td>34</td>
<td>49</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>70</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>80</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>90</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>100</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>150</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>200</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>250</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>300</td>
<td>8</td>
<td>11</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Notes:
1. Table capacities are based on Type K copper tubing inside diameter (shown), which has the smallest inside diameter of the copper tubing products.
2. All table entries have been rounded to three significant digits.
(feet) of tubing and \(n \) is the number of additional fittings and/or bends.

2 EHD—Equivalent Hydraulic Diameter, which is a measure of the relative hydraulic efficiency between different tubing sizes. The greater the value of EHD, the greater the gas capacity of the tubing.

3 All table entries have been rounded to three significant digits.

TABLE 2413.4(17)

CORRUGATED STAINLESS STEEL TUBING (CSST)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Undiluted Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure</td>
<td>2.0 psi</td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>1.0 psi</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTENDED USE</th>
<th>Sizing between 2 psi service and the line pressure regulator.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUBE SIZE (EHD)</td>
<td>Capacity in Thousands of Btu per Hour</td>
</tr>
<tr>
<td>Flow Designation</td>
<td>13</td>
</tr>
<tr>
<td>Length (ft)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1 inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Notes:

1 Table does not include effect of pressure drop across the line regulator. Where regulator loss exceeds ½ psi (based on 13 in. w.c. outlet pressure), DO NOT USE THIS TABLE. Consult with the regulator manufacturer for pressure drops and capacity factors. Pressure drops across a regulator can vary with flow rate.

2 CAUTION: Capacities shown in the table might exceed maximum capacity for a selected regulator. Consult with the regulator or tubing manufacturer for guidance.

3 Table includes losses for four 90-degree bends and two end fittings. Tubing runs with larger numbers of bends and/or fittings shall be increased by an equivalent length of tubing to the following equation: \(L = 1.3n \) where \(L \) is additional length (feet) of tubing and \(n \) is the number of additional fittings and/or bends.

4 EHD—Equivalent Hydraulic Diameter, which is a measure of the relative hydraulic efficiency between different tubing sizes.
sizes. The greater the value of EHD, the greater the gas capacity of the tubing.

5 All table entries have been rounded to three significant digits.

TABLE 2413.4(18)
CORRUGATED STAINLESS STEEL TUBING (CSST)

<table>
<thead>
<tr>
<th>Flow Designation</th>
<th>Capacity in Thousands of Btu per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (ft)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>826 1,070 1,710 2,060 3,150 4,000 7,830 8,950 13,100 14,441 28,600 31,200 54,400 63,800</td>
</tr>
<tr>
<td>25</td>
<td>509 664 1,090 1,310 2,040 2,550 4,860 5,660 8,400 9,339 18,000 19,900 34,700 40,400</td>
</tr>
<tr>
<td>30</td>
<td>461 603 999 1,190 1,870 2,340 4,430 5,100 7,680 8,564 16,400 18,200 31,700 36,900</td>
</tr>
<tr>
<td>40</td>
<td>396 520 867 1,030 1,630 2,030 3,820 4,400 6,680 7,469 14,200 15,800 27,600 32,000</td>
</tr>
<tr>
<td>50</td>
<td>352 463 777 926 1,460 1,820 3,410 3,930 5,990 6,717 12,700 14,100 24,700 28,600</td>
</tr>
<tr>
<td>75</td>
<td>284 376 637 757 1,210 1,490 2,770 3,190 4,920 5,539 10,300 11,600 20,300 23,400</td>
</tr>
<tr>
<td>80</td>
<td>275 363 618 731 1,170 1,450 2,680 3,090 4,770 5,372 9,990 11,200 19,600 22,700</td>
</tr>
<tr>
<td>100</td>
<td>243 324 553 656 1,050 1,300 2,390 2,760 4,280 4,830 8,930 10,000 17,600 20,300</td>
</tr>
<tr>
<td>150</td>
<td>196 262 453 535 866 1,060 1,940 2,240 3,510 3,983 7,270 8,210 14,400 16,600</td>
</tr>
<tr>
<td>200</td>
<td>169 226 393 464 755 923 1,680 1,930 3,050 3,474 6,290 7,130 12,500 14,400</td>
</tr>
<tr>
<td>250</td>
<td>150 202 352 415 679 828 1,490 1,730 2,740 3,124 5,620 6,390 11,200 12,900</td>
</tr>
<tr>
<td>300</td>
<td>136 183 322 379 622 757 1,360 1,570 2,510 2,865 5,120 5,840 10,300 11,700</td>
</tr>
<tr>
<td>400</td>
<td>117 158 279 328 542 657 1,170 1,360 2,180 2,498 4,430 5,070 8,920 10,200</td>
</tr>
<tr>
<td>500</td>
<td>104 140 251 294 488 589 1,050 1,210 1,950 2,247 3,960 4,540 8,000 9,110</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Notes:

1 Table does not include effect of pressure drop across line regulator. Where regulator loss exceeds 1 psi, DO NOT USE THIS TABLE. Consult with the regulator manufacturer for pressure drops and capacity factors. Pressure drop across regulator can vary with the flow rate.

2 CAUTION: Capacities shown in the table might exceed maximum capacity of selected regulator. Consult with the tubing manufacturer for guidance.

3 Table includes losses for four 90-degree bends and two end fittings. Tubing runs with larger numbers of bends and/or fittings shall be increased by an equivalent length of tubing to the following equation: L = 1.3n where L is additional length (feet) of tubing and n is the number of additional fittings and/or bends.

4 EHD—Equivalent Hydraulic Diameter, which is a measure of the relative hydraulic efficiency between different tubing sizes. The greater the value of EHD, the greater the gas capacity of the tubing.

5 All table entries have been rounded to three significant digits.
Table 2413.4(19)
Polyethylene Plastic Pipe

<table>
<thead>
<tr>
<th>Gas</th>
<th>Undiluted Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure</td>
<td>11.0 in. w.c.</td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>0.5 in. w.c.</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Intended Use
PE pipe sizing between integral 2-stage regulator at tank or second stage (low pressure regulator) and building.

<table>
<thead>
<tr>
<th>Nominal OD</th>
<th>⅛</th>
<th>⅜</th>
<th>⅝</th>
<th>⅞</th>
<th>⅞</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>SDR 9.33</td>
<td>SDR 11.0</td>
<td>SDR 11.00</td>
<td>SDR 10.00</td>
<td>SDR 11.00</td>
<td>SDR 11.00</td>
</tr>
<tr>
<td>Actual ID</td>
<td>0.660</td>
<td>0.860</td>
<td>1.077</td>
<td>1.328</td>
<td>1.554</td>
<td>1.943</td>
</tr>
<tr>
<td>Length (ft)</td>
<td>Capacity in Thousands of Btu per Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>340</td>
<td>680</td>
<td>1,230</td>
<td>2,130</td>
<td>3,210</td>
<td>5,770</td>
</tr>
<tr>
<td>20</td>
<td>233</td>
<td>468</td>
<td>844</td>
<td>1,460</td>
<td>2,210</td>
<td>3,970</td>
</tr>
<tr>
<td>30</td>
<td>187</td>
<td>375</td>
<td>677</td>
<td>1,170</td>
<td>1,770</td>
<td>3,180</td>
</tr>
<tr>
<td>40</td>
<td>160</td>
<td>321</td>
<td>580</td>
<td>1,000</td>
<td>1,520</td>
<td>2,730</td>
</tr>
<tr>
<td>50</td>
<td>142</td>
<td>285</td>
<td>514</td>
<td>890</td>
<td>1,340</td>
<td>2,420</td>
</tr>
<tr>
<td>60</td>
<td>129</td>
<td>258</td>
<td>466</td>
<td>807</td>
<td>1,220</td>
<td>2,190</td>
</tr>
<tr>
<td>70</td>
<td>119</td>
<td>237</td>
<td>428</td>
<td>742</td>
<td>1,120</td>
<td>2,010</td>
</tr>
<tr>
<td>80</td>
<td>110</td>
<td>221</td>
<td>398</td>
<td>690</td>
<td>1,040</td>
<td>1,870</td>
</tr>
<tr>
<td>90</td>
<td>103</td>
<td>207</td>
<td>374</td>
<td>648</td>
<td>978</td>
<td>1,760</td>
</tr>
<tr>
<td>100</td>
<td>98</td>
<td>196</td>
<td>353</td>
<td>612</td>
<td>924</td>
<td>1,660</td>
</tr>
<tr>
<td>125</td>
<td>87</td>
<td>173</td>
<td>313</td>
<td>542</td>
<td>819</td>
<td>1,470</td>
</tr>
<tr>
<td>150</td>
<td>78</td>
<td>157</td>
<td>284</td>
<td>491</td>
<td>742</td>
<td>1,330</td>
</tr>
<tr>
<td>175</td>
<td>72</td>
<td>145</td>
<td>261</td>
<td>452</td>
<td>683</td>
<td>1,230</td>
</tr>
<tr>
<td>200</td>
<td>67</td>
<td>135</td>
<td>243</td>
<td>420</td>
<td>635</td>
<td>1,140</td>
</tr>
<tr>
<td>250</td>
<td>60</td>
<td>119</td>
<td>215</td>
<td>373</td>
<td>563</td>
<td>1,010</td>
</tr>
<tr>
<td>300</td>
<td>54</td>
<td>108</td>
<td>195</td>
<td>338</td>
<td>510</td>
<td>916</td>
</tr>
<tr>
<td>350</td>
<td>50</td>
<td>99</td>
<td>179</td>
<td>311</td>
<td>469</td>
<td>843</td>
</tr>
<tr>
<td>400</td>
<td>46</td>
<td>92</td>
<td>167</td>
<td>289</td>
<td>436</td>
<td>784</td>
</tr>
<tr>
<td>450</td>
<td>43</td>
<td>87</td>
<td>157</td>
<td>271</td>
<td>409</td>
<td>736</td>
</tr>
<tr>
<td>500</td>
<td>41</td>
<td>82</td>
<td>148</td>
<td>256</td>
<td>387</td>
<td>695</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Note: All table entries have been rounded to three significant digits.
TABLE 2413.4(20)
POLYETHYLENE PLASTIC PIPE

<table>
<thead>
<tr>
<th>Gas</th>
<th>Undiluted Propane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Pressure</td>
<td>2.0 psi</td>
</tr>
<tr>
<td>Pressure Drop</td>
<td>1.0 psi</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.50</td>
</tr>
</tbody>
</table>

INTENDED USE
PE pipe sizing between 2 psig service regulator and line pressure regulator.

PIPE SIZE (in.)

<table>
<thead>
<tr>
<th>Nominal OD</th>
<th>½</th>
<th>¼</th>
<th>⅛</th>
<th>⅛</th>
<th>1</th>
<th>1½</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>SDR 9.33</td>
<td>SDR 11.0</td>
<td>SDR 11.00</td>
<td>SDR 10.00</td>
<td>SDR 11.00</td>
<td>SDR 11.00</td>
<td></td>
</tr>
<tr>
<td>Actual ID</td>
<td>0.660</td>
<td>0.860</td>
<td>1.077</td>
<td>1.328</td>
<td>1.554</td>
<td>1.943</td>
<td></td>
</tr>
<tr>
<td>Length (ft)</td>
<td>Capacity in Thousands of Btu per Hour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3,130</td>
<td>6,260</td>
<td>11,300</td>
<td>19,600</td>
<td>29,500</td>
<td>53,100</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2,150</td>
<td>4,300</td>
<td>7,760</td>
<td>13,400</td>
<td>20,300</td>
<td>36,500</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1,730</td>
<td>3,450</td>
<td>6,230</td>
<td>10,800</td>
<td>16,300</td>
<td>29,300</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1,480</td>
<td>2,960</td>
<td>5,330</td>
<td>9,240</td>
<td>14,000</td>
<td>25,100</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1,310</td>
<td>2,620</td>
<td>4,730</td>
<td>8,190</td>
<td>12,400</td>
<td>22,200</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1,190</td>
<td>2,370</td>
<td>4,280</td>
<td>7,420</td>
<td>11,200</td>
<td>20,100</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>1,090</td>
<td>2,180</td>
<td>3,940</td>
<td>6,830</td>
<td>10,300</td>
<td>18,500</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1,010</td>
<td>2,030</td>
<td>3,670</td>
<td>6,350</td>
<td>9,590</td>
<td>17,200</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>952</td>
<td>1,910</td>
<td>3,440</td>
<td>5,960</td>
<td>9,000</td>
<td>16,200</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>899</td>
<td>1,800</td>
<td>3,250</td>
<td>5,630</td>
<td>8,500</td>
<td>15,300</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>797</td>
<td>1,600</td>
<td>2,880</td>
<td>4,990</td>
<td>7,530</td>
<td>13,500</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>722</td>
<td>1,450</td>
<td>2,610</td>
<td>4,520</td>
<td>6,830</td>
<td>12,300</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>664</td>
<td>1,330</td>
<td>2,400</td>
<td>4,160</td>
<td>6,280</td>
<td>11,300</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>618</td>
<td>1,240</td>
<td>2,230</td>
<td>3,870</td>
<td>5,840</td>
<td>10,500</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>548</td>
<td>1,100</td>
<td>1,980</td>
<td>3,430</td>
<td>5,180</td>
<td>9,300</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>496</td>
<td>994</td>
<td>1,790</td>
<td>3,110</td>
<td>4,690</td>
<td>8,430</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>457</td>
<td>914</td>
<td>1,650</td>
<td>2,860</td>
<td>4,320</td>
<td>7,760</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>425</td>
<td>851</td>
<td>1,530</td>
<td>2,660</td>
<td>4,020</td>
<td>7,220</td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>399</td>
<td>798</td>
<td>1,440</td>
<td>2,500</td>
<td>3,770</td>
<td>6,770</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>377</td>
<td>754</td>
<td>1,360</td>
<td>2,360</td>
<td>3,560</td>
<td>6,390</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>358</td>
<td>716</td>
<td>1,290</td>
<td>2,240</td>
<td>3,380</td>
<td>6,070</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>341</td>
<td>683</td>
<td>1,230</td>
<td>2,140</td>
<td>3,220</td>
<td>5,790</td>
<td></td>
</tr>
<tr>
<td>650</td>
<td>327</td>
<td>654</td>
<td>1,180</td>
<td>2,040</td>
<td>3,090</td>
<td>5,550</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>314</td>
<td>628</td>
<td>1,130</td>
<td>1,960</td>
<td>2,970</td>
<td>5,330</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>302</td>
<td>605</td>
<td>1,090</td>
<td>1,890</td>
<td>2,860</td>
<td>5,140</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>292</td>
<td>585</td>
<td>1,050</td>
<td>1,830</td>
<td>2,760</td>
<td>4,960</td>
<td></td>
</tr>
<tr>
<td>850</td>
<td>283</td>
<td>566</td>
<td>1,020</td>
<td>1,770</td>
<td>2,670</td>
<td>4,800</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>274</td>
<td>549</td>
<td>990</td>
<td>1,710</td>
<td>2,590</td>
<td>4,650</td>
<td></td>
</tr>
<tr>
<td>950</td>
<td>266</td>
<td>533</td>
<td>961</td>
<td>1,670</td>
<td>2,520</td>
<td>4,520</td>
<td></td>
</tr>
<tr>
<td>Inlet Pressure</td>
<td>Pressure Drop</td>
<td>Specific Gravity</td>
<td>INTENDED USE</td>
<td>Plastic Tubing Size (CTS) (in.)</td>
<td>Nominal OD</td>
<td>Designation</td>
<td>Actual ID</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>11.0 in. w.c.</td>
<td>0.5 in. w.c.</td>
<td>1.50</td>
<td>PE pipe sizing between integral 2-stage regulator at tank or second stage (low pressure regulator) and building.</td>
<td>1/2 inch</td>
<td>SDR 7.00</td>
<td>0.445</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 inch</td>
<td>SDR 11.00</td>
<td>0.927</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Note: All table entries have been rounded to three significant digits.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 pound per square inch = 6.895 kPa, 1-inch water column = 0.2488 kPa, 1 British thermal unit per hour = 0.2931 W, 1 cubic foot per hour = 0.0283 m³/h, 1 degree = 0.01745 rad.

Note: All table entries have been rounded to three significant digits.

SECTION 2414
PIPING MATERIALS

2414.1 General. Materials used for piping systems shall comply with the requirements of this chapter or shall be approved.

2414.2 Used materials. Pipe, fittings, valves or other materials shall not be used again unless they are free of foreign materials and have been ascertained to be adequate for the service intended.

2414.3 Other materials. Material not covered by the standards specifications listed herein shall be investigated and tested to determine that it is safe and suitable for the proposed service, and, in addition, shall be recommended for that service by the manufacturer and shall be approved by the building official.

2414.4 Metallic pipe. Metallic pipe shall comply with Sections 2414.4.1 and 2414.4.2.

2414.4.1 Cast iron. Cast-iron pipe shall not be used.

2414.4.2 Steel. Steel and wrought-iron pipe shall be at least of standard weight (Schedule 40) and shall comply with one of the following:

1. ASME B 36.10, 10M;
2. ASTM A 53/A 53M; or
3. ASTM A 106.

2414.5 Metallic tubing. Seamless copper, aluminum alloy or steel tubing shall be permitted to be used with gases not corrosive to such material.

2414.5.1 Steel tubing. Steel tubing shall comply with ASTM A 254.

2414.5.2 Copper tubing. Copper tubing shall comply with standard Type K or L of ASTM B 88 or ASTM B 280.

Copper and brass tubing shall not be used if the gas contains more than an average of 0.3 grains of hydrogen sulfide per 100 standard cubic feet of gas (0.7 milligrams per 100 liters).

2414.5.3 Corrugated stainless steel tubing. Corrugated stainless steel tubing shall be listed in accordance with ANSI LC 1/CSA 6.26.

2414.6 Plastic pipe, tubing and fittings. Plastic pipe, tubing and fittings used to supply fuel gas shall conform to ASTM D 2513. Pipe shall be marked “Gas” and “ASTM D 2513.”

2414.6.1 Anodeless risers. Anodeless risers shall comply with the following:

1. Factory-assembled anodeless risers shall be recommended by the manufacturer for the gas used and shall be leak-tested by the manufacturer in accordance with written procedures.

2. Service head adapters and field-assembled anodeless risers incorporating service head adapters shall be recommended by the manufacturer for the gas used by the manufacturer and shall be designed certified to meet the requirements of Category I of ASTM D 2513, and U.S. Department of Transportation, Code of Federal Regulations, Title 49, Part 192.281(e). The manufacturer shall provide the user qualified installation instructions as prescribed by the U.S. Department of Transportation, Code of Federal Regulations, Title 49, Part 192.283(b).
2414.6.2 **LP-gas systems.** The use of plastic pipe, tubing and fittings in undiluted liquefied petroleum gas piping systems shall be in accordance with NFPA 58.

2414.6.3 **Regulator vent piping.** Plastic pipe, tubing and fittings used to connect regulator vents to remote vent terminations shall be of PVC conforming to ANSI/UL 651. PVC vent piping shall not be installed indoors.

2414.7 **Workmanship and defects.** Pipe or tubing and fittings shall be clear and free from cutting burrs and defects in structure or threading, and shall be thoroughly brushed, and chip and scale blown.

Defects in pipe or tubing or fittings shall not be repaired. Defective pipe, tubing or fittings shall be replaced. (See Section 2417.1.2.)

2414.8 **Protective coating.** Where in contact with material or atmosphere exerting a corrosive action, metallic piping and fittings coated with a corrosion-resistant material shall be used. External or internal coatings or linings used on piping or components shall not be considered as adding strength.

2414.9 **Metallic pipe threads.** Metallic pipe and fitting threads shall be taper pipe threads and shall comply with ASME B1.20.1.

2414.9.1 **Damaged threads.** Pipe with threads that are stripped, chipped, corroded or otherwise damaged shall not be used. If a weld opens during the operation of cutting or threading, that portion of the pipe shall not be used.

2414.9.2 **Number of threads.** Field threading of metallic pipe shall be in accordance with Table 2414.9.2.

<table>
<thead>
<tr>
<th>IRON PIPE SIZE (inches)</th>
<th>APPROXIMATE LENGTH OF THREADED PORTION (inches)</th>
<th>APPROXIMATE NO. OF THREADS TO BE CUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>½</td>
<td>¾</td>
<td>10</td>
</tr>
<tr>
<td>¾</td>
<td>¾</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>⁷⁄₈</td>
<td>10</td>
</tr>
<tr>
<td>1¼</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>1½</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.
2414.9.3 **Thread compounds.** Thread (joint) compounds (pipe dope) shall be resistant to the action of liquefied petroleum gas or to any other chemical constituents of the gases to be conducted through the piping.

2414.10 **Metallic piping joints and fittings.** The type of piping joint used shall be suitable for the pressure-temperature conditions and shall be selected giving consideration to joint tightness and mechanical strength under the service conditions. The joint shall be able to sustain the maximum end force due to the internal pressure and any additional forces due to temperature expansion or contraction, vibration, fatigue, or to the weight of the pipe and its contents.

2414.10.1 **Pipe joints.** Pipe joints shall be threaded, flanged, brazed or welded. Where nonferrous pipe is brazed, the brazing materials shall have a melting point in excess of 1,000°F (538°C). Brazing alloys shall not contain more than 0.05-percent phosphorus.

2414.10.2 **Tubing joints.** Tubing joints shall be made with approved gas tubing fittings or be brazed with a material having a melting point in excess of 1,000°F (538°C) or made with press-connect fittings complying with ANSI LC-4. Brazing alloys shall not contain more than 0.05-percent phosphorus.

2414.10.3 **Flared joints.** Flared joints shall be used only in systems constructed from nonferrous pipe and tubing where experience or tests have demonstrated that the joint is suitable for the conditions and where provisions are made in the design to prevent separation of the joints.

2414.10.4 **Metallic fittings.** Metallic fittings, including valves, strainers and filters shall comply with the following:

1. Fittings used with steel or wrought-iron pipe shall be steel, brass, bronze, malleable iron, ductile iron or cast iron.

2. Fittings used with copper or brass pipe shall be copper, brass or bronze.

3. Cast-iron bushings shall be prohibited.

4. Special fittings. Fittings such as couplings, proprietary-type joints, saddle tees, gland-type compression fittings, and flared, flareless or compression-type tubing fittings shall be: used within the fitting
manufacturer’s pressure-temperature recommendations; used within the service conditions anticipated with respect to vibration, fatigue, thermal expansion or contraction; installed or braced to prevent separation of the joint by gas pressure or external physical damage; and shall be approved.

2414.11 Plastic piping, joints and fittings. Plastic pipe, tubing and fittings shall be joined in accordance with the manufacturers’ instructions. Such joints shall comply with the following:

1. The joints shall be designed and installed so that the longitudinal pull-out resistance of the joints will be at least equal to the tensile strength of the plastic piping material.

2. Heat-fusion joints shall be made in accordance with qualified procedures that have been established and proven by test to produce gas-tight joints at least as strong as the pipe or tubing being joined. Joints shall be made with the joining method recommended by the pipe manufacturer. Heat fusion fittings shall be marked “ASTM D 2513.”

3. Where compression-type mechanical joints are used, the gasket material in the fitting shall be compatible with the plastic piping and with the gas distributed by the system. An internal tubular rigid stiffener shall be used in conjunction with the fitting. The stiffener shall be flush with the end of the pipe or tubing and shall extend at least to the outside end of the compression fitting when installed. The stiffener shall be free of rough or sharp edges and shall not be a force fit in the plastic. Split tubular stiffeners shall not be used.

4. Plastic piping joints and fittings for use in liquefied petroleum gas piping systems shall be in accordance with NFPA 58.

SECTION 2415
PIPING SYSTEM INSTALLATION

2415.1 Installation of materials. All materials used shall be installed in strict accordance with the standards under which the materials are accepted and approved. In the absence of such installation procedures, the manufacturer’s instructions shall be followed. Where the requirements of referenced standards or manufacturer’s instructions do not conform to minimum provisions of this code, the provisions of this code shall apply.
2415.1.1 CSST. **CSST piping systems shall be installed in accordance with the terms of their approval, the conditions of listing, the manufacturer’s instructions and this code.**

2415.1.2 Prohibited locations. Piping shall not be installed in or through a ducted supply, return or exhaust, or a clothes chute, chimney or gas vent, dumbwaiter or elevator shaft. Piping installed downstream of the point of delivery shall not extend through any townhouse unit other than the unit served by such piping.

2415.2 Piping in solid partitions and walls. Concealed piping shall not be located in solid partitions and solid walls, unless installed in a chase or casing.

2415.3 Piping in concealed locations. Portions of a piping system installed in concealed locations shall not have unions, tubing fittings, right and left couplings, bushings, compression couplings, and swing joints made by combinations of fittings.

Exceptions:

1. Tubing joined by brazing.

2. Fittings listed for use in concealed locations.

2415.4 Underground penetrations prohibited. Gas piping shall not penetrate building foundation walls at any point below grade. Gas piping shall enter and exit a building at a point above grade and the annular space between the pipe and the wall shall be sealed.

2415.5 Protection against physical damage. In concealed locations, where piping other than black or galvanized steel is installed through holes or notches in wood studs, joists, rafters or similar members less than 1½ inches (38 mm) from the nearest edge of the member, the pipe shall be protected by shield plates. Protective steel shield plates having a minimum thickness of 0.0575-inch (1.463 mm) (No. 16 Gage) shall cover the area of the pipe where the member is notched or bored and shall extend a minimum of 4 inches (102 mm) above sole plates, below top plates and to each side of a stud, joist or rafter.

2415.6 Piping in solid floors. Piping in solid floors shall be laid in channels in the floor and covered in a manner that will allow access to the piping with a
minimum amount of damage to the building. Where such piping is subject to exposure to excessive moisture or corrosive substances, the piping shall be protected in an approved manner. As an alternative to installation in channels, the piping shall be installed in a conduit of Schedule 40 steel, wrought iron, PVC or ABS pipe in accordance with Section 2415.6.1 or 2415.6.2.

2415.6.1 Conduit with one end terminating outdoors. The conduit shall extend into an occupiable portion of the building and, at the point where the conduit terminates in the building, the space between the conduit and the gas piping shall be sealed to prevent the possible entrance of any gas leakage. The conduit shall extend not less than 2 inches (51 mm) beyond the point where the pipe emerges from the floor. If the end sealing is capable of withstanding the full pressure of the gas pipe, the conduit shall be designed for the same pressure as the pipe. Such conduit shall extend not less than 4 inches (102 mm) outside of the building, shall be vented above grade to the outdoors and shall be installed to prevent the entrance of water and insects.

2415.6.2 Conduit with both ends terminating indoors. Where the conduit originates and terminates within the same building, the conduit shall originate and terminate in an accessible portion of the building and shall not be sealed. The conduit shall extend not less than 2 inches (51 mm) beyond the point where the pipe emerges from the floor.

2415.7 Above-ground piping outdoors. All piping installed outdoors shall be elevated not less than 3½ inches (152 mm) above ground and where installed across roof surfaces, shall be elevated not less than 3½ inches (152 mm) above the roof surface. Piping installed above ground, outdoors, and installed across the surface of roofs shall be securely supported and located where it will be protected from physical damage. Where passing through an outside wall, the piping shall also be protected against corrosion by coating or wrapping with an inert material. Where piping is encased in a protective pipe sleeve, the annular space between the piping and the sleeve shall be sealed.

2415.8 Isolation. Metallic piping and metallic tubing that conveys fuel gas from an LP-gas storage container shall be provided with an approved dielectric fitting to electrically isolate the underground portion of the pipe or tube from the above ground portion that enters a building. Such dielectric fitting shall be installed aboveground outdoors.

2415.9 Protection against corrosion. Metallic pipe or tubing exposed to corrosive action, such as soil condition or moisture, shall be protected in an
approved manner. Zinc coatings (galvanizing) shall not be deemed adequate protection for gas piping underground. Where dissimilar metals are joined underground, an insulating coupling or fitting shall be used. Piping shall not be laid in contact with cinders.

2415.9.1 Prohibited use. Uncoated threaded or socket welded joints shall not be used in piping in contact with soil or where internal or external crevice corrosion is known to occur.

2415.9.2 Protective coatings and wrapping. Pipe protective coatings and wrappings shall be approved for the application and shall be factory applied.

Exception: Where installed in accordance with the manufacturer’s installation instructions, field application of coatings and wrappings shall be permitted for pipe nipples, fittings and locations where the factory coating or wrapping has been damaged or necessarily removed at joints.

2415.10 Minimum burial depth. Underground piping systems shall be installed a minimum depth of 12 inches (305 mm) below grade, except as provided for in Section 2415.10.1.

2415.10.1 Individual outside appliances. Individual lines to outside lights, grills or other appliances shall be installed a minimum of 8 inches (203 mm) below finished grade, provided that such installation is approved and is installed in locations not susceptible to physical damage.

2415.11 Trenches. The trench shall be graded so that the pipe has a firm, substantially continuous bearing on the bottom of the trench.

2415.12 Piping underground beneath buildings. Piping installed underground beneath buildings is prohibited except where the piping is encased in a conduit of wrought iron, plastic pipe, steel pipe or other approved conduit material designed to withstand the superimposed loads. The conduit shall be protected from corrosion in accordance with Section 2415.9 and shall be installed in accordance with Section 2415.12.1 or 2415.12.2.

2415.12.1 Conduit with one end terminating outdoors. The conduit shall extend into an occupiable portion of the building and, at the point where the conduit terminates in the building, the space between the conduit and the gas piping shall be sealed to prevent the possible entrance of any gas leakage. The conduit shall extend not less than 2 inches (51 mm) beyond the point where
the pipe emerges from the floor. Where the end sealing is capable of withstanding the full pressure of the gas pipe, the conduit shall be designed for the same pressure as the pipe. Such conduit shall extend not less than 4 inches (102 mm) outside the building, shall be vented above grade to the outdoors and shall be installed so as to prevent the entrance of water and insects.

2415.12.2 Conduit with both ends terminating indoors. Where the conduit originates and terminates within the same building, the conduit shall originate and terminate in an accessible portion of the building and shall not be sealed. The conduit shall extend not less than 2 inches (51 mm) beyond the point where the pipe emerges from the floor.

2415.13 Outlet closures. Gas outlets that do not connect to appliances shall be capped gas tight.

Exception: Listed and labeled flush-mounted-type quick-disconnect devices and listed and labeled gas convenience outlets shall be installed in accordance with the manufacturer’s installation instructions.

2415.14 Location of outlets. The unthreaded portion of piping outlets shall extend not less than 1 inch (25 mm) through finished ceilings and walls and where extending through floors, outdoor patios and slabs, shall not be less than 2 inches (51 mm) above them. The outlet fitting or piping shall be securely supported. Outlets shall not be placed behind doors. Outlets shall be located in the room or space where the appliance is installed.

Exception: Listed and labeled flush-mounted-type quick-disconnect devices and listed and labeled gas convenience outlets shall be installed in accordance with the manufacturer’s installation instructions.

2415.15 Plastic pipe. The installation of plastic pipe shall comply with Sections 2415.15.1 through 2415.15.3.

2415.15.1 Limitations. Plastic pipe shall be installed outdoors underground only. Plastic pipe shall not be used within or under any building or slab or be operated at pressures greater than 100 psig (689 kPa) for natural gas or 30 psig (207 kPa) for LP-gas.

Exceptions:
1. Plastic pipe shall be permitted to terminate above ground outside of buildings where installed in premanufactured anodeless risers or service head adapter risers that are installed in accordance with the manufacturer’s installation instructions.

2. Plastic pipe shall be permitted to terminate with a wall head adapter within buildings where the plastic pipe is inserted in a piping material for fuel gas use in buildings.

3. Plastic pipe shall be permitted under outdoor patio, walkway and driveway slabs provided that the burial depth complies with Section 2415.10.

2415.15.2 Connections. Connections outdoors and underground between metallic and plastic piping shall be made only with transition fittings conforming to ASTM D 2513 Category I or ASTM F 1973.

2415.15.3 Tracer. A yellow insulated copper tracer wire or other approved conductor shall be installed adjacent to underground nonmetallic piping. Access shall be provided to the tracer wire or the tracer wire shall terminate above ground at each end of the nonmetallic piping. The tracer wire size shall not be less than 18 AWG and the insulation type shall be suitable for direct burial.

2415.16 Prohibited devices. A device shall not be placed inside the piping or fittings that will reduce the cross-sectional area or otherwise obstruct the free flow of gas.

Exception: Approved gas filters.

2415.17 Testing of piping. Before any system of piping is put in service or concealed, it shall be tested to ensure that it is gas tight. Testing, inspection and purging of piping systems shall comply with Section 2417.

SECTION 2416
PIPING BENDS AND CHANGES IN DIRECTION

2416.1 General. Changes in direction of pipe shall be permitted to be made by the use of fittings, factory bends or field bends.

2416.2 Metallic pipe. Metallic pipe bends shall comply with the following:
1. Bends shall be made only with bending tools and procedures intended for that purpose.

2. All bends shall be smooth and free from buckling, cracks or other evidence of mechanical damage.

3. The longitudinal weld of the pipe shall be near the neutral axis of the bend.

4. Pipe shall not be bent through an arc of more than 90 degrees (1.6 rad).

5. The inside radius of a bend shall be not less than six times the outside diameter of the pipe.

2416.3 Plastic pipe. Plastic pipe bends shall comply with the following:

1. The pipe shall not be damaged and the internal diameter of the pipe shall not be effectively reduced.

2. Joints shall not be located in pipe bends.

3. The radius of the inner curve of such bends shall not be less than 25 times the inside diameter of the pipe.

4. Where the piping manufacturer specifies the use of special bending tools or procedures, such tools or procedures shall be used.

SECTION 2417
INSPECTION, TESTING AND PURGING

2417.1 General. Prior to acceptance and initial operation, all piping installations shall be inspected and pressure tested to determine that the materials, design, fabrication, and installation practices comply with the requirements of this code.

2417.1.1 Inspections. Inspection shall consist of visual examination, during or after manufacture, fabrication, assembly or pressure tests as appropriate.

2417.1.2 Repairs and additions. In the event repairs or additions are made after the pressure test, the affected piping shall be tested.
Minor repairs and additions are not required to be pressure tested provided that the work is inspected and connections are tested with a noncorrosive leak-detecting fluid or other approved leak-detecting methods.

2417.1.3 New branches. Where new branches are installed to new appliances, only the newly installed branches shall be required to be pressure tested. Connections between the new piping and the existing piping shall be tested with a noncorrosive leak-detecting fluid or other approved leak-detecting methods.

2417.1.4 Section testing. A piping system shall be permitted to be tested as a complete unit or in sections. Under no circumstances shall a valve in a line be used as a bulkhead between gas in one section of the piping system and test medium in an adjacent section, unless two valves are installed in series with a valved “tell-tale” located between these valves. A valve shall not be subjected to the test pressure unless it can be determined that the valve, including the valve closing mechanism, is designed to safely withstand the test pressure.

2417.1.5 Regulators and valve assemblies. Regulator and valve assemblies fabricated independently of the piping system in which they are to be installed shall be permitted to be tested with inert gas or air at the time of fabrication.

2417.2 Test medium. The test medium shall be air, nitrogen, carbon dioxide or an inert gas. Oxygen shall not be used.

2417.3 Test preparation. Pipe joints, including welds, shall be left exposed for examination during the test.

Exception: Covered or concealed pipe end joints that have been previously tested in accordance with this code.

2417.3.1 Expansion joints. Expansion joints shall be provided with temporary restraints, if required, for the additional thrust load under test.

2417.3.2 Equipment isolation. Equipment that is not to be included in the test shall be either disconnected from the piping or isolated by blanks, blind flanges or caps.

2417.3.3 Appliance and equipment disconnection. Where the piping system is connected to appliances or equipment designed for operating pressures of
less than the test pressure, such appliances or equipment shall be isolated from
the piping system by disconnecting them and capping the outlet(s).

2417.3.4 Valve isolation. Where the piping system is connected to appliances
or equipment designed for operating pressures equal to or greater than the test
pressure, such appliances or equipment shall be isolated from the piping
system by closing the individual appliance or equipment shutoff valve(s).

2417.3.5 Testing precautions. All testing of piping systems shall be done
with due regard for the safety of employees and the public during the test.
Prior to testing, the interior of the pipe shall be cleared of all foreign material.

2417.4 Test pressure measurement. Test pressure shall be measured with a
manometer or with a pressure-measuring device designed and calibrated to read,
record, or indicate a pressure loss caused by leakage during the pressure test
period. The source of pressure shall be isolated before the pressure tests are made.
Mechanical gauges used to measure test pressures shall have a range such that the
highest end of the scale is not greater than five times the test pressure.

2417.4.1 Test pressure. The test pressure to be used shall be not less than one
and one-half times the proposed maximum working pressure, but not less than
3 psig (20 kPa gauge), irrespective of design pressure. Where the test pressure
exceeds 125 psig (862 kPa gauge), the test pressure shall not exceed a value
that produces a hoop stress in the piping greater than 50 percent of the
specified minimum yield strength of the pipe.

2417.4.2 Test duration. The test duration shall be not less than 10 minutes.

2417.5 Detection of leaks and defects. The piping system shall withstand the test
pressure specified without showing any evidence of leakage or other defects. Any
reduction of test pressures as indicated by pressure gauges shall be deemed to
indicate the presence of a leak unless such reduction can be readily attributed to
some other cause.

2417.5.1 Detection methods. The leakage shall be located by means of an
approved combustible gas detector, a noncorrosive leak detection fluid or an
equivalent nonflammable solution. Matches, candles, open flames or other
methods that could provide a source of ignition shall not be used.
2417.5.2 Corrections. Where leakage or other defects are located, the affected portion of the piping system shall be repaired or replaced and retested.

2417.6 Piping system and equipment leakage check. Leakage checking of systems and equipment shall be in accordance with Sections 2417.6.1 through 2417.6.4.

2417.6.1 Test gases. Fuel gas shall be permitted to be used for leak checks in piping systems that have been tested in accordance with Section 2417.

2417.6.2 Turning gas on. During the process of turning gas on into a system of new gas piping, the entire system shall be inspected to determine that there are no open fittings or ends and that all valves at unused outlets are closed and plugged or capped.

2417.6.3 Leak check. Immediately after the gas is turned on into a new system or into a system that has been initially restored after an interruption of service, the piping system shall be checked for leakage. Where leakage is indicated, the gas supply shall be shut off until the necessary repairs have been made.

2417.6.4 Placing appliances and equipment in operation. Appliances and equipment shall not be placed in operation until after the piping system has been checked for leakage and determined to be free of leakage and purged in accordance with Section 2417.7.2.

2417.7 Purging requirements. The purging of piping shall be in accordance with Sections 2417.7.1 through 2417.7.3.

2417.7.1 Piping systems required to be purged outdoors. The purging of piping systems shall be in accordance with the provisions of Sections 2417.7.1.1 through 2417.7.1.4 where the piping system meets either of the following:

1. The design operating gas pressure is greater than 2 psig.

2. The piping being purged contains one or more sections of pipe or tubing greater than 2 inches in nominal size and exceeding the lengths in Table 2417.7.1.1.
2417.7.1.1 Removal from service. Where existing gas piping is opened, the section that is opened shall be isolated from the gas supply and the line pressure vented in accordance with Section 2417.7.1.3. Where gas piping meeting the criteria of Table 2417.7.1.1 is removed from service, the residual fuel gas in the piping shall be displaced with an inert gas.

<table>
<thead>
<tr>
<th>Nominal Pipe Size (inches)</th>
<th>Length of Piping (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>>50</td>
</tr>
<tr>
<td>3</td>
<td>>30</td>
</tr>
<tr>
<td>4</td>
<td>>15</td>
</tr>
<tr>
<td>6</td>
<td>>10</td>
</tr>
<tr>
<td>8 or larger</td>
<td>Any length</td>
</tr>
</tbody>
</table>

For SI units: 1 inch = 25.4 mm; 1 ft = 304.8 mm.

2417.7.1.2 Placing in operation. Where gas piping containing air and meeting the criteria of Table 2417.7.1.1 is placed in operation, the air in the piping shall first be displaced with an inert gas. The inert gas shall then be displaced with fuel gas in accordance with Section 2417.7.1.3.

2417.7.1.3 Outdoor discharge of purged gases. The open end of a piping system being pressure vented or purged shall discharge directly to an outdoor location. Purging operations shall comply with all of the following requirements.

1. The point of discharge shall be controlled with a shutoff valve.

2. The point of discharge shall be located at least 10 feet from sources of ignition, at least 10 feet from building openings and at least 25 feet from mechanical air intake openings.

3. During discharge, the open point of discharge shall be continuously attended and monitored with a combustible gas indicator that complies with Section 2417.7.1.4.

4. Purging operations introducing fuel gas shall be stopped when 90% fuel gas by volume is detected within the pipe.

5. Persons not involved in the purging operations shall be evacuated from all areas within 10 ft of the point of discharge.
2417.7.1.4 Combustible gas indicator. The combustible gas indicator used during purging operations shall be listed and shall be calibrated in accordance with the manufacturer’s instructions and recommended schedule. The combustible gas indicator used for pipe discharge monitoring shall numerically display a volume scale from 0% to 100% with a resolution of not greater than 1% increments.

2417.7.2 Piping systems allowed to be purged indoors or outdoors. The purging of piping systems shall be in accordance with the provisions of Section 2417.7.2.1 where the piping system meets both of the following:

1. The design operating gas pressure is 2 psig or less.

2. The piping being purged is constructed entirely from pipe or tubing of 2 inch nominal size or smaller, or larger size pipe or tubing with lengths shorter than specified in Table 2417.7.1.1.

2417.7.2.1 Purging procedure. The piping system shall be purged in accordance with one or more of the following:

1. The piping shall be purged with fuel gas and shall discharge to the outdoors.

2. The piping shall be purged with fuel gas and shall discharge to the indoors or outdoors through an appliance burner not located in a combustion chamber. Such burner shall be provided with a continuous source of ignition.

3. The piping shall be purged with fuel gas and shall discharge to the indoors or outdoors through a burner that has a continuous source of ignition and that is designed for such purpose.

4. The piping shall be purged with fuel gas that is discharged to the indoors or outdoors, and the point of discharge shall be monitored with a listed combustible gas detector in accordance with 2417.7.2.2. Purging shall be stopped when fuel gas is detected.

5. The piping shall be purged by the gas supplier in accordance with written procedures.
2417.7.2.2 **Combustible gas detector.** The combustible gas detector used during purging operations shall be listed and shall be calibrated or tested in accordance with the manufacturer’s instructions and recommended schedule. The combustible gas detector used for pipe discharge monitoring shall indicate the presence of fuel gas.

2417.7.3 **Purging appliances and equipment.** After the piping system has been placed in operation, appliances and equipment shall be purged before being placed into operation.

SECTION 2418

PIPING SUPPORT

2418.1 **General.** Piping shall be provided with support in accordance with Section 2418.2.

2418.2 **Design and installation.** Piping shall be supported with metal pipe hooks, metal pipe straps, metal bands, metal brackets, metal hangers or building structural components suitable for the size of piping, of adequate strength and quality, and located at intervals so as to prevent or damp out excessive vibration. Piping shall be anchored to prevent undue strains on connected appliances and shall not be supported by other piping. Pipe hangers and supports shall conform to the requirements of MSS SP-58 and shall be spaced in accordance with Section 2424. Supports, hangers and anchors shall be installed so as not to interfere with the free expansion and contraction of the piping between anchors. All parts of the supporting equipment shall be designed and installed so that they will not be disengaged by movement of the supported piping.

SECTION 2419

DRIPS AND SLOPED PIPING

2419.1 **Slopes.** Piping for other than dry gas conditions shall be sloped not less than 0.25 inch in 15 feet (6.4 mm in 4572 mm) to prevent traps.

2419.2 **Drips.** Where wet gas exists, a drip shall be provided at any point in the line of pipe where condensate could collect. A drip shall also be provided at the outlet of the meter and shall be installed so as to constitute a trap wherein an
accumulation of condensate will shut off the flow of gas before the condensate will run back into the meter.

2419.3 Location of drips. Drips shall be provided with ready access to permit cleaning or emptying. A drip shall not be located where the condensate is subject to freezing.

2419.4 Sediment trap. Where a sediment trap is not incorporated as part of the appliance, a sediment trap shall be installed downstream of the appliance shutoff valve as close to the inlet of the appliance as practical. The sediment trap shall be either a tee fitting having a capped nipple of any length installed vertically in the bottom-most opening of the tee or other device approved as an effective sediment trap. Illuminating appliances, ranges, clothes dryers and outdoor grills need not be so equipped.

SECTION 2420
GAS SHUTOFF VALVES

2420.1 General. Piping systems shall be provided with shutoff valves in accordance with this section.

2420.1.1 Valve approval. Shutoff valves shall be of an approved type; shall be constructed of materials compatible with the piping; and shall comply with the standard that is applicable for the pressure and application, in accordance with Table 2420.1.1.

2420.1.2 Prohibited locations. Shutoff valves shall be prohibited in concealed locations and furnace plenums.

2420.1.3 Access to shutoff valves. Shutoff valves shall be located in places so as to provide access for operation and shall be installed so as to be protected from damage.

2420.2 Meter valve. Every meter shall be equipped with a shutoff valve located on the supply side of the meter.

2420.3 Individual buildings. In a common system serving more than one building, shutoff valves shall be installed outdoors at each building.

2420.4 MP regulator valves. A listed shutoff valve shall be installed immediately ahead of each MP regulator.
2420.5 **Appliance shutoff valve.** Each appliance shall be provided with a shutoff valve in accordance with Section 2420.5.1, 2420.5.2 or 2420.5.3.

2420.5.1 **Located within same room.** The shutoff valve shall be located in the same room as the appliance. The shutoff valve shall be within 6 feet (1829 mm) of the appliance, and shall be installed upstream of the union, connector or quick disconnect device it serves. Such shutoff valves shall be provided with access. Appliance shutoff valves located in the firebox of a fireplace shall be installed in accordance with the appliance manufacturer’s instructions.

2420.5.2 **Vented decorative appliances and room heaters.** Shutoff valves for vented decorative appliances, room heaters and decorative appliances for installation in vented fireplaces shall be permitted to be installed in an area remote from the appliances where such valves are provided with ready access. Such valves shall be permanently identified and shall serve no other appliance. The piping from the shutoff valve to within 6 feet (1829 mm) of the appliance shall be designed, sized and installed in accordance with Sections 2412 through 2419.

2420.5.3 **Located at manifold.** Where the appliance shutoff valve is installed at a manifold, such shutoff valve shall be located within 50 feet (15 240 mm) of the appliance served and shall be readily accessible and permanently identified. The piping from the manifold to within 6 feet (1829 mm) of the appliance shall be designed, sized and installed in accordance with Sections 2412 through 2419.

SECTION 2421
FLOW CONTROLS

2421.1 **Pressure regulators.** A line pressure regulator shall be installed where the appliance is designed to operate at a lower pressure than the supply pressure. Line gas pressure regulators shall be listed as complying with ANSI Z21.80. Access shall be provided to pressure regulators. Pressure regulators shall be protected from physical damage. Regulators installed on the exterior of the building shall be approved for outdoor installation.

2421.2 **MP regulators.** MP pressure regulators shall comply with the following:
1. The MP regulator shall be approved and shall be suitable for the inlet and outlet gas pressures for the application.

2. The MP regulator shall maintain a reduced outlet pressure under lockup (no-flow) conditions.

3. The capacity of the MP regulator, determined by published ratings of its manufacturer, shall be adequate to supply the appliances served.

4. The MP pressure regulator shall be provided with access. Where located indoors, the regulator shall be vented to the outdoors or shall be equipped with a leak-limiting device, in either case complying with Section 2421.3.

5. A tee fitting with one opening capped or plugged shall be installed between the MP regulator and its upstream shutoff valve. Such tee fitting shall be positioned to allow connection of a pressure measuring instrument and to serve as a sediment trap.

6. A tee fitting with one opening capped or plugged shall be installed not less than 10 pipe diameters downstream of the MP regulator outlet. Such tee fitting shall be positioned to allow connection of a pressure measuring instrument.

Table 2420.1.1 Manual Gas Valve Standards

<table>
<thead>
<tr>
<th>VALVE STANDARDS</th>
<th>APPLIANCE SHUTOFF VALVE APPLICATION UP TO ½ psig PRESSURE</th>
<th>OTHER VALVE APPLICATIONS</th>
<th>UP TO ½ psig PRESSURE</th>
<th>UP TO 2 psig PRESSURE</th>
<th>UP TO 5 psig PRESSURE</th>
<th>UP TO 125 psig PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI Z21.15</td>
<td>X</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CSA Requirement 3-88</td>
<td>X</td>
<td>X</td>
<td>X²</td>
<td>X⁵</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ASME B16.44</td>
<td>X</td>
<td>X</td>
<td>X²</td>
<td>X⁵</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ASME B16.33</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

For SI: 1 pound per square inch gauge = 6.895 kPa.

a. If labeled 2G.
b. If labeled 5G.

2421.3 Venting of regulators. Pressure regulators that require a vent shall be vented directly to the outdoors. The vent shall be designed to prevent the entry of insects, water and foreign objects.
Exception: A vent to the outdoors is not required for regulators equipped with and labeled for utilization with an approved vent-limiting device installed in accordance with the manufacturer’s instructions.

2421.3.1 Vent piping. Vent piping for relief vents and breather vents shall be constructed of materials allowed for gas piping in accordance with Section 2414. Vent piping shall be not smaller than the vent connection on the pressure regulating device. Vent piping serving relief vents and combination relief and breather vents shall be run independently to the outdoors and shall serve only a single device vent. Vent piping serving only breather vents is permitted to be connected in a manifold arrangement where sized in accordance with an approved design that minimizes back pressure in the event of diaphragm rupture. Regulator vent piping shall not exceed the length specified in the regulator manufacturer’s installation instructions.

SECTION 2422
APPLIANCE CONNECTIONS

2422.1 Connecting appliances. Appliances shall be connected to the piping system by one of the following:

1. Rigid metallic pipe and fittings.

2. Corrugated stainless steel tubing (CSST) where installed in accordance with the manufacturer’s instructions.

3. Listed and labeled appliance connectors in compliance with ANSI Z21.24 and installed in accordance with the manufacturer’s installation instructions and located entirely in the same room as the appliance.

4. Listed and labeled quick-disconnect devices used in conjunction with listed and labeled appliance connectors.

5. Listed and labeled convenience outlets used in conjunction with listed and labeled appliance connectors.

6. Listed and labeled outdoor appliance connectors in compliance with ANSI Z21.75/CSA 6.27 and installed in accordance with the manufacturer’s installation instructions.
2422.1.1 Protection from damage. Connectors and tubing shall be installed so as to be protected against physical damage.

2422.1.2 Connector installation. Appliance fuel connectors shall be installed in accordance with the manufacturer’s instructions and Sections 2422.1.2.1 through 2422.1.2.4.

2422.1.2.1 Maximum length. Connectors shall not exceed 6 feet (1829 mm) in overall length. Measurement shall be made along the centerline of the connector. Only one connector shall be used for each appliance.

Exception: Rigid metallic piping used to connect an appliance to the piping system shall be permitted to have a total length greater than 6 feet (1829 mm) provided that the connecting pipe is sized as part of the piping system in accordance with Section 2413 and the location of the appliance shutoff valve complies with Section 2420.5.

2422.1.2.2 Minimum size. Connectors shall have the capacity for the total demand of the connected appliance.

2422.1.2.3 Prohibited locations and penetrations. Connectors shall not be concealed within, or extended through, walls, floors, partitions, ceilings or appliance housings.

Exceptions:

1. Connectors constructed of materials allowed for piping systems in accordance with Section 2414 shall be permitted to pass through walls, floors, partitions and ceilings where installed in accordance with Section 2420.5.2 or 2420.5.3.

2. Rigid steel pipe connectors shall be permitted to extend through openings in appliance housings.

3. Fireplace inserts that are factory equipped with grommets, sleeves or other means of protection in accordance with the listing of the appliance.

4. Semirigid tubing and listed connectors shall be permitted to extend through an opening in an appliance housing, cabinet or
casing where the tubing or connector is protected against damage.

2422.1.2.4 Shutoff valve. A shutoff valve not less than the nominal size of the connector shall be installed ahead of the connector in accordance with Section 2420.5.

2422.1.3 Connection of gas engine-powered air-conditioners equipment and appliances. Internal combustion engines shall not be rigidly connected to the gas supply piping.

2422.1.4 Unions. A union fitting shall be provided for appliances connected by rigid metallic pipe. Such unions shall be accessible and located within 6 feet (1829 mm) of the appliance.

2422.1.5 Movable appliances. Where appliances are equipped with casters or are otherwise subject to periodic movement or relocation for purposes such as routine cleaning and maintenance, such appliances shall be connected to the supply system piping by means of an approved flexible connector designed and labeled for the application. Such flexible connectors shall be installed and protected against physical damage in accordance with the manufacturer’s installation instructions.

2422.2 Suspended low-intensity infrared tube heaters. Suspended low-intensity infrared tube heaters shall be connected to the building piping system with a connector listed for the application complying with ANSI Z21.24/CGA 6.10. The connector shall be installed as specified by the tube heater manufacturer’s instructions.

SECTION 2423

CNG GAS-DISPENSING SYSTEMS

2423.1 General. Motor fuel-dispensing facilities for CNG fuel shall be in accordance with Section 413 of the International Fuel Gas Code.

SECTION 2424

PIPING SUPPORT INTERVALS

2424.1 Interval of support. Piping shall be supported at intervals not exceeding the spacing specified in Table 2424.1. Spacing of supports for CSST shall be in accordance with the CSST manufacturer’s instructions.
TABLE 2424.1
SUPPORT OF PIPING

<table>
<thead>
<tr>
<th>STEEL PIPE, NOMINAL SIZE OF PIPE (inches)</th>
<th>SPACING OF SUPPORTS (feet)</th>
<th>NOMINAL SIZE OF TUBING SMOOTH-WALL (inch O.D.)</th>
<th>SPACING OF SUPPORTS (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>½</td>
<td>6</td>
<td>½</td>
<td>4</td>
</tr>
<tr>
<td>¾ or 1</td>
<td>8</td>
<td>⅜ or ¾</td>
<td>6</td>
</tr>
<tr>
<td>1¼ or larger (horizontal)</td>
<td>10</td>
<td>⅞ or 1 (horizontal)</td>
<td>8</td>
</tr>
<tr>
<td>1¼ or larger (vertical)</td>
<td>Every floor level</td>
<td>1 or larger (vertical)</td>
<td>Every floor level</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

SECTION 2425
GENERAL

2425.1 Scope. This section shall govern the installation, maintenance, repair and approval of factory-built and masonry chimneys, chimney liners, vents and connectors serving gas-fired appliances.

2425.2 General. Every appliance shall discharge the products of combustion to the outdoors, except for appliances exempted by Section 2425.8.

2425.3 Masonry chimneys. Masonry chimneys shall be constructed in accordance with Section 2427.5 and Chapter 10.

2425.4 Minimum size of chimney or vent. Chimneys and vents shall be sized in accordance with Sections 2427 and 2428.

2425.5 Abandoned inlet openings. Abandoned inlet openings in chimneys and vents shall be closed by an approved method.

2425.6 Positive pressure. Where an appliance equipped with a mechanical forced draft system creates a positive pressure in the venting system, the venting system shall be designed for positive pressure applications.

2425.7 Connection to fireplace. Connection of appliances to chimney flues serving fireplaces shall be in accordance with Sections 2425.7.1 through 2425.7.3.
2425.7.1 Closure and access. A noncombustible seal shall be provided below the point of connection to prevent entry of room air into the flue. Means shall be provided for access to the flue for inspection and cleaning.

2425.7.2 Connection to factory-built fireplace flue. An appliance shall not be connected to a flue serving a factory-built fireplace unless the appliance is specifically listed for such installation. The connection shall be made in accordance with the appliance manufacturer’s installation instructions.

2425.7.3 Connection to masonry fireplace flue. A connector shall extend from the appliance to the flue serving a masonry fireplace such that the flue gases are exhausted directly into the flue. The connector shall be accessible or removable for inspection and cleaning of both the connector and the flue. Listed direct connection devices shall be installed in accordance with their listing.

2425.8 Appliances not required to be vented. The following appliances shall not be required to be vented:

1. Ranges.
2. Built-in domestic cooking units listed and marked for optional venting.
3. Hot plates and laundry stoves.
4. Type 1 clothes dryers (Type 1 clothes dryers shall be exhausted in accordance with the requirements of Section 2439).
5. Refrigerators.
6. Counter appliances.
7. Room heaters listed for unvented use.

Where the appliances listed in Items 5 through 7 above are installed so that the aggregate input rating exceeds 20 Btu per hour per cubic foot (207 W/m3) of volume of the room or space in which such appliances are installed, one or more shall be provided with venting systems or other approved means for conveying the vent gases to the outdoor atmosphere so that the aggregate input rating of the remaining unvented appliances does not exceed 20 Btu per hour per cubic foot (207 W/m3). Where the room or space in which the appliance is installed is directly connected to another room or space by a doorway, archway or other
opening of comparable size that cannot be closed, the volume of such adjacent
room or space shall be permitted to be included in the calculations.

2425.9 Chimney entrance. Connectors shall connect to a masonry chimney flue
at a point not less than 12 inches (305 mm) above the lowest portion of the
interior of the chimney flue.

2425.10 Connections to exhauster. Appliance connections to a chimney or vent
equipped with a power exhauster shall be made on the inlet side of the exhauster.
Joints on the positive pressure side of the exhauster shall be sealed to prevent
flue-gas leakage as specified by the manufacturer’s installation instructions for the
exhauster.

2425.11 Masonry chimneys. Masonry chimneys utilized to vent appliances shall
be located, constructed and sized as specified in the manufacturer’s installation
instructions for the appliances being vented and Section 2427.

2425.12 Residential and low-heat appliances flue lining systems. Flue lining
systems for use with residential-type and low-heat appliances shall be limited to
the following:

1. Clay flue lining complying with the requirements of ASTM C 315 or
equivalent. Clay flue lining shall be installed in accordance with Chapter
10.

2. Listed chimney lining systems complying with UL 1777.

3. Other approved materials that will resist, without cracking, softening or
corrosion, flue gases and condensate at temperatures up to 1,800°F
(982°C).

2425.13 Category I appliance flue lining systems. Flue lining systems for use
with Category I appliances shall be limited to the following:

1. Flue lining systems complying with Section 2425.12.

2. Chimney lining systems listed and labeled for use with appliances with
draft hoods and other Category I gas appliances listed and labeled for use
with Type B vents.
2425.14 Category II, III and IV appliance venting systems. The design, sizing and installation of vents for Category II, III and IV appliances shall be in accordance with the appliance manufacturer’s installation instructions.

2425.15 Existing chimneys and vents. Where an appliance is permanently disconnected from an existing chimney or vent, or where an appliance is connected to an existing chimney or vent during the process of a new installation, the chimney or vent shall comply with Sections 2425.15.1 through 2425.15.4.

2425.15.1 Size. The chimney or vent shall be resized as necessary to control flue gas condensation in the interior of the chimney or vent and to provide the appliance or appliances served with the required draft. For Category I appliances, the resizing shall be in accordance with Section 2426.

2425.15.2 Flue passageways. The flue gas passageway shall be free of obstructions and combustible deposits and shall be cleaned if previously used for venting a solid or liquid fuel-burning appliance or fireplace. The flue liner, chimney inner wall or vent inner wall shall be continuous and shall be free of cracks, gaps, perforations, or other damage or deterioration that would allow the escape of combustion products, including gases, moisture and creosote.

2425.15.3 Cleanout. Masonry chimney flues shall be provided with a cleanout opening having a minimum height of 6 inches (152 mm). The upper edge of the opening shall be located not less than 6 inches (152 mm) below the lowest chimney inlet opening. The cleanout shall be provided with a tight-fitting, noncombustible cover.

2425.15.4 Clearances. Chimneys and vents shall have airspace clearance to combustibles in accordance with Chapter 10 and the chimney or vent manufacturer’s installation instructions.

 Exception: Masonry chimneys without the required air-space clearances shall be permitted to be used if lined or relined with a chimney lining system listed for use in chimneys with reduced clearances in accordance with UL 1777. The chimney clearance shall be not less than that permitted by the terms of the chimney liner listing and the manufacturer’s instructions.

2425.15.4.1 Fireblocking. Noncombustible fireblocking shall be provided in accordance with Chapter 10.
SECTION 2426
VENTS

2426.1 General. All vents, except as provided in Section 2427.7, shall be listed and labeled. Type B and BW vents shall be tested in accordance with UL 441. Type L vents shall be tested in accordance with UL 641. Vents for Category II and III appliances shall be tested in accordance with UL 1738. Plastic vents for Category IV appliances shall not be required to be listed and labeled where such vents are as specified by the appliance manufacturer and are installed in accordance with the appliance manufacturer’s installation instructions.

2426.2 Connectors required. Connectors shall be used to connect appliances to the vertical chimney or vent, except where the chimney or vent is attached directly to the appliance. Vent connector size, material, construction and installation shall be in accordance with Section 2427.

2426.3 Vent application. The application of vents shall be in accordance with Table 2427.4.

2426.4 Insulation shield. Where vents pass through insulated assemblies, an insulation shield constructed of steel having a minimum thickness of 0.0187 inch (0.4712 mm) (26 gage) shall be installed to provide clearance between the vent and the insulation material. The clearance shall not be less than the clearance to combustibles specified by the vent manufacturer’s installation instructions. Where vents pass through attic space, the shield shall terminate not less than 2 inches (51 mm) above the insulation materials and shall be secured in place to prevent displacement. Insulation shields provided as part of a listed vent system shall be installed in accordance with the manufacturer’s installation instructions.

2426.5 Installation. Vent systems shall be sized, installed and terminated in accordance with the vent and appliance manufacturer’s installation instructions and Section 2427.

2426.6 Support of vents. All portions of vents shall be adequately supported for the design and weight of the materials employed.

2426.7 Protection against physical damage. In concealed locations, where a vent is installed through holes or notches in studs, joists, rafters or similar members less than 1½ inches (38 mm) from the nearest edge of the member, the vent shall be protected by shield plates. Protective steel shield plates having a minimum thickness of 0.0575-inch (1.463 mm) (16 gage) shall cover the area of
the vent where the member is notched or bored and shall extend a minimum of 4 inches (102 mm) above sole plates, below top plates and to each side of a stud, joist or rafter.

SECTION 2427
VENTING OF APPLIANCES

2427.1 General. This section recognizes that the choice of venting materials and the methods of installation of venting systems are dependent on the operating characteristics of the appliance being vented. The operating characteristics of vented appliances can be categorized with respect to: (1) positive or negative pressure within the venting system; and (2) whether or not the appliance generates flue or vent gases that might condense in the venting system. See Section 2403 for the definitions of these vented appliance categories.

2427.2 Venting systems required. Except as permitted in Sections 2427.2.1, 2427.2.2 and 2425.8, all appliances shall be connected to venting systems.

2427.2.1 Direct-vent appliances. Listed direct-vent appliances shall be installed in accordance with the manufacturer’s instructions and Section 2427.8, Item 3.

2427.2.2 Appliances with integral vents. Appliances incorporating integral venting means shall be considered properly vented where installed in accordance with the manufacturer’s instructions and Section 2427.8, Items 1 and 2.

2427.3 Design and construction. A venting system shall be designed and constructed so as to develop a positive flow adequate to convey flue or vent gases to the outdoors.

2427.3.1 Appliance draft requirements. A venting system shall satisfy the draft requirements of the appliance in accordance with the manufacturer’s instructions.

2427.3.2 Design and construction. Appliances required to be vented shall be connected to a venting system designed and installed in accordance with the provisions of Sections 2427.4 through 2427.16.

2427.3.3 Mechanical draft systems. Mechanical draft systems shall comply with the following:
1. Mechanical draft systems shall be listed and shall be installed in accordance with the manufacturer’s installation instructions for both the appliance and the mechanical draft system.

2. Appliances, except incinerators, requiring venting shall be permitted to be vented by means of mechanical draft systems of either forced or induced draft design.

3. Forced draft systems and all portions of induced draft systems under positive pressure during operation shall be designed and installed so as to prevent leakage of flue or vent gases into a building.

4. Vent connectors serving appliances vented by natural draft shall not be connected into any portion of mechanical draft systems operating under positive pressure.

5. Where a mechanical draft system is employed, provisions shall be made to prevent the flow of gas to the main burners when the draft system is not performing so as to satisfy the operating requirements of the appliance for safe performance.

6. The exit terminals of mechanical draft systems shall be not less than 7 feet (2134 mm) above finished ground level where located adjacent to public walkways and shall be located as specified in Section 2427.8, Items 1 and 2.

2427.3.4 Air ducts and furnace plenums. Venting systems shall not extend into or pass through any fabricated air duct or furnace plenum

2427.3.5 Above-ceiling air-handling spaces. Where a venting system passes through an above-ceiling air-handling space or other nonducted portion of an air-handling system, the venting system shall conform to one of the following requirements:

1. The venting system shall be a listed special gas vent; other venting system serving a Category III or Category IV appliance; or other positive pressure vent, with joints sealed in accordance with the appliance or vent manufacturer’s instructions.
2. The venting system shall be installed such that fittings and joints between sections are not installed in the above-ceiling space.

3. The venting system shall be installed in a conduit or enclosure with sealed joints separating the interior of the conduit or enclosure from the ceiling space.

2427.4 Type of venting system to be used. The type of venting system to be used shall be in accordance with Table 2427.4.

2427.4.1 Plastic piping. Plastic piping used for venting appliances listed for use with such venting materials shall be approved.

2427.4.1.1 (IFGS) Plastic vent joints. Plastic pipe and fittings used to vent appliances shall be installed in accordance with the appliance manufacturer’s installation instructions. Where a primer is required, it shall be of a contrasting color.

2427.4.2 Special gas vent. Special gas vent shall be listed and installed in accordance with the special gas vent manufacturer’s installation instructions.

2427.5 Masonry, metal and factory-built chimneys. Masonry, metal and factory-built chimneys shall comply with Sections 2427.5.1 through 2427.5.9.

2427.5.1 Factory-built chimneys. Factory-built chimneys shall be installed in accordance with the manufacturer’s installation instructions. Factory-built chimneys used to vent appliances that operate at a positive vent pressure shall be listed for such application.

2427.5.2 Masonry chimneys. Masonry chimneys shall be built and installed in accordance with NFPA 211 and shall be lined with approved clay flue lining, a listed chimney lining system or other approved material that will resist corrosion, erosion, softening or cracking from vent gases at temperatures up to 1,800°F (982°C).

Exception: Masonry chimney flues serving listed gas appliances with draft hoods, Category I appliances and other gas appliances listed for use with Type B vents shall be permitted to be lined with a chimney lining system specifically listed for use only with such appliances. The liner shall be installed in accordance with the liner manufacturer’s installation instructions. A permanent identifying label shall be attached at the point
where the connection is to be made to the liner. The label shall read: “This chimney liner is for appliances that burn gas only. Do not connect to solid or liquid fuel-burning appliances or incinerators.”

TABLE 2427.4
TYPE OF VENTING SYSTEM TO BE USED

<table>
<thead>
<tr>
<th>APPLIANCES</th>
<th>TYPE OF VENTING SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listed Category I appliances</td>
<td>Type B gas vent (Section 2427.6)</td>
</tr>
<tr>
<td>Listed appliances equipped with draft hood</td>
<td>Chimney (Section 2427.5)</td>
</tr>
<tr>
<td>Appliances listed for use with Type B gas vent</td>
<td>Single-wall metal pipe (Section 2427.7)</td>
</tr>
<tr>
<td></td>
<td>Listed chimney lining system for gas venting (Section 2427.5.2)</td>
</tr>
<tr>
<td></td>
<td>Special gas vent listed for these appliances (Section 2427.4.2)</td>
</tr>
<tr>
<td>Listed vented wall furnaces</td>
<td>Type B-W gas vent (Sections 2427.6, 2436)</td>
</tr>
<tr>
<td>Category II appliances</td>
<td>As specified or furnished by manufacturers of listed appliances (Sections 2427.4.1, 2427.4.2)</td>
</tr>
<tr>
<td>Category III appliances</td>
<td>As specified or furnished by manufacturers of listed appliances (Sections 2427.4.1, 2427.4.2)</td>
</tr>
<tr>
<td>Category IV appliances</td>
<td>As specified or furnished by manufacturers of listed appliances (Sections 2427.4.1, 2427.4.2)</td>
</tr>
<tr>
<td>Unlisted appliances</td>
<td>Chimney (Section 2427.5)</td>
</tr>
<tr>
<td>Decorative appliances in vented fireplaces</td>
<td>Chimney (Section 2427.5)</td>
</tr>
<tr>
<td>Direct-vent appliances</td>
<td>See Section 2427.2.1</td>
</tr>
<tr>
<td>Appliances with integral vent</td>
<td>See Section 2427.2.2</td>
</tr>
</tbody>
</table>

2427.5.3 Chimney termination. Chimneys for residential-type or low-heat appliances shall extend at least 3 feet (914 mm) above the highest point where they pass through a roof of a building and at least 2 feet (610 mm) higher than any portion of a building within a horizontal distance of 10 feet (3048 mm) (see Figure 2427.5.3). Chimneys for medium-heat appliances shall extend at least 10 feet (3048 mm) higher than any portion of any building within 25 feet (7620 mm). Chimneys shall extend at least 5 feet (1524 mm) above the highest connected appliance draft hood outlet or flue collar. Decorative shrouds shall not be installed at the termination of factory-built chimneys except where such shrouds are listed and labeled for use with the specific factory-built chimney system and are installed in accordance with the manufacturer’s installation instructions.

2427.5.4 Size of chimneys. The effective area of a chimney venting system serving listed appliances with draft hoods, Category I appliances, and other appliances listed for use with Type B vents shall be determined in accordance with one of the following methods:

1. The provisions of Section 2428.
2. For sizing an individual chimney venting system for a single appliance with a draft hood, the effective areas of the vent connector and chimney flue shall be not less than the area of the appliance flue collar or draft hood outlet, nor greater than seven times the draft hood outlet area.

3. For sizing a chimney venting system connected to two appliances with draft hoods, the effective area of the chimney flue shall be not less than the area of the larger draft hood outlet plus 50 percent of the area of the smaller draft hood outlet, nor greater than seven times the smallest draft hood outlet area.

4. Chimney venting systems using mechanical draft shall be sized in accordance with approved engineering methods.

5. Other approved engineering methods.

2427.5.5 Inspection of chimneys. Before replacing an existing appliance or connecting a vent connector to a chimney, the chimney passageway shall be examined to ascertain that it is clear and free of obstructions and it shall be cleaned if previously used for venting solid or liquid fuel-burning appliances or fireplaces.

2427.5.5.1 Chimney lining. Chimneys shall be lined in accordance with NFPA 211.

Exception: Where an existing chimney complies with Sections 2427.5.5 through 2427.5.5.3 and its sizing is in accordance with Section 2427.5.4, its continued use shall be allowed where the appliance vented by that chimney is replaced by an appliance of similar type, input rating and efficiency.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

NOTES:
- a. No height above parapet required when distance from walls or parapet is more than 10 feet.
- b. Height above any roof surface within 10 feet horizontally.

FIGURE 2427.5.3
TYPICAL TERMINATION LOCATIONS FOR CHIMNEYS AND SINGLE-WALL METAL PIPES SERVING RESIDENTIAL-TYPE AND LOW-HEAT APPLIANCES

2427.5.5.2 Cleanouts. Cleanouts shall be examined to determine that they will remain tightly closed when not in use.

2427.5.5.3 Unsafe chimneys. Where inspection reveals that an existing chimney is not safe for the intended application, it shall be repaired, rebuilt, lined, relined or replaced with a vent or chimney to conform to NFPA 211 and it shall be suitable for the appliances to be vented.
2427.5.6 Chimneys serving appliances burning other fuels. Chimneys serving appliances burning other fuels shall comply with Sections 2427.5.6.1 through 2427.5.6.4.

2427.5.6.1 Solid fuel-burning appliances. An appliance shall not be connected to a chimney flue serving a separate appliance designed to burn solid fuel.

2427.5.6.2 Liquid fuel-burning appliances. Where one chimney flue serves gas appliances and liquid fuel-burning appliances, the appliances shall be connected through separate openings or shall be connected through a single opening where joined by a suitable fitting located as close as practical to the chimney. Where two or more openings are provided into one chimney flue, they shall be at different levels. Where the appliances are automatically controlled, they shall be equipped with safety shutoff devices.

2427.5.6.3 Combination gas-and solid fuel-burning appliances. A combination gas-and solid fuel-burning appliance equipped with a manual reset device to shut off gas to the main burner in the event of sustained backdraft or flue gas spillage shall be permitted to be connected to a single chimney flue. The chimney flue shall be sized to properly vent the appliance.

2427.5.6.4 Combination gas-and oil fuel-burning appliances. A listed combination gas-and oil fuel-burning appliance shall be permitted to be connected to a single chimney flue. The chimney flue shall be sized to properly vent the appliance.

2427.5.7 Support of chimneys. All portions of chimneys shall be supported for the design and weight of the materials employed. Factory-built chimneys shall be supported and spaced in accordance with the manufacturer’s installation instructions.

2427.5.8 Cleanouts. Where a chimney that formerly carried flue products from liquid or solid fuel-burning appliances is used with an appliance using fuel gas, an accessible cleanout shall be provided. The cleanout shall have a tight-fitting cover and be installed so its upper edge is at least 6 inches (152 mm) below the lower edge of the lowest chimney inlet opening.
2427.5.9 Space surrounding lining or vent. The remaining space surrounding a chimney liner, gas vent, special gas vent or plastic piping installed within a masonry chimney flue shall not be used to vent another appliance. The insertion of another liner or vent within the chimney as provided in this code and the liner or vent manufacturer’s instructions shall not be prohibited.

The remaining space surrounding a chimney liner, gas vent, special gas vent or plastic piping installed within a masonry, metal or factory-built chimney shall not be used to supply combustion air. Such space shall not be prohibited from supplying combustion air to direct-vent appliances designed for installation in a solid fuel-burning fireplace and installed in accordance with the manufacturer’s installation instructions.

2427.6 Gas vents. Gas vents shall comply with Sections 2427.6.1 through 2427.6.11. (See Section 2403, Definitions.)

2427.6.1 Installation, general. Gas vents shall be installed in accordance with the terms of their listings and the manufacturer’s instructions.

2427.6.2 Type B-W vent capacity. A Type B-W gas vent shall have a listed capacity not less than that of the listed vented wall furnace to which it is connected.

2427.6.3 Gas vent termination. A gas vent shall terminate in accordance with one of the following:

1. Gas vents that are 12 inches (305 mm) or less in size and located not less than 8 feet (2438 mm) from a vertical wall or similar obstruction shall terminate above the roof in accordance with Figure 2427.6.3.

2. Gas vents that are over 12 inches (305 mm) in size or are located less than 8 feet (2438 mm) from a vertical wall or similar obstruction shall terminate not less than 2 feet (610 mm) above the highest point where they pass through the roof and not less than 2 feet (610 mm) above any portion of a building within 10 feet (3048 mm) horizontally.

3. As provided for direct-vent systems in Section 2427.2.1.

4. As provided for appliances with integral vents in Section 2427.2.2.

5. As provided for mechanical draft systems in Section 2427.3.3.
2427.6.3.1 Decorative shrouds. Decorative shrouds shall not be installed at the termination of gas vents except where such shrouds are listed for use with the specific gas venting system and are installed in accordance with manufacturer’s installation instructions.

2427.6.4 Minimum height. A Type B or L gas vent shall terminate at least 5 feet (1524 mm) in vertical height above the highest connected appliance draft hood or flue collar. A Type B-W gas vent shall terminate at least 12 feet (3658 mm) in vertical height above the bottom of the wall furnace.

2427.6.5 Roof terminations. Gas vents shall extend through the roof flashing, roof jack or roof thimble and terminate with a listed cap or listed roof assembly.

2427.6.6 Forced air inlets. Gas vents shall terminate not less than 3 feet (914 mm) above any forced air inlet located within 10 feet (3048 mm).

2427.6.7 Exterior wall penetrations. A gas vent extending through an exterior wall shall not terminate adjacent to the wall or below eaves or parapets, except as provided in Sections 2427.2.1 and 2427.3.3.

2427.6.8 Size of gas vents. Venting systems shall be sized and constructed in accordance with Section 2428 or other approved engineering methods and the gas vent and appliance manufacturer’s installation instructions.

2427.6.8.1 Category I appliances. The sizing of natural draft venting systems serving one or more listed appliances equipped with a draft hood or appliances listed for use with Type B gas vent, installed in a single story of a building, shall be in accordance with one of the following methods:

1. The provisions of Section 2428.

2. For sizing an individual gas vent for a single, draft-hood-equipped appliance, the effective area of the vent connector and the gas vent shall be not less than the area of the appliance draft hood outlet, nor greater than seven times the draft hood outlet area.

3. For sizing a gas vent connected to two appliances with draft hoods, the effective area of the vent shall be not less than the area of the
larger draft hood outlet plus 50 percent of the area of the smaller
draft hood outlet, nor greater than seven times the smaller draft
hood outlet area.

4. Approved engineering practices.

2427.6.8.2 Vent offsets. Type B and L vents sized in accordance with
Item 2 or 3 of Section 2427.6.8.1 shall extend in a generally vertical
direction with offsets not exceeding 45 degrees (0.79 rad), except that a
vent system having not more than one 60-degree (1.04 rad) offset shall be
permitted. Any angle greater than 45 degrees (0.79 rad) from the vertical
is considered horizontal. The total horizontal distance of a vent plus the
horizontal vent connector serving draft hood-equipped appliances shall be
not greater than 75 percent of the vertical height of the vent.

2427.6.8.3 Category II, III and IV appliances. The sizing of gas vents
for Category II, III and IV appliances shall be in accordance with the
appliance manufacturer’s instructions.

2427.6.8.4 Mechanical draft. Chimney venting systems using mechanical
draft shall be sized in accordance with approved engineering methods.
For SI: 1 foot = 304.8 mm.

FIGURE 2427.6.3
GAS VENT TERMINATION LOCATIONS FOR LISTED CAPS 12 INCHES OR LESS IN SIZE AT LEAST 8 FEET FROM A VERTICAL WALL

<table>
<thead>
<tr>
<th>Slope Range</th>
<th>H Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat to 6/12</td>
<td>1.0</td>
</tr>
<tr>
<td>Over 6/12 to 7/12</td>
<td>1.25</td>
</tr>
<tr>
<td>Over 7/12 to 8/12</td>
<td>1.5</td>
</tr>
<tr>
<td>Over 8/12 to 9/12</td>
<td>2.0</td>
</tr>
<tr>
<td>Over 9/12 to 10/12</td>
<td>2.5</td>
</tr>
<tr>
<td>Over 10/12 to 11/12</td>
<td>3.25</td>
</tr>
<tr>
<td>Over 11/12 to 12/12</td>
<td>4.0</td>
</tr>
<tr>
<td>Over 12/12 to 14/12</td>
<td>5.0</td>
</tr>
<tr>
<td>Over 14/12 to 16/12</td>
<td>6.0</td>
</tr>
<tr>
<td>Over 16/12 to 18/12</td>
<td>7.0</td>
</tr>
<tr>
<td>Over 18/12 to 20/12</td>
<td>7.5</td>
</tr>
<tr>
<td>Over 20/12 to 21/12</td>
<td>8.0</td>
</tr>
</tbody>
</table>

2427.6.9 Support of gas vents. Gas vents shall be supported and spaced in accordance with the manufacturer’s installation instructions.

2427.6.10 Marking. In those localities where solid and liquid fuels are used extensively, gas vents shall be permanently identified by a label attached to the wall or ceiling at a point where the vent connector enters the gas vent. The determination of where such localities exist shall be made by the building official. The label shall read: “This gas vent is for appliances that burn gas. Do not connect to solid or liquid fuel-burning appliances or incinerators.”

2427.6.11 Fastener penetrations. Screws, rivets and other fasteners shall not penetrate the inner wall of double-wall gas vents, except at the transition from an appliance draft hood outlet, a flue collar or a single-wall metal connector to a double-wall vent.

2427.7 Single-wall metal pipe. Single-wall metal pipe vents shall comply with Sections 2427.7.1 through 2427.7.13.
2427.7.1 Construction. Single-wall metal pipe shall be constructed of galvanized sheet steel not less than 0.0304 inch (0.7 mm) thick, or other approved, noncombustible, corrosion-resistant material.

2427.7.2 Cold climate. Uninsulated single-wall metal pipe shall not be used outdoors for venting appliances in regions where the 99-percent winter design temperature is below 32°F (0°C).

2427.7.3 Termination. Single-wall metal pipe shall terminate at least 5 feet (1524 mm) in vertical height above the highest connected appliance draft hood outlet or flue collar. Single-wall metal pipe shall extend at least 2 feet (610 mm) above the highest point where it passes through a roof of a building and at least 2 feet (610 mm) higher than any portion of a building within a horizontal distance of 10 feet (3048 mm) (see Figure 2427.5.3). An approved cap or roof assembly shall be attached to the terminus of a single-wall metal pipe (see also Section 2427.7.9, Item 3).

2427.7.4 Limitations of use. Single-wall metal pipe shall be used only for runs directly from the space in which the appliance is located through the roof or exterior wall to the outdoor atmosphere.

2427.7.5 Roof penetrations. A pipe passing through a roof shall extend without interruption through the roof flashing, roof jack, or roof thimble. Where a single-wall metal pipe passes through a roof constructed of combustible material, a noncombustible, nonventilating thimble shall be used at the point of passage. The thimble shall extend at least 18 inches (457 mm) above and 6 inches (152 mm) below the roof with the annular space open at the bottom and closed only at the top. The thimble shall be sized in accordance with Section 2427.7.7.

2427.7.6 Installation. Single-wall metal pipe shall not originate in any unoccupied attic or concealed space and shall not pass through any attic, inside wall, concealed space, or floor. The installation of a single-wall metal pipe through an exterior combustible wall shall comply with Section 2427.7.7. Single-wall metal pipe used for venting an incinerator shall be exposed and readily examinable for its full length and shall have suitable clearances maintained.

2427.7.7 Single-wall penetrations of combustible walls. Single-wall metal pipe shall not pass through a combustible exterior wall unless guarded at the point of passage by a ventilated metal thimble not smaller than the following:
1. For listed appliances equipped with draft hoods and appliances listed for use with Type B gas vents, the thimble shall be not less than 4 inches (102 mm) larger in diameter than the metal pipe. Where there is a run of not less than 6 feet (1829 mm) of metal pipe in the open between the draft hood outlet and the thimble, the thimble shall be permitted to be not less than 2 inches (51 mm) larger in diameter than the metal pipe.

2. For unlisted appliances having draft hoods, the thimble shall be not less than 6 inches (152 mm) larger in diameter than the metal pipe.

3. For residential and low-heat appliances, the thimble shall be not less than 12 inches (305 mm) larger in diameter than the metal pipe.

Exception: In lieu of thimble protection, all combustible material in the wall shall be removed a sufficient distance from the metal pipe to provide the specified clearance from such metal pipe to combustible material. Any material used to close up such opening shall be noncombustible.

2427.7.8 Clearances. Minimum clearances from single-wall metal pipe to combustible material shall be in accordance with Table 2427.10.5. The clearance from single-wall metal pipe to combustible material shall be permitted to be reduced where the combustible material is protected as specified for vent connectors in Table 2409.2.

2427.7.9 Size of single-wall metal pipe. A venting system constructed of single-wall metal pipe shall be sized in accordance with one of the following methods and the appliance manufacturer’s instructions:

1. For a draft-hood-equipped appliance, in accordance with Section 2428.

2. For a venting system for a single appliance with a draft hood, the areas of the connector and the pipe each shall be not less than the area of the appliance flue collar or draft hood outlet, whichever is smaller. The vent area shall not be greater than seven times the draft hood outlet area.

3. Other approved engineering methods.
2427.7.10 **Pipe geometry.** Any shaped single-wall metal pipe shall be permitted to be used, provided that its equivalent effective area is equal to the effective area of the round pipe for which it is substituted, and provided that the minimum internal dimension of the pipe is not less than 2 inches (51 mm).

2427.7.11 **Termination capacity.** The vent cap or a roof assembly shall have a venting capacity not less than that of the pipe to which it is attached.

2427.7.12 **Support of single-wall metal pipe.** All portions of single-wall metal pipe shall be supported for the design and weight of the material employed.

2427.7.13 **Marking.** Single-wall metal pipe shall comply with the marking provisions of Section 2427.6.10.

2427.8 **Venting system termination location.** The location of venting system terminations shall comply with the following (see Appendix C):

1. A mechanical draft venting system shall terminate at least 3 feet (914 mm) above any forced-air inlet located within 10 feet (3048 mm).

Exceptions:

1. This provision shall not apply to the combustion air intake of a direct-vent appliance.

2. This provision shall not apply to the separation of the integral outdoor air inlet and flue gas discharge of listed outdoor appliances.

2. A mechanical draft venting system, excluding direct-vent appliances, shall terminate at least 4 feet (1219 mm) below, 4 feet (1219 mm) horizontally from, or 1 foot (305 mm) above any door, operable window, or gravity air inlet into any building. The bottom of the vent terminal shall be located at least 12 inches (305 mm) above finished ground level.

3. The vent terminal of a direct-vent appliance with an input of 10,000 Btu per hour (3 kW) or less shall be located at least 6 inches (152 mm) from any air opening into a building, and such an appliance with an input over 10,000 Btu per hour (3 kW) but not over 50,000 Btu per hour (14.7 kW) shall be installed with a 9-inch (230 mm) vent termination clearance, and
an appliance with an input over 50,000 Btu/h (14.7 kW) shall have at least a 12-inch (305 mm) vent termination clearance. The bottom of the vent terminal and the air intake shall be located at least 12 inches (305 mm) above finished ground level.

4. Through-the-wall vents for Category II and IV appliances and noncategorized condensing appliances shall not terminate over public walkways or over an area where condensate or vapor could create a nuisance or hazard or could be detrimental to the operation of regulators, relief valves, or other equipment. Where local experience indicates that condensate is a problem with Category I and III appliances, this provision shall also apply. Drains for condensate shall be installed in accordance with the manufacturer’s installation instructions.

2427.9 Condensation drainage. Provisions shall be made to collect and dispose of condensate from venting systems serving Category II and IV appliances and noncategorized condensing appliances in accordance with Section 2427.8, Item 4. Where local experience indicates that condensation is a problem, provision shall be made to drain off and dispose of condensate from venting systems serving Category I and III appliances in accordance with Section 2427.8, Item 4.

2427.10 Vent connectors for Category I appliances. Vent connectors for Category I appliances shall comply with Sections 2427.10.1 through 2427.10.14.

2427.10.1 Where required. A vent connector shall be used to connect an appliance to a gas vent, chimney or single-wall metal pipe, except where the gas vent, chimney or single-wall metal pipe is directly connected to the appliance.

2427.10.2 Materials. Vent connectors shall be constructed in accordance with Sections 2427.10.2.1 through 2427.10.2.4.

2427.10.2.1 General. A vent connector shall be made of noncombustible corrosion-resistant material capable of withstanding the vent gas temperature produced by the appliance and of sufficient thickness to withstand physical damage.

2427.10.2.2 Vent connectors located in unconditioned areas. Where the vent connector used for an appliance having a draft hood or a Category I appliance is located in or passes through attics, crawl spaces or other unconditioned spaces, that portion of the vent connector shall be listed
Type B, Type L or listed vent material having equivalent insulation properties.

Exception: Single-wall metal pipe located within the exterior walls of the building in areas having a local 99-percent winter design temperature of 5°F (-15°C) or higher shall be permitted to be used in unconditioned spaces other than attics and crawl spaces.

2427.10.2.3 Residential-type appliance connectors. Where vent connectors for residential-type appliances are not installed in attics or other unconditioned spaces, connectors for listed appliances having draft hoods, appliances having draft hoods and equipped with listed conversion burners and Category I appliances shall be one of the following:

1. Type B or L vent material;
2. Galvanized sheet steel not less than 0.018 inch (0.46 mm) thick;
3. Aluminum (1100 or 3003 alloy or equivalent) sheet not less than 0.027 inch (0.69 mm) thick;
4. Stainless steel sheet not less than 0.012 inch (0.31 mm) thick;
5. Smooth interior wall metal pipe having resistance to heat and corrosion equal to or greater than that of Item 2, 3 or 4 above; or
6. A listed vent connector.

Vent connectors shall not be covered with insulation.

Exception: Listed insulated vent connectors shall be installed in accordance with the manufacturer's installation instructions.

2427.10.2.4 Low-heat appliance. A vent connector for a nonresidential, low-heat appliance shall be a factory-built chimney section or steel pipe having resistance to heat and corrosion equivalent to that for the appropriate galvanized pipe as specified in Table 2427.10.2.4. Factory-built chimney sections shall be joined together in accordance with the chimney manufacturer’s instructions.
2427.10.2.4 TABLE 2427.10.2.4
MINIMUM THICKNESS FOR GALVANIZED STEEL VENT CONNECTORS FOR LOW-HEAT APPLIANCES

<table>
<thead>
<tr>
<th>DIAMETER OF CONNECTOR (inches)</th>
<th>MINIMUM THICKNESS (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 6</td>
<td>0.019</td>
</tr>
<tr>
<td>6 to less than 10</td>
<td>0.023</td>
</tr>
<tr>
<td>10 to 12 inclusive</td>
<td>0.029</td>
</tr>
<tr>
<td>14 to 16 inclusive</td>
<td>0.034</td>
</tr>
<tr>
<td>Over 16</td>
<td>0.056</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

2427.10.3 Size of vent connector. Vent connectors shall be sized in accordance with Sections 2427.10.3.1 through 2427.3.5.

2427.10.3.1 Single draft hood and fan-assisted. A vent connector for an appliance with a single draft hood or for a Category I fan-assisted combustion system appliance shall be sized and installed in accordance with Section 2428 or other approved engineering methods.

2427.10.3.2 Multiple draft hood. For a single appliance having more than one draft hood outlet or flue collar, the manifold shall be constructed according to the instructions of the appliance manufacturer. Where there are no instructions, the manifold shall be designed and constructed in accordance with approved engineering practices. As an alternate method, the effective area of the manifold shall equal the combined area of the flue collars or draft hood outlets and the vent connectors shall have a minimum 1-foot (305 mm) rise.

2427.10.3.3 Multiple appliances. Where two or more appliances are connected to a common vent or chimney, each vent connector shall be sized in accordance with Section 2428 or other approved engineering methods.

As an alternative method applicable only when all of the appliances are draft hood equipped, each vent connector shall have an effective area not less than the area of the draft hood outlet of the appliance to which it is connected.

2427.10.3.4 Common connector/manifold. Where two or more appliances are vented through a common vent connector or vent manifold, the common vent connector or vent manifold shall be located at the
highest level consistent with available headroom and the required clearance to combustible materials and shall be sized in accordance with Section 2428 or other approved engineering methods.

As an alternate method applicable only where there are two draft hood-equipped appliances, the effective area of the common vent connector or vent manifold and all junction fittings shall be not less than the area of the larger vent connector plus 50 percent of the area of the smaller flue collar outlet.

2427.10.3.5 Size increase. Where the size of a vent connector is increased to overcome installation limitations and obtain connector capacity equal to the appliance input, the size increase shall be made at the appliance draft hood outlet.

2427.10.4 Two or more appliances connected to a single vent or chimney. Where two or more vent connectors enter a common gas vent, chimney flue, or single-wall metal pipe, the smaller connector shall enter at the highest level consistent with the available headroom or clearance to combustible material. Vent connectors serving Category I appliances shall not be connected to any portion of a mechanical draft system operating under positive static pressure, such as those serving Category III or IV appliances.

2427.10.4.1 Two or more openings. Where two or more openings are provided into one chimney flue or vent, the openings shall be at different levels, or the connectors shall be attached to the vertical portion of the chimney or vent at an angle of 45 degrees (0.79 rad) or less relative to the vertical.

2427.10.5 Clearance. Minimum clearances from vent connectors to combustible material shall be in accordance with Table 2427.10.5.

Exception: The clearance between a vent connector and combustible material shall be permitted to be reduced where the combustible material is protected as specified for vent connectors in Table 2409.2.

2427.10.6 Flow resistance. A vent connector shall be installed so as to avoid turns or other construction features that create excessive resistance to flow of vent gases.

TABLE 2427.10.5a
CLEARANCES FOR CONNECTORS
Table: MINIMUM DISTANCE FROM COMBUSTIBLE MATERIAL

<table>
<thead>
<tr>
<th>APPLIANCE</th>
<th>Listed Type B gas vent material</th>
<th>Listed Type L vent material</th>
<th>Single-wall metal pipe</th>
<th>Factory-built chimney sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Listed appliances with draft hoods and appliances listed for use with Type B gas vents</td>
<td>As listed</td>
<td>As listed</td>
<td>6 inches</td>
<td>As listed</td>
</tr>
<tr>
<td>Residential boilers and furnaces with listed gas conversion burner and with draft hood</td>
<td>6 inches</td>
<td>6 inches</td>
<td>9 inches</td>
<td>As listed</td>
</tr>
<tr>
<td>Residential appliances listed for use with Type L vents</td>
<td>Not permitted</td>
<td>As listed</td>
<td>9 inches</td>
<td>As listed</td>
</tr>
<tr>
<td>Listed gas-fired toilets</td>
<td>Not permitted</td>
<td>As listed</td>
<td>As listed</td>
<td>As listed</td>
</tr>
<tr>
<td>Unlisted residential appliances with draft hood</td>
<td>Not permitted</td>
<td>6 inches</td>
<td>9 inches</td>
<td>As listed</td>
</tr>
<tr>
<td>Residential and low-heat appliances other than above</td>
<td>Not permitted</td>
<td>9 inches</td>
<td>18 inches</td>
<td>As listed</td>
</tr>
<tr>
<td>Medium-heat appliances</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>36 inches</td>
<td>As listed</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm.

a. These clearances shall apply unless the manufacturer’s installation instructions for a listed appliance or connector specify different clearances, in which case the listed clearances shall apply.

2427.10.7 Joints

Joints between sections of connector piping and connections to flue collars and draft hood outlets shall be fastened by one of the following methods:

1. Sheet metal screws.
2. Vent connectors of listed vent material assembled and connected to flue collars or draft hood outlets in accordance with the manufacturers’ instructions.
3. Other approved means.

2427.10.8 Slope

A vent connector shall be installed without dips or sags and shall slope upward toward the vent or chimney at least 1/4 inch per foot (21 mm/m).

Exception: Vent connectors attached to a mechanical draft system installed in accordance with the appliance and draft system manufacturers’ instructions.

2427.10.9 Length of vent connector

A vent connector shall be as short as practical and the appliance located as close as practical to the chimney or vent. The maximum horizontal length of a single-wall connector shall be 75 percent of the height of the chimney or vent except for engineered systems. The maximum horizontal length of a Type B double-wall connector shall be 100 percent of the height of the chimney or vent except for engineered systems.
2427.10.10 Support. A vent connector shall be supported for the design and weight of the material employed to maintain clearances and prevent physical damage and separation of joints.

2427.10.11 Chimney connection. Where entering a flue in a masonry or metal chimney, the vent connector shall be installed above the extreme bottom to avoid stoppage. Where a thimble or slip joint is used to facilitate removal of the connector, the connector shall be firmly attached to or inserted into the thimble or slip joint to prevent the connector from falling out. Means shall be employed to prevent the connector from entering so far as to restrict the space between its end and the opposite wall of the chimney flue (see Section 2425.9).

2427.10.12 Inspection. The entire length of a vent connector shall be provided with ready access for inspection, cleaning, and replacement.

2427.10.13 Fireplaces. A vent connector shall not be connected to a chimney flue serving a fireplace unless the fireplace flue opening is permanently sealed.

2427.10.14 Passage through ceilings, floors or walls. Single-wall metal pipe connectors shall not pass through any wall, floor or ceiling except as permitted by Section 2427.7.4.

2427.11 Vent connectors for Category II, III and IV appliances. Vent connectors for Category II, III and IV appliances shall be as specified for the venting systems in accordance with Section 2427.4.

2427.12 Draft hoods and draft controls. The installation of draft hoods and draft controls shall comply with Sections 2427.12.1 through 2427.12.7.

2427.12.1 Appliances requiring draft hoods. Vented appliances shall be installed with draft hoods.

 Exception: Dual oven-type combination ranges; incinerators; direct-vent appliances; fan-assisted combustion system appliances; appliances requiring chimney draft for operation; single firebox boilers equipped with conversion burners with inputs greater than 400,000 Btu per hour (117 kW); appliances equipped with blast, power or pressure burners that are
not listed for use with draft hoods; and appliances designed for forced venting.

2427.12.2 Installation. A draft hood supplied with or forming a part of a listed vented appliance shall be installed without alteration, exactly as furnished and specified by the appliance manufacturer.

2427.12.2.1 Draft hood required. If a draft hood is not supplied by the appliance manufacturer where one is required, a draft hood shall be installed, shall be of a listed or approved type and, in the absence of other instructions, shall be of the same size as the appliance flue collar. Where a draft hood is required with a conversion burner, it shall be of a listed or approved type.

2427.12.2.2 Special design draft hood. Where it is determined that a draft hood of special design is needed or preferable for a particular installation, the installation shall be in accordance with the recommendations of the appliance manufacturer and shall be approved.

2427.12.3 Draft control devices. Where a draft control device is part of the appliance or is supplied by the appliance manufacturer, it shall be installed in accordance with the manufacturer’s instructions. In the absence of manufacturer’s instructions, the device shall be attached to the flue collar of the appliance or as near to the appliance as practical.

2427.12.4 Additional devices. Appliances (except incinerators) requiring a controlled chimney draft shall be permitted to be equipped with a listed double-acting barometric-draft regulator installed and adjusted in accordance with the manufacturer’s instructions.

2427.12.5 Location. Draft hoods and barometric draft regulators shall be installed in the same room or enclosure as the appliance in such a manner as to prevent any difference in pressure between the hood or regulator and the combustion air supply.

2427.12.6 Positioning. Draft hoods and draft regulators shall be installed in the position for which they were designed with reference to the horizontal and vertical planes and shall be located so that the relief opening is not obstructed by any part of the appliance or adjacent construction. The appliance and its draft hood shall be located so that the relief opening is accessible for checking vent operation.
2427.12.7 Clearance. A draft hood shall be located so its relief opening is not less than 6 inches (152 mm) from any surface except that of the appliance it serves and the venting system to which the draft hood is connected. Where a greater or lesser clearance is indicated on the appliance label, the clearance shall be not less than that specified on the label. Such clearances shall not be reduced.

2427.13 Manually operated dampers. A manually operated damper shall not be placed in the vent connector for any appliance. Fixed baffles shall not be classified as manually operated dampers.

2427.14 Automatically operated vent dampers. An automatically operated vent damper shall be of a listed type.

2427.15 Obstructions. Devices that retard the flow of vent gases shall not be installed in a vent connector, chimney, or vent. The following shall not be considered as obstructions:

1. Draft regulators and safety controls specifically listed for installation in venting systems and installed in accordance with the manufacturer’s installation instructions.

2. Approved draft regulators and safety controls that are designed and installed in accordance with approved engineering methods.

3. Listed heat reclaimers and automatically operated vent dampers installed in accordance with the manufacturer’s installation instructions.

4. Approved economizers, heat reclaimers, and recuperators installed in venting systems of appliances not required to be equipped with draft hoods, provided that the appliance manufacturer’s instructions cover the installation of such a device in the venting system and performance in accordance with Sections 2427.3 and 2427.3.1 is obtained.

5. Vent dampers serving listed appliances installed in accordance with Sections 2428.2.1 and 2428.3.1 or other approved engineering methods.

2427.16 (IFGS) Outside wall penetrations. Where vents, including those for direct-vent appliances, penetrate outside walls of buildings, the annular spaces
around such penetrations shall be permanently sealed using approved materials to prevent entry of combustion products into the building.

SECTION 2428
SIZING OF CATEGORY I APPLIANCE VENTING SYSTEMS

2428.1 Definitions. The following definitions apply to tables in this section.

APPLIANCE CATEGORIZED VENT DIAMETER/AREA. The minimum vent area/diameter permissible for Category I appliances to maintain a nonpositive vent static pressure when tested in accordance with nationally recognized standards.

FAN-ASSISTED COMBUSTION SYSTEM. An appliance equipped with an integral mechanical means to either draw or force products of combustion through the combustion chamber or heat exchanger.

FAN MIN. The minimum input rating of a Category I fan-assisted appliance attached to a vent or connector.

FAN MAX. The maximum input rating of a Category I fan-assisted appliance attached to a vent or connector.

NAT MAX. The maximum input rating of a Category I draft-hood-equipped appliance attached to a vent or connector.

FAN + FAN. The maximum combined appliance input rating of two or more Category I fan-assisted appliances attached to the common vent.

FAN + NAT. The maximum combined appliance input rating of one or more Category I fan-assisted appliances and one or more Category I draft-hood-equipped appliances attached to the common vent.

NA. Vent configuration is not permitted due to potential for condensate formation or pressurization of the venting system, or not applicable due to physical or geometric restraints.

NAT + NAT. The maximum combined appliance input rating of two or more Category I draft-hood-equipped appliances attached to the common vent.
2428.2 Application of single appliance vent Tables 2428.2(1) and 2428.2(2).
The application of Tables 2428.2(1) and 2428.2(2) shall be subject to the requirements of Sections 2428.2.1 through 2428.2.16.

2428.2.1 Vent obstructions. These venting tables shall not be used where obstructions, as described in Section 2427.15, are installed in the venting system. The installation of vents serving listed appliances with vent dampers shall be in accordance with the appliance manufacturer’s instructions or in accordance with the following:

1. The maximum capacity of the vent system shall be determined using the “NAT Max” column.

2. The minimum capacity shall be determined as if the appliance were a fan-assisted appliance, using the “FAN Min” column to determine the minimum capacity of the vent system. Where the corresponding “FAN Min” is “NA,” the vent configuration shall not be permitted and an alternative venting configuration shall be utilized.

2428.2.2 Minimum size. Where the vent size determined from the tables is smaller than the appliance draft hood outlet or flue collar, the smaller size shall be permitted to be used provided all of the following are met:

1. The total vent height (H) is at least 10 feet (3048 mm).

2. Vents for appliance draft hood outlets or flue collars 12 inches (305 mm) in diameter or smaller are not reduced more than one table size.

3. Vents for appliance draft hood outlets or flue collars larger than 12 inches (305 mm) in diameter are not reduced more than two table sizes.

4. The maximum capacity listed in the tables for a fan-assisted appliance is reduced by 10 percent (0.90 by maximum table capacity).

5. The draft hood outlet is greater than 4 inches (102 mm) in diameter. Do not connect a 3-inch-diameter (76 mm) vent to a 4-inch-diameter (102 mm) draft hood outlet. This provision shall not apply to fan-assisted appliances.
TABLE 2428.2(1)
TYPE B DOUBLE-WALL GAS VENT

<table>
<thead>
<tr>
<th>Number of Appliances</th>
<th>Single</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appliance Type</td>
<td>Category I</td>
</tr>
<tr>
<td>Appliance Vent Connection</td>
<td>Connected directly to vent</td>
</tr>
</tbody>
</table>

VENT DIAMETER—(D) inches

<table>
<thead>
<tr>
<th>HEIGHT (H)(feet)</th>
<th>LAT (L)(feet)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0</td>
<td>84</td>
<td>0</td>
<td>165</td>
<td>0</td>
<td>276</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0</td>
<td>94</td>
<td>0</td>
<td>191</td>
<td>0</td>
<td>327</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0</td>
<td>97</td>
<td>0</td>
<td>202</td>
<td>0</td>
<td>349</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>213</td>
<td>0</td>
<td>374</td>
<td>0</td>
</tr>
</tbody>
</table>

APPLIANCE INPUT RATING IN THOUSANDS OF BTU/H

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2428.2(2)

TYPE B DOUBLE-WALL GAS VENT

<table>
<thead>
<tr>
<th>HEIGHT (H) (feet)</th>
<th>LAT ERA (L(L)) (feet)</th>
<th>VENT DIAMETER—(D) inches</th>
<th>APPLIANCE INPUT RATING IN THOUSANDS OF BTU/H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>38</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>41</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>43</td>
<td>45</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 British thermal unit per hour = 0.2931 W.
For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 British thermal unit per hour = 0.2931 W.

2428.2.3 Vent offsets.

Single-appliance venting configurations with zero (0) lateral lengths in Tables 2428.2(1) and 2428.2(2) shall not have elbows in the venting system. Single-appliance venting configurations with lateral lengths include two 90-degree (1.57 rad) elbows. For each additional elbow up to and including 45 degrees (0.79 rad), the maximum capacity listed in the venting tables shall be reduced by 5 percent. For each additional elbow greater than 45 degrees (0.79 rad) up to and including 90 degrees (1.57 rad), the maximum capacity listed in the venting tables shall be reduced by 10 percent. Where multiple offsets occur in a vent, the total lateral length of all offsets combined shall not exceed that specified in Tables 2428.2(1) and 2428.2(2).

2428.2.4 Zero lateral.

Zero (0) lateral (L) shall apply only to a straight vertical vent attached to a top outlet draft hood or flue collar.
2428.2.5 High altitude installations. Sea level input ratings shall be used when determining maximum capacity for high altitude installation. Actual input, derated for altitude, shall be used for determining minimum capacity for high altitude installation.

2428.2.6 Multiple input rate appliances. For appliances with more than one input rate, the minimum vent capacity (FAN Min) determined from the tables shall be less than the lowest appliance input rating, and the maximum vent capacity (FAN Max/NAT Max) determined from the tables shall be greater than the highest appliance rating input.

2428.2.7 Liner system sizing and connections. Listed corrugated metallic chimney liner systems in masonry chimneys shall be sized by using Table 2428.2(1) or 2428.2(2) for Type B vents with the maximum capacity reduced by 20 percent (0.80 x maximum capacity) and the minimum capacity as shown in Table 2428.2(1) or 2428.2(2). Corrugated metallic liner systems installed with bends or offsets shall have their maximum capacity further reduced in accordance with Section 2428.2.3. The 20-percent reduction for corrugated metallic chimney liner systems includes an allowance for one long-radius 90-degree (1.57 rad) turn at the bottom of the liner.

Connections between chimney liners and listed double-wall connectors shall be made with listed adapters designed for such purpose.

2428.2.8 Vent area and diameter. Where the vertical vent has a larger diameter than the vent connector, the vertical vent diameter shall be used to determine the minimum vent capacity, and the connector diameter shall be used to determine the maximum vent capacity. The flow area of the vertical vent shall not exceed seven times the flow area of the listed appliance categorized vent area, flue collar area, or draft hood outlet area unless designed in accordance with approved engineering methods.

2428.2.9 Chimney and vent locations. Tables 2428.2(1) and 2428.2(2) shall be used only for chimneys and vents not exposed to the outdoors below the roof line. A Type B vent or listed chimney lining system passing through an unused masonry chimney flue shall not be considered to be exposed to the outdoors. A Type B vent shall not be considered to be exposed to the outdoors where it passes through an unventilated enclosure or chase insulated to a value of not less than R-8.
2428.2.10 Corrugated vent connector size. Corrugated vent connectors shall be not smaller than the listed appliance categorized vent diameter, flue collar diameter, or draft hood outlet diameter.

2428.2.11 Vent connector size limitation. Vent connectors shall not be increased in size more than two sizes greater than the listed appliance categorized vent diameter, flue collar diameter or draft hood outlet diameter.

2428.2.12 Component commingling. In a single run of vent or vent connector, different diameters and types of vent and connector components shall be permitted to be used, provided that all such sizes and types are permitted by the tables.

2428.2.13 Draft hood conversion accessories. Draft hood conversion accessories for use with masonry chimneys venting listed Category I fan-assisted appliances shall be listed and installed in accordance with the manufacturer’s installation instructions for such listed accessories.

2428.2.14 Table interpolation. Interpolation shall be permitted in calculating capacities for vent dimensions that fall between the table entries (see Example 3, Appendix B).

2428.2.15 Extrapolation prohibited. Extrapolation beyond the table entries shall not be permitted.

2428.2.16 Engineering calculations. For vent heights less than 6 feet (1829 mm) and greater than shown in the tables, engineering methods shall be used to calculate vent capacities.

2428.3 Application of multiple appliance vent Tables 2428.3(1) through 2428.3(4). The application of Tables 2428.3(1) through 2428.3(4) shall be subject to the requirements of Sections 2428.3.1 through 2428.3.23.

TABLE 2428.3(1)
TYPE B DOUBLE-WALL VENT

<table>
<thead>
<tr>
<th>Number of Appliances</th>
<th>Two or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appliance Type</td>
<td>Category I</td>
</tr>
<tr>
<td>Appliance Vent Connection</td>
<td>Type B double-wall connector</td>
</tr>
</tbody>
</table>

VENT CONNECTOR CAPACITY
Type B Double-Wall Vent and Connector Diameter (D) Inches

<table>
<thead>
<tr>
<th>VENT HEIGHT (H) (feet)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>VENT HEIGHT RISE (R) (feet)</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>CONNECTOR DIAMETER (D) inches</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TYPE B DOUBLE-WALL VENT AND CONNECTOR DIAMETER—(D) inches</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appliance Input Rating Limits in Thousands of BTU/H

| FAN | NAT |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Min | Max |

Common Vent Capacity

<table>
<thead>
<tr>
<th>COMMON VENT CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE B DOUBLE-WALL COMMON VENT DIAMETER (D) inches</td>
</tr>
</tbody>
</table>

Combined Appliance Input Rating in Thousands of BTU/H

<table>
<thead>
<tr>
<th>VENT HEIGHT (H) (feet)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAN +FAN</td>
<td>FAN +NAT</td>
<td>NAT +NAT</td>
<td>FAN +FAN</td>
<td>FAN +NAT</td>
<td>NAT +NAT</td>
<td>FAN +FAN</td>
<td>FAN +NAT</td>
</tr>
<tr>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMMON VENT CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE B DOUBLE-WALL COMMON VENT DIAMETER (D) inches</td>
</tr>
</tbody>
</table>

Combined Appliance Input Rating in Thousands of BTU/H

<table>
<thead>
<tr>
<th>VENT HEIGHT (H) (feet)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAN +FAN</td>
<td>FAN +NAT</td>
<td>NAT +NAT</td>
<td>FAN +FAN</td>
<td>FAN +NAT</td>
<td>NAT +NAT</td>
<td>FAN +FAN</td>
<td>FAN +NAT</td>
</tr>
<tr>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>6</td>
<td>92</td>
<td>81</td>
<td>65</td>
<td>140</td>
<td>116</td>
<td>103</td>
<td>204</td>
</tr>
<tr>
<td>VENT HEIGHT (H) (feet)</td>
<td>SINGLE-WALL METAL VENT CONNECTOR DIAMETER—(D) inches</td>
<td>APPLIANCE INPUT RATING LIMITS IN THOUSANDS OF BTU/H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>CONNECTOR RISE (R) (feet)</td>
<td>FAN</td>
<td>NAT</td>
<td>FAN</td>
<td>NAT</td>
<td>FAN</td>
<td>NAT</td>
<td>FAN</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>26</td>
<td>NA</td>
<td>46</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>31</td>
<td>NA</td>
<td>55</td>
<td>NA</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>34</td>
<td>NA</td>
<td>62</td>
<td>121</td>
<td>131</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>27</td>
<td>NA</td>
<td>48</td>
<td>NA</td>
</tr>
<tr>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>32</td>
<td>NA</td>
<td>57</td>
<td>125</td>
<td>126</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>35</td>
<td>NA</td>
<td>64</td>
<td>130</td>
<td>138</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>28</td>
<td>NA</td>
<td>50</td>
<td>119</td>
</tr>
<tr>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>33</td>
<td>NA</td>
<td>85</td>
<td>59</td>
<td>124</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>36</td>
<td>89</td>
<td>91</td>
<td>67</td>
<td>129</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
<td>29</td>
<td>79</td>
<td>87</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>NA</td>
<td>NA</td>
<td>34</td>
<td>83</td>
<td>94</td>
<td>62</td>
<td>121</td>
</tr>
<tr>
<td>3</td>
<td>NA</td>
<td>NA</td>
<td>39</td>
<td>87</td>
<td>100</td>
<td>70</td>
<td>127</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>49</td>
<td>56</td>
<td>30</td>
<td>78</td>
<td>97</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>59</td>
<td>36</td>
<td>82</td>
<td>103</td>
<td>64</td>
<td>120</td>
</tr>
</tbody>
</table>
COMMON VENT CAPACITY

<table>
<thead>
<tr>
<th>VENT HEIGHT (H) (feet)</th>
<th>TYPE B DOUBLE-WALL COMMON VENT DIAMETER—(D) inches</th>
<th>COMBINED APPLIANCE INPUT RATING IN THOUSANDS OF BTU/H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>VENT CONNECTOR CAPACITY</td>
<td>6 NA</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>8 NA</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>10 NA</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>15 121</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>20 131</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>30 145</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>50 159</td>
<td>145</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 British thermal unit per hour = 0.2931 W.

TABLE 2428.3(3)

MASONRY CHIMNEY

- **Number of Appliances**: Two or more
- **Appliance Type**: Category I
- **Appliance Vent Connection**: Type B double-wall connector

VENT CONNECTOR CAPACITY

<table>
<thead>
<tr>
<th>VENT HEIGHT (H) (feet)</th>
<th>TYPE B DOUBLE-WALL VENT CONNECTOR DIAMETER—(D) inches</th>
<th>APPLIANCE INPUT RATING LIMITS IN THOUSANDS OF BTU/H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>VENT CONNECTOR RISE (R) (feet)</td>
<td>Min</td>
<td>Max</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Appliances</th>
<th>Two or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appliance Type</td>
<td>Category I</td>
</tr>
<tr>
<td>Appliance Vent Connection</td>
<td>Type B double-wall connector</td>
</tr>
</tbody>
</table>
COMMON VENT CAPACITY

<table>
<thead>
<tr>
<th>VENT HEIGHT (H) (feet)</th>
<th>12</th>
<th>19</th>
<th>28</th>
<th>38</th>
<th>50</th>
<th>63</th>
<th>78</th>
<th>113</th>
</tr>
</thead>
<tbody>
<tr>
<td>VENT + FAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN + FAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT + NAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN + FAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN + NAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT + FAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN + NAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT + NAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN + FAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAN + NAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT + NAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.16 mm², 1 foot = 304.8 mm, 1 British thermal unit per hour = 0.2931 W.

TABLE 2428.3(4)
MASONRY CHIMNEY
<table>
<thead>
<tr>
<th>VENT CONNECTOR CAPACITY</th>
<th>SINGLE-WALL METAL VENT CONNECTOR DIAMETER (D)—inches</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>VENT HEIGTH (feet)</td>
<td></td>
</tr>
<tr>
<td>RISE (R) (feet)</td>
<td></td>
</tr>
<tr>
<td>APPLIANCE INPUT RATING LIMITS IN THOUSANDS OF BTU/H</td>
<td>Min</td>
</tr>
<tr>
<td>FAN</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
COMMON VENT CAPACITY

<table>
<thead>
<tr>
<th>VENT HEIGHT (H) (feet)</th>
<th>MINIMUM INTERNAL AREA OF MASONRY CHIMNEY FLUE (square inches)</th>
<th>COMBINED APPLIANCE INPUT RATING IN THOUSANDS OF BTU/H</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 NA NA 25 NA 118 45 NA 176 71 NA 255 102 NA 348 142 NA 455 187 NA 579 245 NA 846 NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 NA NA 28 NA 128 52 NA 190 81 NA 276 118 NA 380 162 NA 497 217 NA 633 277 1,136 928 405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 NA NA 31 NA 136 56 NA 205 89 NA 295 129 NA 405 175 NA 532 234 171 680 300 1,216 1,000 450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 NA NA 36 NA NA 66 NA 230 105 NA 335 150 NA 400 210 677 602 280 866 772 360 1,359 1,139 540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 NA NA NA NA NA 74 NA 247 120 NA 362 170 NA 503 240 765 661 321 947 849 415 1,495 1,264 640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 NA 612 325 NA 821 456 1,152 1,076 600 1,879 1,672 910</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 square inch = 645.16 mm², 1 foot = 304.8 mm, 1 British thermal unit per hour = 0.2931 W.

2428.3.1 Vent obstructions. These venting tables shall not be used where obstructions, as described in Section 2427.15, are installed in the venting system. The installation of vents serving listed appliances with vent dampers shall be in accordance with the appliance manufacturer’s instructions or in accordance with the following:

1. The maximum capacity of the vent connector shall be determined using the NAT Max column.

2. The maximum capacity of the vertical vent or chimney shall be determined using the FAN+NAT column when the second appliance is a fan-assisted appliance, or the NAT+NAT column when the second appliance is equipped with a draft hood.
3. The minimum capacity shall be determined as if the appliance were a fan-assisted appliance.

3.1. The minimum capacity of the vent connector shall be determined using the FAN Min column.

3.2. The FAN+FAN column shall be used when the second appliance is a fan-assisted appliance, and the FAN+NAT column shall be used when the second appliance is equipped with a draft hood, to determine whether the vertical vent or chimney configuration is not permitted (NA). Where the vent configuration is NA, the vent configuration shall not be permitted and an alternative venting configuration shall be utilized.

2428.3.2 Connector length limit. The vent connector shall be routed to the vent utilizing the shortest possible route. Except as provided in Section 2428.3.3, the maximum vent connector horizontal length shall be 1.5 feet (457 mm) for each inch (18 mm per mm) of connector diameter as shown in Table 2428.3.2.

<table>
<thead>
<tr>
<th>CONNECTOR DIAMETER</th>
<th>CONNECTOR HORIZONTAL LENGTH (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum (inches)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7.5</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>10.5</td>
</tr>
<tr>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>13.5</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm.

2428.3.3 Connectors with longer lengths. Connectors with longer horizontal lengths than those listed in Section 2428.3.2 are permitted under the following conditions:

1. The maximum capacity (FAN Max or NAT Max) of the vent connector shall be reduced 10 percent for each additional multiple of the length listed above. For example, the maximum length listed above for a 4-inch (102 mm) connector is 6 feet (1829 mm). With a
connector length greater than 6 feet (1829 mm), but not exceeding 12 feet (3658 mm), the maximum capacity must be reduced by 10 percent (0.90 × maximum vent connector capacity). With a connector length greater than 12 feet (3658 mm), but not exceeding 18 feet (5486 mm), the maximum capacity must be reduced by 20 percent (0.80 × maximum vent capacity).

2. For a connector serving a fan-assisted appliance, the minimum capacity (FAN Min) of the connector shall be determined by referring to the corresponding single appliance table. For Type B double-wall connectors, Table 2428.2(1) shall be used. For single-wall connectors, Table 2428.2(2) shall be used. The height (H) and lateral (L) shall be measured according to the procedures for a single appliance vent, as if the other appliances were not present.

2428.3.4 Vent connector manifold. Where the vent connectors are combined prior to entering the vertical portion of the common vent to form a common vent manifold, the size of the common vent manifold and the common vent shall be determined by applying a 10-percent reduction (0.90 × maximum common vent capacity) to the common vent capacity part of the common vent tables. The length of the common vent connector manifold (L) shall not exceed 1½ feet for each inch (18 mm per mm) of common vent connector manifold diameter (D).

2428.3.5 Common vertical vent offset. Where the common vertical vent is offset, the maximum capacity of the common vent shall be reduced in accordance with Section 2428.3.6. The horizontal length of the common vent offset (L) shall not exceed 1½ feet for each inch (18 mm per mm) of common vent diameter (D). Where multiple offsets occur in a common vent, the total horizontal length of all offsets combined shall not exceed 1½ feet for each inch (18 mm/mm per) of the common vent diameter (D).

2428.3.6 Elbows in vents. For each elbow up to and including 45 degrees (0.79 rad) in the common vent, the maximum common vent capacity listed in the venting tables shall be reduced by 5 percent. For each elbow greater than 45 degrees (0.79 rad) up to and including 90 degrees (1.57 rad), the maximum common vent capacity listed in the venting tables shall be reduced by 10 percent.

2428.3.7 Elbows in connectors. The vent connector capacities listed in the common vent sizing tables include allowance for two 90-degree (1.57 rad)
elbows. For each additional elbow up to and including 45 degrees (0.79 rad), the maximum vent connector capacity listed in the venting tables shall be reduced by 5 percent. For each elbow greater than 45 degrees (0.79 rad) up to and including 90 degrees (1.57 rad), the maximum vent connector capacity listed in the venting tables shall be reduced by 10 percent.

2428.3.8 Common vent minimum size. The cross-sectional area of the common vent shall be equal to or greater than the cross-sectional area of the largest connector.

2428.3.9 Common vent fittings. At the point where tee or wye fittings connect to a common vent, the opening size of the fitting shall be equal to the size of the common vent. Such fittings shall not be prohibited from having reduced-size openings at the point of connection of appliance vent connectors.

2428.3.9.1 Tee and wye fittings. Tee and wye fittings connected to a common gas vent shall be considered as part of the common gas vent and shall be constructed of materials consistent with that of the common gas vent.

2428.3.10 High altitude installations. Sea-level input ratings shall be used when determining maximum capacity for high altitude installation. Actual input, derated for altitude, shall be used for determining minimum capacity for high altitude installation.

2428.3.11 Connector rise measurement. Connector rise (R) for each appliance connector shall be measured from the draft hood outlet or flue collar to the centerline where the vent gas streams come together.

2428.3.12 Vent height measurement. For multiple appliances all located on one floor, available total height (H) shall be measured from the highest draft hood outlet or flue collar up to the level of the outlet of the common vent.

2428.3.13 Vertical vent maximum size. Where two or more appliances are connected to a vertical vent or chimney, the flow area of the largest section of vertical vent or chimney shall not exceed seven times the smallest listed appliance categorized vent areas, flue collar area, or draft hood outlet area unless designed in accordance with approved engineering methods.

2428.3.14 Multiple input rate appliances. For appliances with more than one input rate, the minimum vent connector capacity (FAN Min) determined
from the tables shall be less than the lowest appliance input rating, and the maximum vent connector capacity (FAN Max or NAT Max) determined from the tables shall be greater than the highest appliance input rating.

2428.3.15 Liner system sizing and connections. Listed, corrugated metallic chimney liner systems in masonry chimneys shall be sized by using Table 2428.3(1) or 2428.3(2) for Type B vents, with the maximum capacity reduced by 20 percent (0.80 x maximum capacity) and the minimum capacity as shown in Table 2428.3(1) or 2428.3(2). Corrugated metallic liner systems installed with bends or offsets shall have their maximum capacity further reduced in accordance with Sections 2428.3.5 and 2428.3.6. The 20-percent reduction for corrugated metallic chimney liner systems includes an allowance for one long-radius 90-degree (1.57 rad) turn at the bottom of the liner. Where double-wall connectors are required, tee and wye fittings used to connect to the common vent chimney liner shall be listed double-wall fittings. Connections between chimney liners and listed double-wall fittings shall be made with listed adapter fittings designed for such purpose.

2428.3.16 Chimney and vent location. Tables 2428.3(1), 2428.3(2), 2428.3(3) and 2428.3(4) shall be used only for chimneys and vents not exposed to the outdoors below the roof line. A Type B vent or listed chimney lining system passing through an unused masonry chimney flue shall not be considered to be exposed to the outdoors. A Type B vent shall not be considered to be exposed to the outdoors where it passes through an unventilated enclosure or chase insulated to a value of not less than R-8.

2428.3.17 Connector maximum and minimum size. Vent connectors shall not be increased in size more than two sizes greater than the listed appliance categorized vent diameter, flue collar diameter, or draft hood outlet diameter. Vent connectors for draft-hood-equipped appliances shall not be smaller than the draft hood outlet diameter. Where a vent connector size(s) determined from the tables for a fan-assisted appliance(s) is smaller than the flue collar diameter, the use of the smaller size(s) shall be permitted provided that the installation complies with all of the following conditions:

1. Vent connectors for fan-assisted appliance flue collars 12 inches (305 mm) in diameter or smaller are not reduced by more than one table size [e.g., 12 inches to 10 inches (305 mm to 254 mm) is a one-size reduction] and those larger than 12 inches (305 mm) in diameter are not reduced more than two table sizes [e.g., 24 inches to 20 inches (610 mm to 508 mm) is a two-size reduction].
2. The fan-assisted appliance(s) is common vented with a draft-hood-equipped appliance(s).

3. The vent connector has a smooth interior wall.

2428.3.18 Component commingling. All combinations of pipe sizes, single-wall, and double-wall metal pipe shall be allowed within any connector run(s) or within the common vent, provided all of the appropriate tables permit all of the desired sizes and types of pipe, as if they were used for the entire length of the subject connector or vent. Where single-wall and Type B double-wall metal pipes are used for vent connectors within the same venting system, the common vent must be sized using Table 2428.3(2) or 2428.3(4), as appropriate.

2428.3.19 Draft hood conversion accessories. Draft hood conversion accessories for use with masonry chimneys venting listed Category I fan-assisted appliances shall be listed and installed in accordance with the manufacturer’s installation instructions for such listed accessories.

2428.3.20 Multiple sizes permitted. Where a table permits more than one diameter of pipe to be used for a connector or vent, all the permitted sizes shall be permitted to be used.

2428.3.21 Table interpolation. Interpolation shall be permitted in calculating capacities for vent dimensions that fall between table entries.

2428.3.22 Extrapolation prohibited. Extrapolation beyond the table entries shall not be permitted.

2428.3.23 Engineering calculations. For vent heights less than 6 feet (1829 mm) and greater than shown in the tables, engineering methods shall be used to calculate vent capacities.

SECTION 2429
DIRECT-VENT, INTEGRAL VENT, MECHANICAL VENT AND VENTILATION/EXHAUST HOOD VENTING

2429.1 General. The installation of direct-vent and integral vent appliances shall be in accordance with Section 2427. Mechanical venting systems shall be designed and installed in accordance with Section 2427.
SECTION 2430
FACTORY-BUILT CHIMNEYS

2430.1 Listing. Factory-built chimneys for building heating appliances producing flue gases having a temperature not greater than 1,000°F (538°C), measured at the entrance to the chimney, shall be listed and labeled in accordance with UL 103 and shall be installed and terminated in accordance with the manufacturer’s installation instructions.

2430.2 Support. Where factory-built chimneys are supported by structural members, such as joists and rafters, such members shall be designed to support the additional load.

SECTION 2431
GENERAL

2431.1 Scope. Sections 2432 through 2453 shall govern the approval, design, installation, construction, maintenance, alteration and repair of the appliances and equipment specifically identified herein.

SECTION 2432
DECORATIVE APPLIANCES FOR INSTALLATION IN FIREPLACES

2432.1 General. Decorative appliances for installation in approved solid fuel burning fireplaces shall be tested in accordance with ANSI Z21.60 and shall be installed in accordance with the manufacturer’s installation instructions. Manually lighted natural gas decorative appliances shall be tested in accordance with ANSI Z21.84.

2432.2 Flame safeguard device. Decorative appliances for installation in approved solid fuel-burning fireplaces, with the exception of those tested in accordance with ANSI Z21.84, shall utilize a direct ignition device, an ignitor or a pilot flame to ignite the fuel at the main burner, and shall be equipped with a flame safeguard device. The flame safeguard device shall automatically shut off the fuel supply to a main burner or group of burners when the means of ignition of such burners becomes inoperative.

2432.3 Prohibited installations. Decorative appliances for installation in fireplaces shall not be installed where prohibited by Section 2406.2.
SECTION 2433
LOG LIGHTERS

2433.1 General. Log lighters shall be tested in accordance with CSA 8 and shall be installed in accordance with the manufacturer’s installation instructions.

SECTION 2434
VENTED GAS FIREPLACES (DECORATIVE APPLIANCES)

2434.1 General. Vented gas fireplaces shall be tested in accordance with ANSI Z21.50, shall be installed in accordance with the manufacturer’s installation instructions and shall be designed and equipped as specified in Section 2432.2.

2434.2 Access. Panels, grilles, and access doors that are required to be removed for normal servicing operations shall not be attached to the building.

SECTION 2435
VENTED GAS FIREPLACE HEATERS

2435.1 General. Vented gas fireplace heaters shall be installed in accordance with the manufacturer’s installation instructions, shall be tested in accordance with ANSI Z21.88 and shall be designed and equipped as specified in Section 2432.2.

SECTION 2436
VENTED WALL FURNACES

2436.1 General. Vented wall furnaces shall be tested in accordance with ANSI Z21.86/CSA 2.32 and shall be installed in accordance with the manufacturer’s installation instructions.

2436.2 Venting. Vented wall furnaces shall be vented in accordance with Section 2427.

2436.3 Location. Vented wall furnaces shall be located so as not to cause a fire hazard to walls, floors, combustible furnishings or doors. Vented wall furnaces installed between bathrooms and adjoining rooms shall not circulate air from bathrooms to other parts of the building.

2436.4 Door swing. Vented wall furnaces shall be located so that a door cannot swing within 12 inches (305 mm) of an air inlet or air outlet of such furnace.
measured at right angles to the opening. Doorstops or door closers shall not be installed to obtain this clearance.

2436.5 Ducts prohibited. Ducts shall not be attached to wall furnaces. Casing extension boots shall not be installed unless listed as part of the appliance.

2436.6 Access. Vented wall furnaces shall be provided with access for cleaning of heating surfaces, removal of burners, replacement of sections, motors, controls, filters and other working parts, and for adjustments and lubrication of parts requiring such attention. Panels, grilles and access doors that are required to be removed for normal servicing operations shall not be attached to the building construction.

SECTION 2437
FLOOR FURNACES

2437.1 General. Floor furnaces shall be tested in accordance with ANSI Z21.86/CSA 2.32 and shall be installed in accordance with the manufacturer’s installation instructions.

2437.2 Placement. The following provisions apply to floor furnaces:

1. Floors. Floor furnaces shall not be installed in the floor of any doorway, stairway landing, aisle or passageway of any enclosure, public or private, or in an exitway from any such room or space.

2. Walls and corners. The register of a floor furnace with a horizontal warm air outlet shall not be placed closer than 6 inches (152 mm) to the nearest wall. A distance of at least 18 inches (457 mm) from two adjoining sides of the floor furnace register to walls shall be provided to eliminate the necessity of occupants walking over the warm air discharge. The remaining sides shall be permitted to be placed not closer than 6 inches (152 mm) to a wall. Wall-register models shall not be placed closer than 6 inches (152 mm) to a corner.

3. Draperies. The furnace shall be placed so that a door, drapery, or similar object cannot be nearer than 12 inches (305 mm) to any portion of the register of the furnace.

4. Floor construction. Floor furnaces shall not be installed in concrete floor construction built on grade.
5. Thermostat. The controlling thermostat for a floor furnace shall be located within the same room or space as the floor furnace or shall be located in an adjacent room or space that is permanently open to the room or space containing the floor furnace.

2437.3 Bracing. The floor around the furnace shall be braced and headed with a support framework designed in accordance with Chapter 5.

2437.4 Clearance. The lowest portion of the floor furnace shall have not less than a 6-inch (152 mm) clearance from the grade level; except where the lower 6-inch (152 mm) portion of the floor furnace is sealed by the manufacturer to prevent entrance of water, the minimum clearance shall be reduced to not less than 2 inches (51 mm). Where these clearances cannot be provided, the ground below and to the sides shall be excavated to form a pit under the furnace so that the required clearance is provided beneath the lowest portion of the furnace. A 12-inch (305 mm) minimum clearance shall be provided on all sides except the control side, which shall have an 18-inch (457 mm) minimum clearance.

2437.5 First floor installation. Where the basement story level below the floor in which a floor furnace is installed is utilized as habitable space, such floor furnaces shall be enclosed as specified in Section 2437.6 and shall project into a nonhabitable space.

2437.6 Upper floor installations. Floor furnaces installed in upper stories of buildings shall project below into nonhabitable space and shall be separated from the nonhabitable space by an enclosure constructed of noncombustible materials. The floor furnace shall be provided with access, clearance to all sides and bottom of not less than 6 inches (152 mm) and combustion air in accordance with Section 2407.

SECTION 2438
CLOTHES DRYERS

2438.1 General. Clothes dryers shall be tested in accordance with ANSI Z21.5.1 and shall be installed in accordance with the manufacturer’s installation instructions.

SECTION 2439
CLOTHES DRYER EXHAUST
2439.1 Installation. Clothes dryers shall be exhausted in accordance with the manufacturer’s instructions. Dryer exhaust systems shall be independent of all other systems and shall convey the moisture and any products of combustion to the outside of the building.

2439.2 Duct penetrations. Ducts that exhaust clothes dryers shall not penetrate or be located within any fireblocking, draftstopping or any wall, floor/ceiling or other assembly required by this code to be fire-resistance rated, unless such duct is constructed of galvanized steel or aluminum of the thickness specified in the mechanical provisions of this code and the fire-resistance rating is maintained in accordance with this code. Fire dampers shall not be installed in clothes dryer exhaust duct systems.

2439.3 Exhaust installation. Dryer exhaust ducts for clothes dryers shall terminate on the outside of the building and shall be equipped with a backdraft damper. Screens shall not be installed at the duct termination. Ducts shall not be connected or installed with sheet metal screws or other fasteners that will obstruct the flow. Clothes dryer exhaust ducts shall not be connected to a vent connector, vent or chimney. Clothes dryer exhaust ducts shall not extend into or through ducts or plenums.

2439.4 Makeup air. Installations exhausting more than 200 cfm (0.09 m³/s) shall be provided with makeup air. Where a closet is designed for the installation of a clothes dryer, an opening having an area of not less than 100 square inches (0.0645 m²) for makeup air shall be provided in the closet enclosure, or makeup air shall be provided by other approved means.

2439.5 Domestic clothes dryer exhaust ducts. Exhaust ducts for domestic clothes dryers shall conform to the requirements of Sections 2439.5.1 through 2439.5.7.

2439.5.1 Material and size. Exhaust ducts shall have a smooth interior finish and shall be constructed of metal a minimum 0.016-inch (0.4 mm) thick. The exhaust duct size shall be 4 inches (102 mm) nominal in diameter.

2439.5.2 Duct installation. Exhaust ducts shall be supported at 4 foot (1219 mm) intervals and secured in place. The insert end of the duct shall extend into the adjoining duct or fitting in the direction of airflow. Ducts shall not be joined with screws or similar fasteners that protrude into the inside of the duct.
2439.5.3 Protection required. Protective shield plates shall be placed where nails or screws from finish or other work are likely to penetrate the clothes dryer exhaust duct. Shield plates shall be placed on the finished face of all framing members where there is less than \(1\frac{1}{4}\) inches (32 mm) between the duct and the finished face of the framing member. Protective shield plates shall be constructed of steel, shall have a minimum thickness of 0.062 inch (1.6 mm).

2439.5.4 Transition ducts. Transition ducts used to connect the dryer to the exhaust duct system shall be a single length that is listed and labeled in accordance with UL 2158A. Transition ducts shall be a maximum of 8 feet (2438 mm) in length and shall not be concealed within construction.

2439.5.5 Duct length. The maximum allowable exhaust duct length shall be determined by one of the methods specified in Section 2439.5.5.1 or 2439.5.5.2.

2439.5.5.1 Specified length. The maximum length of the exhaust duct shall be 25 feet (7620 mm) from the connection to the transition duct from the dryer to the outlet terminal. Where fittings are used, the maximum length of the exhaust duct shall be reduced in accordance with Table 2439.5.5.1.

2439.5.5.2 Manufacturer’s instructions. The maximum length of the exhaust duct shall be determined by the dryer manufacturer’s installation instructions. The building official shall be provided with a copy of the installation instructions for the make and model of the dryer. Where the exhaust duct is to be concealed, the installation instructions shall be provided to the building official prior to the concealment inspection. In the absence of fitting equivalent length calculations from the clothes dryer manufacturer, Table 2439.5.5.1 shall be used.

2439.5.6 Length identification. Where the exhaust duct is concealed within the building construction, and only if the equivalent length exceeds 25 feet (7620 mm), the equivalent length of the exhaust duct shall be identified on a permanent label or tag. The label or tag shall be located within 6 feet (1829 mm) of the exhaust duct connection or at the electrical panel.

2439.5.7 Exhaust duct required. Where space for a clothes dryer is provided, an exhaust duct system shall be installed. Where the clothes dryer is
not installed at the time of occupancy, the exhaust duct shall be capped at location of the future dryer.

Exception: Where a listed condensing clothes dryer is installed prior to occupancy of the structure.

SECTION 2440
SAUNA HEATERS

2440.1 General
Sauna heaters shall be installed in accordance with the manufacturer’s installation instructions.

2440.2 Location and protection
Sauna heaters shall be located so as to minimize the possibility of accidental contact by a person in the room.

2440.2.1 Guards
Sauna heaters shall be protected from accidental contact by an approved guard or barrier of material having a low coefficient of thermal conductivity. The guard shall not substantially affect the transfer of heat from the heater to the room.

2440.3 Access
Panels, grilles and access doors that are required to be removed for normal servicing operations, shall not be attached to the building.

2440.4 Combustion and dilution air intakes
Sauna heaters of other than the direct-vent type shall be installed with the draft hood and combustion air intake located outside the sauna room. Where the combustion air inlet and the draft hood are in a dressing room adjacent to the sauna room, there shall be provisions to prevent physically blocking the combustion air inlet and the draft hood inlet, and to prevent physical contact with the draft hood and vent assembly, or warning notices shall be posted to avoid such contact. Any warning notice shall be easily readable, shall contrast with its background, and the wording shall be in letters not less than 0.25 inch (6.4 mm) high.

TABLE 2439.5.5.1
DRYER EXHAUST DUCT FITTING EQUIVALENT LENGTH

<table>
<thead>
<tr>
<th>DRYER EXHAUST DUCT FITTING TYPE</th>
<th>EQUIVALENT LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 inch radius mitered 45 degree elbow</td>
<td>2 feet 6 inches</td>
</tr>
<tr>
<td>4 inch radius mitered 90 degree elbow</td>
<td>5 feet</td>
</tr>
<tr>
<td>6 inch radius smooth 45 degree elbow</td>
<td>1 foot</td>
</tr>
<tr>
<td>6 inch radius smooth 90 degree elbow</td>
<td>1 foot 9 inches</td>
</tr>
<tr>
<td>8 inch radius smooth 45 degree elbow</td>
<td>1 foot</td>
</tr>
</tbody>
</table>
8 inch radius smooth 90 degree elbow | 1 foot 7 inches
---|---
10 inch radius smooth 45 degree elbow | 9 inches
10 inch radius smooth 90 degree elbow | 1 foot 6 inches

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 degree = 0.0175 rad.

2440.5 **Combustion and ventilation air.** Combustion air shall not be taken from inside the sauna room. Combustion and ventilation air for a sauna heater not of the direct-vent type shall be provided to the area in which the combustion air inlet and draft hood are located in accordance with Section 2407.

2440.6 **Heat and time controls.** Sauna heaters shall be equipped with a thermostat which will limit room temperature to 194°F (90°C). If the thermostat is not an integral part of the sauna heater, the heat-sensing element shall be located within 6 inches (152 mm) of the ceiling. If the heat-sensing element is a capillary tube and bulb, the assembly shall be attached to the wall or other support, and shall be protected against physical damage.

2440.6.1 **Timers.** A timer, if provided to control main burner operation, shall have a maximum operating time of 1 hour. The control for the timer shall be located outside the sauna room.

2440.7 **Sauna room.** A ventilation opening into the sauna room shall be provided. The opening shall be not less than 4 inches by 8 inches (102 mm by 203 mm) located near the top of the door into the sauna room.

SECTION 2441
POOL AND SPA HEATERS

2441.1 **General.** Where regulations are adopted and enforced by the local jurisdiction, heaters for residential swimming pools and spas shall be tested in accordance with ANSI Z21.56 and shall be installed in accordance with the manufacturer’s installation instructions.

SECTION 2442
FORCED-AIR WARM-AIR FURNACES

2442.1 **General.** Forced-air warm-air furnaces shall be tested in accordance with ANSI Z21.47 or UL 795 and shall be installed in accordance with the manufacturer’s installation instructions.
2442.2 Forced-air furnaces. The minimum unobstructed total area of the outside and return air ducts or openings to a forced-air warm-air furnace shall be not less than 2 square inches for each 1,000 Btu/h (4402 mm²/W) output rating capacity of the furnace and not less than that specified in the furnace manufacturer’s installation instructions. The minimum unobstructed total area of supply ducts from a forced-air warm-air furnace shall be not less than 2 square inches for each 1,000 Btu/h (4402 mm²/W) output rating capacity of the furnace and not less than that specified in the furnace manufacturer’s installation instructions.

Exception: The total area of the supply air ducts and outside and return air ducts shall not be required to be larger than the minimum size required by the furnace manufacturer’s installation instructions.

2442.3 Dampers. Volume dampers shall not be placed in the air inlet to a furnace in a manner that will reduce the required air to the furnace.

2442.4 Circulating air ducts for forced-air warm-air furnaces. Circulating air for forced-air-type, warm-air furnaces shall be conducted into the blower housing from outside the furnace enclosure by continuous air-tight ducts.

2442.5 Prohibited sources. Outside or return air for a forced-air heating system shall not be taken from the following locations:

1. Closer than 10 feet (3048 mm) from an appliance vent outlet, a vent opening from a plumbing drainage system or the discharge outlet of an exhaust fan, unless the outlet is 3 feet (914 mm) above the outside air inlet.

2. Where objectionable odors, fumes or flammable vapors are present; or where located less than 10 feet (3048 mm) above the surface of any abutting public way or driveway; or where located at grade level by a sidewalk, street, alley or driveway.

3. A hazardous or insanitary location or a refrigeration machinery room as defined in the *Ohio* Mechanical Code.

4. A room or space, the volume of which is less than 25 percent of the entire volume served by such system. Where connected by a permanent opening having an area sized in accordance with Section 2442.2, adjoining rooms or spaces shall be considered as a single room or space for the purpose of determining the volume of such rooms or spaces.
Exception: The minimum volume requirement shall not apply where the amount of return air taken from a room or space is less than or equal to the amount of supply air delivered to that room or space.

5. A room or space containing an appliance where such a room or space serves as the sole source of return air.

Exception: This shall not apply where:

1. The appliance is a direct-vent appliance or an appliance not requiring a vent in accordance with Section 2425.8.

2. The room or space complies with the following requirements:

 2.1. The return air shall be taken from a room or space having a volume exceeding 1 cubic foot for each 10 Btu/h (9.6 L/W) of combined input rating of all fuel-burning appliances therein.

 2.2. The volume of supply air discharged back into the same space shall be approximately equal to the volume of return air taken from the space.

 2.3. Return-air inlets shall not be located within 10 feet (3048 mm) of any appliance firebox or draft hood in the same room or space.

3. Rooms or spaces containing solid-fuel-burning appliances, provided that return-air inlets are located not less than 10 feet (3048 mm) from the firebox of such appliances.

6. A closet, bathroom, toilet room, kitchen, garage, mechanical room, boiler room, furnace room or attic.

Exception: Where return air intakes are located not less than 10 feet (3048 mm) from cooking appliances, and serve only the kitchen area, taking return air from a kitchen area shall not be prohibited.
7. A crawl space by means of direct connection to the return side of a forced air system. Transfer openings in the crawl space enclosure shall not be prohibited.

2442.6 Screen. Required outdoor air inlets shall be covered with a screen having \(\frac{1}{4} \)-inch (6.4 mm) openings. Required outdoor air inlets serving a nonresidential portion of a building shall be covered with screen having openings larger than \(\frac{1}{4} \) inch (6.4 mm) and not larger than 1 inch (25 mm).

2442.7 Return-air limitation. Return air from one dwelling unit shall not be discharged into another dwelling unit.

2442.8 Furnace plenums and air ducts. Where a furnace is installed so that supply ducts carry air circulated by the furnace to areas outside of the space containing the furnace, the return air shall also be handled by a duct(s) sealed to the furnace casing and terminating outside of the space containing the furnace.

SECTION 2443
CONVERSION BURNERS

2443.1 Conversion burners. The installation of conversion burners shall conform to ANSI Z21.8.

SECTION 2444
UNIT HEATERS

2444.1 General. Unit heaters shall be tested in accordance with ANSI Z83.8 and shall be installed in accordance with the manufacturer’s installation instructions.

2444.2 Support. Suspended-type unit heaters shall be supported by elements that are designed and constructed to accommodate the weight and dynamic loads. Hangers and brackets shall be of noncombustible material.

2444.3 Ductwork. Ducts shall not be connected to a unit heater unless the heater is listed for such installation.

2444.4 Clearance. Suspended-type unit heaters shall be installed with clearances to combustible materials of not less than 18 inches (457 mm) at the sides, 12 inches (305 mm) at the bottom and 6 inches (152 mm) above the top where the unit heater has an internal draft hood or 1 inch (25 mm) above the top of the sloping side of the vertical draft hood.
Floor-mounted-type unit heaters shall be installed with clearances to combustible materials at the back and one side only of not less than 6 inches (152 mm). Where the flue gases are vented horizontally, the 6-inch (152 mm) clearance shall be measured from the draft hood or vent instead of the rear wall of the unit heater. Floor-mounted-type unit heaters shall not be installed on combustible floors unless listed for such installation.

Clearance for servicing all unit heaters shall be in accordance with the manufacturer’s installation instructions.

Exception: Unit heaters listed for reduced clearance shall be permitted to be installed with such clearances in accordance with their listing and the manufacturer’s instructions.

SECTION 2445

UNVENTED ROOM HEATERS

2445.1 **General.** Unvented room heaters shall be tested in accordance with ANSI Z 21.11.2 and shall be installed in accordance with the conditions of the listing and the manufacturer’s installation instructions.

2445.2 **Prohibited use.** One or more unvented room heaters shall not be used as the sole source of comfort heating in a dwelling unit.

2445.3 **Input rating.** Unvented room heaters shall not have an input rating in excess of 40,000 Btu/h (11.7 kW).

2445.4 **Prohibited locations.** The location of unvented room heaters shall comply with Section 2406.2.

2445.5 **Room or space volume.** The aggregate input rating of all unvented appliances installed in a room or space shall not exceed 20 Btu/h per cubic foot (0.21 kW/m³) of volume of such room or space. Where the room or space in which the appliance is installed is directly connected to another room or space by a doorway, archway or other opening of comparable size that cannot be closed, the volume of such adjacent room or space shall be permitted to be included in the calculations.

2445.6 **Oxygen-depletion safety system.** Unvented room heaters shall be equipped with an oxygen-depletion-sensitive safety shutoff system. The system
shall shut off the gas supply to the main and pilot burners when the oxygen in the surrounding atmosphere is depleted to the percent concentration specified by the manufacturer, but not lower than 18 percent. The system shall not incorporate field adjustment means capable of changing the set point at which the system acts to shut off the gas supply to the room heater.

2445.7 Unvented decorative room heaters. An unvented decorative room heater shall not be installed in a factory-built fireplace unless the fireplace system has been specifically tested, listed and labeled for such use in accordance with UL 127.

2445.7.1 Ventless firebox enclosures. Ventless firebox enclosures used with unvented decorative room heaters shall be listed as complying with ANSI Z21.91.

SECTION 2446

VENTED ROOM HEATERS

2446.1 General. Vented room heaters shall be tested in accordance with ANSI Z21.86/CSA 2.32, shall be designed and equipped as specified in Section 2432.2 and shall be installed in accordance with the manufacturer’s installation instructions.

SECTION 2447

COOKING APPLIANCES

2447.1 Cooking appliances. Cooking appliances that are designed for permanent installation, including ranges, ovens, stoves, broilers, grills, fryers, griddles, hot plates and barbecues, shall be tested in accordance with ANSI Z21.1 or ANSI Z21.58 and shall be installed in accordance with the manufacturer’s installation instructions.

G2447.2 Prohibited location. Cooking appliances designed, tested, listed and labeled for use in commercial occupancies shall not be installed within dwelling units or within any area where domestic cooking operations occur.

G2447.3 Domestic appliances. Cooking appliances installed within dwelling units and within areas where domestic cooking operations occur shall be listed and labeled as household-type appliances for domestic use.
2447.4 Range installation. Ranges installed on combustible floors shall be set on their own bases or legs and shall be installed with clearances of not less than that shown on the label.

2447.5 Vertical clearance above cooking top. Household cooking appliances shall have a vertical clearance above the cooking top of not less than 30 inches (760 mm) to combustible material and metal cabinets. A minimum clearance of 24 inches (610 mm) is permitted where one of the following is installed:

1. The underside of the combustible material or metal cabinet above the cooking top is protected with not less than ¼ inch (6 mm) thick insulating millboard covered with sheet metal not less than 0.0122 inch (0.3 mm) thick.

2. A metal ventilating hood constructed of sheet metal not less than 0.0122 inch (0.3 mm) thick is installed above the cooking top with a clearance of not less than ¼ inch (6 mm) between the hood and the underside of the combustible material or metal cabinet. The hood shall have a width not less than the width of the appliance and shall be centered over the appliance.

3. A listed cooking appliance or microwave oven is installed over a listed cooking appliance and in compliance with the terms of the manufacturer’s installation instructions for the upper appliance.

SECTION 2448
WATER HEATERS

2448.1 General. Water heaters shall be tested in accordance with ANSI Z 21.10.1 and ANSI Z 21.10.3 and shall be installed in accordance with the manufacturer’s installation instructions.

2448.1.1 Installation requirements. The requirements for water heaters relative to sizing, relief valves, drain pans and scald protection shall be in accordance with this code.

2448.2 Water heaters utilized for space heating. Water heaters utilized both to supply potable hot water and provide hot water for space-heating applications shall be listed and labeled for such applications by the manufacturer and shall be
installed in accordance with the manufacturer’s installation instructions and this code.

SECTION 2449
AIR CONDITIONING APPLIANCES

2449.1 General. Air conditioning appliances shall be tested in accordance with ANSI Z21.40.1 or ANSI Z21.40.2 and shall be installed in accordance with the manufacturer’s installation instructions.

2449.2 Independent piping. Gas piping serving heating appliances shall be permitted to also serve cooling appliances where such heating and cooling appliances cannot be operated simultaneously. (See Section 2413.)

2449.3 Connection of gas engine-powered air conditioners. To protect against the effects of normal vibration in service, gas engines shall not be rigidly connected to the gas supply piping.

2449.4 Installation. Air conditioning appliances shall be installed in accordance with the manufacturer’s instructions. Unless the appliance is listed for installation on a combustible surface such as a floor or roof, or unless the surface is protected in an approved manner, the appliance shall be installed on a surface of noncombustible construction with noncombustible material and surface finish and with no combustible material against the underside thereof.

SECTION 2450
ILLUMINATING APPLIANCES

2450.1 General. Illuminating appliances shall be tested in accordance with ANSI Z21.42 and shall be installed in accordance with the manufacturer’s installation instructions.

2450.2 Mounting on buildings. Illuminating appliances designed for wall or ceiling mounting shall be securely attached to substantial structures in such a manner that they are not dependent on the gas piping for support.

2450.3 Mounting on posts. Illuminating appliances designed for post mounting shall be securely and rigidly attached to a post. Posts shall be rigidly mounted. The strength and rigidity of posts greater than 3 feet (914 mm) in height shall be at least equivalent to that of a 2.5-inch-diameter (64 mm) post constructed of 0.064-inch-thick (1.6 mm) steel or a 1-inch (25 mm) Schedule 40 steel pipe. Posts
3 feet (914 mm) or less in height shall not be smaller than \(\frac{3}{4}\)-inch (19.1 mm) Schedule 40 steel pipe. Drain openings shall be provided near the base of posts where there is a possibility of water collecting inside them.

2450.4 Appliance pressure regulators

Where an appliance pressure regulator is not supplied with an illuminating appliance and the service line is not equipped with a service pressure regulator, an appliance pressure regulator shall be installed in the line to the illuminating appliance. For multiple installations, one regulator of adequate capacity shall be permitted to serve more than one illuminating appliance.

SECTION 2451

INFRARED RADIANT HEATERS

2451.1 General

Infrared radiant heaters shall be tested in accordance with ANSI Z 83.6 and shall be installed in accordance with the manufacturer’s installation instructions.

2451.2 Support

Infrared radiant heaters shall be fixed in a position independent of gas and electric supply lines. Hangers and brackets shall be of noncombustible material.

SECTION 2452

BOILERS

2452.1 Standards

Boilers shall be listed in accordance with the requirements of ANSI Z21.13 or UL 795. If applicable, the boiler shall be designed and constructed in accordance with the requirements of ASME CSD-1 and as applicable, the ASME Boiler and Pressure Vessel Code, Sections I, II, IV, V and IX and NFPA 85.

2452.2 Installation

In addition to the requirements of this code, the installation of boilers shall be in accordance with the manufacturer’s instructions and this code. Operating instructions of a permanent type shall be attached to the boiler. Boilers shall have all controls set, adjusted and tested by the installer. A complete control diagram together with complete boiler operating instructions shall be furnished by the installer. The manufacturer’s rating data and the nameplate shall be attached to the boiler.

2452.3 Clearance to combustible material

Clearances to combustible materials shall be in accordance with Section 2409.4.
2453.1 Free opening area of chimney dampers. Where an unlisted decorative appliance for installation in a vented fireplace is installed, the fireplace damper shall have a permanent free opening equal to or greater than specified in Table 2453.1.

<table>
<thead>
<tr>
<th>CHIMNEY HEIGHT (feet)</th>
<th>MINIMUM PERMANENT FREE OPENING (square inches)*</th>
<th>8</th>
<th>13</th>
<th>20</th>
<th>29</th>
<th>39</th>
<th>51</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>7,800</td>
<td>14,000</td>
<td>23,200</td>
<td>34,000</td>
<td>46,400</td>
<td>62,400</td>
<td>80,000</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>8,400</td>
<td>15,200</td>
<td>25,200</td>
<td>37,000</td>
<td>50,400</td>
<td>68,000</td>
<td>86,000</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>9,000</td>
<td>16,800</td>
<td>27,600</td>
<td>40,400</td>
<td>55,800</td>
<td>74,400</td>
<td>96,400</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>9,800</td>
<td>18,200</td>
<td>30,200</td>
<td>44,000</td>
<td>62,400</td>
<td>84,000</td>
<td>108,800</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>10,600</td>
<td>20,200</td>
<td>32,600</td>
<td>50,400</td>
<td>68,400</td>
<td>94,000</td>
<td>122,200</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>11,200</td>
<td>21,600</td>
<td>36,600</td>
<td>55,200</td>
<td>76,800</td>
<td>105,800</td>
<td>138,600</td>
</tr>
</tbody>
</table>

For SI: 1 inch = 25.4 mm, 1 foot = 304.8 mm, 1 square inch = 645.16 mm², 1,000 Btu per hour = 0.293 kW.
a. The first six minimum permanent free openings (8 square inches to 51 square inches) correspond approximately to the cross-sectional areas of chimneys having diameters of 3 inches through 8 inches, respectively. The 64-square inch opening corresponds to the cross-sectional area of standard 8-inch by 8-inch chimney tile.
Effective: 01/01/2016

Five Year Review (FYR) Dates: 01/01/2018

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.01, 3781.06, 3781.10, 3781.11, 3791.04, 4740.14
Prior Effective Dates: 5/27/06, 1/1/13
4101:8-34-01 Electrical.

[Comment: When a reference is made within this rule to a federal statutory provision, an industry consensus standard, or any other technical publication, the specific date and title of the publication as well as the name and address of the promulgating agency are listed in rule 4101:8-44-01 of the Administrative Code. The application of the referenced standards shall be limited and as prescribed in section 102.5 of rule 4101:8-1-01 of the Administrative Code.]

SECTION 3401
ELECTRICAL

3401.1 Electrical. The provisions of the National Electrical Code, NFPA 70, shall be incorporated herein and shall govern the installation, testing and operation of the electrical systems of one-, two- and three-family dwellings and their accessory structures except for the following:

1. **Section 210.8(A)(2) shall be modified to read:**
 Garages, and also accessory buildings that have a floor located at or below grade level not intended as habitable rooms and limited to storage areas, work areas, and areas of similar use except for the receptacle located to serve a garage door opener when the device is a single receptacle and located in the ceiling.

2. **Section 210.8(A)(5) shall be modified to read:**
 Unfinished basements – for the purposes of this section, unfinished basements are defined as portions or areas of the basement not intended as habitable rooms and limited to storage areas, work areas, and the like.

 Exceptions:

 1. A receptacle supplying only a permanently installed fire alarm or burglar alarm system shall not be required to have ground-fault circuit-interrupter protection.

 2. A single receptacle located to serve a sump pump shall not be required to have ground-fault circuit-interrupter protection when there is a duplex receptacle with ground-fault circuit-interrupter protection within six (6) feet of the sump pump.
3. **Section 210.8(D) shall be deleted.**

4. **Section 210.12(A) shall be modified to read:**

All 120-volt single-phase, 15- and 20-ampere branch circuits supplying outlets or devices installed in dwelling unit kitchens, family rooms, dining rooms, living rooms, parlors, libraries, dens, bedrooms, sun rooms, recreational rooms, closets, hallways, laundry rooms, or similar rooms or areas shall be protected by any of the means described in 210.12(A)(1) through (6):

1. A listed combination-type arc-fault circuit interrupter, installed to provide protection of the entire branch circuit.
2. A listed branch/feeder-type AFCI installed at the origin of the branch-circuit in combination with a listed outlet branch-circuit type arc-fault circuit interrupter installed at the first outlet box on the branch circuit. The first outlet box in the branch circuit shall be marked to indicate that it is the first outlet of the circuit.
3. A listed supplemental arc protection circuit breaker installed at the origin of the branch circuit in combination with a listed outlet branch-circuit type arc-fault circuit interrupter installed at the first outlet box on the branch circuit where all of the following conditions are met:
 a. The branch-circuit wiring shall be continuous from the branch-circuit overcurrent device to the outlet branch-circuit arc-fault circuit interrupter.
 b. The maximum length of the branch-circuit wiring from the branch-circuit overcurrent device to the first outlet shall not exceed 15.2 m (50 ft.) for a 14 AWG conductor or 21.3 m (70 ft.) for a 12 AWG conductor.
 c. The first outlet box in the branch circuit shall be marked to indicate that it is the first outlet of the circuit.
4. A listed outlet branch-circuit type arc-fault circuit interrupter installed at the first outlet on the branch circuit in combination with a listed branch-circuit overcurrent protective device where all of the following conditions are met:
 a. The branch-circuit wiring shall be continuous from the branch-circuit overcurrent device to the outlet branch-circuit arc-fault circuit interrupter.
 b. The maximum length of the branch-circuit wiring from the branch-circuit overcurrent device to the first outlet shall not exceed 15.2 m (50 ft.) for a 14 AWG conductor or 21.3 m (70 ft.) for a 12 AWG conductor.
c. The first outlet box in the branch circuit shall be marked to indicate that it is the first outlet of the circuit.
d. The combination of the branch-circuit overcurrent device and outlet branch-circuit AFCI shall be identified as meeting the requirements for a system combination-type AFCI and shall be listed as such.

(5) If RMC, IMC, EMT, Type MC, or steel-armored Type AC cables meeting the requirements of 250.118, metal wireways, metal auxiliary gutters, and metal outlet and junction boxes are installed for the portion of the branch circuit between the branch-circuit overcurrent device and the first outlet, it shall be permitted to install a listed outlet branch-circuit type AFCI at the first outlet to provide protection for the remaining portion of the branch circuit.

(6) Where a listed metal or nonmetallic conduit or tubing or Type MC cable is encased in not less than 50 mm (2 in.) of concrete for the portion of the branch circuit between the branch-circuit overcurrent device and the first outlet, it shall be permitted to install a listed outlet branch-circuit type AFCI at the first outlet to provide protection for the remaining portion of the branch circuit.

Exception No 1: Where an individual branch circuit to a fire alarm system installed in accordance with 760.41(B) or 760.121(B) is installed in RMC, IMC, EMT, or steel-sheathed cable, Type AC or Type MC, meeting the requirements of 250.118, with metal outlet and junction boxes, AFCI protection shall be permitted to be omitted.

Exception No. 2: Branch circuits supplying receptacle outlets installed to serve only the kitchen countertop surfaces shall be permitted to be installed without arc-fault circuit interrupter protection.

5. Section 210.64 shall be modified to read:

At least one 125-volt, single-phase, 15- or 20-ampere-rated receptacle outlet shall be installed within 15m (50 ft.) of the electrical service equipment.

Exception: The receptacle outlet shall not be required to be installed in one-, two-, or three-family dwellings.
SECTION 3402
EMERGENCY AND STANDBY POWER SYSTEMS

3402.1 Installation. Emergency and standby power systems shall be installed in accordance with this code and NFPA 70. The performance, classification, transfer, testing, and maintenance of emergency and standby power systems shall also comply with either NFPA 110 (liquid- and gas- fueled systems) or NFPA 111 (battery and inertia systems), as applicable.

3402.1.1 Stationary generators. Stationary emergency and standby power generator assemblies shall be listed in accordance with UL 2200.

3402.1.1.1 Engine-driven generators. The installation of liquid- and gas-fueled stationary internal combustion engines and gas turbines used to drive generator assemblies shall meet the requirements of NFPA 37.

3402.1.1.1.1 Fuel tanks connected to generator assemblies. Fuel tanks piped to and supplying fuel for engine-driven generator assemblies may be engine-mounted, located inside of a building, outside of a building, or on a roof in accordance with NFPA 37 or NFPA 30.

3402.1.1.1.1.1 Engine-mounted tanks. Engine-mounted tanks located outdoors may be located in accordance with Section 4.1.4 of NFPA 37 and shall be vented in accordance with NFPA 30. Engine-mounted tanks shall be provided with adequate clearance to enable filling, maintenance, and testing, shall be safeguarded against public access, and shall be protected from impact.

3402.1.1.1.2 Other fuel tanks. Fuel tanks, other than engine-mounted tanks, piped to and supplying the generator engine shall be located, installed, and vented in accordance with the applicable sections of NFPA 37 or located, installed, and vented in accordance with NFPA 30.

3402.1.1.2 Gaseous fuel supply. Where an internal combustion engine supplied with gaseous fuel powers
emergency or standby generators, the fuel gas storage and piping system shall comply with NFPA 37 and Chapter 24.
Effective: 01/01/2016
Five Year Review (FYR) Dates: 01/01/2018

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Promulgated Under: 119.03
Statutory Authority: 3781.10(A)
Rule Amplifies: 3781.01, 3781.06, 3781.10, 3781.11, 3791.04, 4740.14
Prior Effective Dates: 1/1/13
4101:8-44-01 Referenced standards.

SECTION 4401
REFERENCED STANDARDS

4401.1 General. This chapter lists the standards that are referenced in various sections of this code. The standards are listed herein by the promulgating agency of the standard, the standard identification, the effective date and title. The application of the referenced standards shall be as specified in Section 102.5.

4401.2 Referenced codes. When indicated in this code, the following codes refer to provisions in the listed chapters of the administrative code:

<table>
<thead>
<tr>
<th>Referenced Code</th>
<th>Ohio Administrative Code Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio Building Code</td>
<td>4101:1-1 to 4101:1-35</td>
</tr>
<tr>
<td>Fire Code</td>
<td>1301:7-1 to 1301:7-7</td>
</tr>
<tr>
<td>Mechanical Code</td>
<td>4101:2-1 to 4101:2-15</td>
</tr>
<tr>
<td>Plumbing Code</td>
<td>4101:3-1 to 4101:3-13, codified and published as the 2011 Ohio Plumbing Code, effective 11-1-2011 (including update effective 03-01-201307-01-2014), and as modified in Section 2501.1.1.</td>
</tr>
</tbody>
</table>

4401.3 Referenced standard list.

American Architectural Manufacturers Association
1827 Walden Office Square, Suite 550
Schaumburg, IL 60173

AAMA
Standard reference number
Title
AAMA/WDMA/CSA
101/I.S.2/A440—08 North American Fenestration
Standard/Specification for Windows, Doors, and
Skylights
450—10 Voluntary Performance Rating Method for Mulled
Fenestration Assemblies
506—08 Voluntary Specifications for Hurricane Impact and
Cycle Testing of Fenestration Products
711—07 Voluntary Specification for Self Adhering Flashing
Used for Installation of Exterior Wall Fenestration
Products.

Air Conditioning Contractors of America
2800 Shirlington Road, Suite 300
Arlington, VA 22206

ACCA
Standard
number reference
Manual D—09 Residential Duct Systems
Manual S—04 Residential Equipment Selection

American Concrete Institute
38800 Country Club Drive
Farmington Hills, MI 48331

ACE
Standard
number reference
318—08 Building Code Requirements for Structural Concrete
332—08 Code Requirements for Residential Concrete Construction
530—08 Building Code Requirements for Masonry Structures
530.1—08 Specification for Masonry Structures

American Forest and Paper Association
1111 19th Street, NW, Suite 800
Washington, DC 20036
American Forest Products Association (Currently the American Wood Council)
803 Sycolin Road, Suite 201
Leesburg, VA 20175
http://www.awc.org/index.html

AFPA

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDS—05</td>
<td>National Design Specification (NDS) for Wood Construction—with 2005 Supplement</td>
</tr>
<tr>
<td>WFCM-01</td>
<td>Wood Frame Construction Manual for One- and Two-family Dwellings</td>
</tr>
<tr>
<td>AFPA—93</td>
<td>Span Tables for Joists and Rafters</td>
</tr>
<tr>
<td>PWF—07</td>
<td>Permanent Wood Foundation Design Specification</td>
</tr>
</tbody>
</table>

American Iron and Steel Institute
1140 Connecticut Ave, Suite 705
Washington, DC 20036

AISI

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI S100—07</td>
<td>North American Specification for the Design of Cold-formed Steel Structural Members</td>
</tr>
<tr>
<td>AISI S230—07</td>
<td>Standard for Cold-formed Steel Framing-prescriptive Method for One- and Two-family Dwellings</td>
</tr>
</tbody>
</table>

American Institute of Timber Construction
7012 S. Revere Parkway, Suite 140
Centennial, CO 80112

AITC

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI/AITC A 190.1—07</td>
<td>Structural Glued Laminated Timber</td>
</tr>
</tbody>
</table>
American National Standards Institute
25 West 43rd Street, Fourth Floor
New York, NY 10036

ANSI Standard reference number	**Title**
A108.1A—09 | Installation of Ceramic Tile in the Wet-set Method, with Portland Cement Mortar
A108.1B—09 | Installation of Ceramic Tile, Quarry Tile on a Cured Portland Cement Mortar Setting Bed with Dry-set or Latex-Portland Mortar
A108.4—09 | Installation of Ceramic Tile with Organic Adhesives or Water Cleanable Tile-setting Epoxy Adhesive
A108.5—09 | Installation of Ceramic Tile with Dry-set Portland Cement Mortar or Latex-Portland Cement Mortar
A108.6—09 | Installation of Ceramic Tile with Chemical-resistant, Water-cleanable Tile-setting and -grouting Epoxy
A108.11—09 | Interior Installation of Cementitious Backer Units
A118.1—10.1 | American National Standard Specifications for Dry-set Portland Cement Mortar
A118.3—10.1 | American National Standard Specifications for Chemical-resistant, Water-cleanable Tile-setting and Grouting Epoxy and Water-cleanable Tile-setting Epoxy Adhesive
A118.10—10.1 | Specification for Load Bearing, Bonded, Waterproof Membranes for Thin-set Ceramic Tile and Dimension Stone Installation
A136.1—10.1 | American National Standard Specifications for Organic Adhesives for Installation of Ceramic Tile
A137.1—08 | American National Standard Specifications for Ceramic Tile
A208.1—09 | Particleboard
LC1—05 | Interior Fuel Gas Piping Systems Using Corrugated Stainless Steel Tubing
LC4—07 | Press-connect Copper and Copper Alloy Fittings for use in Fuel Gas Distribution Systems
Z21.1—05 | Household Cooking Gas Appliances
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z21.5.1—06</td>
<td>Gas Clothes Dryers—Volume I—Type I Clothes Dryers</td>
</tr>
<tr>
<td>Z21.8—94 (R2002)</td>
<td>Installation of Domestic Gas Conversion Burners</td>
</tr>
<tr>
<td>Z21.10.1—09</td>
<td>Gas Water Heaters—Volume I—Storage Water Heaters with Input Ratings of 75,000 Btu per hour or Less</td>
</tr>
<tr>
<td>Z21.10.3—07</td>
<td>Gas Water Heaters—Volume III—Storage Water Heaters with Input Ratings above 75,000 Btu per hour, Circulating and Instantaneous Water Heaters</td>
</tr>
<tr>
<td>Z21.11.2—07</td>
<td>Gas-fired Room Heaters—Volume II—Unvented Room Heaters</td>
</tr>
<tr>
<td>Z21.13—10</td>
<td>Gas-fired Low-Pressure Steam and Hot Water Boilers</td>
</tr>
<tr>
<td>Z21.15—09</td>
<td>Manually Operated Gas Valves for Appliances, Appliance Connector Valves and Hose End Valves</td>
</tr>
<tr>
<td>Z21.24—06</td>
<td>Connectors for Gas Appliances</td>
</tr>
<tr>
<td>Z21.42—04</td>
<td>Gas-fired Illuminating Appliances</td>
</tr>
<tr>
<td>Z21.47—06</td>
<td>Gas-fired Central Furnaces</td>
</tr>
<tr>
<td>Z21.50—07</td>
<td>Vented Gas Fireplaces</td>
</tr>
<tr>
<td>Z21.56—06</td>
<td>Gas-fired Pool Heaters</td>
</tr>
<tr>
<td>Z21.58—08</td>
<td>Outdoor Cooking Gas Appliances</td>
</tr>
<tr>
<td>Z21.75/CSA6.27—07</td>
<td>Connectors for Outdoor Gas Appliances</td>
</tr>
<tr>
<td>Z21.80—03</td>
<td>Line Pressure Regulators</td>
</tr>
<tr>
<td>Z21.83—98</td>
<td>Fuel Cell Power Plants</td>
</tr>
<tr>
<td>Z21.86—08</td>
<td>Gas-fired Vented Space Heating Appliances</td>
</tr>
<tr>
<td>Z21.88—09</td>
<td>Vented Gas Fireplace Heaters</td>
</tr>
<tr>
<td>Z21.91—07</td>
<td>Ventless Firebox Enclosures for Gas-fired Unvented Decorative Room Heaters</td>
</tr>
<tr>
<td>Z83.6—90 (R1998)</td>
<td>Gas-fired Infrared Heaters</td>
</tr>
</tbody>
</table>
Z83.8—09 Gas-fired Unit Heaters and Gas-fired Duct Furnaces
Z97.1—09 Safety Glazing Materials Used in Buildings—
 Safety Performance Specifications and Methods of
 Test

APA–The Engineered Wood Association
7011 South 19th
Tacoma, WA 98466

APA
Standard
reference
number
Title
APA E30—07 Engineered Wood Construction Guide

American Society of Civil Engineers Structural Engineering Institute
1801 Alexander Bell Drive
Reston, VA 20191

ASCE/SEI
Standard
reference
number
Title
5—08 Building Code Requirements for Masonry Structures
6—08 Specification for Masonry Structures
7—05 Minimum Design Loads for Buildings and Other Structures
24—05 Flood-resistant Design and Construction.
32—01 Design and Construction of Frost-protected Shallow Foundations

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
1791 Tullie Circle, NE
Atlanta, GA 30329

ASHRAE
Standard
reference
number
Title
34—10 Designation and Safety Classification of Refrigerants
ASHRAE—09 ASHRAE Fundamentals Handbook—2009
ASME Standards

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A17.1/CSA B44—2010</td>
<td>Safety Code for Elevators and Escalators</td>
</tr>
<tr>
<td>A18.1—2008</td>
<td>Safety Standard for Platforms and Stairway Chair Lifts</td>
</tr>
<tr>
<td>B1.20.1—1983 (R2006)</td>
<td>Pipe Threads, General Purpose (Inch)</td>
</tr>
<tr>
<td>B16.33—2002 (R2007)</td>
<td>Manually Operated Metallic Gas Valves for Use in Gas Piping Systems up to 125 psig (Sizes ½ through 2)</td>
</tr>
<tr>
<td>B16.44—02</td>
<td>Manually Operated Metallic Gas Valves For Use in Above-ground Piping Systems up to 5 psi.</td>
</tr>
<tr>
<td>B36.10M—2004</td>
<td>Welded and Seamless Wrought-steel Pipe</td>
</tr>
<tr>
<td>BPVC—2010</td>
<td>ASME Boiler and Pressure Vessel Code</td>
</tr>
<tr>
<td>CSD-1—09</td>
<td>Controls and Safety Devices for Automatically Fired Boilers</td>
</tr>
</tbody>
</table>

ASTM Standards

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 36/A 36M—08</td>
<td>Specification for Carbon Structural Steel</td>
</tr>
<tr>
<td>A 53/A 53M—10a</td>
<td>Specification for Pipe, Steel, Black and Hot-dipped, Zinc-coated Welded and Seamless</td>
</tr>
</tbody>
</table>
A 82/A 82M—07 Specification for Steel Wire, Plain, for Concrete Reinforcement
A 106/A 106M—10 Specification for Seamless Carbon Steel Pipe for High Temperature Service
A 153/A 153M—09 Specification for Zinc Coating (Hot Dip) on Iron and Steel Hardware
A 167—09 Specification for Stainless and Heat-resisting Chromium-nickel Steel Plate, Sheet and Strip
A 240/A 240M—10a Standard Specification for Chromium and Chromium-nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications
A 254—9707 Specification for Copper Brazed Steel Tubing
A 307—07b Specification for Carbon Steel Bolts and Studs, 6000 psi Tensile Strength
A 510—08 Specification for General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel
A 539—99 Specification for Electric-resistance-welded Coiled Steel Tubing for Gas and Fuel Oil Lines
A 615/A 615M—09b Specification for Deformed and Plain Billet-steel Bars for Concrete Reinforcement
A 641/A 641M—09b Specification for Zinc-coated (Galvanized) Carbon Steel Wire
A 653/A 653M—09a Specification for Steel Sheet, Zinc-coated (Galvanized) or Zinc-iron Alloy-coated (Galvanized) by the Hot-dip Process
A 706/A 706/M—09b Specification for Low-alloy Steel Deformed and Plain Bars for Concrete Reinforcement
A 778—01 (2009)e1 Specification for Welded Unannealed Austenitic Stainless Steel Tubular Products
A 792/A 792M—09a Specification for Steel Sheet, 55% Aluminum-zinc Alloy-coated by the Hot-dip Process
A 875/A 875M—09a Specification for Steel Sheet, Zinc-5%, Aluminum Alloy-coated by the Hot-dip Process
A 924/A 924M—10 Standard Specification for General Requirements for Steel Sheet, Metallic-coated by the Hot-Dip Process
A 951—06 Specification for Steel Wire Masonry Joint Reinforcement
A 996/A 996M—09b Specifications for Rail-steel and Axel-steel Deformed Bars for Concrete Reinforcement
A 1003/A 1003M—10 Standard Specification for Steel Sheet, Carbon, Metallic and Nonmetallic-coated for Cold-formed Framing Members
B 42—10 Specification for Seamless Copper Pipe, Standard Sizes
B 43—09 Specification for Seamless Red Brass Pipe, Standard Sizes
B 75—02 Specification for Seamless Copper Tube
B 88—09 Specification for Seamless Copper Water Tube
B 135—10 Specification for Seamless Brass Tube
B 209—07 Specification for Aluminum and Aluminum-alloy Sheet and Plate
B 227—10 Specification for Hard-drawn Copper-clad Steel Wire
B 251—10 Specification for General Requirements for Wrought Seamless Copper and Copper-alloy Tube
B 302—07 Specification for Threadless Copper Pipe, Standard Sizes
B 306—09 Specification for Copper Drainage Tube (DWV)
B 370—09 Specification for Copper Sheet and Strip for Building Construction
B 447—07 Specification for Welded Copper Tube
B 813—10 Specification for Liquid and Paste Fluxes for Soldering Applications of Copper and Copper Alloy Tube
C 5—10 Specification for Quicklime for Structural Purposes
C 28/C 28M—10 Specification for Gypsum Plasters
C 33—08 Specification for Concrete Aggregates
C 34—08 Specification for Structural Clay Load-bearing Wall Tile
C 36/C 36M—03 Specification for Gypsum Wallboard
C 37/C 37M—01 Specification for Gypsum Lath
C 55—09 Specification for Concrete Building Brick
C 59/C 59M—00 (2006) Specification for Gypsum Casting and Molding Plaster
C 61/C 61M—00 (2006) Specification for Gypsum Keene’s Cement
C 62—10 Specification for Building Brick (Solid Masonry Units Made from Clay or Shale)
C 73—05 Specification for Calcium Silicate Face Brick (Sand Lime Brick)
C 79—04a Specification for Treated Core and Nontreated Core Gypsum Sheathing Board
C 90—09 Specification for Load-bearing Concrete Masonry Units
C 91—05 Specification for Masonry Cement
C 94/C 94M—10 Specification for Ready-mixed Concrete
C 129—06 Specification for Nonload-bearing Concrete Masonry Units
C 143/C 143M—10a Test Method for Slump or Hydraulic Cement Concrete
C 145—85 Specification for Solid Load-bearing Concrete Masonry Units
C 150—09 Specification for Portland Cement
C 199—84 (2005) Test Method for Pier Test for Refractory Mortar
C 203—05a Standard Test Methods for Breaking Load and Flexural Properties of Block-type Thermal Insulation
C 207—06 Specification for Hydrated Lime for Masonry Purposes
C 208—08a Specification for Cellulosic Fiber Insulating Board
C 216—10 Specification for Facing Brick (Solid Masonry Units Made from Clay or Shale)
C 270—10 Specification for Mortar for Unit Masonry
C 273—07a Standard Test Method for Shear Properties of Sandwich Core Materials
C 315—07 Specification for Clay Flue Liners and Chimney Pots
C 406—10 Specifications for Roofing Slate
C 411—05 Test Method for Hot-surface Performance of High-temperature Thermal Insulation
C 475/C 475—02(2007) Specification for Joint Compound and Joint Tape for Finishing Gypsum Wallboard
C 476—10 Specification for Grout for Masonry
C 514—04 (2009)e1 Specification for Nails for the Application of Gypsum Wallboard
C 552—07 Standard Specification for Cellular Glass Thermal Insulation
C 557—03 (2009)e1 Specification for Adhesives for Fastening Gypsum Wallboard to Wood Framing
C 578—10 Specification for Rigid, Cellular Polystyrene Thermal Insulation
C 588/C 588M—03e1 Specification for Gypsum Base for Veneer Plasters
C 595—10 Specification for Blended Hydraulic Cements
C 630/C 630M—03 Specification for Water-resistant Gypsum Backing Board
C 631—09 Specification for Bonding Compounds for Interior Gypsum Plastering
C 645—09a Specification for Nonstructural Steel Framing Members
C 652—10 Specification for Hollow Brick (Hollow Masonry Units Made from Clay or Shale)
C 685—10 Specification for Concrete Made by Volumetric Batching and Continuous Mixing
C 836/C836M-10 Specification for High Solids Content, Cold Liquid-applied Elastomeric Waterproofing Membrane for Use with Separate Wearing Course
C 844—10 Specification for Application of Gypsum Base to Receive Gypsum Veneer Plaster
C 847—10a Specification for Metal Lath
C 920—10 Standard Specification for Elastomeric Joint Sealants
C 926—06 Specification for Application of Portland Cement-based Plaster
C 931/C 931M—04 Specification for Exterior Gypsum Soffit Board
C 933—09 Specification for Welded Wire Lath
C 954—10 Specification for Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness
C 955—09a Specification for Load-bearing (Transverse and Axial) Steel Studs, Runners (Tracks), and Bracing or Bridging for Screw Application of Gypsum Panel Products and Metal Plaster Bases
C 957—10 Specification for High-solids Content, Cold Liquid-applied Elastomeric Waterproofing Membrane for Use with Integral Wearing Surface
C 960—04 Specification for Predecorated Gypsum Board
C 1002—07 Specification for Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases
C 1029—10 Specification for Spray-applied Rigid Cellular Polyurethane Thermal Insulation
C 1032—06 Specification for Woven Wire Plaster Base
C 1047—10a Specification for Accessories for Gypsum Wallboard and Gypsum Veneer Base
C 1107—08 Standard Specification for Packaged Dry, Hydraulic-cement Grout (Nonshrink)
C 1116—10 Standard Specification for Fiber-reinforced Concrete and Shotcrete
C 1167—03 (2009) Specification for Clay Roof Tiles
C 1177/C 1177M—08 Specification for Glass Mat Gypsum Substrate for Use as Sheathing
C 1178/C 1178M—08 Specification for Glass Mat Water-resistant Gypsum Backing Panel
C 1186—08 Specification for Flat Nonasbestos Fiber Cement Sheets
C 1261—10 Specification for Firebox Brick for Residential Fireplaces
C 1278/C 1278M—07a Specification for Fiber-reinforced Gypsum Panels
C 1283—07a Practice for Installing Clay Flue Lining
C 1289—10 Standard Specification for Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board
C 1328—05 Specification for Plastic (Stucco) Cement.
C 1395/C 1395M—06a Specification for Gypsum Ceiling Board
C 1396/C 1396M—09a Specification for Gypsum Board.
C 1492—03(2009) Specification for Concrete Roof Tile
C 1513—10 Standard Specification for Steel Tapping Screws for Cold-formed Steel Framing Connections
C 1658/C 1658M—06 Standard Specification for Glass Mat Gypsum Panels
D 41—05 (2010) Specification for Asphalt Primer Used in Roofing, Dampproofing and Waterproofing
D 43—00(2006) Specification for Coal Tar Primer Used in Roofing, Dampproofing and Waterproofing
D 225—07 Specification for Asphalt Shingles (Organic Felt) Surfaced with Mineral Granules
D 226/D 226M—09 Specification for Asphalt-saturated (Organic Felt) Used in Roofing and Waterproofing
D 227—03 Specification for Coal Tar Saturated (Organic Felt) Used in Roofing and Waterproofing
D 450—07 Specification for Coal-tar Pitch Used in Roofing, Dampproofing and Waterproofing
D 1227—95(2007) Specification for Emulsified Asphalt Used as a Protective Coating for Roofing
<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>D 1248—05</td>
<td>Specification for Polyethylene Plastics Extrusion Materials for Wire and Cable</td>
</tr>
<tr>
<td>D 1622—08</td>
<td>Standard Test Method for Apparent Density of Rigid Cellular Plastics</td>
</tr>
<tr>
<td>D 1623—09</td>
<td>Standard Test Method for Tensile and Tensile Adhesion Properties of Rigid Cellular Plastics</td>
</tr>
<tr>
<td>D 1693—08</td>
<td>Test Method for Environmental Stress-cracking of Ethylene Plastics</td>
</tr>
<tr>
<td>D 1784—08</td>
<td>Standard Specification for Rigid Poly (Vinyl Chloride) (PVC) Compounds and Chlorinated Poly (Vinyl Chloride) (CPVC) Compounds</td>
</tr>
<tr>
<td>D 1863—05</td>
<td>Specification for Mineral Aggregate Used in Built-up Roofs</td>
</tr>
<tr>
<td>D 1970—09</td>
<td>Specification for Self-adhering Polymer Modified Bitumen Sheet Materials Used as Steep Roofing Underlayment for Ice Dam Protection</td>
</tr>
<tr>
<td>D 2126—09</td>
<td>Standard Test Method for Response of Rigid Cellular Plastics to Thermal and Humid Aging</td>
</tr>
<tr>
<td>D 2178—04</td>
<td>Specification for Asphalt Glass Felt Used in Roofing and Waterproofing</td>
</tr>
<tr>
<td>D 2412—10</td>
<td>Test Method for Determination of External Loading Characteristics of Plastic Pipe by Parallel-plate Loading</td>
</tr>
<tr>
<td>D 2447—03</td>
<td>Specification for Polyethylene (PE) Plastic Pipe Schedules 40 and 80, Based on Outside Diameter</td>
</tr>
<tr>
<td>D 2513—09a</td>
<td>Specification for Thermoplastic Gas Pressure Pipe, Tubing and Fittings</td>
</tr>
<tr>
<td>D 2626—04</td>
<td>Specification for Asphalt-saturated and Coated Organic Felt Base Sheet Used in Roofing</td>
</tr>
<tr>
<td>D 2683—10</td>
<td>Specification for Socket-type Polyethylene Fittings for Outside Diameter-controlled Polyethylene Pipe and Tubing</td>
</tr>
<tr>
<td>D 2822—05</td>
<td>Specification for Asphalt Roof Cement</td>
</tr>
<tr>
<td>D 2823—05</td>
<td>Specification for Asphalt Roof Coatings</td>
</tr>
<tr>
<td>D 2824—06</td>
<td>Specification for Aluminum-pigmented Asphalt Roof Coatings, Nonfibered, Asbestos Fibered and Fibered without Asbestos</td>
</tr>
<tr>
<td>ASTM Code</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>D 2837—08</td>
<td>Test Method for Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials or Pressure Design Basis for Thermoplastic Pipe Products</td>
</tr>
<tr>
<td>D 2846/D 2846M—09b</td>
<td>Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Hot- and Cold-water Distribution Systems</td>
</tr>
<tr>
<td>D 2898—10</td>
<td>Test Methods for Accelerated Weathering of Fire-retardant-treated Wood for Fire Testing</td>
</tr>
<tr>
<td>D 3019—08</td>
<td>Specification for Lap Cement Used with Asphalt Roll Roofing, Nonfibered, Asbestos Fibered and Nonasbestos Fibered.</td>
</tr>
<tr>
<td>D 3035—08</td>
<td>Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based On Controlled Outside Diameter</td>
</tr>
<tr>
<td>D 3161—09</td>
<td>Test Method for Wind Resistance of Asphalt Shingles (Fan Induced Method)</td>
</tr>
<tr>
<td>D 3201—08ae1</td>
<td>Test Method for Hygroscopic Properties of Fire-retardant Wood and Wood-base Products</td>
</tr>
<tr>
<td>D 3350—10</td>
<td>Specification for Polyethylene Plastic Pipe and Fitting Materials</td>
</tr>
<tr>
<td>D 3462/D 3462M—10a</td>
<td>Specification for Asphalt Shingles Made From Glass Felt and Surfaced with Mineral Granules.</td>
</tr>
<tr>
<td>D 3468—99 (2006)e01</td>
<td>Specification for Liquid-applied Neoprene and Chlorosulfanated Polyethylene Used in Roofing and Waterproofing</td>
</tr>
<tr>
<td>D 3679—09a</td>
<td>Specification for Rigid Poly (Vinyl Chloride) (PVC) Siding</td>
</tr>
<tr>
<td>D 3737—09</td>
<td>Practice for Establishing Allowable Properties for Structural Glued Laminated Timber (Glulam)</td>
</tr>
<tr>
<td>D 3909—97b (2004)e01</td>
<td>Specification for Asphalt Roll Roofing (Glass Felt) Surfaced with Mineral Granules</td>
</tr>
<tr>
<td>D 4022—07</td>
<td>Specification for Coal Tar Roof Cement, Asbestos Containing</td>
</tr>
<tr>
<td>D 4318—10</td>
<td>Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils</td>
</tr>
</tbody>
</table>
D 4434/D 4434—09 Specification for Poly (Vinyl Chloride) Sheet Roofing
D 4479—07 Specification for Asphalt Roof Coatings-asbestos-free
D 4586—07 Specification for Asphalt Roof Cement-asbestos-free
D 4601—04 Specification for Asphalt-coated Glass Fiber Base Sheet Used in Roofing
D 4637/D 4637M—10 Specification for EPDM Sheet Used in Single-ply Roof Membrane
D 4829—08a Test Method for Expansion Index of Soils
D 4869—05e01 Specification for Asphalt-saturated (Organic Felt) Underlayment Used in Steep Slope Roofing
D 4990—97a (2005)e01 Specification for Coal Tar Glass Felt Used in Roofing and Waterproofing
D 5019—07a Specification for Reinforced Nonvulcanized Polymeric Sheet Used in Roofing Membrane
D 5055—10 Specification for Establishing and Monitoring Structural Capacities of Prefabricated Wood I-joists
D 5516—09 Test Method for Evaluating the Flexural Properties of Fire-retardant-treated Softwood Plywood Exposed to the Elevated Temperatures
D 5643—06 Specification for Coal Tar Roof Cement Asbestos-free
D 5664—10 Test Methods For Evaluating the Effects of Fire-retardant Treatments and Elevated Temperatures on Strength Properties of Fire-retardant-treated Lumber
D 5665—99a(2006) Specification for Thermoplastic Fabrics Used in Cold-applied Roofing and Waterproofing
D 5726—98(2005) Specification for Thermoplastic Fabrics Used in Hot-applied Roofing and Waterproofing
D 6083—05e01 Specification for Liquid-applied Acrylic Coating Used in Roofing
D 6162—08 Specification for Styrene Butadiene Styrene (SBS) Modified Bituminous Sheet Materials Using a Combination of Polyester and Glass Fiber Reinforcements

D 6164—05 Specification for Styrene Butadiene Styrene (SBS) Modified Bituminous Sheet Materials Using Polyester Reinforcements

D 6223/D 6223M—02(2009)e01 Specification for Atactic Polypropylene (APP) Modified Bituminous Sheet Materials Using a Combination of Polyester and Glass Fiber Reinforcement

D 6298—05 e1 Specification for Fiberglass-reinforced Styrene Butadiene Styrene (SBS) Modified Bituminous Sheets with a Factory Applied Metal Surface

D 6305—08 Practice for Calculating Bending Strength Design Adjustment Factors for Fire-retardant-treated Plywood Roof Sheathing

D 6694—08 Standard Specification Liquid-applied Silicone Coating Used in Spray Polyurethane Foam Roofing

D 6841—08 Standard Practice for Calculating Design Value Treatment Adjustment Factors for Fire-retardant-treated Lumber

D 6878—08e1 Standard Specification for Thermoplastic-polyolefin-based Sheet Roofing.

E 84—10b Test Method for Surface Burning Characteristics of Building Materials
E 90—04 Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements
E 96/E 96M—05 Test Method for Water Vapor Transmission of Materials
E 108—10a Test Methods for Fire Tests of Roof Coverings
E 119—10b Test Methods for Fire Tests of Building Construction and Materials
E 136—09b Test Method for Behavior of Materials in a Vertical Tube Furnace at 750°C
E 283—04 Test Method for Determining the Rate of Air Leakage through Exterior Windows, Curtain Walls and Doors Under Specified Pressure Differences Across the Specimen
E 331—00 (2009) Test Method for Water Penetration of Exterior Windows, Skylights, Doors and Curtain Walls by Uniform Static Air Pressure Difference
E 492—09 Specification for Laboratory Measurement of Impact Sound Transmission through Floor-ceiling Assemblies Using the Tapping Machine
E 814—10 Test Method for Fire Tests of Through-penetration Firestops
E 970—10 Test Method for Critical Radiant Flux of Exposed Attic Floor Insulation Using a Radiant Heat Energy Source
E 1509—04 Standard Specification for Room Heaters, Pellet Fuel-burning Type
E 1886—05 Test Method for Performance of Exterior Windows, Curtain Walls, Doors and Storm Shutters Impacted by Missiles and Exposed to Cyclic Pressure Differentials
<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E 2178—03</td>
<td>Standard Test Method for Air Permeance of Building Materials</td>
</tr>
<tr>
<td>E 2231—09</td>
<td>Standard Practice for Specimen Preparation and Mounting of Pipe and Duct Insulation Materials to Assess Surface Burning Characteristics</td>
</tr>
<tr>
<td>F 876—10</td>
<td>Specification for Cross-linked Polyethylene (PEX) Tubing</td>
</tr>
<tr>
<td>F 877—07</td>
<td>Specification for Cross-linked Polyethylene (PEX) Plastic Hot-and Cold-water Distribution Systems</td>
</tr>
<tr>
<td>F 1055—98(2006)</td>
<td>Specification for Electrofusion Type Polyethylene Fittings for Outside Diameter Controlled Polyethylene Pipe and Fittings</td>
</tr>
<tr>
<td>F 1281—07</td>
<td>Specification for Cross-linked Polyethylene/Aluminum/Cross-linked Polyethylene (PEX-AL-PEX) Pressure Pipe</td>
</tr>
<tr>
<td>F 1282—10</td>
<td>Specification for Polyethylene/Aluminum/Polyethylene (PE-AL-PE) Composite Pressure Pipe</td>
</tr>
<tr>
<td>F 1554—07a</td>
<td>Specification for Anchor Bolts, Steel, 36, 55 and 105-ksi Yield Strength</td>
</tr>
<tr>
<td>F 1667—10</td>
<td>Specification for Driven Fasteners, Nails, Spikes and Staples</td>
</tr>
<tr>
<td>F 1807—10e1</td>
<td>Specification for Metal Insert Fittings Utilizing a Copper Crimp Ring for SDR9 Cross-linked Polyethylene (PEX) Tubing</td>
</tr>
<tr>
<td>F 1960—10</td>
<td>Specification for Cold Expansion Fittings with PEX Reinforcing Rings for Use with Cross-linked Polyethylene (PEX) Tubing</td>
</tr>
<tr>
<td>F 1973—08</td>
<td>Standard Specification for Factory Assembled Anodeless Risers and Transition Fittings in</td>
</tr>
</tbody>
</table>
Polyethylene (PE) and Polyamide 11 (PA 11) Fuel Gas Distribution Systems

F 2090—10 Specification for Window Fall Prevention Devices—with Emergency Escape (Egress) Release Mechanisms

F 2098—08 Standard Specification for Stainless Steel Clamps for SDR9 PEX Tubing to Metal Insert Fittings

F 2389—10 Standard for Pressure-rated Polypropylene (PP) Piping Systems

F 2623—08 Standard Specification for Polyethylene of Raised Temperature (PE-RT) SDRG Tubing

American Wood Protection Association
P.O. Box 361784
Birmingham, AL 35236-1784

AWPA

Standard reference number Title
C1—03 All Timber Products—Preservative Treatment by Pressure Processes
M4—06 Standard for the Care of Preservative-treated Wood Products
U1—10 USE CATEGORY SYSTEM: User Specification for Treated Wood Except Section 6 Commodity Specification H

Canadian General Standards Board
Place du Portage 111, 6B1 11 Laurier Street
Gatineau, Quebec, Canada KIA 1G6

CGSB

Standard reference number Title
37-GP—52M—(1984) Roofing and Waterproofing Membrane, Sheet Applied, Elastomeric
CAN/CGSB-37.54—95 Polyvinyl Chloride Roofing and Waterproofing Membrane
Composite Panel Association
19465 Deerfield Avenue, Suite 306
Leesburg, VA 20176

CPA
Standard reference number	**Title**
ANSI A135.4—04 | Basic Hardboard
ANSI A135.5—04 | Prefinished Hardboard Paneling
ANSI A135.6—06 | Hardboard Siding

Consumer Product Safety Commission
4330 East West Highway
Bethesda, MD 20814-4408

CPSC
Standard reference number	**Title**
16 CFR Part 1209—(1979) | Interim Safety Standard for Cellulose Insulation
16 CFR Part 1404—(1979) | Cellulose Insulation

Canadian Standards Association
5060 Spectrum Way
Mississauga, Ontario, Canada L4N 5N6

CSA
Standard reference number	**Title**
CSA Requirement 3—88 | Manually Operated Gas Valves for Use in House Piping Systems
CSA 8-93 | Requirements for Gas Fired Log Lighters for Wood Burning Fireplaces—with Revisions through January 1999
O325—07 | Construction Sheathing
O437-Series—93 Standards on OSB and Waferboard (Reaffirmed 2006)
101/I.S.2/A440—08 Specifications for Windows, Doors and Unit Skylights
CAN/CSA B137.10M—09 Cross-linked Polyethylene/Aluminum/Polyethylene Composite Pressure Pipe Systems

Cedar Shake & Shingle Bureau
P. O. Box 1178
Sumas, WA 98295-1178

<table>
<thead>
<tr>
<th>CSSB</th>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSSB—97</td>
<td></td>
<td>Grading and Packing Rules for Western Red Cedar Shakes and Western Red Shingles of the Cedar Shake and Shingle Bureau</td>
</tr>
</tbody>
</table>

Door and Access Systems Manufacturers Association International
1300 Summer Avenue
Cleveland, OH 44115-2851

<table>
<thead>
<tr>
<th>DASMA</th>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
</table>

United States Department of Commerce
1401 Constitution Avenue, NW
Washington, DC 20230

<table>
<thead>
<tr>
<th>DOC</th>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS 1—07</td>
<td></td>
<td>Structural Plywood</td>
</tr>
</tbody>
</table>
PS 2—04 Performance Standard for Wood-based Structural-use Panels
R803.2.1/ PS 20—05 American Softwood Lumber Standard
Department of Transportation
1200 New Jersey Avenue SE East Building, 2nd floor
Washington, DC 20590

DOTn
Standard reference number
49 CFR, Parts 192.281(e) & 192.283 (b) Transportation of Natural and Other Gas by Pipeline: Minimum Federal Safety Standards

Federal Emergency Management Agency
500 C Street, SW
Washington, DC 20472

FEMA
Standard reference number
TB-2—08 Flood Damage-Resistant Materials Requirements
FIA-TB-11—01 Crawlspace Construction for Buildings Located in Special Flood Hazard Area

Factory Mutual Global Research Standards Laboratories
Department 1301 Atwood Avenue, P. O. Box 7500
Johnson, RI 02919

FM
Standard reference number
4450—(1989) Approval Standard for Class 1 Insulated Steel Deck Roofs—with Supplements through July 1992
Wall/Ceiling Coating Systems, Interior or Exterior Finish Systems

Gypsum Association
810 First Street, Northeast, Suite 510
Washington, DC 20002-4268

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA-253—07</td>
<td>Application of Gypsum Sheathing</td>
</tr>
</tbody>
</table>

Hardwood Plywood & Veneer Association
1825 Michael Faraday Drive
Reston, Virginia 20190-5350

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP-1—2009</td>
<td>The American National Standard for Hardwood and Decorative Plywood</td>
</tr>
</tbody>
</table>

International Code Council, Inc.
500 New Jersey Avenue, NW 6th Floor
Washington, DC 20001

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC/ANSI A117.1 - 09</td>
<td>Accessible and Usable Buildings and Facilities</td>
</tr>
<tr>
<td>ICC 400 - 07</td>
<td>Standard on the Design and Construction of Log Structures</td>
</tr>
<tr>
<td>ICC 500 - 08</td>
<td>ICC/NSSA Standard on the Design and Construction of Storm Shelters</td>
</tr>
<tr>
<td>ICC 600 - 08</td>
<td>Standard for Residential Construction in High Wind Regions</td>
</tr>
<tr>
<td>IEBC-09</td>
<td>International Existing Buildings Code</td>
</tr>
</tbody>
</table>
International Energy Conservation Code (*adoption includes only section 101 of chapter 1 and chapters 2 through 6*)

International Fuel Gas Code (*including ICC Emergency Amendment changing section 406.7*)

International Organization for Standardization
1, ch. de la Voie -Creuse Case postale 56 CH-1211
Geneva 20, Switzerland

ISO

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>15874—03</td>
<td>Polypropylene Plastic Piping Systems for Hot and Cold Water Installations</td>
</tr>
</tbody>
</table>

Manufacturers Standardization Society of the Valve and Fittings Industry
127 Park Street, Northeast
Vienna, VA 22180

MSS

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-58—09</td>
<td>Pipe Hangers and Supports—Materials, Design and Manufacture</td>
</tr>
</tbody>
</table>

North American Insulation Manufacturers Association
44 Canal Center Plaza, Suite 310
Alexandria, VA 22314

NAIMA

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH 116—02</td>
<td>Fibrous Glass Duct Construction Standards, Fifth Edition</td>
</tr>
</tbody>
</table>

National Concrete Masonry Association
13750 Sunrise Valley Drive
Herndon, VA 20171-4662
NCMA
Standard reference number
TR 68-A—75
Title
Design and Construction of Plain and Reinforced Concrete Masonry and Basement and Foundation Walls

National Fire Protection Association
1 Batterymarch Park
Quincy, MA 02269

NFPA
Standard reference number
Title
13—10
Installation of Sprinkler Systems *(including TIA 10-2)*
13D—10
Standard for the Installation of Sprinkler Systems in One- and Two-family Dwellings and Manufactured Homes *(including TIA 10-2)*
13R-10
Standard for the Installation of Sprinkler Systems in Residential Occupancies up to and Including Four Stories in Height *(including TIA 10-2)*
30-15
Flammable and Combustible Liquids Code
31—0611
Installation of Oil-burning Equipment
37-10
Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines
58—11
Liquefied Petroleum Gas Code
70—4414
National Electrical Code
72—10
National Fire Alarm and Signaling Code
85—07
Boiler and Construction Systems Hazards Code
110-10
Standard for Emergency and Standby Power Systems
111-10
Standard on Stored Electrical Energy Emergency and Standby Power Systems
211—10
Chimneys, Fireplaces, Vents and Solid Fuel Burning Appliances
259—08
Test Method for Potential Heat of Building Materials
286—06
Standard Methods of Fire Tests for Evaluating Contribution of Wall and Ceiling Interior Finish to Room Fire Growth
501—05
Standard on Manufactured Housing
853—10 Standard for the Installation of Stationary Fuel Cell Power Systems

National Fenestration Rating Council Inc.
8484 Georgia Avenue, Suite 320
Silver Spring, MD 20910

NFRC
Standard reference number Title
100—10 Procedure for Determining Fenestration Product U-factors
200—10 Procedure for Determining Fenestration Product Solar Heat Gain Coefficients and Visible Transmittance at Normal Incidence
400—10 Procedure for Determining Fenestration Product Air Leakage

Portland Cement Association
5420 Old Orchard Road
Skokie, IL 60077

PCA
Standard reference number Title
100—07 Prescriptive Design of Exterior Concrete Walls for One- and Two-family Dwellings (Pub. No. EB241)

Sheet Metal & Air Conditioning Contractors National Assoc. Inc.
4021 Lafayette Center Road
Chantilly, VA 22021

SMACNA
Standard reference number Title

The Masonry Society
3970 Broadway, Suite 201-D
Boulder, CO 80304

TMS

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>302—07</td>
<td>Standard Method for Determining the Sound Transmission Class Rating for Masonry Walls</td>
</tr>
<tr>
<td>402—08</td>
<td>Building Code Requirements for Masonry Structures</td>
</tr>
<tr>
<td>602—08</td>
<td>Specification for Masonry Structures</td>
</tr>
</tbody>
</table>

Truss Plate Institute
583 D’Onofrio Drive, Suite 200
Madison, WI 53719

TPI

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPI 1—2007</td>
<td>National Design Standard for Metal-plate-connected Wood Truss Construction</td>
</tr>
</tbody>
</table>

Underwriters Laboratories, Inc.
333 Pfingsten Road
Northbrook, IL 60062

UL

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>17—08</td>
<td>Vent or Chimney Connector Dampers for Oil-fired Appliances</td>
</tr>
<tr>
<td>58—96</td>
<td>Steel Underground Tanks for Flammable and Combustible Liquids—with Revisions through July 1998</td>
</tr>
<tr>
<td>80—07</td>
<td>Steel Tanks for Oil-burner Fuel</td>
</tr>
<tr>
<td>103—10</td>
<td>Factory-built Chimneys for Residential Type and Building Heating Appliances</td>
</tr>
<tr>
<td>127—08</td>
<td>Factory-built Fireplaces</td>
</tr>
<tr>
<td>174—04</td>
<td>Household Electric Storage Tank Water Heaters—with Revisions through November 2005</td>
</tr>
<tr>
<td>181—05</td>
<td>Factory-made Air Ducts and Air Connectors</td>
</tr>
</tbody>
</table>
181A—05 Closure Systems for Use with Rigid Air Ducts and Air Connectors
181B—05 Closure Systems for Use with Flexible Air Ducts and Air Connectors
217—06 Single- and Multiple-station Smoke Alarms
263—03 Standards for Fire Test of Building Construction and Materials
325—02 Standard for Door, Drapery, Gate, Louver and Window Operations and Systems—with Revisions through February 2006
343—08 Pumps for Oil-burning Appliances
441—10 Gas Vents
508—99 Industrial Control Equipment—with Revisions through July 2005
536—97 Flexible Metallic Hose—with Revisions through June 2003
641—95 Type L, Low-temperature Venting Systems—with Revisions through August 2005
651—05 Schedule 40 and Schedule 80 Rigid PVC Conduit and Fittings
723—08 Standard for Test for Surface Burning Characteristics of Building Materials
726—95 Oil-fired Boiler Assemblies—with Revisions through March 2006
727—06 Oil-fired Central Furnaces
729—03 Oil-fired Floor Furnaces
730—03 Oil-fired Wall Furnaces
732—95 Oil-fired Storage Tank Water Heaters
737—07 Fireplaces Stoves
790—04 Standard Test Methods for Fire Tests of Roof Coverings
795—06 Commercial-industrial Gas Heating Equipment.
834—04 Heating, Water Supply and Power Boilers-Electric
896—93 Oil-burning Stoves—with Revisions through May 2004
923—08 Microwave Cooking Appliances-
959—01 Medium Heat Appliance Factory-built Chimneys—with Revisions through September 2006
1040—96 Fire Test of Insulated Wall Construction—with Revisions through September 2001
1256—02 Fire Test of Roof Deck Construction.
1261—01 Electric Water Heaters for Pools and Tubs—with Revisions through June 2004
<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1453—04</td>
<td>Electronic Booster and Commercial Storage Tank Water Heaters</td>
</tr>
<tr>
<td>1479—03</td>
<td>Fire Tests of Through-penetration Firestops</td>
</tr>
<tr>
<td>1482—10</td>
<td>Solid-fuel-type Room Heaters</td>
</tr>
<tr>
<td>1715—97</td>
<td>Fire Test of Interior Finish Material—with Revisions through March 2004</td>
</tr>
<tr>
<td>1738—10</td>
<td>Venting Systems for Gas-burning Appliances, Categories II, III and IV</td>
</tr>
<tr>
<td>1777—07</td>
<td>Standard for Chimney Liners</td>
</tr>
<tr>
<td>1995—05</td>
<td>Heating and Cooling Equipment.</td>
</tr>
<tr>
<td>2017—08</td>
<td>Standard for General-purpose Signaling Devices and Systems—with Revisions through June 2004</td>
</tr>
<tr>
<td>2034—08</td>
<td>Standard for Single- and Multiple-station Carbon Monoxide Alarms.</td>
</tr>
<tr>
<td>2158A—10</td>
<td>Outline of Investigation for Clothes Dryer Transition Duct</td>
</tr>
<tr>
<td>2200-12</td>
<td>Stationary Engine Generator Assemblies</td>
</tr>
</tbody>
</table>

Underwriters’ Laboratories of Canada
7 Underwriters Road Toronto,
Ontario, Canada M1R 3B4

ULC

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAN/ULC S 102—10</td>
<td>Standard Methods for Test for Surface Burning Characteristics of Building Materials and Assemblies</td>
</tr>
</tbody>
</table>

United States - Federal Trade Commission
600 Pennsylvania Avenue NW
Washington, DC 20580

US-FTC

<table>
<thead>
<tr>
<th>Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFR Title 16 Part 460</td>
<td>R-value Rule</td>
</tr>
</tbody>
</table>

Window & Door Manufacturers Association
1400 East Touhy Avenue, Suite 470
Des Plaines, IL 60018

<table>
<thead>
<tr>
<th>WDMA Standard reference number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAMA/WDMA/CSA 101/I.S2/A440—08</td>
<td>Specifications for Windows, Doors and Skylights</td>
</tr>
</tbody>
</table>
Effective: 01/01/2016

Five Year Review (FYR) Dates: 01/01/2018

CERTIFIED ELECTRONICALLY

Certification

12/07/2015

Date

Promulgated Under: 119.03
Statutory Authority: 3781.10(A), 4104.43(A)(1)
Rule Amplifies: 3781.01, 3781.06, 3781.10, 3781.11, 3791.04, 4740.14
Prior Effective Dates: 5/27/06, 1/1/08, 3/31/08(Emer.), 6/24/08, 1/1/09, 1/1/13, 7/1/14